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TWIN POSITIVE SOLUTIONS FOR FOURTH-ORDER
TWO-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN

CHANGING NONLINEARITIES

YU TIAN, WEIGAO GE

Abstract. A new fixed point theorem on double cones is applied to obtain
the existence of at least two positive solutions to

(Φp(y′′(t))′′ − a(t)f(t, y(t), y′′(t)) = 0, 0 < t < 1,

y(0) = y(1) = 0 = y′′(0) = y′′(1),

where f : [0, 1] × [0,∞) × (−∞, 0] → R, a ∈ L1([0, 1], (0,∞)). We also give

some examples to illustrate our results.

1. Introduction

We study the existence of multiple positive solutions for the fourth-order two-
point boundary-value problem

(Φp(y′′(t))′′ − a(t)f(t, y(t), y′′(t)) = 0, 0 < t < 1, (1.1)

y(0) = y(1) = 0 = y′′(0) = y′′(1), (1.2)

where the nonlinear term f is allowed to change sign, a ∈ L1([0, 1], (0,∞)),Φpx =
|x|p−2x, 1/p + 1/q = 1, p > 1. When p = 2 Problem (1.1)-(1.2) describes the
deformations of an elastic beam. The boundary conditions are given according to
the control at the ends of the beam.

A great deal of research has been devoted to the existence of solutions for the
fourth-order two point boundary value problem. We refer the reader to [1, 3, 4, 5,
6, 2] and their references. Aftabizadeh [1], [2], del Pino and Manasevich [3], Gupta
[4, 5], Ma and Wang [6], Liu [9] have studied the existence problem of positive
solutions of the following fourth-order two-point boundary-value problem

y(4)(t)− f(t, y(t), y′′(t)) = 0, 0 < t < 1,

y(0) = y(1) = 0 = y′′(0) = y′′(1).

All the above works were done under assumption that the nonlinear term f is
nonnegative.
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In this paper, we will impose growth conditions on f which ensure the existence
of at least two positive solutions for (1.1)-(1.2). The key tool in our approach is
the following fixed point theorem on double cones.

For a cone K in a Banach space X with norm ‖ · ‖ and a constant r > 0, let

Kr = {x ∈ K : ‖x‖ < r}, ∂Kr = {x ∈ K : ‖x‖ = r}.
Suppose α : K → R+ is a continuously increasing functional, i.e., α is continuous
and α(λx) ≤ α(x) for λ ∈ (0, 1). Let

K(b) = {x ∈ K : α(x) < b}, ∂K(b) = {x ∈ K : α(x) = b}
and Ka(b) = {x ∈ K : a < ‖x‖, α(x) < b}. The origin in X is denoted by θ.

Theorem 1.1 ([10]). Let X be a real Banach space with norm ‖ · ‖ and K, K ′ ⊂ X
two solid cones with K ′ ⊂ K. Suppose T : K → K and T ′ : K ′ → K ′ are
two completely continuous operators and α : K ′ → R+ a continuously increasing
functional satisfying α(x) ≤ ‖x‖ ≤ Mα(x) for all x in K ′, where M ≥ 1 is a
constants b > a > 0 such that

(C1) ‖Tx‖ < a, for x ∈ ∂Ka

(C2) ‖T ′x‖ < a, for x ∈ ∂K ′
a and α(T ′x) > b for x ∈ ∂K

′
(b)

(C3) Tx = T ′x, for x ∈ K ′
a(b) ∩ {u : T ′u = u}

then T has at least two fixed points y1 and y2 in K such that

0 ≤ ‖y1‖ < a < ‖y2‖, α(y2) < b.

2. Existence of positive solutions

Lemma 2.1. Suppose g(·) ∈ C[0, 1], then

(Φp(y′′(t)))′′ − g(t) = 0, 0 < t < 1, (2.1)

y(0) = y(1) = 0 = y′′(0) = y′′(1), (2.2)

has a unique solution

y(t) =
∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, τ)g(τ)dτ
)
ds, (2.3)

where

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1;
s(1− t), 0 ≤ s ≤ t ≤ 1.

Proof. Let Φpy
′′(t) = u(t), then (2.1)-(2.2) becomes

u′′ − g(t) = 0, 0 < t < 1;

u(0) = u(1) = 0.

It is clear that the above boundary-value problem has a unique solution,

u(t) =
∫ 1

0

G(t, s)g(s)ds,

where G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1;
s(1− t), 0 ≤ s ≤ t ≤ 1.

