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TWIN POSITIVE SOLUTIONS FOR FOURTH-ORDER
TWO-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN
CHANGING NONLINEARITIES

YU TIAN, WEIGAO GE

ABSTRACT. A new fixed point theorem on double cones is applied to obtain
the existence of at least two positive solutions to

(@p(y”" ()" —a®) f(t,y(t),y" (1)) =0, 0<t<1,
y(0) =y(1) =0 =4"(0) = "' (1),

where f : [0,1] x [0,00) X (—00,0] — R,a € L'([0,1],(0,00)). We also give
some examples to illustrate our results.

1. INTRODUCTION

We study the existence of multiple positive solutions for the fourth-order two-
point boundary-value problem

(@p(y" (1) = a() f(t,y(t),y"(£) =0, 0<t<L, (1.1)
y(0) = y(1) = 0=y"(0) = y"(1), (1.2)

where the nonlinear term f is allowed to change sign, a € L'([0,1], (0, 0)), ®,x =
lz[P~22,1/p + 1/qg = 1,p > 1. When p = 2 Problem (L.I)-(1.2) describes the
deformations of an elastic beam. The boundary conditions are given according to
the control at the ends of the beam.

A great deal of research has been devoted to the existence of solutions for the
fourth-order two point boundary value problem. We refer the reader to [I, 3] (4 [5]
0, 2] and their references. Aftabizadeh [I], [2], del Pino and Manasevich [3], Gupta
[4, 5], Ma and Wang [6], Liu [9] have studied the existence problem of positive
solutions of the following fourth-order two-point boundary-value problem

y W) — f(ty),y"(t) =0, 0<t<l,
y(0) =y(1) =0=1y"(0) = y"(1).

All the above works were done under assumption that the nonlinear term [ is
nonnegative.
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In this paper, we will impose growth conditions on f which ensure the existence
of at least two positive solutions for —. The key tool in our approach is
the following fixed point theorem on double cones.

For a cone K in a Banach space X with norm || - || and a constant r > 0, let

K.={zeK:|z|<r}, O0K,={reK:|z|=r}

Suppose o : K — R* is a continuously increasing functional, i.e., « is continuous

and a(Az) < a(z) for A € (0,1). Let
Kb ={reK:a(x)<b}, 0K(Ob)={reK:alzx)=">}
and K,(b) ={z € K : a < ||z||, a(x) < b}. The origin in X is denoted by 6.

Theorem 1.1 ([10]). Let X be a real Banach space with norm ||-|| and K, K' C X
two solid cones with K' ¢ K. Suppose T : K — K and T' : K' — K’ are
two completely continuous operators and o : K' — RY a continuously increasing
functional satisfying a(z) < ||z|| < Ma(x) for all x in K', where M > 1 is a
constants b > a > 0 such that
(C1) || Tz| < a, for z € 0K,
(C2) || T"z|| < a, for z € OK!, and o(T'z) > b for x € IK (b)
(C3) Te =Tz, forx € K, (b) N {u:T'u = u}
then T has at least two fized points y1 and yo in K such that
0< |l <a<llyall, aly2) <.
2. EXISTENCE OF POSITIVE SOLUTIONS
Lemma 2.1. Suppose g(-) € C[0,1], then
(2" (1)) —g(t) =0, 0<t<1, (2.1)
y(0) =y(1) = 0=1y"(0) = y" (1),

has a unique solution

y(t) = /O Gi(t,5)B,( /0 G(s,7)g(r)dr)ds, (2.3)

where
t(l — 0<t<s<1;
G(t,S): ( S)’ — —S— )
s(1—1t), 0<s<t<L.

Proof. Let ®,y"(t) = u(t), then (2.1)-(2.2) becomes
u' —g(t)=0, 0<t<l;
u(0) = u(l) =0.

It is clear that the above boundary-value problem has a unique solution,
1
u(t) = [ Gts)g(s)is,
0

here G(t, 5) t(l—s), 0<t<s<I;
wher S) = .
’ s(1—t), 0<s<t<l.

(®,u)(t). By the boundary condition we know that

y(t):/o G(t,s)(q)qu)(s)ds:/o G(t, s)q)q(/o G(s,r)g(r)dr)ds.

