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1: INTRODUCTION 

 

1.1. Motivation and Background 

The World Health Organization (WHO) defines health as “a state of complete 

physical, mental, and social well-being and not merely the absence of disease or 

infirmity” (World Health Organization, 2004b). Thus, health is a complex interaction of 

multiple internal and external factors.  The Institute of Medicine (IOM) reports an urgent 

need to address underlying factors that jeopardize health and that are not limited to 

disease outcome. To detect and measure health outcome indicators, researchers provide a 

clear understanding of the current situation and needed advancements in government and 

healthcare industry to improve health (Koh, 2011). An interest for health care indices has 

increased globally, but according to (Murray & Frenk, 2008), the goal of improving 

health services is impossible without proper measurement, systematic evaluation, and 

data analysis. 

The WHO defines quality of care as “the extent to which health care services 

provided to individuals and patient populations improve desired health outcomes. In 

order to achieve this, health care must be safe, effective, timely, efficient, equitable, and 

people-centered” (World Health Organization, 2004b); however, the WHO does not 

provide a measurement or quantification to assess quality of care.  

In 2016, the WHO published new standards to improve maternal and neonatal 

care quality in healthcare facilities. The core concept of these standards is focused on 

people and their experiences with health care. According to the WHO, the central 

principles of maternal care include competent and motivated health-care professionals, 
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effective communication based on women’s needs, and community engagement. 

When severe events happen (i.e., maternal complications, newborn abnormalities, 

etc.) during birth delivery, the healthcare system is burdened with providing extra care 

for long-term complications impacting mother’s and/or child’s quality of life. This 

burden is immediate, increases healthcare costs, and leads to potential bottlenecks in 

emergency treatments. The lack of quantifying maternal care quality makes it difficult for 

politicians to create new policies and to address current issues. Thus, it underlines the 

need for quality quantification that aims to decrease morbidity rates, raise the quality of 

maternity care, and improve hospital planning (Collier & Molina, 2019; Health Affairs 

Blog, 2019). 

Maternal quality of care is crucial for the mother’s and newborn’s well-being. In 

2018, for every 100,000 live births in the United States, 17 maternal deaths occurred. 

This rate is about double when compared to Australia, Canada, France, Germany, the 

Netherlands, New Zealand, Norway, Sweden, Switzerland, and the United Kingdom. 

According to (Roosa Tikkanen, 2020), 17% of maternal deaths occurred on the day of 

birth delivery. These mortality rates have led to an increased focus on maternal care in 

the United States with a need for standardization and improvement of maternal quality 

and safety using data-driven recommendations for system improvement (Collier & 

Molina, 2019). 

A current health measure for the newborn’s health is the Apgar score. This score 

is assessed immediately after the birth delivery. The Apgar score is currently used by 

insurance companies, physicians, hospital, and parents to provide an immediate clinical 

assessment of the newborn’s condition (American College of Obstetricians and 
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Gynecologists, 2015; Siddiqui et al., 2017). Although the Apgar score is a standard 

procedure in the United States, it is considered a poor predictive value for the long-term 

outcome of the newborn because it only assesses the clinical status of a newborn and 

does not include the mother’s status. Furthermore, a resuscitated newborn’s score differs 

greatly from that of an autonomously breathing newborn  (American College of 

Obstetricians and Gynecologists, 2015). Thus, this study aims to incorporate the mother’s 

and newborn’s clinical status immediately after birth delivery into one single score.  

It is crucial for proper hospital management, emergency planning, and policy-

making to have sufficient birth quality metrics to make proper decisions affecting long-

term care and quality improvement. Maternal care processes vary by 50-100% in a single 

hospital. Neither patients nor hospital could explain those inter-hospital variations 

(Kozhimannil, 2014). By allowing a direct comparison of individual birth delivery cases, 

possible reasons for this inter-hospital variations and differences in care processes can be 

identified and addressed, the variability of care processes can be captured and effectively 

improved to provide a standardized health measure for birth delivery quality. 

Furthermore, the quality measure can answer quality questions concerning governing 

processes. For example, do certain physicians or hospitals get the more “serious” and 

“complicated” cases? Are there trends and patterns in patient characteristics across 

regions and areas? This study posits a quantitative quality measure that could be used to 

answer these questions and furthermore allow for adjustments in maternal care 

expectations and planning. The proposed quality measure could be further used for 

bench-marking and hospital comparisons (Kozhimannil, 2014). Hospital planning 

policies usually have a specific goal, for example, reducing the maternal death by 5% in 
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the next two years. However, such concrete policy-making requires measurable metrics 

that so far have not been established in the maternal care quality. The lack of birth 

delivery quality measures causes gaps in the improvement of maternal care. Policy-

making and long-term planning fail to be efficient if the underlying quality cannot be 

captured in health metrics (Moller et al., 2018).  

1.2. Data Description 

The dataset used is the 2018 Natality public use data (further referred to as Vital 

Birth Records 2018 or dataset) obtained from the National Center for Health Statistics 

(NCHS) provided through the Center of Disease Control (CDC) and includes more than 

99% of all live births of birth deliveries in the United States in 2018 from citizens and 

non-citizens.  

The dataset includes continuous variables about the mother’s age at birth, the 

birth weight in grams, and the gestation time of the pregnancy in weeks (ranking from 17 

– 47). The Apgar scores (measured for the newborn after 5 and 10 minutes) are also 

available in the dataset. According to ICD-10 low birth weight is defined as less than 

2,500 grams. The average birth weight for babies born between the 37th and 40th  

gestation week (referred as full-term) is 3,200 grams (University of Rochester Medical 

Center Rochester, 2020). Apgar scores are standardized measures used to quantify the 

newborn’s fitness after it is born. The Apgar score 5 is measured between 1 and 5 

minutes after the birth delivery. It is composed of 5 components: 1) the newborn’s ability 

to breathe; 2) heart rate; 3) muscle tone; 4) grimace response or reflex irritability; and 5) 

skin color. On every section, the newborn can score a maximum of 2 points (American 

College of Obstetricians and Gynecologists, 2015). If the 5-minutes Apgar score (further 
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referred as Apgar 5) is 5 or less, the Apgar score is measured again after 10 minutes 

(further referred as Apgar 10) (National Center for Health Statistics, 2019).  

The dataset includes the following information about Maternal Morbidity (if 

occurred or not), including maternal transfusion, perineal laceration, ruptured uterus, 

unplanned hysterectomy, and admission to intensive care. It includes 6 variables for 

Abnormal conditions of the newborns (event occurred or not) describing assisted 

ventilation immediately after delivery, assisted ventilation required for more than 6 

hours, admission to NICU, newborn given surfactant replacement therapy, antibiotics 

received by the newborn for suspected neonatal sepsis, seizure or serious neurological 

dysfunction. Additionally, the dataset includes 12 variables about genetic anomalies 

categorized as Congenital abnormalities of the newborns (diagnosed or not diagnosed) 

which include anencephaly, meningomyelocele / spina bifida, cyanotic congenital heart 

disease, congenital diaphragmatic hernia, omphalocele, gastroschisis, limb reduction 

defect, cleft lip with or without cleft palate, cleft palate alone, Down syndrome, suspected 

chromosomal disorder, and hypospadias. All of the 24 listed variables are recoded as yes 

or no (binary) and in general occur rarely. More than 90% of all birth deliveries in 2018 

do not exhibit any of these severe conditions. However, they severely affect the overall 

quality of life of the newborn or, if an event of the maternal morbidity occurred, severely 

impact the mother’s health. Descriptive statistics of the dataset and a short description of 

the relevant complications are presented in Chapter 3.  

1.3. Contribution 

The purpose of this proposed thesis is to design a quality measure for individual 

birth delivery outcomes that considers the health status of mother and child. Quality of 
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care is the key component of healthcare and the equity and integrity for woman and child. 

In order to achieve and maintain a good quality of care, quantifying the quality of care is 

crucial. Not only gives it an overview over the current status of the healthcare system, it 

also allows to create performance benchmarks, and peer comparisons in order to improve 

quality (McDowell et al., 2004). 

So far, health metrics for maternal care focus on mortality, not on morbidity 

statistics (Health Affairs Blog, 2019). This thesis aims to close the gap between the 

understandings of maternal care, more specifically birth delivery, and the quantification 

of its quality. Hereby, birth delivery quality includes mother as well as newborn(s) as one 

entity. Mother’s and child’s health are likely strongly correlated since the baby is part of 

the mother’s body until birth delivery, and therefore dependent of the mother’s overall 

health status. By creating a health index measuring the health status of newborn and 

mother, the study is aiming to provide a better understanding about the quality of birth 

delivery in the United States by making a complex definition as quality tangible to even 

non-healthcare professionals. Furthermore, this study sees mother and child as one entity 

instead of focusing on one or the other, which creates a stronger overall quality picture. 

To the author’s knowledge, there has been no latent variable model using mixed response 

variables using a latent continuous factor as health indicator in the birth delivery area. To 

fill this gap, this study proposes a birth delivery measure which quantifies individual birth 

deliveries by taking mother’s and child’s condition into account. The thesis is structured 

as follows: the literature review about the Apgar score and different methods to estimate 

a latent variable with mixed data types is presented in Chapter II. Chapter II also discuss 

common software and available packages, and provides background for performance 
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measures. Chapter III presents an overview of the dataset and provides more detail about 

our data cleaning and transformation process. Chapter VI, presents the model results, 

naming factor analysis, structural equation modeling, Hamiltonian Monte Carlo, and 

clustering. A comparison of the different model types and verification of the best overall 

model with birth delivery data from 2017 is also presented. Chapter V presents a 

discussion of the findings, limitations of the study, and recommendations for future 

research.   

Figure 1: Summary of applied methods and choices 
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2: LITERATURE REVIEW 

 

2.1. Apgar Score 

An important health measure included in our analysis is the Apgar score. The 

score has been developed in 1952 by Dr. Virginia Apgar to answer the need of an 

immediate assessment of the newborn’s clinical status after birth. The standardized Apgar 

score ranges from 0-10, where 7-10 is considered normal, 4-6 moderately abnormal, and 

0-3 as abnormal. Newborns which receive an Apgar score of 0 have usually very little 

chance of survival. If they survive, usually not without neurological damage. However, 

Apgar scores cannot be used to predict an individual’s adverse neurologic outcome. Low 

Apgar scores are correlated with low birth weight. Nonetheless, the Apgar score alone is 

no stand-alone predictor for a baby’s mortality and morbidity. Table 1 represents the 

chart a physician has to fill to calculate the Apgar score (American College of 

Obstetricians and Gynecologists, 2015; Reiter & Walsh, 2017). 

Table 1: Apgar score chart  

Indicator 0 Points 1 Point 2 Points 

A 
Activity  

(muscle tone) 
Absent 

Flexed arms 
and legs 

Active 

P Pulse Absent 
Below 100 

bpm 
Over 100 bpm 

G 
Grimace  

(reflex irritability) 
Floppy 

Minimal 
response to 
stimulation 

Prompt 
response to 
stimulation 

A 
Appearance  
(skin color) 

Blue; pale 
Pink body, 

Blue 
extremities 

Pink 

R Respiration Absent 
Slow and 
irregular 

Vigorous cry 

               

The Apgar score is found not only on a national level, some European countries 

or regions record them as well. Siddiqui et al. (2017) conducted a study to test its 
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reliability across twenty-three countries and regions including includes 2,183,472 live 

births. For their study, they aggregated and investigated Apgar 5 scores from the Euro-

Peristat project in 2004 and 2010. They uncovered large variations across different 

countries and regions, majorly based on different assessment by nation. This difference 

may be caused by differences in wordings of national guidelines (Siddiqui et al., 2017). 

2.2. Search Methods 

As a first step, we searched on google scholar with the following search terms: 

latent variable on mixture data, dichotomous/binary and continuous observed variables 

and continuous latent variable, factor analysis on mixture data with skewness, and latent 

factor analysis on mixed data dichotomous and continuous variables. Other search terms 

were dichotomous observed variables, continuous observed variables, continuous latent 

variable, latent factor analysis, latent variable analysis, mixed data. The first 10 pages 

were searched, if relevant papers were found after page 9, we searched until page 15.  
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In total, 57 publications were identified in the first step as illustrated in Figure 2. 

The publications were searched for the following keywords: continuous, categorical/ 

ordinal, and latent. We excluded publications with models for longitudinal data and 

publications with models without mixed data types. Furthermore, we excluded 

publications where models did not include or were just restricted to categorical observed 

variables. After applying the exclusion criteria, 22 resulted as relevant. In a second step, 

cited by references of the found relevant literature in google scholar were analyzed. A 

maximum (if applicable) of 100 citations were explored. In a third step, publications 

published in a journal with an impact factor higher than 3.5 were analyzed for potential 

relevant literature. Overall, 55 more relevant publications were found in the last two steps 

resulting in a total of 77 relevant publications dealing with latent variable models with 

57 publications 

identified  

13 publications excluded:  

discrete latent variable or only 

discrete observed variables 

 

4 publications excluded: 

mixed data only with 

discrete and continuous 

data  

 

6 publications excluded: 

longitudinal models 

 

12 publications excluded: 

only categorical/ binary 

observed variables  

 

22 publications 
analyzed 

Figure 2: PRISMA flow diagram of literature search 
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mixed data.  

2.3. Latent Variable Models  

In the recent years, the interest for mixed latent models has immensely increased. 

This is owed to recent technology improvements leading to higher computational speed 

for more complex models. With the era of big data more complex data structures are 

available which created a need for more complex models (Bhat, 2015). Latent variable 

models using mixed data (binary, ordinal, continuous variables) are frequently used in 

socioeconomics, sociology, biology, and psychology but also economics, finance, 

transportation, and various other fields (de Leon & Chough, 2013). Their purpose is to 

address hidden variables which are not measured directly but indirectly through relevant 

variables in the dataset (Bauer & Curran, 2004; Ramezani et al., 2019; Varriale & 

Vermunt, 2012). I will refer to the variables in the dataset which are associated with the 

latent variable as response variables, observed variables or indicators.  

2.3.1. Structural Equation Modelling (SEM) 

One possible method for latent variable modeling with mixed data is structural 

equation modeling. As one of the early researchers of latent variable models with mixed 

categorical, dichotomous, and continuous indicators Muthén described a Structural 

Equation Model (SEM) approach where he combined mixed data using a probit 

regression model (Muthén, 1984). As one of the leading pioneers for latent variable 

models, Jöreskog described with his work first equation models in the field of psychology 

creating a base for further research (Jöreskog, 1977). The continuous latent variable 

formed by mixed responses underlies the normality assumption in most structural 
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equation models as shown in many examples (Bhat, 2015; Bhat et al., 2016; Muthén, 

1984; Rabe-Hesketh et al., 2004; Ramezani et al., 2019; Shi & Lee, 2000; Song & Lee, 

2006; Wang et al., 2020; Yuan, 2016; Yuan & Chan, 2016; Yuan et al., 2011; Zhou et al., 

2014). 

2.2.1.1 Skewed variables in SEM  

One way to deal with nonnormal variables in SEM applications is to apply normal 

transformations in order to ensure the normality assumption. Wang et al. use the log 

transformation on the observed nonnormal variables (Wang et al., 2020), Ramezani et al. 

(2019) apply the Kaiser normalization on the indicators (Ramezani et al., 2019), while 

Bhat (2015) normalizes the covariance matrix (Bhat, 2015) before estimating the model 

parameters. For SEM with moderately skewed variables, Yuan et al. suggests the usage 

of the maximum likelihood with Satorra–Bentler scaled statistics (Yuan et al., 2011). For 

ordinal and continuous data with unknown population distribution in SEM is unknown 

and the observed variables show skewness, Yuan and Chan (2016) recommend to use the 

ridge Generalized Least Squares after replacing the covariance matrix with the 

polychoric, polyserial, and/or Pearson correlation matrix (Yuan & Chan, 2016). Muthén 

and Santorra (1995) warn about the convergence rate for asymptotic distributions using 

Generalized least square estimates for large models (Muthén & Satorra, 1995). Rabe-

Hesketh et al. (2004) introduced a generalized linear latent and mixed modeling 

(GLAMM) framework to unify multilevel SEMs where they indicate the use of the 

nonparametric maximum likelihood distribution for nonnormal latent variables (Rabe-

Hesketh et al., 2004). 
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2.2.1.2. Bayesian SEM  

Another variation of SEM is the Bayesian SEM which has become increasingly 

popular in SEM calculations because of its effectiveness in complex SEMs and 

multilayered data structures. Unknown model parameters are treated as random variables 

and then evaluates posterior distributions (Adnan & Thanoon, 2015). Typically a 

Bayesian SEM approach requires normality assumptions. Adnan and Thanoon examine 

SEM using mixed models in a survey and concludes that parametric SEMs in many times 

fail to capture subtle data pattern across the predictors. Furthermore they describe the 

issue that SEMs are traditionally designed as parametric framework and unable to 

incorporate mixed data types. They recommend the use of generalized and 

semiparametric SEMs as described by Song et al. (Adnan & Thanoon, 2015; Song et al., 

2013). 

To handle nonnormality in SEMs, Lee and Song developed a Bayesian approach 

in the context of a general nonlinear structural equation model by including a normalizing 

constant (Lee & Song, 2004). They further developed Bayesian modeling approach for 

generalized semiparametric Structural Equation Models handling mixed data types. This 

approach uses Bayesian P-splines and an improved Markov chain Monte Carlo (MCMC) 

algorithm to estimate the underlying function. For model selection, they introduce the 

deviance information criterion which is defined as Bayesian statistic for model selection 

(Adnan & Thanoon, 2015; Song et al., 2013). Song et al. (2013) published their created R 

code on their website but unfortunately it is not available anymore. Yang and Dunson 

(2010) also extend the SEM to a Bayesian semiparametric SEM by implementing a 

centered Dirichlet process combined with a Markov chain Monte Carlo algorithm in their 
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approach which allows the latent variable to have an unknown distribution. They create 

their model using Fortran code but their code is not available to the public anymore 

(Yang & Dunson, 2010). 

As a special SEM model, Fahrmeir and Raach propose a Bayesian semiparametric 

latent multiple indicator multiple cause (MIMIC) model using binary, ordinal and 

continuous responses. While having a data pool of 170,000 observations, they use a 

subsample of 6,804 observations for their model consisting of 2 latent variables with 10 

indicators and refer to it as large sample size (Fahrmeir & Raach, 2007).  