. Then Φpy
′′(t) = u(t), i.e., y′′(t) =

(Φqu)(t). By the boundary condition we know that

y(t) =
∫ 1

0

G(t, s)(Φqu)(s)ds =
∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, r)g(r)dr
)
ds.
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The proof is completed. �

In this paper, we assume the following conditions:
(H1) f : [0, 1]× [0,∞)× (−∞, 0] → R is continuous, a ∈ L1([0, 1], (0,∞))
(H2) a(t)f(t, 0, 0) 6≡ 0, f(t, 0, 0) ≥ 0 for t ∈ [0, 1].

Let X = {x ∈ C2[0, 1] : x(0) = x(1) = 0 = x′′(0) = x′′(1)}. Then X is a Banach
space with the norm ‖x‖ = supt∈[0,1] |x′′(t)|. Define

K = {x ∈ X : x is nonnegative and concave on [0, 1]},

and K ′ = {x ∈ X : x is nonnegative and concave on [0, 1], α(x) ≥ δq−1‖x‖,
δ ∈ (0, 1/2)}, where α(x) = mint∈[δ,1−δ]{−x′′(t)}. Obviously K, K ′ ⊂ X are two
cones with K ′ ⊂ K. From the definition K ′, we know that α(x) ≤ ‖x‖ ≤ 1

δq−1 α(x),
δ ∈ (0, 1/2). Denote

(Tx)(t) =
[ ∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, τ)a(τ)f(τ, x(τ), x′′(τ))dτ
)
ds

]+

,

where B+ = max{B, 0}.

(Ax)(t) =
∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, τ)a(τ)f(τ, x(τ), x′′(τ))dτ
)
ds.

For x ∈ X, define θ : X → K by (θx)(t) = max{x(t), 0}, then T = θ ◦ A. For
x ∈ K ′, let

(T ′x)(t) =
∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, τ)a(τ)f+(τ, x(τ), x′′(τ))dτ
)
ds,

where f+(t, x(t), x′′(t)) = max{f(t, x(t), x′′(t)), 0}.

Lemma 2.2. For x ∈ X, we have ‖x‖∞ ≤ ‖x′′‖∞ and ‖x′‖∞ ≤ ‖x′′‖∞ where
‖x‖∞ = supt∈[0,1] |x(t)|.

Proof. From

x(t) =
∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, r)g(r)dr
)
ds

and

x′′(t) = −Φq

( ∫ 1

0

G(t, r)g(r)dr
)
,

we have

|x(t)| =
∣∣ ∫ 1

0

G(t, s)Φq

( ∫ 1

0

G(s, r)g(r)dr
)
ds

∣∣
=

∣∣ ∫ 1

0

G(t, s)|x′′(s)|ds
∣∣

≤ ‖x′′‖∞
∫ 1

0

G(t, s)ds

= ‖x′′‖∞
[ ∫ t

0

s(1− t)ds +
∫ 1

t

t(1− s)ds
]

= ‖x′′‖∞
( t2(1− t)

2
+

t(1− t)2

2
)
.
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So ‖x‖∞ = supt∈[0,1] |x(t)| ≤ 1
8‖x

′′‖∞ < ‖x′′‖∞. At the same time, from x′(t) =∫ t

0
x′′(s)ds, we have ‖x′‖∞ = supt∈[0,1] |x′(t)| ≤ ‖x′′‖∞. The proof is complete. �

Note that X is a Banach space with the norm ‖x‖ = supt∈[0,1] |x′′(t)|.

Lemma 2.3. T ′(K ′) ⊂ K ′.

Proof. For any x ∈ K ′, it is clear that (T ′x)(t) is nonnegative from the definition of
T ′. From (T ′x)′′(t) = −Φq

( ∫ 1

0
G(t, s)f+(s, x(s), x′′(s))ds

)
, we know (T ′x)′′(t) ≤ 0.

So T ′x is concave on [0, 1]. Then

−(T ′x)′′(t) = Φq

( ∫ 1

0

G(t, s)f+(s, x(s), x′′(s))ds
)

≤ Φq

( ∫ 1

0

G(s, s)f+(s, x(s), x′′(s))ds
)
,

which implies

‖ − (T ′x)′′‖∞ ≤ Φq

( ∫ 1

0

G(s, s)f+(s, x(s), x′′(s))ds
)
,

and

α(T ′x) = min
t∈[δ,1−δ]

[−(T ′x)′′(t)]

= min
t∈[δ,1−δ]

Φq

( ∫ 1

0

G(t, s)f+(s, x(s), x′′(s))ds
)