Then ®,y"(t) = u(t), ie., y'(t) =
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The proof is completed. O

In this paper, we assume the following conditions:

(H1) f:10,1] x [0,00) x (—00,0] — R is continuous, a € L'([0,1], (0, 00))

(H2) a(t)f(t,0,0) #0, f(t,0,0) > 0 for t € [0,1].
Let X = {x € C?[0,1] : z(0) = (1) = 0 = 2”(0) = 2(1)}. Then X is a Banach
space with the norm [|z|| = sup,c(g 1) [2”(¢)]. Define

K = {z € X : z is nonnegative and concave on [0, 1]},

and K’ = {z € X : z is nonnegative and concave on [0,1], a(x) > 677 |z],
6 € (0,1/2)}, where a(z) = mingefs,1-5{—2"(t)}. Obviously K, K’ C X are two
cones with K’ C K. From the definition K, we know that a(z) < ||z|| < 577 (),
0 € (0,1/2). Denote

(@a)(t) = | /O Gt ), ( /O s, ma(r)(ralr),a"(M)ar)ds]

where BT = max{B, 0}.

1 1
(Ax)(t):/o G(t,s)@q(/o G’(s,T)a(T)f(T,x(T),x”(T))dT)ds.

For z € X, define § : X — K by (6z)(t) = max{x(t),0}, then T = 6 o A. For
z € K', let
1 1

(T'z)(t) = ; G(t,s)P,( ; G(s,m)a(r)f*(r,z(7),2" (1))dr)ds,

where fT(¢,z(t),2"(t)) = max{f(t, z(t),z"(t)),0}.

Lemma 2.2. For x € X, we have ||z|lcc < [|2"7]lc0 and ||2'||co < ||2”]|co where
2]l = sup;epo, iy [ (t)]-

Proof. From
1 1
z(t) = /0 G(t, s)fl)q(/o G(s,r)g(r)dr)ds
and )
2'(t) = —<I>q(/o G(t,r)g(r)dr),
we have

1 1
lx(t)] = |/0 G(t, s)CIJq(/O G(s,r)g(r)dr)ds|
:\/0 Gt 8)|"(s)|ds]
<z Hoo/o G(t,s)ds

= ||$”H<>O[/O s(l—t)ds+/t t(1 — s)ds]

2(1—t)  t(1—1t)?
2 T )

= [l oo (
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So [zllee = supsefoq ()| < Hlz"loe < [|2"]|oo- At the same time, from 2/(t) =

fot 2""(s)ds, we have ||2'[|c = sup,e(o,1) [2'(t)] < ||2”[lsc. The proof is complete. [
Note that X is a Banach space with the norm ||z|| = sup,¢[o ) [z (%)].

Lemma 2.3. T/(K') C K.

Proof. For any x € K, it is clear that (T'z)(t) is nonnegative from the definition of
T'. From (T'z)"(t) = —<I> (fo $)f (s, a(s), 2" (s))ds), we know (T"z)"(t) < 0.
So T"x is concave on [0, 1] Then

1
(T2 (1) = @ / G(t, ) f* (s, 2(s), 2" (5))ds)
<I>q(/0 G(s,s)f1(s,2(s),2"(s))ds),

which implies

= (T"2)"|oo < <I>q(/0 G(s,8)f " (s,2(s),2"(s))ds),

and
a(T's) = min_[~(T'0)"()
~ i@, / G(t, )+ (s, 2(s), 2" (3))ds)
~,min @ (/tl K1 — 8)f+ (s, 2(s), 2" (s))ds
[0 ()0 61
> in @, / 5s(1— ) f* (s, 2(s), 2" ())ds
+/O 5s(1— s)f+(s,x(s),x"(s))ds)
—0,(5 [ Gls,5) 7 (5,2(5), 2" ()ds
> 5q<1||£)’x. |
The proof is complete. 0

For convenience, we denote

1
Q = max {®, (/0 G(t,s)a(s)ds) },

te[0,1]

1-5
m = min {<I> (/6 G(t,s)a(s)ds)},

te[d,1-4]

1-96;
m; = te[gl,if}éi] {(I)q(/(s G(t,s)a(s)ds)}.

i

It is clear that 0 <m < @ < oo.
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From the continuity of f,a € L'(]0,1],(0,00)). It is easy to see A : K — X and
T : K! — K’ are completely continuous. So T : K — K is completely continuous.