2.3.2. Mixed Factor Analysis 

As a second method on how to combine mixed data types in a latent variable 

model Factor analysis was first introduced by Spearman (1904) with further development 

by Thurstone (1935,1947) who principally focused on continuous factors (Bauer & 

Curran, 2004).  In the more recent years, the term factor analysis has also been used for 

models with binary or ordinal indicators. Mixed factor analysis describes a framework 

which combines the item-response theory model for dichotomous data and the normal 

factor model for continuous or ordinal data using a probit link function. Mixed factor 

analysis models are commonly used in models with mixed data types (Bauer & Curran, 

2004; Lee & Shi, 2001; Tillmann et al., 2020; Wendt et al., 2019). One of the underlying 

assumptions of factor analysis models is the independency assumption of the 

observations (Varriale & Vermunt, 2012). In general, Gaussian or multivariate Gaussian 

distributions still are most commonly used in latent variable models to develop the 

continuous latent variable (Nussbaum & Giesen, 2020). The factor analysis model returns 

factor loadings for the estimation of the latent variable which can further be used in either 
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MCMC estimation or EM algorithm to estimate the probability distribution of the latent 

variable (Gruhl et al., 2013; Nussbaum & Giesen, 2020; Rosenthal & Voeten, 2007). 

MCMC and EM algorithm will be explained later in this chapter. Feng et al. (2017) 

introduce a generalized confirmatory factor analysis model for handling mixed data 

which assumes normality of the latent variable. The model utilizes the correlation matrix 

to combine the indicators. Distribution estimation is created by using a MCMC algorithm 

(Feng et al., 2017). Quinn introduces a Bayesian Factor Analysis for mixed ordinal and 

continuous responses, where the model generalizes both standard normal theory factor 

analysis models and item response theory models for ordinal data using a straightforward 

MCMC method. (Quinn, 2004) This method has been applied by McManus and Nieman 

using 12,366 observations (McManus & Nieman, 2019). Sánchez develops a Bayesian 

factor analysis model using 14 mixed ordinal and continuous indicators to create an index 

utilizing a MCMC algorithm for distribution calculation. He incorporates the internal 

correlation of the indicators and uses WinBugs for computation. Unfortunately, he does 

not indicate the number of observations so it is not clear if his model could run on a huge 

dataset (Sanchez, 2014). Meijer et al. create a health index and therefore introduce a 

LISCOMP model which integrates factor analysis and regression based on Muthen and 

Santorra’s work for mixed data types. The model assumes normality which causes issues 

by including binary variables with low frequencies in distribution estimation methods. As 

a solution, they derived the full information joint loglikelihood function (Meijer et al., 

2011). Nussbaum and Giesen developed traditional factor models further and introduced 

a pairwise sparse and low-rank model for mixed variables as a novel approach. The 

pairwise sparse interaction can be seen as the common idea in factor models measuring 
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correlation, the low-rank part can be seen as the effect of the continuous variables which 

are assumed to be conditional Gaussian. The general idea is to address the joint model 

parameters as a convex regularized likelihood optimization problem. An advantage of 

this approach is its consistency even for high dimensional models. The model is written 

in python and made as a python package publicly available on GitHub (Nussbaum & 

Giesen, 2020). 

The normal maximum likelihood is not applicable with skewed data. Wall et al. 

(2012) use a mixture factor analysis model with skewed latent factors and multiple 

sample sizes whereas the largest sample size has 1,000 observations. They conduct a 

simulation study to compare normal maximum likelihood and mixture factor analysis and 

discover that if the sample size contains 500 observations or more, the mixture factor 

analysis is nearly unbiased by the skewness while the normal maximum likelihood stays 

biased (Wall et al., 2012). 

2.2.2.1. Mixed Factor Analysis with skewed variables 

To deal with skewed variables researchers developed multiple approaches. Wall 

et al. (2012) introduce a mixture factor analysis assuming a  mixture of normal 

distributions (Wall et al., 2012). Murray et al. (2013) introduce a modified Bayesian 

mixed factor analysis by extending it to a semiparametric approach. They created an R 

package bfa which has been removed from the R repository (Murray et al., 2013). Gruhl 

et al. (2013) develop a semiparametric latent variable model with an extended rank 

likelihood estimation which they apply in a Bayesian factor analysis. The approach 

avoids the specification of a distribution for the indicators given the latent variables can 

be applied in SEM or other latent variable models. However, this approach did not test 
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formal model selection criteria (Gruhl et al., 2013). Feng et al. (2019) develop a joint 

modeling framework factor analysis model to create a latent financial literacy index. 

Their joint model operates with the underlying normality assumption but outperforms 

conventional models. It addresses potential multicollinearity issues, and reduces the 

dimensionality for the novel latent two-part regression model. They introduce their model 

using the open-source software Stan which is a programming language used for Bayesian 

analysis with an advanced MCMC algorithm, the so-called Hamiltonian Monte Carlo 

method (HMC), which provides fast computation. Stan is available through an R 

interface but the HMC method is in general more complicated than conventional methods 

and takes significantly more time to develop (Feng et al., 2019). 

2.3.3. Moment Tensor Approach 

A third way to estimate latent variables is proposed. Zhao et al. develop a 

generalized method of moments (GMM) approach for fast parameter estimation which 

extends current moment tensor approaches. Zhao et al. (2018) prove that their GMM 

approach utilizing moment tensor methods shows advantages compared to MCMC and 

EM methods. They proposed a python package called MELD which describes a 

generalized Dirichlet latent variable model utilizing a moment tensor approach for 

parameter estimation (Zhao et al., 2018). For big sample sizes this approach may become 

problematic. It utilizes the Newton-Raphson method which requires high computational 

capacity and therefore limits its use for big datasets (Civek & Kozat, 2017). However, no 

documentation or vignettes is available about proper use for binary variables, and no 

example with only continuous or mixed binary-continuous given which leads to errors 

when trying to apply our dataset.  
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2.3.4. Generalized Heterogeneous Data Model (GHDM) 

A fourth method for latent variable models is described by Bhat et al. They 

introduce a so-called Generalized heterogeneous data model (GHDM) to jointly model 

mixed types of dependent variables. It models the covariance relationships among the 

mixed data types resulting in continuous latent factors. The model consists of two parts: a 

latent SEM and the latent variable measurement equation model (Bhat, 2015; Bhat et al., 

2016). The GHDM does not have any available packages in R. We will skip this method and 

move forward with factor analysis and SEM. 

2.3.5. General Mixed-Data Model 

Samani and Ganjali (2010) introduce a joint model utilizing a general location 

model for ordinal and continuous responses. Their model assumes multivariate normal 

distribution of observed variables which presume a linear correlation with the latent 

variables (Samani & Ganjali, 2010). A general mixed-data model has also been 

introduced by de Leon and Carriègre (2007). They combine a general location model 

which is used for joint modeling for continuous and nominal variables with a conditional 

grouped continuous model which uses a latent variable which utilized the multivariate 

normal distribution (de Leon & Carriègre, 2007; Tabrizi et al., 2020). Paleti, Bhat & 

Pendyala (2013) extended their model so it could include mixed continuous, nominal, 

ordinal, and count variables assuming multivariate normal distribution (Paleti et al., 2013; 

Tabrizi et al., 2020). Amiri et al. proposed a mixed latent variable to jointly include 

nominal, ordinal, count and continuous data considering Poisson and normal distribution 

for the observed variables (Amiri et al., 2018). Taking the approached from Paleti, Bhat 

& Pendyala (2013) and Amiri Khazaei, & Ganjali (2018) into account, Tabrizi et al. 
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(2020) introduce a general latent model for mixed continuous and categorical indicators 

which extends de Leon and Carriere’s model. Their model uses a joint density function in 

conjunction with conditional and marginal normal distribution (Tabrizi et al., 2020). The 

General mixed-data model does currently not have any available packages in R. We will 

skip this method and move forward with factor analysis and SEM. 

2.3.6. Other Methods for Latent Variable Estimation 

Gaussian copula models are constructed utilizing the normal or multivariate 

normal distribution and have been extended to fit mixed data types. They mainly rely on 

EM or MCMC methods which makes them computationally intensive (Zhao et al., 2018). 

Murray et al. (2013) developed a semi-parametric Bayesian Gaussian copula model using 

the extended rank likelihood (Murray et al., 2013). Another copula approach is carried 

out by Jiryaie, Withanage, Wu, & de Leon (2016) by introducing a class of mixed-

variable distributions generated by Gaussian copulas (Jiryaie et al., 2016). Jafari, Tabrizi, 

& Samani (2015) propose a copula-based regression model to handle mixed ordinal and 

continuous indicators assuming underlying normality (Jafari et al., 2015). Using a Gaussian 

Copula-based regression model Rezai Ghahroodi et al. incorporate their mixed data 

model (Rezaei Ghahroodi et al., 2019). Cui (2019) proposes a Bayesian Gaussian copula 

model combined with robust maximum likelihood (Cui, 2019). More recently, Zhao 

proposed a semiparametric algorithm models mixed data using a Gaussian copula model 

which models multivariate distributions via transformations of a latent Gaussian vector. 

This approach is proposed as a missing value imputation which is of less interest for this 

study (Zhao & Udell, 2020). 

However, there are several disadvantages of copula models. Most importantly, 
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copula models lack in robustness for highly correlated variables and therefore lead to 

over-dispersion. Furthermore, they are associated with less efficiency and slow 

computation time. Zhao et al. (2018) compare their moment tensor approach to the 

Bayesian copula factor model and notice much higher error rates for the copula models 

(Marchese, 2018; Zhao et al., 2018). 

Another method which is of less interest for this study is the approach to create 

subgroups based on clustering methods using the binary variable(s) of the dataset. Then, 

the latent variable for each subgroup is estimated (Bauer & Curran, 2004; Depaoli & 

Clifton, 2015; Kelava & Brandt, 2014; Lin et al., 2016; Lubke & Luningham, 2017; 

McParland et al., 2017; Morlini, 2012; Rabe-Hesketh & Skrondal, 2006; Ranalli & 

Rocci, 2017; Tillmann et al., 2020; Varriale & Vermunt, 2012). Since our dataset 

includes 23 binary variables for birth delivery complications this would go beyond the 

scope of a feasible approach.  

2.4. Density Ratio Model 

A fifth method to estimate a hidden variable is described in Marchese’s work. 

Marchese (2018) proposed an alternative to latent variable models: a density ratio model 

utilizing a semiparametric regression model for outcomes from an exponential family of 

distributions. In his work, he develops a general joint regression model approach which 

includes binary, count and continuous data with a maximum likelihood function for 

parameter estimation. To implement his approach, he uses R. However, when testing his 

model on a simulation, he states a limitation of his work to medium sample sizes 

(Marchese, 2018).  
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2.5. Parameter Estimation 

2.5.1. Markov Chain Monte-Carlo (MCMC) 

MCMC is a computer-driven sampling method which is used for distribution 

calculation when parameters are unspecified. An advantage of MCMC is that the 

distribution calculation is possible even when only the density calculation for random 

samples is available. The MCMC method draws random samples from a distribution 

which does not need to be a normal distribution. It is often used in Bayesian frameworks 

to estimate parameters. The MCMC algorithm works as follows: First, a so-called 

proposal for the newly drawn sample is calculated with including a small random 

deviation compared to the sample before. Then, this calculated proposal is either accepted 

or rejected. If accepted, the random sample becomes part of the MCMC sample chain 

which completes one iteration of the method. With enough samples the iteration stops. 

One drawback of this method is the so-called burn-in: if the initial sample was supposed 

to be very unlikely considering the target distribution, the method uses way more 

iterations than originally needed. This means starting points are crucial for the 

algorithm’s burn-in and practical convergence (van Ravenzwaaij et al., 2018).   

MCMC is available in R under the nimble package and the MCMC package (de 

Valpine et al., 2017; Martin et al., 2011). Ma and Chen (2019) provide R code using the 

package nimble on how to implement a Bayesian semiparametric latent variable model 

by allowing the latent variable to follow a Dirichlet process prior for joint analysis. They 

utilize the nimble R package and provide a tutorial of their research. In their dataset, they 

deal with 10,166 observations (Ma & Chen, 2019). Nimble allows MCMC and 

Expectation-Maximization (EM) algorithm but comes with a computational burden if the 
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sample is large (de Valpine et al., 2017). Commonly used for mixed latent variable 

models in existing literature is also the R package MCMC (Fahrmeir & Raach, 2007; 

Khatab, 2007; Rosenthal & Voeten, 2007; Samani & Ganjali, 2010). The user specifies 

the distribution that evaluates the log unnormalized density (Martin et al., 2011).  

Fahrmeir and Raach (2007) describe a flexible semiparametric latent variable 

model allowing for mixed binary, ordinal and continuous indicators. The model consists 

of a measurement model for direct effects and models indirect effects via a structural 

model describing the latent variable by covariates. Furthermore, it allows nonlinear 

spatial effects and covariate effects are modelled semiparametric. For parameter 

estimation the MCMC method using the R package MCMCpack is applied (Fahrmeir & 

Raach, 2007). Cai et al. develop a generalized latent variable model for mixed data types 

using different link function. To conduct their analyses, they use a Bayesian approach 

and the MCMC method written in R. Their data includes 2,564 observations and the 

Bayesian estimates take them with a single computer using 2.00 GB RAM 2 hours to 

complete (Cai et al., 2011). 

2.5.2. EM Algorithm 

After creating a mixed latent variable model, an estimation algorithm for the 

distribution can be placed such as Expectation-Maximization (EM) algorithm. Similar to 

MCMC, EM algorithm use the iteration method until the model converges. The EM 

algorithm is used to calculate the maximum likelihood estimate using a random sample. It 

consists of two general steps: In the first E-Step, the expected value for each latent 

variable is estimated. In the following M-Step the distribution parameters of the models 

are optimized using a maximum likelihood. The algorithm starts with an initial value for 



 

23 

the model parameters. The EM algorithm does not guarantee the convergence to the 

global optimum (Amiri et al., 2018; Lin et al., 2016). Furthermore, Lee and Shi state that 

the EM Algorithm with no missing data is computational faster (Lee & Shi, 2001). 

2.6. Common Software Used and Available Packages  

2.6.1. Mplus 

Muthén is one of the main agents that uses and advocates the Mplus software for 

his latent variable models (Asparouhov & Muthén, 2016). It is commonly used by other 

authors for mixed modeling (Depaoli & Clifton, 2015; Lubke & Luningham, 2017; Song 

et al., 2018; Tillmann et al., 2020; Varriale & Vermunt, 2012; Wall et al., 2012; Yuan et 

al., 2011). Since Mplus is a commercial software the user community and support is not 

as large as in the open source software R or even python. To conduct mixture modeling 

in Mplus the Mixture Add-On is required. Overall, R provides more flexibility with its 

open-access. The R package MplusAutomation is available and allows an interface 

between Mplus and R allowing for large-scale analysis but limited in providing e.g. 

factor loadings from factor analysis models. It allows to run the model in batches 

(Hallquist & Wiley, 2018). 

2.6.2. Statistic Software R 

In the more recent years, the free statistic program R has evolved in the mixed 

modeling area and is frequently used and further developed. Many authors use R 

especially in the more recent years. (Jafari et al., 2015; Ma & Chen, 2020; Tabrizi et al., 

2020; Thmasebinejad & Tabrizi, 2015). The named authors use an optimization package 

to maximize their objective function which is the likelihood function this approach does 
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not fit to our research outline. Wendt et al. (2019) use the R lavaan package for their 

mixture model (Wendt et al., 2019). The lavaan package offers SEM and confirmatory 

factor analysis functions. Other promising R packages are MCMC or MCMCpack which 

utilize the BUGS platform for sampling (R Core Team, 2013). A serious advantage for 

MCMC models is given by the Stan platform which uses Hamiltonian Monte Carlo 

(HMC) algorithm. In the more recent years, steady interest has been growing for HMC 

because of its faster computation for complex and large models and available through R 

packages such as rstan and brms (Monnahan et al., 2017; R Core Team, 2013). 

2.6.3. Python and Other Programs 

Another language which is a more recent development for mixed models is 

python. Nussbaum and Giesen developed a python3 package for their mixed model 

which they made publicly available (Nussbaum & Giesen, 2020). Other authors use 

Matlab (Kunihama, 2015), Latent GOLD (Morlini, 2012), GLAMM (Rabe-Hesketh et al., 

2004), GAUSS programming language (Bhat, 2015), SAS (Yuan & Chan, 2016), SPSS 

(Ramezani et al., 2019), and BUGS platform (Song & Lee, 2006) for their mixture 

models.  

2.7. Handling Mixed Data Types 

The dataset includes 28 relevant variables: 23 binary variables, 2 ordinal 

variables, 3 continuous variables. This creates two challenges: With 28 potentially 

relevant variables, there is a high dimensionality. Additionally, we deal with mixed 

response variables which creates a challenge of how to combine all variables in one 

model. The proposed plan is to convert the binary variables in the dataset into continuous 
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data. 

In structural equation modeling, the latent variable exhibits a linear relationship 

with the indicators. This underlines the importance of choosing the right distribution for 

the indicators. The most common used distribution is the multivariate normal distribution 

(Lubke & Luningham, 2017). There are two general ways how to include categorical 

variables into latent variable mixture models: First, a so-called threshold model can be 

used which treats the categorical variable as continuous. By creating thresholds, it creates 

partitions of the indicators into response categories. The second way is to replace the 

linear regression of the categorical variables with either logistic or multinominal 

regression (Lubke & Luningham, 2017). Another approach is to combine categorical with 

continuous data is to utilize their correlation: First, polychoric, polyserial and product-

moment correlation are computed and then the correlation matrix is used for SEM (Yuan 

et al., 2011). 

The most common way to include binary data in a latent variable model is via the 

logit or the probit model. The logit model uses the natural logistic distribution link 

function. Compared to the probit model the logit model has heavier tails and is the most 

common way in the medical field for including binary variables. The latent variable is 

predicted in a linear combination of the indicators. In the probit model the standard 

normal distribution replaces the logistic distribution. From the computational side, the 

probit model requires more calculation capacity therefore the logit model is typically 

favored (Khatab, 2007). 
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2.7.1. Handling Binary Variables: Item Response Theory Model 

Since applying a logit model only transfers the binary variable into continuous 

ones, the idea to summarize the binary variables into a single continuous measure using a 

dichotomous item response theory (IRT) model provides more benefit in regards of 

dimensionality reduction. The idea behind IRT models is that behind the data lays a so-

called “latent trait” which is linked to the observed variables. This idea is similar to the 

previous discussed latent variable models such as factor analysis and SEM. Special about 

IRT models is that they are developed for ordinal or dichotomous data and therefore a 

good fit as latent variable model for the binary components of the dataset.  

In general, IRT models are parametric hence work with a normality assumption 

for the underlying latent trait. Considering the binary coded complications in birth 

deliveries we know that most women deliver their babies without these severe 

complications. This results in a highly skewed dataset, wherefore the normality 

assumption is violated.  

Another assumption for parametric item response theory models is local 

independence. Local independence means that observed variables are conditionally 

independent, given the latent variable. It implies that no relationship exists between the 

variables but the item’s variance is explained by the latent variable (Chen et al., 2013). 