= min
t∈[δ,1−δ]

Φq

( ∫ 1

t

t(1− s)f+(s, x(s), x′′(s))ds

+
∫ t

0

s(1− t)f+(s, x(s), x′′(s))ds
)

≥ min
t∈[δ,1−δ]

Φq

( ∫ 1

t

δs(1− s)f+(s, x(s), x′′(s))ds

+
∫ t

0

δs(1− s)f+(s, x(s), x′′(s))ds
)

= Φq

(
δ

∫ 1

0

G(s, s)f+(s, x(s), x′′(s))ds
)

≥ δq−1‖T ′x‖.
The proof is complete. �

For convenience, we denote

Q = max
t∈[0,1]

{
Φq

( ∫ 1

0

G(t, s)a(s)ds
)}

,

m = min
t∈[δ,1−δ]

{
Φq

( ∫ 1−δ

δ

G(t, s)a(s)ds
)}

,

mi = min
t∈[δi,1−δi]

{
Φq

( ∫ 1−δi

δi

G(t, s)a(s)ds
)}

.

It is clear that 0 < m < Q < ∞.
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From the continuity of f, a ∈ L1([0, 1], (0,∞)). It is easy to see A : K → X and
T ′ : K ′ → K ′ are completely continuous. So T : K → K is completely continuous.

Theorem 2.4. Suppose (H1) and (H2) are satisfied and there exist a, b, d such that
0 < d < δq−1a < a < δq−1b < b. Assume that f satisfies the following conditions:

(H3) For (t, u, v) ∈ [0, 1]× [0, b]× [−b,−d], f(t, u, v) ≥ 0
(H4) For (t, u, v) ∈ [0, 1]× [0, a]× [−a, 0], f(t, u, v) < Φp( a

Q ).
(H5) For (t, u, v) ∈ [0, 1]× [0, b]× [−b,−δq−1b], f(t, u, v) ≥ Φp( b

m ).

Then (1.1)-(1.2) has at least two positive solutions y1, y2 such that

0 < ‖y1‖ < a < ‖y2‖, α(y1) < δq−1b, ‖y1‖∞ < a, ‖y2‖∞ < b (2.4)

Proof. First we show that T has a fixed point y1 ∈ K with ‖y1‖ ≤ a. In fact, for
any y ∈ ∂Ka, we have ‖y‖ = a. So 0 ≤ y(t) ≤ a,−a ≤ y′′(t) < 0, t ∈ [0, 1]. Let
I = {t ∈ [0, 1] : f(t, y(t), y′′(t)) ≥ 0}.

‖Ty‖ = max
t∈[0,1]

|(Ty)′′(t)|

= max
t∈[0,1]

max
{
Φq

( ∫ 1

0

G(t, s)a(s)f(s, y(s), y′′(s))ds
)
, 0

}
≤ max

t∈[0,1]
Φq

( ∫
I

G(t, s)a(s)f(s, y(s), y′′(s))ds
)

≤ Φq

(
max

t∈[0,1],0≤u≤a,−a≤v≤0
f(t, u, v) max

t∈[0,1]

{ ∫
I

G(t, s)a(s)ds
})

<
a

Q
max

t∈[0,1]

{
Φq

( ∫ 1

0

G(t, s)a(s)ds
)}

= a.

The existence of y1 is proved by using condition (C1) of Theorem 1.1 and 0 ≤ y1 ≤ a,
−a ≤ y′′1 ≤ 0. Obviously, y1 is a solution of (1.1)-(1.2). Suppose this is not true,
then there is t0 ∈ (0, 1) such that y1(t0) 6= (Ay1)(t0). It must be (Ay1)(t0) < 0 =
y1(t0). Let (t1, t2) be the maximum interval such that (Ay1)(t0) < 0 for t ∈ (t1, t2).
We claim [t1, t2] 6= [0, 1] because of a(t)f(t, 0, 0) 6≡ 0 for t ∈ [0, 1].

If t2 < 1. y1(t) = 0, t ∈ [t1, t2]. (Ay1)(t2) = 0, (Ay1)(t) < 0, for t ∈ (t1, t2). Then
(Ay1)′(t2) ≥ 0. For t ∈ (t1, t2), we have

(Ay1)′′(t) = −Φq(
∫ 1

0

G(t, s)a(s)f(s, y(s), y′′(s))ds)

= −Φq(
∫ 1

0

G(t, s)a(s)f(s, 0, 0)ds) < 0.