Theorem 2.4. Suppose (H1) and (H2) are satisfied and there exist a,b,d such that
0<d< 69 a<a<d§1b<b. Assume that f satisfies the following conditions:

(H3) For (t,u,v) € [0,1] x [0,b] x [=b,—d], f(t,u,v) >0

(H4) For (t,u,v) € [0,1] x [0,a] x [~a,0], f(t,u,v) < Pp(5)-

(H5) For (t,u,v) € [0,1] x [0,8] x [~b, =697 'b], f(t,u,v) = ®p(57).
Then (1.1)-(1.2)) has at least two positive solutions yi,ys such that

0<llyll <a<lypal, aly)<d'b iyl <a, ol <b (2.4)
Proof. First we show that T has a fixed point y; € K with |ly1]| < a. In fact, for
any y € 0K,, we have |ly|| = a. So 0 < y(t) < a,—a < y'(t) < 0,t € [0,1]. Let
I'=A{tel0,1]: f(t,y(t),y"(t)) = 0}.
1Tyl = max [(Ty)"(t)]

te(0,1]
= s max {2, / G(t, 5)a(s) (5, y(5),y/"(5))ds), 0}
< max @, / G(t,s) y(s),y" (s))ds)
< (I)q<te[0 1], 0<I32<%§,—a<v<of(t7u v treng}il /G £s) 8)d8}>
<G (o | o)

= a.

The existence of y; is proved by using condition (C1) of Theorem and 0 <y < a,
—a < y{ < 0. Obviously, y; is a solution of (L.I)-(L.2). Suppose this is not true,
then there is ¢t € (0, 1) such that y;(to) # (Ay1)(to). It must be (Ay1)(to) < 0 =
y1(to). Let (t1,t2) be the maximum interval such that (Ay;)(to) < 0 for ¢t € (t1,t2).
We claim [t1,t2] # [0, 1] because of a(t)f(¢,0,0) £ 0 for ¢ € [0,1].

If t5 < 1. yl(t) =0,te [tl,tg]. (Ayl)(tg) =0, (Ayl)(t) <0, forte (tl,tz). Then
(Ay1) (t2) > 0. For t € (t1,t2), we have

(Ay)"(t) = / G(t, 5)a(s) (s, y(s),y"(5))ds)
_q>q(/0 G(t, 5)a(s)f(s,0,0)ds) < 0

) >0,s0t; =0 and
1.

o (Ay1)'(t) is decreasing for ¢ € (t1,t2). Noticing (Ay)’(¢
S ) If t4 > 0. So

(Ayl)’() > 0,t € [0,t2), (Ay1)(0) < 0, which contradict 2( 2
yi(t) = 7(Ayl)(f1) =0, (Ay1)(t) <0 for t € (t1,t2).(Ay1)'(t1) <0
(Ayn)"(t) = / G(t, 5)a(s) (s, y(s),y"(5))ds)

= —<I>q(/0 G(t,s)a(s)f(s,0,0)ds) < 0.
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So (Ay)'(t) is decreasing for ¢t € (t1,t2). Soty =1 (Ayl)( ) < 0, which contradicts
boundary condition (1.2). So y; is a solution of We now show that
(C2) of Theorem |1 . is satisfied. For z € 0K, ||xH = a, then 0 < z(t) < q,
—a < z"(t) <0 for t € [0,1].

7] = e (') (2)

= max {®,( / G(t,s)a(s) [ (s,y(s),y"(s))ds)}

telo, 1]

<P, {max{f (t,u,v):t€[0,1,0<u<a,—a<v<0}

% max {®, /Gts s)}]

teOl]

< é/o G(t,s)a(s)ds

For y € OK'(§971b), we have a(y) = §971b. So 69716 < ||y|| < b, i.e., —b < y"(t) <
—§971p for t € [5,1 — 6], at the same time ||y|/oc < b. Then

a(T'y) = — min (T'y)"(t)
~,min_ @, / G(t, $)a(s) F* (s, y(s), 4" ())ds)
20, ( in, [ G (505 (0D
> <I>q(min {f(t,u,v) : t € [0,1],u € [0,b],v € [=b, —59~"b]}
1-6
X teg}iﬂ(ﬂ : G(t,s)a(s)ds)

=b> 1.

Finally we show that (C3) of Theorem [1.1is also satisfied. Let 2 € K, (677 1b)N{u
T'w = u}, then ||z| < 7=ra(x). From a(z) < ||z < s7=ra(x), we have

i -2 (t)} = > 59t 8 e > d.
jmin (=2} = a(z) = 0 faf) > 6a

So —z" € [d,b]. From (H3), we have f(t,u,v) = f*(¢,u,v), which implies Ty = T"y.
Therefore, there exist two positive solutions y1, yo satisfying (2.2)). (]

Remark. When p = 2,a(t) = 1, f(¢t,u,v) > 0,6 = 1/4, Theorem reduces to [9,
Theorem 3.1]. But our result shows at least two positive solutions, whereas there
is at least one positive solution in B. Liu [9, Theorem 3.1].