When the underlying data showcases correlation between the observed variables, a study 

by Dirlik (2019) proves that nonparametric IRT outperforms parametric IRT models. The 

parametric IRT is based on a parametric function for the latent trait distribution. In 

contrast, nonparametric IRT is based on the assumption that the latent trait is only limited 

by order restrictions (Dirlik, 2019). Based on this knowledge we choose a non-parametric 
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IRT model.  

2.7.2. Skewed Data  

Mixture modeling has an explanatory character with its roots in choosing the best 

model after calculating goodness-of-fit indices. Therefore, it is crucial to be clear on the 

model’s assumptions and take pre-existing knowledge about the model into account 

(Lubke & Luningham, 2017). Typically, the latent variable underlies the normality 

assumption such as common in structural equation models and factor analysis models. 

This assumption is often wrong in real world datasets where normal distributed variables 

are rather rare (Yuan, 2016).  

The normality assumption does not apply to the dataset, therefore it creates a third 

challenge: the skewness of the latent factor. Given that the dataset shows most birth 

deliveries have no complications more mothers and newborns will be healthy and 

therefore create a skewed latent variable. Considering non-normal data, Azzalini and 

Valle (Azzalini & Valle, 1996) have laid the foundation for further research by 

addressing issues with non-normal data when applying models with a normality 

assumption and proposing the multivariate-skew distribution. There has been multiple 

studies in data models for continuous data in the recent years taking skew-normal, 

student-t and mixtures of skew-normal distributions in account (Asparouhov & Muthén, 

2016; Contreras-Reyes & Arellano-Valle, 2013; Lin et al., 2014).  

The most common way to handle skewed data is to standardize and transform the 

data to approximate the distribution to a normal distribution. For applying data 

transformation, the log transformation is the most commonly used method (Azzalini & 

Valle, 1996; Rezaei Ghahroodi et al., 2019). It is used by various researchers in order to 
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ensure the normality assumption of their latent variable models (Amiri et al., 2018; de 

Leon & Carrière, 2005; Feng et al., 2019; Kunihama, 2015; Nussbaum & Giesen, 2020; 

Quinn, 2004; Samani & Ganjali, 2010; Tillmann et al., 2020). 

Another way to deal with skewed variables in a latent variable model is to replace 

the normal distribution. Without using the log transformation, we can directly estimate 

the hidden variable by using different distributions. De Leon and Cough describe in their 

book Analysis of Mixed Data Chapter 11 an alternative to the commonly used log normal 

transformation. In their example they deal with a highly positively skewed variable and 

where they use a model utilizing the gamma distribution (de Leon & Chough, 2013). This 

approach requires previous knowledge about the latent variable distribution. 

2.8. Difference to Existing Literature 

Meijer et al. (2011) introduce an approach to address the lack of a quantitative 

measure for health status. Since health cannot be measured directly but is a result of 

different economic, physical, and social indicators, they establish an internationally 

comparable health index by using a latent variable model. For their research, they use 

self-reported mobility surveys from Europe. Meijer et al.’s publication where they use 

29,835 observations to estimate a latent health variable using mixed data types, which is 

the biggest sample size we found in the literature. In the end, their health index reaches a 

reliability of 80% (Meijer et al., 2011). This study is different from theirs, as this study 

focuses on quantifying health status regarding birth delivery. 

Latent variable models – using mixed response variables as indicators and a 

continuous latent factor – has been intensively studied in the recent years. Bhat proposes 

a generalized heterogenous data model for mixed data indicators. It utilizes the maximum 
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approximate composite marginal likelihood for model estimation, which reduces 

computation time for high dimensionality models. The model is applied on a simulated 

dataset with 57 parameters to estimate and a maximum sample size of 3000 (Bhat, 2015). 

A different approach to handle mixed data for latent variables is proposed by Yuan. He 

summarizes current meta-analytical SEM models and proposes procedures for dealing 

with nonnormality. He emphasizes robust methods and adjusted test statistics to account 

for nonnormality in SEM models. Furthermore, he developed a ridge function which can 

be applied to the maximum likelihood or generalized least squares estimation. This yields 

in more accurate results for skewed datasets with heavy tails (Yuan, 2016). While their 

methods are useful for our research, both authors work with dataset from different fields. 

Bhat (2015) uses transportation data and Yuan (2016) works with education data.   

We use the Vital Birth Record 2018 data, which contains 28 relevant variables 

and 3,801,534 observations prior to the data cleaning. However, in existing literature big 

data sets for mixed models (Meijer et al., 2011) are only a fraction compared to the Vital 

Birth Record 2018 dataset with roughly 3.8 million observations and 28 relevant mixed 

data type indicators. This creates another challenge of the proposed thesis: some of the 

proposed methods may not apply with such a huge dataset as the Vital Birth Records 

2018. 

In conclusion, the present Vital Birth Record 2018 dataset exhibits very unique 

features characterized by extremely skewed variables due to rare complications, high 

dimensionality, a huge sample size, and the mixed data types. We conclude that the 

hidden variable will be highly abnormal, so existing software packages cannot apply 

directly.  
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2.9. Performance Measures 

Standardized measures are needed to assess how precise and reliable a model 

actually is. Models of different types, namely factor analysis, item response theory, 

cluster analysis, and MCMC have their own model performance measures which makes it 

hard to directly compare different model types. Furthermore, new performance measures 

are constantly developed which may create a confusion about which indices to use (Rex, 

2016). Hereby, we provide an overview about common performance measures, including 

goodness-of-fit indices, residual measures and several  model-specific performance 

measures.  

2.9.1. Hypothesis Testing 

SEM tests the multivariate relationship between observed and latent variables. It 

incorporates confirmatory factor analysis and path analysis in one model. To evaluate the 

SEM model, hypothesis testing is used to assess the model-fit. The hypothesis tests the 

discrepancy between model covariance matrix and original covariance matrix. The null 

hypothesis states a good fit between the researcher’s model and the observed data. The 

alternative hypothesis is the null model – also called baseline model – which assumes no 

correlation between the numerical variables and only includes mean and variance of each 

observed variable. If the model is specified correctly, the null hypothesis would not be 

rejected and the p-value would be insignificant (Xia & Yang, 2019). The test statistic is 

calculated as follows: 

Chi-square test statistic = (n-1) * f, 

where f is a value of discrepancy between the data and the model produced 
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covariance matrices and n is the sample size. It is estimated using the model’s parameters 

and maximum likelihood and therefore assumes a multinormal distribution of the 

underlying joint population distribution of the observed variables (Kenny, 2020; Rex, 

2016). 

An optimal SEM model would show no significant difference between model and 

original covariance matrix. Thus, an optimal SEM model would show a p-value larger 

than the significance level resulted from a chi-square statistic close to zero (Fan et al., 

2016); in other words, the null hypothesis would not be rejected and the p-value would be 

insignificant (Xia & Yang, 2019). 

Rex recommends in his handbook for Principles and Practice of Structural 

Equation Modeling to report the model’s chi-square with its degrees of freedom and p-

value. More degrees of freedom automatically reduce the value of the chi-square test 

statistic which would lead to overparameterization and drastically bias the model. The 

hypothesis test is further influenced by correlation among the observed variables of the 

model. The chi-square test statistic is directly influenced by the sample size: a large 

sample size causes the model to get overly sensitive to small data anomalies. Therefore, 

the analysis of residuals is more important for large sample sizes than merely looking at 

the test statistics (Rex, 2016). 

2.9.2. Goodness-Of-Fit Indices 

The Comparative Fit index (CFI) is a measure which compares the model 

versus the so-called baseline model or null model. The null model assumes no correlation 

between the observed variables. The CFI is calculated as follows: 
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χ2 –  𝑑𝑓 (Null Model) –  χ2 –  𝑑𝑓 (Proposed Model)

χ2 –  𝑑𝑓 (Null Model)
 

The fit function uses the polychoric correlation matrix of the specified model as 

base for calculation. For scaled statistics a scaling or shifting parameter is added to the 

calculation (Xia & Yang, 2019).  Its value lays between 0 and 1 and describes the relative 

value between the baseline model and the research model. For example, a CFI of 0.6 

shows that the model is 60% stronger than the baseline model which is the weakest 

possible model. Therefore, a CFI close to 1 implies that the model fits the data well 

(Kenny, 2020; Rex, 2016). 

Tucker-Lewis Index (TLI) – also called non-normed fit index (NNFI) – 

measures the model fit in a similar manner as the CFI. Though TLI also calculates the 

difference between the baseline model and the test model; the baseline model is 

considered worst fit, which assumes uncorrelated observed variables  The TLI is 

calculated as follows: 

χ2/df(Null Model) –  χ2/df(Proposed Model)

χ2/df(Null Model) –  1
 

The TLI takes values between 0 and 1. Though TLI is technically not restricted on 

the upper end, any value larger than one come to be restricted to one. A larger index 

shows a better model fit, for example, a TLI of 0.9 shows that the proposed model is 90% 

better than the null model. Compared to the CFI, the TLI is more sensitive to the sample 

size. However, the CFI applies a penalty for added parameters and thus is more 

commonly reported. Since TLI and CFI are correlated, only one of these two measures 

needs be reported for SEM or factor analysis model evaluation  (Kenny, 2020; Rex, 
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2016).  

Regression models assess model fit using the R2 metric which provides the 

amount of variance explained by the model. This metric does not apply to Bayesian 

models directly. To incorporate a valid measure between 0 and 1 for Bayesian models 

Gelman et. al. proposed the Bayesian R2 and the Loo R2 value which are provided for 

MCMC outcomes.  

The Bayesian R2 measure is comparable to the R2 value of a linear regression 

while the Loo R2 is comparable to an adjusted R2 value for linear regression.  

LOO R2 calculates the R2 statistic adjusted by LOO residuals which incorporate 

the unknown posterior data distribution. The basic difference between the Bayesian R2 

and LOO R2 is the input data for its calculation: the Bayesian R2 score is calculated by 

using the given dataset, but the Loo R2 algorithm creates new data based on the dataset’s 

frequencies and hence uses “independent” data (Gelman et al., 2019). LOO R2 uses the 

LOO residuals while the Bayesian R2 uses the modeled residual variance. For the detailed 

calculation see Gelman, Goodrich et al. (2019).  

In general, goodness of fit indices should serve as an approximation method to an 

acceptable or unacceptable model rather than being judged without the researcher’s 

theoretical knowledge about the model specification (Rex, 2016). 

2.9.3. Predictive accuracy  

Akaike Information Criterion (AIC) is a popular model fit measure which 

describes a model’s fitness to the data. It is calculated as follows: 

AIC = -2ln(L) + 2k, 

where k is the number of model variables and L is the model’s maximum likelihood 
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estimation. The reason for its popularity yields in its power to combine model selection 

and statistical estimation methods. It allows to compare different model types based on 

the same dataset. The AIC is low when the likelihood estimation fits the data well. 

Hence, a good model would have an AIC close to zero (Zajic, 2019). 

Bayes Information Criterion (BIC) is a similar measure as the AIC, it also uses 

the model’s maximum likelihood to estimate the model’s fit to the data. The BIC is 

calculated as follows: 

BIC = -2ln(L) + k log n, 

where k is the number of model variables, n is the sample size, and L is the model’s 

maximum likelihood estimation. Compared to the AIC, the BIC includes the model’s 

sample size in its calculation. Compared to the BIC, the AIC includes a greater penalty 

for the number of parameters. To compare different models, both AIC and BIC should be 

provided if possible  (Fabozzi et al., 2014). A better model fit applies when both 

measures, AIC and BIC, are smaller. However, information criteria may be subject to 

sampling error. Both AIC and BIC can increase with larger sample sizes. Therefore, 

researchers should be cautious when selecting a model based on information criteria 

(Rex, 2016).  

The Watanabe-Akaike Information Criterion (WAIC) is a widely applied 

information criteria specific in MCMC models. Compared to the AIC, WAIC averages 

over the posterior distribution instead of the point estimates. It uses the maximum 

likelihood from the underlying Bayesian model to calculate pointwise prediction 

accuracy out of the given sample. It is scaled to allow direct comparison with the AIC 

and defined by (Watanabe, 2010) as  
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where           is Bayes training loss, V(n) is the functional variance and 0 < β < ∞. 

Smaller values indicate a better model-fit. 

To assess the reliability of WAIC in a MCMC model, we need to look at the 

indicator Pareto k estimates. The Pareto k estimates monitor each sampling step and 

provides an overview of influence of each observation on the posterior distribution. The 

Pareto k estimates range between 0 and 1. A threshold of 0.7 is commonly used to 

identify highly influential observations which distort convergence; that is, Pareto k values 

above 0.7 imply unreliable MCMC estimates. Thus, additional computations to increase 

the reliability are necessary and the model should be altered to a more robust form. In 

general, the WAIC should not be trusted if Pareto k estimates are detected above 0.5 

(Paananen et al., 2021; Vehtari et al., 2017). 

Leave-one-out cross validation (LOOIC) is a measure for the model’s 

predictive accuracy. A LOOIC value close to zero indicates a good model fit. While the 

AIC calculation assumes multivariate normality and does not take prior assumptions in 

account, the LOOIC does not assume any distribution and incorporates the uncertainty of 

parameters. Therefore, it is a measure commonly used in MCMC models (Vehtari et al., 

2016). It is calculated as follows using importance sampling: 

LOOIC = -2*elpd_loo, 

where elpd_loo is the expected log pointwise predictive density for the Bayesian leave-

one-out estimate. Compared to the WAIC for MCMC model fit evaluation, the LOO is 

more robust and works better when having weak priors or influential observations 

, 
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(Vehtari et al., 2016). Even though WAIC and LOOIC are more advantageous in MCMC, 

compared to the more common used information criterion AIC, they require a longer 

computation time. This is why they are unusual in practical usage (Vehtari et al., 2016). 

2.9.4. Residual Analysis 

Root Mean Square Error of Approximation (RMSEA) measures the absolute 

deviance from the approximated model between the hypothesized model and the 

covariance matrix of the underlying population. It ranges between 0 and 1, where a good 

model should have a RMSEA close to zero (Hoyle, 2011). Threshold parameters for the 

RMSEA value are controversial, some researchers advise that a RMSEA value above 0.1 

might imply a crucial model problem (Rex, 2016). It is calculated as follows:  

𝑅𝑀𝑆𝐸𝐴 =  √
𝜒2

𝑑𝑓
𝑁 − 1

− 1 

 

Standardized Root Mean Square Residual (SRMR) calculates the absolute 

standardized difference between observed and predicted correlation. It represents a 

standardized version of the general root mean square residual which is heavily dependent 

of the variable’s metrics. The SRMR applied a standardization term in order to make the 

residual interpretation easier. It is calculated as follows: 

𝑆𝑅𝑀𝑅 =  √
1

2
∑(𝑆𝑖𝑗 − 𝐼𝑖𝑗)2   , 

 

where S is the sample correlation matrix and I the implied correlation matrix (Prudon, 

2015). A SRMR value closer to zero indicates a better model fit. Therefore, the 
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researcher should be careful when detecting SRMR values above 0.1 (Kenny, 2020; Rex, 

2016). 

Root Mean Squared Error (RSME) describes the standard deviation of the 

model residuals and tells the researcher how the residuals deviate on average from the 

model prediction. Its unit is dependent of the scale for the measured variable. A better 

model fit would showcase a smaller RSME. It is calculated as follows: 

RMSE = √1 − 𝑟2  𝑆𝐷𝑦, 

where 𝑆𝐷𝑦 stands for the standard deviation of the predicted y value, and r are the 

residuals of the model. The idea is to square residuals of a model, take their average, and 

then calculate the square root of the result (Glen, 2021c). 

2.9.5. Model-Specific Indices 

The modification index provides guidance on how to improve an existing SEM 

model. In SEM models, the latent variable is estimated by a set of linear correlated 

variables. However, other model paths, such as correlation between latent variables and 

residual correlation of the observed variables, are often unnoticed.  To identify which 

further model structures are important for the model specification, the modification index 

evaluates different model paths which have not yet been specified in the SEM model. A 

path is for example a residual correlation or the connection between observed variables 

and the latent variable. In a SEM model, every path which has not been included in the 

model specification is fixed to zero. This creates so-called fixed paths whereas the model 

parameters are freely estimated. The modification index evaluates which of those fixed 

parameters of the model should be specified and thus freely estimated. It analyzes what-if 

scenarios by changing fixed parameters to freely estimated parameters and calculates the 
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model chi-square improvement if a certain path would be specified by the user. A large 

modification index tells that the corresponding path is valuable to specify and allow to be 

freely estimated.  

Significant path structures which are not yet included in the model are signaled by 

a high modification index. The general rule is to include paths with the highest 

modification index. By including a path pointed out by a high modification index, the 

model loses one degree of freedom, but its chi-square improves by the estimated 

modification value for the corresponding path. The modification index is calculated by a 

general fit function based of the maximum likelihood. (Rex, 2016; Sörbom, 1989). For 

further calculation definition see Sörbom (1989). 

In factor analysis and SEMs, the factor loading indicates how much of the latent 

variable is explained by this factor, where factor refers to variable. How large a factor 

loading should be to be considered important or useful is controversial among scientists. 

Some researchers propose that a factor loading must be above 0.5 to be considered 

important for the model, while others argue that a factor loading of 0.4 or higher can be 

useful (Meyer, 2020). For explanatory factor analysis the sum of squared (SS) loadings 

are another measure which evaluates the usefulness of a factor. The rule is to keep SS 

loadings above 1 since they are considered useful for the model (Ford, 2016). 

Communality – denoted as h2 – describes a predictor variable’s usefulness in 

factor analysis models. It measures how much of the common variance in the dataset is 

explained in a particular observed variable and ranges from 0 to 1. Common variance – 

also called shared variance – explains a variable’s variance shared with other variables 

given the common factors (Meloun & Militky, 2011). If a variable is independent from 
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other variables in the dataset, its communality would be zero. For example, if a variable’s 

communality is 0.7, this means 70% of its variance follows the other variables’ variance 

in the dataset, and can be described by a latent variable which explains the shared 

variance. Looking at a particular observed variable, a communality close to one shows 

that the model explains almost 100% its variance (Glen, 2021a). 
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3: DATA PREPARATION 

 

3.1. Data Cleaning 

As a first step we clean the dataset. Since the dataset is very big and we have less 

than 1% missing data for each variable, observations with missing values are deleted. 

While the dataset shall only contain live births, we find 758 cases of stillbirths which we 

exclude for further calculations. After cleaning the data, we continue with 3,769,386 out 

of 3,801,534 observations (0.846% missing data). 