So (Ay1)′(t) is decreasing for t ∈ (t1, t2). Noticing (Ay1)′(t2) ≥ 0, so t1 = 0 and
(Ay1)′(t) > 0, t ∈ [0, t2), (Ay1)(0) < 0, which contradicts (1.2). If t1 > 0. So
y1(t) = 0, (Ay1)(t1) = 0, (Ay1)(t) < 0 for t ∈ (t1, t2).(Ay1)′(t1) ≤ 0.

(Ay1)′′(t) = −Φq(
∫ 1

0

G(t, s)a(s)f(s, y(s), y′′(s))ds)

= −Φq(
∫ 1

0

G(t, s)a(s)f(s, 0, 0)ds) ≤ 0.
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So (Ay1)′(t) is decreasing for t ∈ (t1, t2). So t2 = 1, (Ay1)(1) < 0, which contradicts
boundary condition (1.2). So y1 is a solution of (1.1)-(1.2). We now show that
(C2) of Theorem 1.1 is satisfied. For x ∈ ∂K

′

a, i.e., ‖x‖ = a, then 0 < x(t) < a,
−a < x′′(t) < 0 for t ∈ [0, 1].

‖T ′y‖ = max
t∈[0,1]

|(T ′y)′′(t)|

= max
t∈[0,1]

{
Φq

( ∫ 1

0

G(t, s)a(s)f+(s, y(s), y′′(s))ds
)}

≤ Φq

[
max

{
f+(t, u, v) : t ∈ [0, 1], 0 ≤ u ≤ a,−a ≤ v ≤ 0

}
× max

t∈[0,1]

{
Φq

( ∫ 1

0

G(t, s)a(s)ds
)}]

<
a

Q

∫ 1

0

G(t, s)a(s)ds

= a.

For y ∈ ∂K ′(δq−1b), we have α(y) = δq−1b. So δq−1b ≤ ‖y‖ ≤ b, i.e., −b ≤ y′′(t) ≤
−δq−1b for t ∈ [δ, 1− δ], at the same time ‖y‖∞ ≤ b. Then

α(T ′y) = − min
t∈[δ,1−δ]

(T ′y)′′(t)

= min
t∈[δ,1−δ]

Φq

( ∫ 1

0

G(t, s)a(s)f+(s, y(s), y′′(s))ds
)

≥ Φq

(
min

t∈[δ,1−δ]

∫ 1−δ

δ

G(t, s)a(s)f+(s, y(s), y′′(s))ds
)

> Φq

(
min

{
f(t, u, v) : t ∈ [0, 1], u ∈ [0, b], v ∈ [−b,−δq−1b]

}
× min

t∈[δ,1−δ]

∫ 1−δ

δ

G(t, s)a(s)ds
)

= b > δq−1b.

Finally we show that (C3) of Theorem 1.1 is also satisfied. Let x ∈ K
′

a(δq−1b)∩{u :
T ′u = u}, then ‖x‖ < 1

δq−1 α(x). From α(x) ≤ ‖x‖ ≤ 1
δq−1 α(x), we have

min
t∈[δ,1−δ]

{−x′′(t)} = α(x) ≥ δq−1‖x‖ > δq−1a > d .

So−x′′ ∈ [d, b]. From (H3), we have f(t, u, v) = f+(t, u, v), which implies Ty = T ′y.
Therefore, there exist two positive solutions y1, y2 satisfying (2.2). �

Remark. When p = 2, a(t) ≡ 1, f(t, u, v) > 0, δ = 1/4, Theorem 2.4 reduces to [9,
Theorem 3.1]. But our result shows at least two positive solutions, whereas there
is at least one positive solution in B. Liu [9, Theorem 3.1].

Theorem 2.5. Suppose (H1),(H2) hold. Also assume that

(H6) δi ∈ (0, 1/2), i = 1, 2, . . . , n, 0 <
∫ 1−δi

δi
a(s)ds < ∞
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(H7) There exists constants ai, bi, di > 0, i = 1, 2, . . . , n, where 0 < di <

δq−1ai < ai < δq−1
i bi < bi < di+1 such that for i = 1, 2, . . . , n, we have

f(t, u, v) ≥ 0 for (t, u, v) ∈ [0, 1]× [0, bi]× [−bi,−di],

f(t, u, v) < Φq(
ai

Q
) for (t, u, v) ∈ [0, 1]× [0, ai]× [−ai, 0],

f(t, u, v) ≥ Φq(
bi

mi
) for (t, u, v) ∈ [0, 1]× [0, bi]× [−bi,−δq−1

i bi].