Theorem 2.5. Suppose (H1),(H2) hold. Also assume that
(H6) & € (0,1/2), i =1,2,...,n, 0 < [} a(s)ds < 0o
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(H7) There exists constants a;,b;,d; > 0, i = 1,2,...,n, where 0 < d; <
809 g, < a; < (5?_161- < b; < djy1 such that fori=1,2,...,n, we have
ft,u,v) >0 for (t,u,v) €[0,1] x [0,b;] x [=b;, —d;],

Ft,u,v) < ¢q(%) for (t,u,v) € [0,1] x [0, a;] x [—as, 0],

flt,u,v) > Qq(ﬁ) for (t,u,v) € [0,1] x [0,b;] x [=bi, =67 "b;].

i
Then (1.1)-(1.2) has at least n + 1 positive solutions y1,ya, - .., Ynt1 Satisfying
0< flmnll < a1 < llyzll b1, aly2) <6801, 0< |yl < a1,
0 < llyalloe <br, a2 <|lysll, alys) <68 "bs, 0 < [lyslloc < ba,

an < ||yn+1||7 a(Ynt1) < 5?1_1bm 0< ||yn+1||oo < bp.

Theorem 2.6. Suppose (H1), (H2), (H6) hold. Also assume
(H8) There exists constants a;, b; >0, d, i =1,2,...,n, where 0 < d < 6?7 ta; <
a; < 5371@- < b;, such that fori=1,2,...,n, we have:

ft,u,v) >0 for (t,u,v) € [0,1] x [0,b,] X [—bn, —d],
flt,u,v) < % for (t,u,v) € [0,1] x [0,a;] X [—a;,0],
ft,u,v) > % for (t,u,v) € [0,1] x [0,b;] x [=bi, =097 "b,],

i
Then . ) has at least 2n positive solutions y1,Ya, - - ., Yon satisfying
0< Iyl <ar <llyall, aly) <67 b < alys),
0 < lyilloo < a1, 0<|lyalloe < b1,
lys|l < az < [lyall, alys) <83 0o < alys),  lyslloe < as, |yalloo <o, ...
Hy2n—1|l <ap < ||y2nHa a(y2n) < 531_1bm ||y2n—1||oo < Qnp, ||y2n||oo < bp.

Example. Consider the boundary-value problem

(®3y" (1)) — [%ﬂ/ﬁ (V3cos(y” + %ﬂ')) + iO] 0, 0<t<1, (2.5)
y(0) =y(1) =0=1y"(0) = y"(1),

where a(t) = t, f(t,u,v) = T8 (\/Zcos(v + Zm))9 + &, p =3, ¢ = 3/2. Clearly
f is allowed to change sign on [0, 1] x [0, 00) X (—o0,0).

t 1/2 V3., _s5

= P G(t, = (=241 = (=2)/2 =371,

Q= max / s)a(s)ds) = max (¢(~*+ 1) = (37) ;
Note that

1-06

t -5
G(t,s)a(s)ds = (1 — t)/ s%ds —&—t/: (1—s)sds

4 0

1
= 6[_t3 +1(46% — 36% 4+ 1) — 267].
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Let 6 =1/4,d = 7/36, a = w/12, b = w/2. It is clear that d < 6'/%a < a < §'/2b.
Then
m = teg}ilrié] P30 : G(t,s)a(s)ds) > 21

For (t,u,v) € [0,1]x[0,7/2] x [~7/2, —7/36], we have f(t,u,v) = “T7/8 (/3 cos(v+
Zm) + & > 0. So (H3) holds. For (t,u,v) € [0,1] x [0,7/12] x [-7/12,0],

utm 19 . .
Flt,u,0) = “H28 (VBeos(u+ Fm)) U+ < & x ()94 < 0.6 < (& x3¥/1)? =
®3(a/Q). So (H4) holds. For (¢,u,v) € [0,1] x [0,7/2] X [-7/2, —7/4], f(t,u,v) =
%m(\/gcos(v + %77))19 + &5 > (7v6)? > @3(b/m). So (H5) holds. Thus by
Theorem [2:4] this boundary-value problem has at least two positive solutions y1, y2
such that
0

2l < 2

™
= ol <

T ™

0< < < , < —, —,
lly |l B lyell, a(y1) 16 12
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