3.2. Preprocessing Binary Variables  

The dataset contains 23 binary variables describing maternal morbidity, abnormal 

conditions and genetic disabilities of the newborn. The variables are recorded binary, yes 

if occurred, no if not occurred and the frequency is shown below in Figure 3. Most US 

births are delivered healthy. Therefore, we observe only small fractions of severe 

complications in these categories. The largest occurrence is Admission to Neonatal 

Intensive Care Unit which has a total occurrence of 9.03% in 2018. The smallest category 

is Anencephaly, a serious birth defect with parts of the brain and skull missing (Center for 

Disease Control and Prevention, 2020a), with a total occurrence of 309 cases out of 

3,769,386 birth deliveries in 2018. As a second step, we will focus on solving the high-

dimensionality issue in the next subsection. 
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Figure 3: Frequency chart of binary variables for US births 2018 

3.2.1. Feature Selection  

To address the challenge of high dimensionality, we perform feature selection. In 

total, two different methods for feature selection were applied using python (Jupyter 

Notebook). The dataset was too large to perform a lap_score package from skfeature in 

python. In literature for latent variables, authors applied the LASSO method for feature 

selection which is described as “Bayesian least absolute shrinkage and selection 

operator” (Wang et al., 2020). It can be used on ordinal variables but comes with certain 

limitations: a cutoff parameter must be specified beforehand determining the importance 

of a covariate. It also requires a standardization of the variables on the same scale (Feng 
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et al., 2017; Wang et al., 2020). Since we cannot validate the feature selection outcome as 

the target variable is latent, we apply multiple feature selection methods and select the 

common variables found relevant in all feature selection methods: low variance, principal 

component analysis, and mixed principal component analysis. 

3.2.1.1. Low Variance Method 

The first applied feature selection method is the low_variance method from the 

skfeature package (Li et al., 2017). The method required a variance threshold as cutoff 

parameter for the variable selection. Variables with high variance are selected based on 

the indicated cutoff parameter. In total, four different cutoff parameters were specified 

[0.001, 0.0005, 0.0003, 0.0001] resulting in 8, 11, 14, and 21 selected variables 

respectively. Results are presented below: 

Table 2: Feature selection using low variance method 

  threshold parameter 

Category Variable name 0.001 0.0005 0.0003 0.0001 

Maternal 
Morbidity 

Maternal Transfusion x x x x 

Perineal Laceration x x x x 

Ruptured Uterus   x x 

Unplanned Hysterectomy   x x 

Admit to Intensive Care x x x x 

Abnormal 
Conditions of the 
newborn 

Assisted Ventilation 
(immediately) 

x x x x 

Assisted Ventilation > 6 hrs x x x x 

Admission to NICU x x x x 

Surfactant x x x x 

Antibiotics for Newborn x x x x 

Seizures   x x 

Congenital 
abnormalities 

Anencephaly     

Meningomyelocele/ Spina 
Bifida 

   x 

Cyanotic Congenital Heart 
Disease 

 x x x 

Congenital Diaphragmatic 
Hernia 

   x 

Omphalocele     

Gastroschisis    x 
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  threshold parameter 

Category Variable name 0.001 0.0005 0.0003 0.0001 

 
 
 
 

Congenital 
abnormalities 

Limb Reduction Defect    x 

Cleft Lip w/ or w/o Cleft 
Palate 

 x x x 

Cleft Palate alone    x 

Down Syndrome    x 

Suspected Chromosomal 
Disorder 

   x 

Hypospadias  x x x 
 

 

By comparing the results from the low variance method in Table 2 with the 

frequency of occurrence in Figure 3, we notice an association between a high frequency 

of occurrence (Figure 3) and the selection of this variable in Table 2. This can be 

explained by the algorithm of the low variance method: it selects variables with a high 

variance, so we notice that complications with higher frequencies of occurrence (Figure 

3) exhibit a higher variance and are selected in all cutoff threshold.   

3.2.1.2. Principal Component Analysis (PCA) 

The second method has been applied to the dataset: principal component analysis 

(PCA). This method is not considered a feature selection method, but it identifies so-

called principal components which are describe of artificial variables constructed using 

linear mixtures of the original variables from the dataset. The advantage is to reduce 

dimensionality by trying to lose as the least amount of information as possible. 

Additionally, correlated variables are merged and just the most important features which 

explain the highest variance are extracted from the dataset (Malik, 2018). PCA is 

conducted on the binary variables coded with 0 and 1, where 0 stands for not occurred 

and 1 for event happened.  The number of components can be either visualized in a 

Scree-plot or calculated. Before determining the number of components, we need to 
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decide how much variance should be explained by the principal components. Typically, 

an explained variance of 95 – 99% is chosen (Mikulski, 2019). Since we are in an 

explanatory stage, we try both options. The calculation results in seven principal 

components which explain 95% of the variance in the binary variables and thirteen 

principal components explaining 99% of the variance and the result of the PCA is 

provided in the appendix. With only 4% difference between these two options, the 

number of variables selected, the 99% method almost doubles. A summary of the 

selected variables is presented in Table 4.   

3.2.1.3. Mixed PCA 

The third method to reduce dimensionality is the mixed Principal Component 

Analysis (mPCA). It utilizes the same vectorization methods to summarize information as 

the general PCA but allows categorical and numerical data types in the same model. 

Specifically, mPCA allows to evaluate the importance of each variable through their 

impact of the vector loadings (Principal Components) with all considered numeric and 

binary variables. Since PCA and factor analysis share common ideas, the factor loading 

cutoff 0.4 is used for the mPCA in order to identify variables with significant impact 

(Meyer, 2020; Santos et al., 2019). When loosening the criteria, we also consider slightly 

weaker vector loadings of 0.3 or higher for our model. The resulting squared loading 

matrix of the mPCA is provided in the appendix for further detail. The summary of 

selected variables by mPCA is presented in Table 3. 
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Table 3: Selected features based on mPCA method 

 Categorized as cut at 0.3 loading* cut at 0.4 loading* 

N
u

m
e

ri
c 

 Apgar 5 
 

 Apgar 10 Apgar 10 

 Mother’s age 
 

 Birth weight Birth weight 

 Combined gestation 
 

B
in

ar
y 

Maternal 
Morbidity 

Maternal transfusion Maternal transfusion 

Perineal Laceration Perineal Laceration 

Ruptured Uterus Ruptured Uterus 

Unplanned Hysterectomy Unplanned Hysterectomy 

Admit to Intensive Care Admit to Intensive Care 

Abnormal 
conditions of the 

newborn 

Assisted Ventilation 
(immediately) 

Assisted Ventilation 
(immediately) 

Assisted Ventilation > 6 hrs Assisted Ventilation > 6 hrs 

Admission to NICU Admission to NICU 

Surfactant Surfactant 

Antibiotics for Newborn 
 

Congenital 
abnormalities 

Anencephaly Anencephaly 

Cyanotic Congenital Heart 
Disease 

Cyanotic Congenital Heart 
Disease 

Congenital Diaphragmatic Hernia 
 

Gastroschisis 
 

Limb Reduction Defect 
 

Cleft Palate alone Cleft Palate alone 

Cleft Lip w/ or w/o Cleft Palate Cleft Lip w/ or w/o Cleft Palate 

Suspected Chromosomal 
Disorder 

 

Hypospadias 
 

Total number of variables 

N  24 18 

*vector loadings rounded down (e.g. 0.35 is 0.3) 

Since the mPCA method is the only method which allows us to evaluate the 

numeric variables together with binary ones, it allows us to evaluate the relevance of the 

numeric variables: the two for the numeric variables with the highest vector loading are 

birth weight and Apgar 10. They both load into the third and fourth principal component 

and show a vector loading above 0.4. When we loosen the criteria to a loading cutoff of 

0.3, the principal components which explains most of the variance is constructed by 

Apgar 5 and the mother’s combined gestation time, assisted ventilation immediately and 

>6 hours, and admission to the neonatal intensive care unit. The second dimension is 
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mainly described by the binary complications: maternal transfusion, unplanned 

hysterectomy, and the mother’s admission to the intensive care unit. The third principal 

component mainly consists of both Apgar scores, while the fourth principal component is 

characterized by the baby’s birth weight and the mother’s combined gestation time. 

Please note that the mother’s age does not play a significant role in any of the principal 

components, as it shows up with a total loading of 0.358 in the ninth principal 

component. This indicates that the association of mother’s age with birth delivery quality 

may not be close, compared to other numerical variables. In total, the mPCA with 99% 

explained variance reduces our variables to 27, whereas the last two dimensions do not 

exhibit any relevant factor loadings using a cutoff value of 0.3.  

3.2.1.4. Feature Selection Summary 

In Table 4, we provide an overview of all applied feature selection methods and 

the specified cutoff values. 

 low variance PCA* 99% variance 
 mixed PCA** 

total 

criteria 0.001 0.0005 0.0003 0.0001 95% 99% cut at 
0.4 

cut at 
0.3 

 

Maternal 
Transfusion 

X X X X X X X X 
8 

Perineal Laceration X X X X X X X X 6 

Ruptured Uterus 
  

X X 
 

X X X 3 

Unplanned 
Hysterectomy 

  
X X 

 
X X X 

5 

Admit to Intensive 
Care 

X X X X 
 

X X X 
7 

Assisted 
Ventilation 

(immediately) 

X X X X X X X X 
8 

Assisted 
Ventilation > 6 hrs 

X X X X X X X X 
8 

Admission to NICU X X X X X X X X 8 

Surfactant X X X X X X 
 

X 7 

Table 4: Summary of all feature selection method’s cutoffs 
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*relevant loadings > 0.7  

** criteria: cutoff for relevant loadings 

This leads us to the following selected variables by each method, presented in Table 5. 

Table 5: Summary of selected features by all feature selection methods 

 

Categorized as  Selected by all methods Selected by variance 0.0003,  
sklearn 99% and cut at 0.3 

Maternal Morbidity 

Maternal Transfusion Maternal Transfusion 

Perineal Laceration Perineal Laceration 
 

Ruptured Uterus 
 

Unplanned Hysterectomy 
 

Admit to Intensive Care 

Abnormal conditions 
of the newborn 

Assisted Ventilation (immediately) Assisted Ventilation (immediately) 

Assisted Ventilation > 6 hrs Assisted Ventilation > 6 hrs 

Admission to NICU Admission to NICU 

 low variance PCA* 99% variance 
 mixed PCA** 

total 

criteria 0.001 0.0005 0.0003 0.0001 95% 99% cut at 
0.4 

cut at 
0.3 

 

Antibiotics for 
Newborn 

X X X X X X 
 

X 
7 

Seizures 
  

X X 
    

2 

Anencephaly 
      

X X 0 

Meningomyelocele 
/ Spina Bifida 

   
X 

    

1 

Cyanotic 
Congenital Heart 

Disease 

 
X X X 

 
X X X 

4 

Congenital 
Diaphragmatic 

Hernia 

   
X 

   
X 

1 

Omphalocele 
        

0 

Gastroschisis 
   

X 
   

X 3 

Limb Reduction 
Defect 

   
X 

   
X 

1 

Cleft Lip w/ or w/o 
Cleft Palate 

 
X X X 

 
X X X 

6 

Cleft Palate alone 
   

X 
  

X X 3 

Down Syndrome 
   

X 
    

1 

Suspected 
Chromosomal 

Disorder 

   
X 

   
X 

2 

Hypospadias 
 

X X X 
 

X 
 

X 4 

number of 
features selected 

8 11 14 21 7 13 12 19  
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Categorized as  Selected by all methods Selected by variance 0.0003,  
sklearn 99% and cut at 0.3  

Surfactant 
 

Antibiotics for Newborn 

Congenital 
abnormalities 

 
Cyanotic Congenital Heart Disease 

 
Cleft Lip w/ or w/o Cleft Palate 

 
Hypospadias 

 Total Total 

5 13 

 

Similar to the feature selection by threshold variance cutoff, we observe common 

variables which are of high relevance in the PCA as well. In the category Maternal 

Morbidity we observe Maternal Transfusion and Perineal Laceration as important 

characteristics in all three dimension reduction methods. When relaxing the cutoff in all 

methods, we additionally observe Ruptured Uterus, Unplanned Hysterectomy and the 

Admit to Intensive Care as relevant in the Maternal Morbidity category. The variable 

Admit to Intensive Care seems relevant in the variance cutoff method, but only loads with 

a high weight in the eighth component in the 99% explained variance and contributes 

0.008 to the overall explained variance. The two other variables in this category, 

Ruptured Uterus and Unplanned Hysterectomy, explain each with 0.002 the least of the 

99% variance and do not appear in the first two thresholds (0.001, 0.0005) in the variance 

cutoff method either. However, both variables are relevant in the mixedPCA method with 

99% variance explained, where they are both load more than 0.4 into the principal 

components.  

The results from the feature selection match the clinical insights. Maternal 

transfusion describes the condition during birth delivery where a blood transfusion needs 

to be given to the mother, if she bleeds too much during birth delivery. Furthermore, 

maternal transfusion is seen as one of the major indicators of maternal morbidity, since it 
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is a common occurrence in cases of severe maternal morbidity (Center for Disease 

Control and Prevention, 2020b). Relevance of maternal morbidity   is also captured 

between the third or fourth degree perineal laceration, which describes a tear of a anal 

muscle layer controlling bladder and bowel functions. Experiencing a third or fourth 

degree of the muscle tear can lead to a persistent incontinence that requires further 

medical attention and hospitalization. This complication typically requires surgery and at 

a minimum several weeks of medical care (Mayo Clinic, 2019). The third or fourth 

degree tear also impacts future birth deliveries because women are 4-times more likely to 

repeat the complication in later birth deliveries than those without this complication 

(Woolner et al., 2019). 

A ruptured uterus is a severe complication which may happen during a natural 

birth. The uterus tears and causes the baby to glide into the mother’s abdomen, which 

leads to life-threatening bleeding and may strangulate the baby. Furthermore, it can cause 

an unplanned hysterectomy and about 6% of all unborn babies cannot survive this 

complication. Fortunately it is a rare condition which happens in less than 1% of birth 

deliveries (Cirino, 2017).  

Unplanned hysterectomy describes an emergency surgery in which the uterus of 

the mother needs to be removed to increase survival chances of the mother. This 

procedure is due to different reasons, such as uterine rupture, placenta accreta (the 

placenta grows too deep into the uterine wall),  uterine atony (no contractions in the 

uterus after birth delivery), and life-threatening bleeding. Most commonly it affects 

women with a history of cesarean section. Unplanned hysterectomy is a severe 

complication and can lead to about 23% potential death of both mother and child. If the 



 

50 

mother survives, she may suffer physically from bladder injuries, wound infection, and 

fever; furthermore she is unable to carry any more children (Machado, 2011). 

Psychologically, the long-term consequences are severe emotional distress, and trauma 

resulting in a lower life-quality as reported by survivors (Elmir et al.). In general, an 

unplanned hysterectomy happens in 0.24 to 8.7 cases per 1000 birth deliveries (Machado, 

2011). 

  In the category Abnormal Conditions of the Newborn, we observe the variables 

Assisted Ventilation (immediately), Assisted Ventilation >6 hours, and Admission to 

Neonatal Intensive Care Unit (NICU) in all feature selection methods. Surfactant, and 

Antibiotics for Newborn are considered significant contributors to the birth delivery 

quality, especially when the cutoff criteria in all methods becomes more lenient. In the 

PCA, the variable Admission to NICU is the main loading of the first principal 

component which explains the most variance (0.56). Assisted Ventilation (immediately) is 

the main component of the second principal component and explains 0.185 of the 

variance. Antibiotics for Newborn is with 0.923 the main loading for the third principal 

component which explains 0.09 of the data’s variance. Assisted Ventilation >6 hours is 

with -0.767 the major component of the fourth principal component, which only explains 

0.046 of the data’s variance. Even less important is Surfactant compared to the other 

items mentioned before; it describes the main loading of the seventh and therefore last 

component, which only explains 0.020 of the 95% variance PCA. Of less importance is 

the variable Seizures in this category in all dimensionality reduction methods, it describes 

a moderate weight of the last principal component for explaining 99% variance where the 

principal component explains 0.002 of the variance.   

Admission to the NICU is considered the major indicator for the quality of birth 
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delivery based on the feature selection methods. From a clinical standpoint, this is an 

important indicator of the baby’s well-being as well. There are many different reasons why 

admission to NICU is necessary, such as seizures, birth defects, respiratory issues, low 

birthweight, low height, and a pre-term birth delivery (Stanford Children’s Health, 2021). 

Other conditions which account for the baby’s health are both information for assisted 

ventilation: assisted ventilation required immediately following delivery, and assisted 

ventilation required for more than six hours. While mechanical ventilation is necessary to 

save the newborn’s life, it also leads to ventilator-caused injury which is associated with 

severe morbidity and mortality in newborns (Chakkarapani et al., 2020). Besides respiratory 

failure, a deficiency of pulmonary surfactant is a major contributor for the newborn’s health. 

A newborn is given surfactant replacement therapy if respiratory distress occurs, and the lung 

alveoli are instable. It is administered in severe respiratory failure cases, such as pneumonia 

and sepsis (Melbourne, 2018). Another major indicator for the baby’s health is described 

with antibiotics received by the newborn for suspected neonatal sepsis. This is also reflected 

in the literature and clinical guidelines since antibiotics are a first response treatment for 

neonatal sepsis. In general, neonatal sepsis is the third major cause of neonatal death and can 

cause severe disability if survived (Korang et al., 2019). 

In the last binary complication category and Omphalocele is considered not 

relevant at all in any feature selection method. In the variance threshold method, 

Cyanotic Congenital Heart Disease, Cleft Lip w/ or w/o Cleft Palate and Hypospadias 

are considered relevant using a threshold parameter of 0.0005 or lower. However, they 

are not relevant using a threshold parameter of 0.001. In PCA, the three variables appear 

in the latter principal components 9,10, and 11 and each explains 0.003 of the variance. 

In mPCA they have a vector loading of 0.3 but below 0.4. Anencephaly seems to be only 
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relevant in mPCA where it appears as a relevant complication in all loading cutoffs. 

However, Anencephaly does not get selected as relevant in any other feature selection 

method. The remaining eight complication variables, Congenital abnormalities, 

Meningomyelocele / Spina Bifida, Congenital Diaphragmatic Hernia, Gastroschisis, 

Limb Reduction Defect, Cleft Palate alone, Down Syndrome, and Suspected 

Chromosomal Disorder are less relevant for birth delivery quality in all dimensionality 

reduction methods. They only appear relevant in the lowest threshold parameter category 

(0.0001) of the variance cutoff method and do not play any significant role in the 

principal components either. 