Then (1.1)-(1.2) has at least n + 1 positive solutions y1, y2, . . . , yn+1 satisfying

0 ≤ ‖y1‖ < a1 < ‖y2‖ ≤ b1, α(y2) < δq−1
1 b1, 0 < ‖y1‖∞ < a1,

0 < ‖y2‖∞ < b1, a2 < ‖y3‖, α(y3) < δq−1
2 b2, 0 < ‖y3‖∞ < b2,

. . .

an < ‖yn+1‖, α(yn+1) < δq−1
n bn, 0 < ‖yn+1‖∞ < bn.

Theorem 2.6. Suppose (H1), (H2), (H6) hold. Also assume
(H8) There exists constants ai, bi > 0, d, i = 1, 2, . . . , n, where 0 < d < δq−1ai <

ai < δq−1
i bi < bi, such that for i = 1, 2, . . . , n, we have:

f(t, u, v) ≥ 0 for (t, u, v) ∈ [0, 1]× [0, bn]× [−bn,−d],

f(t, u, v) <
ai

Q
for (t, u, v) ∈ [0, 1]× [0, ai]× [−ai, 0],

f(t, u, v) ≥ bi

mi
for (t, u, v) ∈ [0, 1]× [0, bi]× [−bi,−δq−1

i bi],

Then (1.1)-(1.2) has at least 2n positive solutions y1, y2, . . . , y2n satisfying

0 ≤ ‖y1‖ < a1 < ‖y2‖, α(y2) < δq−1
1 b1 < α(y3),

0 < ‖y1‖∞ < a1, 0 < ‖y2‖∞ < b1,

‖y3‖ < a2 < ‖y4‖, α(y4) < δq−1
2 b2 < α(y5), ‖y3‖∞ < a2, ‖y4‖∞ < b2, . . .

‖y2n−1‖ < an < ‖y2n‖, α(y2n) < δq−1
n bn, ‖y2n−1‖∞ < an, ‖y2n‖∞ < bn.

Example. Consider the boundary-value problem

(Φ3y
′′(t))′′ −

[y + π/6
6

(√
3 cos(y′′ +

5
12

π)
)19 +

t

10
]

= 0, 0 < t < 1,

y(0) = y(1) = 0 = y′′(0) = y′′(1),
(2.5)

where a(t) = t, f(t, u, v) = u+π/6
6 (

√
3 cos(v + 5

12π))19 + t
10 , p = 3, q = 3/2. Clearly

f is allowed to change sign on [0, 1]× [0,∞)× (−∞, 0).

Q = max
t∈[0,1]

Φ3/2

( ∫ 1

0

G(t, s)a(s)ds
)

= max
t∈[0,1]

( t

6
(−t2 + 1)

)1/2 = (
√

3
27

)1/2 = 3−
5
4 .

Note that ∫ 1−δ

δ

G(t, s)a(s)ds = (1− t)
∫ t

δ

s2ds + t

∫ 1−δ

t

(1− s)sds

=
1
6
[−t3 + t(4δ3 − 3δ2 + 1)− 2δ3].
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Let δ = 1/4, d = π/36, a = π/12, b = π/2. It is clear that d < δ1/2a < a < δ1/2b.
Then

m = min
t∈[δ,1−δ]

Φ3/2

( ∫ 1−δ

δ

G(t, s)a(s)ds
)

>

√
1
24

.

For (t, u, v) ∈ [0, 1]×[0, π/2]×[−π/2,−π/36], we have f(t, u, v) = u+π/6
6 (

√
3 cos(v+

5
12π))19 + t

10 > 0. So (H3) holds. For (t, u, v) ∈ [0, 1] × [0, π/12] × [−π/12, 0],
f(t, u, v) = u+π/6

6

(√
3 cos(v+ 5

12π)
)19+ t

10 < π
24×(

√
3

2 )19+ 1
10 < 0.6 < ( π

12×35/4)2 =
Φ3(a/Q). So (H4) holds. For (t, u, v) ∈ [0, 1]× [0, π/2]× [−π/2,−π/4], f(t, u, v) =
u+π/6

6

(√
3 cos(v + 5

12π)
)19 + t

10 > (π
√

6)2 > Φ3(b/m). So (H5) holds. Thus by
Theorem 2.4, this boundary-value problem has at least two positive solutions y1, y2

such that

0 < ‖y1‖ <
π

12
< ‖y2‖, α(y1) <

π

16
, ‖y1‖∞ <

π

12
, ‖y2‖∞ <

π

2
.
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