Cyanotic Congenital Heart Disease describes a common heart defect of the 

newborn in which the heart structure did not grow correctly. It usually requires surgery. If 

left untreated, it would result in severe heart disease complications, such as stroke and 

heart failure, and is a common cause of death. Babies with Cyanotic Congenital Heart 

Disease have a 1-year survival chance of 75% and an 18-year survival chance of 69%, 

and it causes about a third of all infant deaths. It occurs more likely in second 

pregnancies and has a total occurrence of 8 to 9 in 1000 birth deliveries (Ossa Galvis et 

al., 2021). 

A cleft lift describes an opening of the baby’s upper lip. The split can be small or 

range from the inside of the nose to the upper lip. A split of the upper inner mouth is 

called cleft palate. It usually causes major problems with food intake and speaking but is 

also associated with ear infections and teeth problems. It requires initial surgery in the 

first 12 months after birth delivery and a majority of children needs additional surgery 

later in their lives as well. The incidence of a cleft lip with cleft palate is 1 in 1,700 births, 
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a cleft lip without cleft palate occurs once in every 2,800 births (Centers for Disease 

Control and Prevention, 2020). 

Hypospadias is a congenital condition in which the urinal tube of a boy’s penis is 

on the underside of the penis instead of its tip. It requires surgery and usually has long-

term effects on the newborns urination and ejaculation later in life (Mayo Clinic, n.d.). 

3.2.2. Binary Variable Transformation: Item Response Model 

In this section, we first compare parametric and non-parametric IRT models using 

all 23 binary variables. Then we determine the best set of binary variables for IRT 

estimation of the continuous latent trait. 

3.2.2.1. Parametric and Nonparametric IRT Model Performance  

The IRT model has been chosen to represent the multiple binary variables using 

one continuous latent trait variable. This latent trait represents a score of the overall 

complications occurring during birth delivery and is used as a continuous variable for the 

upcoming factor analysis and SEMs.  

From the frequency table for the binary variables shown in data description 

section 3.2., we know that all binary variables have a rare occurrence. The binary variable 

of the most frequent occurrence is Admission to NICU with about 9%. Thus, these binary 

variables are highly unbalanced. Most IRT models rely on a parametric approach and 

assume an underlying normal distribution of the latent trait. Since this is not always true 

in realty, approaches for non-parametric item response model has been developed (Reise 

et al., 2018). 

We use the R package sirt that offers a non-parametric estimation for Rasch-type 
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models. This package fits our goal to estimate a continuous latent trait with unbalanced 

dichotomous responses (R Core Team, 2013). Furthermore, the sirt package offers a log-

linear kernel distribution smoothing for three moments respectively. Kernel-based 

smoothing methods are the most common way to establish a non-parametric estimator 

(Xu & von Davier, 2008).  

To see if a three-moment log-linear kernel distribution smoothing improves the non-

parametric IRT model, we compare a non-parametric model with three moment kernel-

smoothing terms to one without those kernel-smoothing terms. Additionally, the two non-

parametric IRT models have been compared to a parametric IRT model performance. For 

an initial model comparison, all 23 binary variables have been used for performance 

comparison. The performance of all three IRT models is shown below, where  

• Model 1: parametric IRT model, using R package ltm 

• Model 2: nonparametric IRT model, using R package sirt   

• Model 3: nonparametric IRT model with log-linear distribution smoothing for 

three moments respectively, using R package sirt   

 

Table 6: Item response theory model comparison for parametric and non-parametric 

performance 

 
Item response theory models 

Model 1 Model 2 Model 3 

AIC 5,036,543 4,978,797 4,977,252 

BIC 5,037,148 4,985,144 4,983,600 

RSME 18.3407 0.8508 0.8143 

 

Table 6 shows clearly that the nonparametric IRT models Model 2 and 3 

outperform the parametric Model 1 due to smaller AIC and BIC and RSME in the latter 
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two models than Model 1. Applying a three-moment smoothing term does not change the 

distribution parameters of the IRT result but improves the model performance given 

further reduced RSME and information criteria (Xu & von Davier, 2008). Hence, we will 

move forward choosing Model 3, the nonparametric model with log-linear kernel 

distribution smoothing for three moments respectively.  

3.2.2.2. Item Selection 

As a result from the feature selection section 3.1.1. we know that the best number 

of relevant variables lays between 5 and 13. To explore which variables to include in the 

IRT model, we start with the 13 variables identified in section 3.1.1. with loosened cutoff 

criteria and reduce the number of variables step by step until the model does not further 

improve.  

Table 7: Nonparametric IRT model comparison for different items from feature selection 

Step 
number 

Number of 
variables 

AIC BIC RSME 

0 23 4977252 4983600 0.8143 

1 13 4870833 4874420 0.8153 

2 12 3090255 3093567 0.8944 

3 12 4026656 4029968 0.8378 

4 12 4394784 4398096 0.8446 

5 12 4761230 4764542 0.8176 

6 12 4703253 4706565 0.8139 

7 11 4666704 4669740 0.8138 

8 11 4339160 4342196 0.8128 

9 10 4302610 4305370 0.8128 

10 9 4281952 4284436 0.8131 

11 9 4274145 4276629 0.8144 

12 9 4269695 4272178 0.8137 

13 9 4185812 4188296 0.8141 

 

The decision steps for the different models shown in Table 7 are defined below: 

• Step 0: initial model, Model 3 from section  3.2.2.1.: implement nonparametric 
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IRT model starting with 13 binary complication variables from Table 4 in section 

3.2.1.4. which summarizes all feature selection methods with loosened cutoff 

values: Maternal Transfusion,  Perineal Laceration, Ruptured Uterus, Unplanned 

Hysterectomy, Admit to Intensive Care, Assisted Ventilation (immediately), 

Assisted Ventilation > 6 hrs, Admission to NICU, Surfactant, Antibiotics for 

Newborn, Cyanotic Congenital Heart Disease, Cleft Lip w/ or w/o Cleft Palate, 

Hypospadias 

• Step 1: because of higher AIC and BIC than in the previous step, thus the model 

worsened, we remove Admission to NICU 

• Step 2: Compared to Step 1, a higher RSME implies worse model, go back to 

Step 1 and remove Assisted Ventilation (immediately)  

• Step 3: Compared to Step 1, a higher RSME implies worse model, go back to 

Step 1 and remove Antibiotics 

• Step 4: Compared to Step 1, a higher RSME implies worse model, go back to 

Step 1 and remove Surfactant  

• Step 5: Compared to Step 1, a higher RSME implies worse model, go back to 

Step 1 and remove Assisted Ventilation > 6 hrs 

• Step 6: Compared to Step 1, a lower RSME implies a better model, move forward 

with this model and remove Hypospadias  

• Step 7: Compared to Step 6, a higher RSME implies worse model, go back to 

Step 6 and remove Perineal Laceration 

• Step 8: Move forward with this model, based on lower AIC, BIC and RMSE 

implying an improved scenario we go ahead and try model without Hypospadias  
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• Step 9: Judging from residuals compared with previous models move forward 

with this model, based on high item pair correlation try model without Ruptured 

Uterus 

• Step 10: Compared to Step 9, a higher RSME implies worse model, go back to 

Step 9 and remove Cyanotic Congenital Heart Disease 

• Step 11: Compared to Step 9, a higher RSME implies worse model, go back to 

Step 9 and remove Cleft Lip w/ or w/o Cleft Palate  

• Step 12: Compared to Step 9, a higher RSME implies worse model, go back to 

Step 9 and try model without Surfactant 

• Step 13: Compared to Step 9, a higher RSME implies worse model; every useful 

combination tried, no further model improvement possible. Go back to Step 9 and 

keep model 9 

 

Based on the model comparison, we move forward with the results from model 9 

which shows the lowest RMSE. Therefore, we have the following 10 items included in 

the nonparametric IRT with log-linear kernel distribution smoothing for three moments 

respectively: Maternal Transfusion, Ruptured Uterus, Unplanned Hysterectomy, Admit to 

Intensive Care, Admission to NICU, Assisted Ventilation (immediately), Surfactant, 

Antibiotics for Newborn, Cyanotic Congenital Heart Disease, and Cleft Lip with or 

without Cleft Palate. The distribution of the latent trait of the final model as described in  
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the previous section is shown in Figure 4:  

 

Figure 4 clearly shows that the continuous latent trait result from binary variables 

follows a skewed distribution. In fact, the distribution resembles a gamma distribution 

which creates a challenge for the normality approximation. The range of this latent trait 

lays between -0.1948 and 5.2576, whereas the majority of cases exhibits a score of -

0.1948. Hereafter, we refer to this latent trait as IRT variable or IRT outcome and treat it 

as another numerical variable in the dataset. 

3.3. Preprocessing Numerical Variables 

In this section, we will give an overview on the distributions of the numerical 

variables, and prepare the variables for further transformation. We need to perform 

normalization transformation for factor analysis and SEM modeling, because their 

estimation methods require approximated normal distribution of the observed variables. 

  

 

mean 0.99 

sd 0.62 

skewness 2.84 

kurtosis 7.28 

Figure 4: Latent trait distribution for item response theory model 
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3.3.1. Descriptive Statistics 

Table 8: Descriptive statistics of numerical variables for birth delivery data 2018 

 

 

 

 

 

 

 

Table 8 shows descriptive statistics of all selected numerical variables. According 

to ICD-10 (World Health Organization, 2004a), low birth weight is defined as less than 

2,500 grams. The majority of the babies born in 2018 is above this cutoff.  Babies born 

between the thirty-seventh and fortieth gestation week count as full-term birth. In our 

dataset we observe a mean gestation time of 38.6 weeks. The average birth weight for 

full-term babies is 3,200 grams (University of Rochester Medical Center Rochester, 

2020). This general description matches our dataset where we observe slightly heavier 

average birth weight of 3264 grams. With an average Apgar 5 of 8.8, most babies are 

born healthily. Furthermore, the average Apgar 10 is 87, because Apgar 10 is only 

measured for babies with Apgar 5 of lower than 6. If an Apgar score did not get 

remeasured after 10 minutes (Apgar 10) then a value of 88 is noted (National Center for 

Health Statistics, 2019). To give a more precise picture about the score, both versions 

(including 88 and not including 88) are included in the data description in Table 1. 

Furthermore, we calculated skewness and kurtosis for each of the continuous 

variables. The R package moments was used to calculate the kurtosis. Therefore, the 

variable mean std skewness kurtosis 

Birth weight (g) 3264.17 586.36 -0.8307 5.6298 

Mother’s age 29.01 5.8 0.0799 2.5246 

Combined gestation 38.6 2.43 -1.8732 12.3447 

Apgar score after  
5 minutes 

8.8 0.78 -5.3282 42.7834 

Apgar score after 10 minutes 
without non measured  

6.02 2.65 -0.8882 2.6726 

Apgar score after 10 minutes 87.09 8.57 -9.3712 88.9213 
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calculated kurtosis under the null hypothesis of normality would be 3 (Lukasz Komsta, 

2015). In the dataset, only mother’s age is close to be normally distributed, the other 

variables show deviation of normality. In particular, the Apgar scores are highly skewed 

which can be explained by the fact that most newborns achieve a high Apgar score in the 

dataset and therefore are generally born in a good condition.  

To evaluate the variable distributions, we plot histograms with normal density 

graphs as shown below. Judging from the histograms and density plots, the variables 

birth weight, mother’s age, and combined gestation time are close to symmetry. The only 

exception are the Apgar scores, where Apgar 5 is highly negative skewed and Apgar 10 

shows an almost bimodal distribution, whereas the two peaks are around 0 (dead) and 6. 

For each variable, the histogram with density plot is shown in Figure 5 to 9: 

 

 

 

Figure 5: Histogram with density plot for birth 

weight 2018 

Figure 6: Histogram with density plot for 

mother’s age 2018 
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Figure 9 includes only measured 

Apgar 10 scores and excludes the cases in 

which a Apgar 10 score has not been 

necessary because of a sufficient Apgar 5 

score.  

 

 

 

 

 

Figure 9: Histogram with density plot for Apgar 

score 10 2018 

Figure 7: Histogram with density plot for 

combined gestation time 2018 

 

Figure 8: Histogram with density plot for 

Apgar score 5 2018 
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3.3.2. Association between Numerical Observed Variables 

To investigate linear association 

between the observed variables, we 

present a heatmap in Figure 10. A strong 

positive correlation (0.74) between 

Apgar score 5 and Apgar score 10 is 

observed.  This is due to the fact that the 

Apgar scores measure the baby from the 

same perspective; once after 5 minutes 

of delivery, again after 10 minutes if 

their Apgar 5 was lower than 7 (National Center for Health Statistics, 2019). 

Additionally, a moderate positive correlation (0.55) is observed between birth weight and 

combined gestation time. Furthermore, we detect a mild negative correlation between the 

IRT outcome and Apgar 5 (-0.36) which is due to the fact that Apgar 5 gives a score for 

the babies’ ability to thrive while the IRT outcome summarizes the birth delivery 

complications. We also notice expected mild negative correlations between birth weight 

and IRT outcome (-0.34), and combined gestation time and IRT outcome (-0.38). Babies 

born prematurely often require assisted ventilation as their lungs may not be fully 

developed yet. Babies with  low birth weight need more treatment in comparison to full-

term birth deliveries; moreover, it is common procedure in nursing guidelines to 

administer babies born pre-term or with low birth weight into the NICU (Chakkarapani et 

al., 2020; Stanford Children’s Health, 2021).   

Table 8 describes the relationship between Apgar 5 and Apgar 10 in more detail. 

Figure 10: Heatmap for correlation of numerical 

variables 
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It describes the 2-dimensional density and visualizes the transition from a baby’s Apgar 

scores after 5 minutes (x-axis) to the Apgar score after 10 minutes (y-axis). The numbers 

highlighted in a bold font display the highest density in its category while the yellow cells 

describe a stagnation of the baby’s potential of thriving. If the Apgar score 10 would not 

improve but stay as measured after 5 minutes, we would expect a diagonal cluster of 

density. However, this table shows that most babies improve their chance of survival 

(Apgar score) after 10 minutes. The second half of the table, Apgar scores 5 from values 

6 to 10 describes the healthier babies and there is no need to remeasure their score after 

10 minutes since their chances of survival are fairly high. When we take a closer look at 

the yellow cells we notice that the majority of babies with an Apgar score of 4 or 5 

actually improve their score after 10 minutes to a value of 6 or even higher. On the other 

side, a majority of newborns with an Apgar 5 score of 0 to 2 fail to improve their Apgar 

score 10 minutes after being born and still struggle with survival.  



 

 

6
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Table 9: Relationship between initial Apgar score after 5 minutes and remeasured Apgar score after 10 minutes in percentage 

 

As a last step before moving forward to the factor analysis and SEM modeling, we assess the association of the continuous 

variables. We assume a linear relationship between observed variables and latent variable. Therefore, we present a scatterplot matrix 

(Figure 11) to check if there is any nonlinear relationship between the observed variables which could endanger the linearity 

assumption. 

Apgar score 10 
Apgar score 5  

0 1 2 3 4 5 6 7 8 9 10 Total 

0 52.49 31.16 7.96 2.84 1.66 3.88 0 0 0 0 0 100 

1 3.76 82.11 10.03 2.44 0.87 0.79 0 0 0 0 0 100 

2 6.69 21.97 59.37 8.17 1.97 1.83 0 0 0 0 0 100 

3 5.24 26.18 25.58 36.65 3.89 2.47 0 0 0 0 0 100 

4 2.72 15.31 24.69 26.54 27.52 3.22 0 0 0 0 0 100 

5 1.02 11.9 15.77 24.53 23.07 23.71 0 0 0 0 0 100 

6 0.33 7.03 12.14 18.76 28.76 32.97 0 0 0 0 0 100 

7 0.21 4.98 8.43 14.21 24.54 47.63 0 0 0 0 0 100 

8 0.23 4.33 8.51 12.24 23.35 51.34 0 0 0 0 0 100 

9 1.13 5.2 9.22 11.16 22.62 50.68 0 0 0 0 0 100 

10 2.62 4.07 4.36 7.85 11.05 70.06 0 0 0 0 0 100 

88 0 0 0 0 0 0 0.79 1.95 10.24 84.8 2.22 100 

Percent of total 0.03 0.17 0.14 0.16 0.22 0.38 0.78 1.93 10.12 83.86 2.19 100 
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Based on the 

heatmap in Figure 10, we 

are already aware of the 

strong linear correlation 

between combined 

gestation time and birth 

weight. Besides this, there 

is a mild correlation 

between birth weight and 

the IRT result. In addition, 

we do not notice any 

nonlinear relationship and thus support our linearity assumption of the observed 

variables.  

3.3.3. Rescaling Variables Apgar 10 and Birth Weight  

If the Apgar 10 score was not performed due to a good Apgar score 5 (6 or 

higher), a value of 88 is coded for Apgar 10. In order to bring the variables Apgar 10 

closer to the scale, we perform an explanatory factor analysis excluding birth weight, 

since it is correlated with combined gestation time. The Apgar 5 score was kept even 

though it has a correlation with Apgar 10, yet Apgar 10 still provides additional 

information to the previous measured Apgar 5 score. This leads to the following model: 

Latent variable =~ Apgar 5 + Apgar 10  + combined gestation  

As shown in the table below, the best value for the replacement of the missing 

Figure 11: Scatterplot matrix of continuous variables 
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Apgar 10 score is the value of 12 according to its loading into the factor model and its 

uniqueness. A higher factor loading indicates a greater importance of the variable for 

predicting the latent variable.  

 

Table 10: Decision steps for missing Apgar 10 score replacement using explanatory 

factor analysis model 

# 
step 

Decision steps New 
Apgar 
10 
value 

Explained 
variance 

Eigen-
values/ 
sum of 
squared 
loadings  

Apgar 
5 
factor 
loading 

Apgar 
10 
factor 
loading 

Gestation 
time 
factor 
loading  

Unique-
ness of 
Apgar 
10 

0 Original data 
number 

88 0.539 1.618 0.997 0.742 0.269 0.450 

1 Starting point: 
Smallest 
possible 
number 
(Apgar score 
ranges from  
0-10)  

11 0.508 1.525 0.894 0.797 0.300 0.364 

2 Check higher 
apgar10 value: 
increase value 
in step 1 by 4  

15 0.530 1.591 0.937 0.794 0.287 0.369 

3 Check higher 
apgar10 value: 
increase value 
in step 2 by 8 

23 0.537 1.611 0.967 0.774 0.278 0.401 

4 Check higher 
apgar10 value: 
increase value 
in step 3 by 16 

39 0.539 1.616 0.985 0.756 0.272 0.429 

5 Uniqueness 
almost as high 
as in original 
model, check 
values 
between step 
1 and 2 

13 0.524 1.571 0.920 0.800 0.292 0.361 

6 Uniqueness 
lower than 
step 1 and 2, 

12 0.518 1.554 0.909 0.800 0.295 0.360 
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# 
step 

Decision steps New 
Apgar 
10 
value 

Explained 
variance 

Eigen-
values/ 
sum of 
squared 
loadings  

Apgar 
5 
factor 
loading 

Apgar 
10 
factor 
loading 

Gestation 
time 
factor 
loading  

Unique-
ness of 
Apgar 
10 

decrease the 
values in step 
5 by 1 

7 Uniqueness in 
step 6 lowest 
so far, 
increase the 
value in step 6 
by 2 

14 0.528 1.583 0.929 0.797 0.289 0.364 

Result: replacing Apgar10 value 88 with 12 gives best results regarding uniqueness of apgar10 
variable 

 

Based on the models above and judging from the lowest uniqueness and the 

highest factor loading, we will use 12 instead of 88 for not conducted Apgar scores after 

10 minutes.  

Because the birth weight variable is in the unit of grams, it has a larger scale than 

the other variables in the model. Therefore, we divide the birth weight data by 453.592 to 

measure it in the unit of pound and therefore bring this variable closer to the scale of the 

others. 

3.3.4. Normalization of Numerical Variables 

Since multiple statistical methods require a normality assumption for variables, 

we need to transform skewed variables in order to approach a more normal distribution. 

Different normalization methods are described based on the skewness of the variable to 

normalize skewed distribution. The most common ones are the log transformation which 

is recommended if the data is moderately to severe skewed. For less skewed data, the 

square-root is recommended while severe skewed data may be approach normality better 
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with an inverse transformation. Differences in the transformation are based on the 

direction of skewness, negatively or positively skewed (Kassambara, 2018). 

Since R is a common statistical software various packages for normality 

transformations are available. A very powerful method is the newly method called 

“Gaussianize” which is available in the LambertW package in R (Georg, 2020). It utilizes 

an inverse transformation which allows to correct heavy tails. Furthermore, it utilized the 

Tukey distribution for developing a parametric function which can handle skewed and 

heavy-tailed data jointly (Goerg, 2015). Table 10 shows the power of this function 

compared to other common normalization methods such as boxcox, simple inverse, 

square-root, and log transformation. The function transformTukey from R package 

rcompanion (Mangiafico, 2021) was not able to handle datasets above a sample size of 

5000. The boxcox transformation was performed using the R package geoR (Jr et al., 

2020).  Another package by R for normality transformation is the package bestNormalize 

(Peterson, 2017), which uses multiple transformation methods and returns the best fit. It 

chooses from ordered quantile normalization, which consists of a rank-mapping plus 

shifted logit approximation, boxcox and Yep-Johnson transformation, and in total three 

types of Lambert WxF transformations. All these transformations are automatically 

compared by the function in the background to the original data skewness and kurtosis. 

Finally, the best transformation approach with the resulting converted data is returned 

which is closest to normality (Peterson, 2017).  

We test different transformation methods and their combinations to find a close 

approximation of each variable to normality. One exception is Apgar 10. It is difficult to 

transform it, since the majority of cases exhibit a not-performed value. Even with the data 
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transformation of this value from 88 to 12, the variable could not be normalized. The 

closest approximation was log (13– Apgar 10) where the results are still far from 

normality. However, the replacement of Apgar 10 score 88 provided a wider range of 

values than using the log function. Therefore, we did not normalize Apgar 10 but replace 

its missing values with the value 12. After applying the Gaussianize function, we did not 

move forward with normalization methods for birth weight and combined gestation 

because we observe a satisfactory normal approximation with a skewness of almost zero 

and a normal kurtosis.  
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Table 11: Result of applied normalization methods 

 

*on birth weight transformed into lbs, Apgar scores +1 to avoid zeros 

** comparing arcsinh(x), Box-Cox, Exp(x), Log_b(x+a), no transform, sqrt(x + a), Yeo-Johnson 

*** 88 replaced with 12 

 Variable  

Birth weight Combined gestation Apgar 5 Apgar10 *** 

Method skewness kurtosis skewness kurtosis  skewness kurtosis skewness kurtosis 

Original -0.831 5.63 -1.873 12.345 -5.328 42.783 -11.991 162.09 

sqrt(max(x+1) – x) 0.487 5.287 0.564 8.771 3.58 23.62 10.623 122.244 

log10(max(x+1) – x) -1.048 89.232 -1.231 14.592 1.956 13.751 9.873 101.81 

1/(max(x+1) – x) 580.554 338487.7 10.824 184.412 1.488 14.593 -9.416 90.042 

boxcox 0.195 4.423 0.293 6.905 -1.414 8.905 -9.5 92.036 

Gaussianize()* 0 3 0.003 3 -0.002 13.813   

Transform Tukey() sample size too large (n=5000 max) 

bestNormalize comparison** boxcox boxcox Standardized exp(x) Standardized     Log_b(x + a) 

bestNormalize calculation     1.645 14.073 -39.267 1767.116 

log(constant – x)     -6.37 42.342 9.391 89.414 

first boxcox, then Gaussianize()     -1.257 5.317   

first boxcox, then Gaussianize() twice     -1.258 5.316   

First Gaussianize() then boxcox     0.247 13.924   

Gaussianize skewed + symmetric-
heavy tails 

    Error Error   

exp(x), then Gaussianize()     Error Error   

exp(x), then boxcox()     -0.215 13.807   
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Figure 12: Histogram of IRT variable with artificial data 

3.3.5. Artificial Data for IRT Model Normalization 

The normalization methods as described in section 3.3.3. failed for the latent trait 

variable of the item response model. None of the methods could convert it to normality. 

This is caused by the highly asymmetric data which form an approximate gamma 

distribution. As an approach to reduce the skewness of the variable an artificial data 

approach has been chosen: First, we filtered the IRT variable for values which are bigger 

than 0 since these are causing the heavy right tail. There are in total 427,984 cases 

(11.35%) of a score above 0. These scores have been multiplied by -1, to create a left tail, 

thus mitigating the skewness of the data. Values for the other numerical values have been 

simulated based on their variable 

distributions in the original dataset. 

This simulation step adds 427,984 

simulated birth delivery cases 

which has been flagged as non-

original data to identify them from 

the real cases. The histogram of the 

data in Figure 12 shows the 

symmetric IRT variable after adding the artificial data. Originally the dataset has 

3,769,386 observations, by adding the artificial data to remove the skewness, we have a 

resulting in a total dataset of  4,197,370 observations. We keep the simulated cases until 

the latent variable has been estimated. After the latent variable estimation, the simulated 

cases will be removed and only the original cases will be kept for further analysis.   
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4: RESULTS 

 

In this section, we present the estimation results of the latent variable, the birth 

quality, from several methods, namely factor analysis, SEM and MCMC. We also 

consider possible multiple modals of the latent variable using clustering and the selected 

SEM estimation. For all our computation, we use an Intel® Xeon® Gold 5220 CPU with 

2.19 GHz (2 processors), 18 cores and 128 GB RAM. 

4.1. Factor Analysis Results 

Explanatory factor analysis is conducted in R using the psych package (Revelle, 

2017). To select the best model, we create an initial model with all numerical modify the 

model accordingly to the model-fit: 

Table 12: Explanatory factor analysis model comparison 
 

model 1 model 2 model 3 model 4 

factor loadings 

Apgar 5 0.5 0.5 NA NA 

Apgar 10 0.42 0.42 0.22 0.29 

combined gestation time  0.5 0.5 0.66 NA 

birth weight  0.49 0.49 0.65 0.41 

continuous variable from IRT -0.57 -0.57 -0.45 -0.67 

mother’s age 0 NA NA NA 

communality (h2) 

Apgar 5 0.25 0.25 NA NA 

Apgar 10 0.18 0.18 0.05 0.085 

combined gestation time  0.25 0.25 0.43 NA 

birth weight  0.24 0.24 0.42 0.171 

continuous variable from IRT 0.32 0.32 0.20 0.451 

mother’s age 0.0000052 NA NA NA 

Goodness-of-fit indices 

TLI 0.444 0.354 0.874 -Inf 

RMSEA  0.158 0.208 0.088 NA 

BIC 5111160 4064274 236041 NA 
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The decision steps and their resulting four models are described below. To start 

with, we include all numeric variables in Model 1: mother’s age, Apgar 5, Apgar 10, 

birth weight, combined gestation time  and IRT outcome 

Step 1: Based on the low influence of mother’s age as shown in no factor loading 

and its low communality, we remove mother’s age   

Step 2: Compared to Step 1, a lower BIC implies better model, but lower TLI and 

higher RMSEA imply the model worsened; TLI and RMSEA are sensitive for 

correlation, so we remove Apgar 5 in Model 2, because of its linear correlation 

with Apgar 10 and IRT outcome.  

Step 3: Compared to Step 2, TLI increased and RMSEA and BIC lowered which 

implies better model fit, so we remove combined gestation based in Model 3, 

based on their linear correlation with birth weight and IRT outcome  

Step 4: Compared to Step 3. Not enough input parameters for model fit evaluation 

, (model needs more than 3 indicators otherwise TLI = -Inf), therefore Model 4 is 

not identified (TLI =  -Inf), go back to Step 3 and keep Model 3 

Resulting from the decision steps and the model comparison table above, the best 

explanatory factor analysis model is model 3 with the following indicators to quantify the 

birth delivery quality: Apgar 10, birth weight, combined gestation time, IRT outcome. 

The distribution of the newly estimated variable to quantify birth delivery is shown in 

Figure 13. 
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Latent variable 

 

 

 

 

 

 

 

We notice a negatively skewed distribution for the quality of birth delivery (the 

latent variable), with a median of 0.1 and a mean of 0 (sd 0.8). The latent variable ranges 

from -5.28 to 3.29 and exhibits a skewness of -1.05 and a kurtosis of 2.19. Since most 

birth deliveries do not exhibit much negative effect, we can conclude that a high score 

range shows good quality of birth deliveries whereas the negative scores represent the 

birth deliveries with complications.  

Since we include artificial data for the result, we want to compare the model 

performance between the original dataset and the dataset with artificial data from Section 

3.3.4. The result is presented in Table12 and uses the final model from the explanatory 

factor analysis result above.  

We notice stronger factor loadings in the original dataset and a higher 

communality. Considering the residuals, BIC, and TLI, we notice that the artificial data 

clearly improved the model fit, which is explained by the  normality assumption of factor 

analysis models (Jöreskog, 1977; Wall et al., 2012). We also notice that the latent 

variable estimation for the original data is more skewed than the latent variable 

Figure 13: Density plot of latent variable estimated by factor analysis model 
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estimation resulted from the dataset with artificial data.  

Table 13: Comparison of latent variable estimation on original and artificial data 

 
Original data artificial data 

factor loadings  

apgar10 0.22 0.19 

combined gestation time  0.66 0.62 

birth weight  0.65 0.62 

IRT outcome -0.45 -0.33 

communality (h2) 

apgar10 0.05 0.037 

combined gestation time  0.43 0.387 

birth weight  0.42 0.383 

IRT outcome 0.20 0.109 

Goodness-of-fit indices 

Tucker Lewis Index (TLI) 0.874 0.913 

RMSEA 0.088 0.06 

BIC 236041 122807.9 

Skewness parameters for the latent variable estimation 

skew -0.98 -0.83 

kurtosis 1.88 1.68 

 

We move forward with using the artificial data for the estimation methods with 

underlying normality assumptions for model parameters. After the latent variable is 

estimated, the simulated data is removed from the dataset and we provide summary 

statistics of the latent variable based on the original dataset. 

4.2. Structural Equation Model Results 

Similar as the factor analysis model, SEM assume a linear association between 

observed and latent variables but extends factor analysis by allowing to specify residual 

covariance. We conduct SEM modeling by using the lavaan package in R (Rosseel, 

2012), which assumes a correlation between observed and latent variables. The default 

estimator for the lavaan package is the maximum likelihood estimation which relies on a 
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normality assumption for the observed variables (Rosseel, 2012). SEM models can 

handle a mild level of nonnormality, that is, variables with a skewness between -3 and 3 

are acceptable, and a kurtosis between -10 and 10 is tolerated. For variables outside the 

tolerance the model still works but loses reliability (Griffin & Steinbrecher, 2013). 

To account for skewness in the dataset, lavaan offers a maximum likelihood 

estimation  with robust standard errors plus Satorra-Bentler scaled test statistic (further 

referred to as MLM) and a weighted least squares estimation (WLS) which is also called 

asymptotically distribution-free estimation method (Rosseel, 2012). Since our dataset is 

not exactly normally distributed after the normalizing transformation, we utilize both 

estimation methods to account for the remaining level of nonnormality in the dataset. 

4.2.1. SEM Model with Maximum Likelihood Estimation and Robust 

Standard Errors plus Satorra-Bentler Scaled Test Statistic (MLM)  

For our first SEM model, we use SEM MLM estimation for our latent variable 

birth delivery quality. The model is based on the normalized dataset resulting from 

section 3.3.3. We present the performance measures in Table 14. 

  



 

 

7
7

 

Table 14: SEM model with maximum likelihood estimation, robust standard errors, and Satorra-Bentler scaled test statistic (MLM) 

 

* 90% confidence interval (CI) 

 

The latent variable is named Health in the SEM models. We start with an initial model using all numerical indicators for Model 1:  

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10 +   mother’s age 

Residual (co)variances: 

None 

 1 2 3 4 5 6 7 8 

Chi square 341539.643 101837 29512.9 11789.3 5276.085 3946.254 386.629 21.725 

degreeof 
freedom 

9 8 7 6 5 3 2 1 

p value 0 0 0 0 0 0 0 0 

Robust CFI 0.645 0.924 0.981 0.992 0.996 0.997 1 1 

Robust TLI 0.409 0.858 0.959 0.98 0.989 0.989 1 1 

AIC 77839549 77283404 77171056 77148695 77140232 50492165 50486010 50485652 

BIC 77839708 77283577 77171242 77148894 77140444 50492324 50486182 50485838 

Robust 
RMSEA  

0.137 0.067 0.036 0.025 0.019 0.023 0.007 0.002 

RMSEA 
lower bound 
CI* 

0.136 0.067 0.036 0.025 0.018 0.022 0.006 0.001 

RMSEA 
upper bound 
CI* 

0.137 0.067 0.036 0.026 0.019 0.023 0.007 0.003 

Robust 
SRMR  

0.074 0.039 0.017 0.012 0.008 0.008 0.002 0 
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Step 1: Model 1 indicates us to implement a residual covariance path between Apgar 5 

and Apgar 10 based on highest modification index. We do so in Model 2: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10 +   

mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

Step 2: We compare Model 1 and 2, the latter has lower residuals and larger goodness-of-

fit indices, so Model 2 is better than Model 1. Based on the highest modification index 

for the residual covariance path between birth weight and combined gestation, we 

implement this path in  

Model 3: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10 +   

mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

Step 3: We compare Model 2 and 3, the latter has lower residuals and larger goodness-of-

fit indices, so Model 3 is better than Model 2. Based on the highest modification index 

for the residual covariance path between mother’s age and birth weight, we implement 

this path in Model 4: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10 +   

mother’s age 

Residual (co)variances: 
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  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

mother’s age ~~ birth weight 

Step 4: We compare Model 3 and 4, the latter has lower residuals and larger goodness-of-

fit indices, so Model 4 is better than Model 3. Based on the highest modification index 

for the residual covariance path between mother’s age and combined gestation, we 

implement this path in Model 5: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10 +   

mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

mother’s age ~~ birth weight 

combined gestation ~~ mother’s age 

Step 5: We compare Model 4 and 5 and notice that even with residual covariance paths 

for mother’s age, the variance of mother’s age does not change. It is very high with a 

value of 33, therefore we remove mother’s age and its paths resulting in Model 6: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10  

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

Step 6: We compare Model 5 and 6, the latter has lower residuals and larger goodness-of-

fit indices, so Model 6 is better than Model 5. Based on the highest modification index 
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for the residual covariance path between Apgar 5 and IRT outcome, we implement this 

path in Model 7: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10  

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

Apgar 5 ~~ IRT 

Step 7: We compare Model 6 and 7, the latter has lower residuals and larger goodness-of-

fit indices, so Model 7 is better than Model 6. Based on the highest modification index 

for the residual covariance path between birth weight and Apgar 10 outcome, we 

implement this path in Model 8: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10  

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

Apgar 5 ~~ IRT 

Birth weight ~~ Apgar 10 

 

Step 8: We compare Model 7 and 8, the latter has lower residuals and larger goodness-of-

fit indices, so Model 8 is better than Model 7. Our model has with one remaining degree 

of freedom no more degrees of freedom left for implementing more residual covariance 

paths. We keep this model. 
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The density plot for the SEM model 8 which has been proven as best MLM 

estimation model is shown in Figure 14. We clearly see the majority of cases between 0 

and 0.5, while we see a second but much smaller peak around -1.5 which would be 

severely impacted cases of birth delivery. From  the skewness and kurtosis parameters in 

for the SEM MLM estimation in Table 14, we see a negatively skewed distribution. 

About 50% of all cases do have a score above zero. 

Table 15: SEM MLM latent variable distribution 

 

 

 

 

4.2.2. SEM Model with Weighted Least Squares Estimation (WLS)  

Similar to the MLM SEM estimation, we create a SEM model using WLS 

estimation. For a more conservative estimation, we first use the model on the 

Latent variable distribution 

mean -0.08 

median 0.05 

sd 0.62 

skew -2.39 

kurtosis 8.75 

Figure 14: Density plot of latent variable estimated by SEM MLM 
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unnormalized data and will then compare the outcome from the best SEM WLS model 

between unnormalized and normalized data. The results are presented in Table 16. 

Table 16: SEM model with weighted least squares estimation (WLS) 

 Model number 

 1** 2** 3 4 5 6 7 8 

Chi square NA NA 35634.7 345739 6507.877 4773.172 2560.822 426.605 

degrees of 
freedom 

NA NA 
7 6 5 3 2 1 

p value NA NA 0 0 0 0 0 0 

Robust CFI NA NA 0.897 0.966 0.981 0.985 0.992 0.999 

Robust TLI NA NA 0.779 0.914 0.944 0.948 0.959 0.986 

AIC NA NA - - - - - - 

BIC NA NA - - - - - - 

Robust 
RMSEA  

NA NA 
0.037 0.023 0.019 0.021 0.018 0.011 

RMSEA 
lower 
bound 
confidence 
interval* 

NA NA 

0.036 0.022 0.018 0.02 0.018 0.010 

RMSEA 
upper 
bound 
confidence 
interval* 

NA NA 

0.037 0.023 0.019 0.021 0.019 0.011 

Robust 
SRMR  

NA NA 
0.088 0.088 0.087 0.099 0.042 0.008 

 

*90% confidence interval 

**The optimizer did not find a solution for model 1 and model 2 

Model 1: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT + Apgar 10 +    

mother’s age 

Residual (co)variances: 

None 

Step 1: no solution has been found, implement residual covariance between Apgar 5 and 

Apgar 10 based on previous SEM MLM model in Model 2: 



 

83 

Health =~ combined gestation + birth weight + Apgar 5 + IRT + Apgar 10 +    

mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

Step 2: no solution has been found, implement residual covariance between combined 

gestation and birth weight based on previous SEM MLM model in Model 3: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT + Apgar 10 +   

mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

Step 3: The optimizer found a solution. Model 1 indicates us to implement a residual 

covariance path between mother’s age and birth weight based on highest modification 

index. We do so in Model 4: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT + Apgar 10 

+   mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

mother’s age ~~ birth weight 

Step 4: We compare Model 3 and 4, the latter has lower residuals and larger goodness-of-

fit indices, so Model 4 is better than Model 3. Based on the highest modification index 

for the residual covariance path between mother’s age and combined gestation, we 
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implement this path in Model 5: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT + Apgar 10 +    

mother’s age 

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

mother’s age ~~ birth weight 

combined gestation ~~ mother’s age 

Step 5: We compare Model 4 and 5 and notice that even with residual covariance paths 

for mother’s age, the variance of mother’s age does not change. It is very high with a 

value of 33, therefore we remove mother’s age and its paths resulting in Model 6: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT + Apgar 10  

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

Step 6: We compare Model 5 and 6, the latter has lower residuals and larger goodness-of-

fit indices, so Model 6 is better than Model 5. Based on the highest modification index 

for the residual covariance path between Apgar 5 and IRT outcome, we implement this 

path in Model 7: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10  

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 
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Apgar 5 ~~ IRT 

Step 7: We compare Model 7 and 6, the latter has lower residuals and larger goodness-of-

fit indices, so Model 7 is better than Model 6. Based on the highest modification index 

for the residual covariance path between birth weight and Apgar 10, we implement this 

path in Model 8: 

Health =~ combined gestation + birth weight + Apgar 5 + IRT +Apgar 10  

Residual (co)variances: 

  Apgar 5 ~~ Apgar 10 

combined gestation ~~ birth weight 

IRT ~~ birth weight 

Birth weight ~~ Apgar 10 

Step 8: We compare Model 7 and 8, the latter has lower residuals and larger goodness-of-

fit indices, so Model 8 is better than Model 7. Our model has with one remaining degree 

of freedom no more degrees of freedom left for implementing more residual covariance 

paths. We keep this model. Figure 15 provides a density plot of the latent variable 

estimated by the SEM WLS method. We notice one smaller modal on the left side. 

Compared to the MLM estimation method the distribution seems smoother where we 

noticed two modals on the left hand side of Figure 15.  
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Similar to the SEM MLM estimation, we notice that the majority of cases exhibit 

a quality score above zero. In Table 16, the SEM WLS skewness and kurtosis parameters 

show an even higher values than the SEM MLM estimation.  

 

                         Table 17: SEM WLS latent variable distribution 

 

 

 

 

 

4.2.3. SEM Model Comparison  

The best model out of the described SEM WLS estimated models is Model 8. In 

the MLM estimation we chose Model 8 as well. Since we used the raw data for 

evaluating the WLS model performance, we will apply the model to the normalized data 

to have a direct comparison to the SEM MLM model.  

 

Latent variable distribution 

mean 0 

median 0.29 

sd 1.23 

skew -3.09 

kurtosis 14.64 

Figure 15: Density plot for latent variable estimated by SEM WLS 
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Table 18: SEM WLS and MLM model comparison 

* 90% CI 

By comparing the best SEM WLS and MLM estimation models in Table 17, we 

clearly notice that the SEM MLM model outperforms the WLS estimator. Lower 

residuals and higher goodness-of-fit indices clearly demonstrate better results from the 

MLM estimation method which uses the transformed data to meet the normality 

assumptions. Even when we apply the SEM WLS model on the same data, it fails to 

improve the model fit.   

We provide a heatmap for the SEM 

MLM model in Figure 16. We can clearly see 

that the major indicator for our latent variable is 

our IRT outcome, which demonstrates a high 

negative correlation with our latent variable. 

Interesting to note is that mother’s age is not 

correlated with any of our model variables.  

 

 
SEM WLS model on 
original data 

SEM WLS model on 
dataset with artificial 
data 

SEM MLM model on 
dataset with 
artificial data 

Chi square 426.605 526.044 21.725 

degrees of freedom 1 1 1 

p value 0 0 0 

Robust CFI 0.999 0.999 1 

Robust TLI 0.986 0.991 1 

Robust RMSEA  0.011 0.012 0.002 

RMSEA lower bound 
confidence interval* 

0.010 
0.011 

0.001 

RMSEA upper bound 
confidence interval* 

0.011 
0.013 

0.003 

Robust SRMR  0.008 0.003 0 

Figure 16: Heatmap of SEM MLM latent 

variable with observed variables for 2018 
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4.3. MCMC 

As described in the literature review, we found no literature which applied an 

MCMC model on a huge dataset as ours. Since MCMC is a parametric approach, we 

expect the calculation time to be slow. Other authors such as Fahrmeir and Raach use 

subsamples to speed up the estimation: they work with 170,000 survey samples but apply 

their MCMC model on only a subsample of 6,804 cases (Fahrmeir & Raach, 2007). To 

estimate our latent variable, we chose the brms package in R which works with the HMC 

algorithm and uses Stan as underlying platform. HMC algorithms can be seen as 

alternative algorithm to MCMC and have been become more popular in the more recent 

years because of their faster computation times (Monnahan et al., 2017). 

First, we start with the model and prior specification. The brms package works 

with R as an interface, the user does specify the model in R while the brms package 

(Bürkner, 2017) uses C to calculate the model on the Stan platform. To estimate a latent 

variable in brms, we add an empty column to the dataset and declare this column as 

missing values for the model. We specify the latent variable model as follows: 

fact_mod = bf(apgar5 ~ mi(Health)) +  

bf(apgar10 ~ mi(Health)) +  

bf(dbwt ~ mi(Health)) +  

bf(combgest ~ mi(Health)) +  

bf(IRT ~ mi(Health)) +  

bf(Health | mi() ~ 0) + set_rescor(88escore = FALSE), 

where Health is the latent variable, mi declares missing values, ‘~’ stands for 

‘corresponds to’, and bf stands for bayes formula. The general way to formulate the bayes 
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formula is “y | subset(sub) ~ predictors”. Since our latent variable is declared as missing, 

the author of the brms package defines the SEM formulation with latent variable as stated 

above. Residual correlation in brms is currently only available for gaussian distributions. 

We initialize the sampling algorithm with an initial starting value of zero, three chains, 

20,000 iterations and a small subsample of 1,000 randomly sampled cases. With only 

1,000 cases, the computation time varies around 5,289.53 – 6,125.93 sec. Naturally, when 

setting the sample size higher, the computation time increases. We observe that with 

2,000 samples, the computation time increases to 31,608.8 – 65,859.4 seconds. 

Moreover, a model with 5,000 samples does run for two – three days. This means it is 

impossible to use HMC as latent variable estimation for the whole dataset within a 

reasonable computation time.  

However, using a fair estimated variable from SEM MLM estimation in section 

4.2.1., as the initial prior distribution, we can speed up estimating the underlying 

distribution of the SEM MLM estimation with HMC. With 2000 iterations applied on a 

sample size of 500 for initial comparison of prior specified distributions for the hidden 

variable. In other words,  here we assume the skew-normal distributed latent variable.  

Table 19: Comparison of different distribution assumptions for latent variable estimated 

by MCMC 

Hidden variable distribution assumption WAIC estimate SE 

Skew normal  14532.2 208 

Gaussian 2.93706e+11 1.03087e+11 

Asymmetric Laplace 18769.3 124.5 

Exgaussian 20624.1 121.9 

Student t 19254.9 570 
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Since we include Apgar 5 in the HMC model, Apgar 10 has the lowest marginal 

information because only a few severe impacted babies get a remeasured Apgar score 

after 10 minutes. We analyze if Apgar 10 actually benefits our model or not by a model 

comparison using a sample size of 1000: 

Table 20: Comparison between MCMC model with and without Apgar 10 variable 

Model LOOIC SE (LOOIC) WAIC SE (WAIC) 

Model with Apgar 
10 

52757212.3 7486511.9 5.29259e+11 1.1329e+11 

Model without 
Apgar 10 

17106.3 322.7 17074.6 320.3 

 

Judging from the comparison table with and without Apgar 10 in Table 19, we 

clearly notice that LOOIC and WAIC are much lower in the model without Apgar 10, 

indicating a better model-fit. To verify this finding, we take a closer look at the pareto k 

estimates for each model: 

Table 21: Comparison of Pareto k diagnostic values for MCMC models 

 
Model with Apgar 10 Model without Apgar 10 

Pareto k value Count Percent of total Count Percent of total 

good (-Inf, 0.5] 198 19.8% 970 97% 

ok (0.5, 0.7] 15 1.5% 9 0.90% 

bad (0.7, 1] 35 3.5% 17 1.70% 

very 
bad 

(1, Inf) 752 75.2% 4 0.40% 

 

The pareto k values in Table 20 are computed from a 40,000 by 1,000 log-

likelihood matrix. By analyzing the pareto k estimates in the model with Apgar 10, we 

notice 75.2% of all values are a very bad fit. In the model without Apgar 10 we reduce 

the very bad fitting pareto k estimates to 0.4% out of the total data. This supports our 

findings from  the LOOIC and WAIC comparison (Table 18) between those models. 

Therefore, Apgar 10 is excluded from our HMC model and we adjust the remaining bad 
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fitting pareto k estimates with a loo moments match function in the brms package.   

Since our SEM results showed at least two peaks in the distribution we take a 

closer look at the posterior distribution. For brms, we have to specify a distribution for 

the underlying population prior to the sampling algorithm, otherwise the computation 

may not converge. In Table 21, we try a mixture of two different distribution types and 

compare those with Model 4, our skew-normal specified posterior. The skew-normal 

assumption for the latent variable distribution has been further discussed above and is 

described in Table 18. In Table 21, we present the bimodal mixture distributions in 

comparison to Model 4: 

Table 22: HMC comparison of bimodal distributions vs skew normal for posterior 

distribution 

 Model 1 Model 2 Model 3 Model 4 

Family 1 student-t gaussian gaussian skew-normal 

Family 2 skew-normal  skew-normal  student-t - 

LOOIC 1985 (SE 85.5) 1990.6 (SE 85.8) 1990.6 (SE 85.8) 2396 (SE 101.5) 

 

We set a seed of 5 to have a direct model comparison, and use 1500 samples with 

2500 iterations. Judging from the LOOIC, where a low LOOIC indicates a better model, 

we see that a bimodal distribution has a better model-fit than a simple skew-normal 

assumption. Furthermore, we observe that using a mixture of the distributions student-t 

and skew-normal outperforms the skew-normal assumption in model 4. Computation 

time of this model lays between 2-3 days for only 1500 samples.  

Since the computation for a bimodal distribution is so complex, Rstudio randomly 

crashes in the middle of calculations. This limits our study to only a small subsample 

which is very unlikely representable of our dataset since we have only very few severe 

complications. However, we can conclude that the latent variable distribution does 



 

92 

exhibit a bimodal distribution and is not just skewed. We apply kmeans clustering to see 

if we can categorize the birth delivery quality into clusters for different quality. 

4.4. Clustering  

To analyze a possible multiple modal shape of the latent variable in more detail, 

we perform clustering before SEM to estimate the latent variable. We expect to show a 

significant difference between those clusters representing the modals in the latent 

variable scores found in the previous estimations. First, we create a scree plot to 

determine the optimal number of clusters: 

 

Figure 17 shows the decreasing variance as the number of cluster increases. It is 

calculated based on the within groups sum of squares (WSS) estimation. We observe the 

steepest WSS reduction in 2 clusters. Judging from the scree plot, the optimal amount of 

clusters is either 2 or 3. We will try both options and compare their performance 

(Frushicheva, 2016; Woods & Edwards, 2011).  

For the latent variable estimation of each cluster, we chose to apply both SEM 

estimators, MLM and WLS. First, we apply the clustering algorithm on the original data 

Figure 17: Scree plot for cluster analysis 
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without any transformation. Then, we split the dataset by cluster and apply the SEM 

model to each cluster of the dataset.  

To test if the clusters differ from each other we apply the Kruskal-Wallis test, a 

nonparametric test by rank (Glen, 2021b). It is an alternative to the parametric one-way 

ANOVA, which we cannot apply since our latent variable is skewed in every cluster 

judging from our previous density plots. The Kruskal-Wallis test by rank extends the 

two-sample Wilcoxon test in a situation with more than two groups. The result (Table 22) 

shows that all clusters differ significantly from each other with a significance level of 

0.05.  

Table 23: Kruskal-Wallis test results for cluster difference 

 
2 Cluster MLM 2 Cluster WLS 3 Cluster MLM 3 Cluster WLS 

p Value for cluster difference < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

chi-square test statistic 106389 241900 446727 1048837 

 

To see if two clusters differ from each other, we apply a Wilcoxon-test by rank. 

We report statistical significant p-values for all cluster pairs. The p-value has been 

adjusted by Bonferroni-Holm to avoid multicollinearity for pairwise test of difference 

between the clusters. 

4.4.1. SEM MLM Estimation for two k-means clusters 

We first apply the MLM SEM estimation to our two kmeans clusters and provide 

summary statistics for each cluster in Table 23. Furthermore, we provide summary 

statistics for the estimated latent variable which is shown by each cluster in Figure 18. 



 

94 

The distribution of both kmeans clusters shows two quite differently distributed 

clusters. We analyze their difference further by the summary statistics in Table 24. 

Table 24: Summary statistics of latent variable estimated by SEM MLM for two kmeans 

clusters  

Cluster n mean sd median min max skew kurtosis 

1 1446336 -0.46 0.73 -0.25 -6.50 1.18 -2.12 8.61 

2 2323808 0.15 0.39 0.19 -5.62 2.03 -2.26 15.18 

Table 24 shows that the two clusters differ from each other. Furthermore, we 

notice an unbalanced cluster size with 1,446,336 cases in the first cluster which majorly 

includes cases with a negative score. The second cluster includes 2,323,808  cases and 

shows higher range of the latent score. We analyze further what this means in a clinical 

context in Table 25. 

Table 25: Summary statistics by variable for two kmeans clusters with SEM MLM  

 Cluster n mean sd median min max range se 

Apgar 5 
1 1446336 9.84 0.60 10.00 6.72 12.25 10.00 0.00 

2 2323808 9.94 0.51 10.00 6.72 12.25 10.00 0.00 

Apgar 10 
1 1446336 11.88 0.96 12.00 0.00 12.00 12.00 0.00 

2 2323808 11.88 0.96 12.00 0.00 12.00 12.00 0.00 

Figure 18: Density plot of latent SEM MLM variable by two clusters 
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 Cluster n mean sd median min max range se 

mother’s age 
1 1446336 28.71 6.02 29.00 12.00 50.00 38.00 0.01 

2 2323808 28.71 6.02 29.00 12.00 50.00 38.00 0.00 

birth weight 
1 1446336 6.22 0.59 6.37 4.19 6.97 2.78 0.00 

2 2323808 5.97 1.03 7.81 0.50 6.96 6.46 0.00 

combined 
gestation 

1 1446336 38.22 1.52 38.05 34.68 43.34 8.66 0.00 

2 2323808 37.54 3.02 39.00 17.00 47.00 30.00 0.00 

IRT variable 
1 1446336 0.14 0.75 -0.19 -0.19 5.26 5.45 0.00 

2 2323808 -0.09 0.43 -0.19 -0.19 5.26 5.45 0.00 

latent 
variable 

1 1446336 -0.46 0.73 -0.25 -6.50 1.18 7.67 0.00 

2 2323808 0.15 0.39 0.19 -5.62 2.03 7.66 0.00 

 

By taking a closer look at the statistics of each variable by cluster of Table 25, we 

observe slightly higher Apgar scores, combined gestation time, and birth weight in the 

second cluster. However, since these values have been transformed to approximate 

normality a direct conclusion is not possible. Due to this transformation, the minimum 

Apgar 5 lays at 6.72 and the maximum is 12.25 which is not interpretable since the Apgar 

5 lays between 0 and 10. The IRT variable provides more information about the health 

status of each cluster: cluster 1 exhibits a mean IRT score of 0.14 which indicates a 

higher incidence of complications. Overall, birth weight and combined gestation time 

show lower numbers in the second cluster as well, indicating more babies born with low-

birth weight and pre-term. 

4.4.2. SEM MLM Estimation for three k-means clusters 

As a second step, we analyze the SEM MLM estimations choosing three kmeans 

clusters. First, we take a look at the latent score distribution by each cluster in Figure 19. 
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In Figure 19, we notice that cluster 1 and cluster 2 are opposite to the previous 

two kmeans clusters. Here, cluster 1 shows positive scores and cluster 2 exhibits the 

majority of negative scores. This is supported by the summary statistics by each cluster in 

Table 26. We provide the summary statistics for each variable by cluster in Table 27. 

Table 27: Summary statistics by variable for three kmeans clusters with SEM MLM 
 

Cluster n mean sd median min max range se 

Apgar 5 
1 1444952 9.94 0.52 10.00 6.72 12.25 5.53 0.00 

2 405342 9.64 0.75 10.00 6.72 12.25 5.53 0.00 

3 1919850 9.93 0.50 10.00 6.72 12.25 5.53 0.00 

Apgar 10 
1 1444952 11.97 0.43 12.00 0.00 12.00 12.00 0.00 

2 405342 11.66 1.63 12.00 0.00 12.00 0.00 0.00 

3 1919850 11.97 0.45 12.00 0.00 12.00 12.00 0.00 

Table 26: Summary statistics of latent variable estimated by SEM MLM 

for three kmeans clusters  

cluster n mean sd median min max skew kurtosis 

1 1444952        0.24 0.38 0.28 -5.31 2.03 -2.45 16.39 

2 405342        -1.10 0.92 -0.70 -6.50 0.99 -1.15 4.31 

3 1919850        -0.11 0.41 -0.05 -5.62 1.29 -2.46 14.71 

Figure 19: Density plot of latent SEM MLM variable by three clusters 
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Cluster n mean sd median min max range se 

mother’s age 
1 1444952 29.40 5.58 29.00 12.00 50.00 38.00 0.00 

2 405342 28.98 6.18 29.00 12.00 50.00 38.00 0.01 

3 1919850 28.72 5.87 29.00 12.00 50.00 38.00 0.00 

birth weight 
1 1444952 8.34 0.58 8.20 7.61 13.79 6.18 0.00 

2 405342 5.44 0.44 5.56 4.19 5.97 1.78 0.00 

3 1919850 6.87 0.45 6.90 5.97 7.60 1.64 0.00 

combined 

gestation 

1 1444952 39.36 1.20 39.00 35.39 43.34 7.95 0.00 

2 405342 37.17 1.44 36.88 34.68 43.34 8.66 0.01 

3 1919850 38.83 1.32 39.00 35.07 43.34 8.28 0.00 

IRT variable 
1 1444952 -0.08 0.43 -0.19 -0.19 5.26 5.45 0.00 

2 405342 0.64 1.02 -0.19 -0.19 5.26 5.45 0.00 

3 1919850 -0.07 0.46 -0.19 -0.19 5.26 5.45 0.00 

latent variable 
1 1444952 0.24 0.38 0.28 -5.31 2.03 7.35 0.00 

2 405342 -1.10 0.92 -0.70 -6.50 0.99 7.79 0.00 

3 1919850 -0.11 0.41 -0.05 -5.62 1.29 6.91 0.00 

 

We notice almost no difference for the Apgar scores across the clusters. The 

second cluster includes slightly more cases with lower Apgar scores indicating a not fully 

considered healthy baby. Additionally, mother’s age varies only slightly across all 

clusters. A larger difference between the clusters is found in the average birth weight, 

combined gestation and IRT variable: cluster 1 shows the highest average birth weight 

and combined gestation time, as well as the lowest IRT variable on average. Therefore, 

cluster 1 includes the best cases of birth deliveries. Cluster 2 includes the lowest birth 

weight and the lowest combined gestation time on average, indicating the negatively 

affected birth deliveries. Furthermore, the IRT outcome for cluster 2 is with 0.63 the 

highest average across all clusters, stating that this cluster has the highest incidence of 

birth delivery complications. When we take a look at the latent variable estimation, we 

see the lowest average score in cluster 2 as well. However, we cannot confirm our 

hypothesis of three modals, because the cluster modals overlaps the three modals from 

the previous SEM estimation in section 4.2. Additionally, we notice apparent overlaps 
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between cluster 1 and 3, and cluster 2 and 3 which makes a distinction between those 

clusters invalid. Cluster 3 covers 2 modals from the previous SEM model in section 4.2.  

4.4.3. SEM WLS Estimation for two k-means clusters 

Besides SEM MLM estimation, we also test the SEM WLS estimation for our 

clusters. First, we apply the SEM WLS estimation to the two kmeans clusters. The graph 

by cluster for the latent variable is shown in Figure 20: 

Figure 20: Density plot of latent SEM WLS variable by two clusters with focus on cluster 2 

The SEM WLS clusters look quite different, we observe cluster 1 with multiple 

steep peaks around zero, while cluster 2 shows a much flatter curve which can be 

characterized as left-skewed. We present the summary statistics for the SEM WLS latent 

variable for two kmeans clusters in Table 28. 

 

Table 28: Summary statistics of latent variable estimated by SEM WLS for 

two kmeans clusters 

Cluster n mean sd median min max skew kurtosis 
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From Table 28, we notice a much higher skewness and kurtosis in cluster 1, 

whereas the range of the latent variable is significantly lower than cluster 2. However, 

both clusters show an average of zero for the latent variable. The summary statistics for 

each variable by kmeans clusters is presented in Table 29. 

Table 29: Summary statistics by variable for two kmeans clusters with SEM WLS 

 Cluster n mean sd median min max range se 

Apgar 5 
1 1446336        8.70 0.97 9.00 0.00 10.00 10.00 0.00 

2 2323808        8.85 0.62 9.00 0.00 10.00 10.00 0.00 

Apgar 10 
1 1446336        11.88 0.96 12.00 0.00 12.00 12.00 0.00 

2 2323808        11.97 0.42 12.00 0.00 12.00 12.00 0.00 

mother’s 
age 

1 1446336        28.71 6.02 29.00 12.00 50.00 38.00 0.01 

2 2323808        29.19 5.66 29.00 12.00 50.00 38.00 0.00 

birth 
weight 

1 1446336        5.97 1.03 6.31 0.50 6.96 6.46 0.00 

2 2323808        7.96 0.74 7.81 6.97 18.00 11.03 0.00 

combined 
gestation 

1 1446336        37.54 3.02 38.00 17.00 47.00 30.00 0.00 

2 2323808        39.25 1.65 39.00 28.00 47.00 19.00 0.00 

IRT 
variable 

1 1446336        0.14 0.75 -0.19 -0.19 5.26 5.45 0.00 

2 2323808        -0.09 0.43 -0.19 -0.19 5.26 5.45 0.00 

latent 
variable 

1 1446336        -0.37 1.00 -0.01 -8.66 1.44 10.10 0.00 

2 2323808        0.23 0.46 0.30 -6.08 1.72 7.80 0.00 

 

We observe higher Apgar scores on average in cluster 1, which surprisingly has a 

higher average age of the mother. Furthermore, cluster 1 birth deliveries have on average 

a longer gestation time, higher birth weight, and a lower IRT variable. From this 

observations we can conclude that cluster 1 birth deliveries have a slightly better quality 

although this is not reflected in the average by cluster of the latent variable estimation. 

However, the second cluster shows far more variance in the latent variable than the first 

cluster.  

1 1446336       -0.37 1.00 -0.01 -8.66 1.44 -2.33 9.16 

2 2323808        0.23 0.46 0.30 -6.08 1.72 -3.02 17.59 
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4.4.4. SEM WLS Estimation for three k-means clusters 

For the SEM WLS estimation by three clusters, we provide the cluster distribution 

graphs in Figure 21. 

 

From the density curves above we notice an overlap of modals across all clusters 

which disagrees with our assumption of three modals. We present the summary statistics 

of the latent SEM WLS variable for each cluster in Table 30 and the cluster 

characteristics in Table 31. 

Table 30: Summary statistics of latent variable estimated by SEM WLS for three kmeans 

clusters 

Cluster n mean sd median min max skew kurtosis 

1 388642 -1.26 1.37 -0.75 -8.66 1.33 -1.08 3.73 

2 1935671 0.05 0.51 1935671 -6.65 1.5 -2.86 15.11 

3 1445831 0.28 0.46 0.35 -6.04 1.72 -3.08 17.82 

 

 

 

Table 31: Summary statistics by variable for three kmeans clusters with SEM WLS 

Figure 21: Density plot of latent SEM WLS variable by three clusters  
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Cluster n mean sd median min max range se 

Apgar 5 

1 388642 8.34 1.47 9.00 0.00 10.00 10.00 0.00 

2 1935671        8.85 0.64 9.00 0.00 10.00 10.00 0.00 

3 1445831        8.85 0.63 9.00 0.00 10.00 10.00 0.00 

Apgar 10 

1 388642 11.67 1.66 12.00 0.00 12.00 12.00 0.00 

2 1935671        11.97 0.45 12.00 0.00 12.00 12.00 0.00 

3 1445831        11.97 0.43 12.00 0.00 12.00 12.00 0.00 

mother’s 
age 

1 388642       29 6.19 29.00 12.00 50.00 38.00 0.01 

2 1935671        28.71 5.87 29.00 12.00 50.00 38.00 0.01 

3 1445831        29.40 5.58 29.00 12.00 50.00 38.00 0.00 

birth weight 

1 388642        4.65 1.12 5.06 0.5 5.74 5.24 0.00 

2 1935671        6.83 0.49 6.89 5.74 7.60 1.86 0.00 

3 1445831        8.37 0.64 8.21 7.60 18.00 10.40 0.00 

combined 
gestation 

1 388642       35.12 3.97 36.00 17.00 47.00 30.00 0.00 

2 1935671        38.70 1.86 39.00 24.00 47.00 23.00 0.00 

3 1445831        39.39 1.61 39.00 28.00 47.00 19.00 0.00 

IRT variable 

1 388642        0.66 1.02 -0.19 -0.19 5.26 5.45 0.00 

2 1935671        -0.07 0.46 -0.19 -0.19 5.26 5.45 0.00 

3 1445831        -0.08 0.43 -0.19 -0.19 5.26 5.45 0.00 

latent 
variable 

1 388642       -1.26 1.37 -0.75 -8.66 1.33 9.98 0.00 

2 1935671        0.05 0.51 0.16 -6.65 1.50 8.15 0.01 

3 1445831        0.28 0.46 0.35 -6.04 1.72 7.76 0.00 

 

To describe the latent variable in more detail, cluster 1 shows a median of 0.06, 

cluster 2 shows a median of 1.97, and cluster 3 shows a median of 0.02. Interesting to 

note about the latent variable is that its scale is reversed for SEM WLS estimation: the 

latent variable has the highest median in the cluster with most complications and the 

lowest median in the cluster which includes the healthiest cases. However, we cannot 

conclude that kmeans clustering proves a trimodal distribution because the cluster modals 

overlap. 
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4.4.5. DBSCAN Clustering 

We apply another clustering approach, namely dbscan. This clustering method 

does not need the number of clusters prespecified and works on XY. We use the dbscan 

package in R for analysis (Hahsler M, 2019).  

 

Similar to k-means clustering, we draw an elbow plot. Figure 22 determines the 

best eps value, line at 7 shows best fit. The DBSCAN Clustering algorithm does not work 

on more than 300,000 observations.  When applying the clustering algorithm on a 

subsample of 300,000 cases (seed=500), the result shows 165 clusters.  The clusters with 

amount of included cases are presented in Table 42 in the Appendix. As a second 

approach for dbscan clustering, we chose to apply dbscan in python using the scikit 

package (Pedregosa et al., 2011). The dbscan in python is resulting in 29031 clusters and 

268186 noise points for the dataset using eps 7 from Figure 22. We conclude that the 

dbscan clustering algorithm needs further investigation in order to provide sufficient 

information. 

Figure 22: Screeplot for dbscan clustering to determine eps value 

 



 

103 

4.4.6. Clustering Summary 

In Table 32 we present the SEM performance comparison of the SEM clustering 

estimation with clusters vs the SEM MLM model from section 4.2.3. We notice a worse 

performance judging from a higher AIC and BIC for the MLM clustering, and higher 

residuals in the WLS estimation method indicating a worse model.  

Table 32: Comparison of SEM performance by kmeans cluster 
 

SEM estimation method  
with kmeans clustering 

Compared to SEM MLM from section 
4.2.3 without clustering  

Estimation method MLM WLS MLM 

n 4197370 3770144 4197370 

Chi square 19.594 51.742 14.041 

Robust CFI 1 1 1 

Robust TLI 1 0.998 1 

AIC 57610880 - 50485652 

BIC 57611065 - 50485838 

Robust RMSEA 0.002 
[0.001 – 0.003] 

0.004  
[0.003 – 0.005] 

0.002 

Robust SRMR 0.000 0.001 0 

 

We observe the lowest residuals and highest goodness-of-fit measures with a 

MLM estimator without kmeans clustering. The clustering is using SEM MLM and SEM 

WLS to estimate the latent variable. According to our performance overview in section 

4.5.5. SEM WLS applies better to the latent variable estimation for each cluster judging 

from the lower residuals and better goodness-of-fit indices. This makes sense because the 

clustering splits the dataset into groups which are unbalanced and skewed. The WLS 

estimation is an asymptotically distribution-free estimation method does not require 

multivariate normality (Rosseel, 2012). 

While the WLS estimation methods works well for the first cluster, the 

performance measures for the second cluster are significantly worse and the RMSEA 
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jumps from 0.001 for the first cluster to 0.019 for the second cluster. Applying SEM 

WLS for two kmeans clusters does not result in equally reliable results for each cluster. 

Resulting from our cluster analysis in the previous sections, we know that the second 

cluster represents our impaired birth deliveries. We can explain the variation by the small 

fraction of cases which suffer from severe complications during birth. From Figure 24,  

we do have at least a bimodal distribution in our underlying population. Even if it is not 

directly visible in Figure 24, we cannot reject the possibility of a trimodal distribution in 

our underlying population since all of our three clusters differed statistically significant 

from each other. However, the kmeans clustering is not sufficient for our dataset since the 

modals overlap and therefore do not create unique clusters.  

4.5. Comparison of Different Methods 

In this section, we compare the best models from each estimation method for the 

latent variable presented in the sections 4.1. – 4.2, which are namely factor analysis and 

SEM. 

       Table 33: Comparison between factor analysis model and SEM 

 
Factor analysis model SEM MLM model 

TLI 0.874 1 

RMSEA  0.088 0.002 [0.001 – 0.003] 

BIC 236041 50485838 

 

By comparing factor analysis TLI and residuals with our SEM model in Table 33, 

we clearly see a better model fit by the SEM model. This is not surprising since SEM 

modeling can be seen as an extension to factor analysis allowing for further residual 

covariance specifications (Rosseel, 2012).  
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Since we specified paths for residual correlation of the observed variables in the 

SEM model, we observe a higher BIC which applies a penalty to each specified 

parameter (Fabozzi et al., 2014). Usually, a higher BIC indicates a worse model fit. 

However, a higher TLI and lower residuals suggest a better model-fit. A TLI larger than 

0.9 and RMSEA smaller than 0.5 are recommended to conclude a good model fit (Xia & 

Yang, 2019). Therefore, we prefer the SEM model over the factor analysis model. 

Because of the low sample size for our HMC model, we cannot use it as a valid latent 

variable estimation method.  

 

Table 34: Percentiles for SEM MLM 2018 data 

We conclude that the best way to model a measure for birth quality is by using a 

SEM MLM model. However, this requires a data transformation beforehand to 

approximate normality. We investigate different patients and their latent score for birth 

delivery quality. We identify 6 patients with fair, severe, and no problems during birth 

Percentile 0% 25% 50% 75% 100% 

Latent score -6.45 -0.23 0.05 0.26 2.03 

Figure 23: Percentiles for SEM MLM estimation using 2018 data 
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delivery. These patients are characterized in Table 35.  

Table 35: Characteristics of 6 different birth delivery cases 

Case Apgar 
5 

Apgar 
10 

Mother’s 
age 

Birth 
weight 
(grams) 

Combined 
gestation 

Maternal 
complications 

Abnormal 
conditions 
of the 
newborn 

Congenital 
abnorm-
alities   

1 9 88 26 4082 40 none none none 

2 10 88 31 3147 40 none none none 

3 5 8 39 3013        38 none Immediate 
Ventilation, 
admission 
to NICU  

none 

4 3 5 23 3910 39 Maternal 
transfusion, 
admission to 
intensive care 
unit 

Immediate 
ventilation,  
Admission 
to NICU, 
Antibiotics 

none 

5 0 3 25 1162 28 none Immediate 
ventilation,  
Admission 
to NICU 

none 

6 0 4 253 595        23 none Immediate 
ventilation,  
Admission 
to NICU, 
Surfactant, 
Antibiotics 

none 

7 9 88 32 3119 37 none none none 

8 9 88 25 2959 39 none none none 

9 9 88 30 2855 40 none none none 

10 8 88 27 3620 40 none none none 

11 9 88 33 3800 39 none none none 

12 9 88 35 4110 36 none Admission 
to NICU 

none 

 

Case 1 and 2 describe the healthier deliveries, with good Apgar scores, no 

complications and full-term babies. Case 3 and 4 characterize fair deliveries, with lower 

Apgar scores and maternal complications and/ or abnormal conditions of the newborn. 

Case 5 and 6 represent cases with successful CPR and pre-term birth deliveries. Case 7 – 

12 show cases retrospective from Table 36, representing the 10%, 25%, 40%, 50%, 60%, 

and 75% percentiles of birth delivery outcomes. We notice that these cases have minimal 
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variation in their presented characteristics. Case 7 and 12 show a shorter gestation time 

but a healthy-weight baby. However, this delivery is ranked lower compared to cases 8-

12 in Table 36. Cases 8-11 mainly differ in the birth weight where a heavier baby 

corresponds to a higher percentile. However, the underlying logic of the model that 

heavier babies result in better health is not true. In fact, babies with a birth weight of 10 

lbs or above are considered too large. Too large babies are associated with low blood 

sugar, increased obesity, diabetes and metabolic syndrome (Rettner, 2013).  

Since we transform the data to approximate normality, we show the same cases 

with their transformed values, IRT outcome, and final latent score (Health score) in Table 

36.  

Table 36: Outcome and data transformation of previous picked 6 different birth delivery 

cases sorted by Health score 

Case Apgar 
5 

Apgar 
10 

Mother’s 
age 

Birth 
weight 
(lbs) 

Combined 
gestation 

IRT 
outcome 

Health 
score   

Percentile 
for Health 
score 

6 6.721 4 25 4.341 35.001 3.05 -4.882 0.01 

5 6.721 3 25 4.629 35.391 2.041 -4.409 0.05 

4 7.332 5 23 8.593 39 4.576 -4.125 0.09 

3 7.876 8 39 6.662 38.051 2.041 -2.578 0.93 

12 10.003 12 35 9 36.88 1.223 -0.683 10.01 

7 9.186 12 32 6.881 37.356 -0.195 -0.222 25.51 

8 10.003 12 25 6.556 39 -0.195 -0.05 39.58 

9 10.003 12 30 6.36 39.959 -0.195 0.05 50.52 

10 9.186 12 27 7.977 39.959 -0.195 0.135 60.51 

11 10.003 12 33 8.363 39 -0.195 0.267 75.62 

1 10.003 12 26 8.944 39.959 -0.195 0.503 92.78 

2 12.254 12 31 6.941 39.959 -0.195 0.701 97.92 

 

We notice that case 1 and 2 get a positive health score and show a quality above 

90% of all cases as shown in Table 34. This assures our assumptions of a good birth 

delivery quality with no complications and healthy born babies. Case 3 – 5 showed 

complications in Table 35 which is reflected in the IRT outcome. Furthermore, their 
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health scores are below the 1% percentile indicating heavily impacted birth deliveries. 

The two pre-term and low-birth weight cases with successful CPR – case 5 and 6  –  

show a Health score below the 1% percentile. Case 6 shows the lightest baby in the 

presented cases which requires Immediate ventilation, Admission to NICU, Surfactant, 

and Antibiotics. This complications are reflected in the overall lowest Health score out of 

the presented 6 cases. Overall, this outcome matches our previous assumptions when 

picking those cases. A lower the health score requires more medical attention, maternal 

care and/ or neonatal a case receives. To test if our SEM MLM model is correctly 

specified, we verify the model with the birth delivery dataset from 2017. 

4.6. Model Validation Using 2017 Birth Delivery Data 

To verify our SEM MLM model, we apply our model to the 2017 data. The 

dataset includes more than 99% of all live births of birth deliveries in the United States in 

2017 from citizens and non-citizens.. As our 2018 dataset, it is retrieved from the same 

source, the National Center for Health Statistics (NCHS) provided through the Center of 

Disease Control (CDC). The dataset includes 3,864,754 birth deliveries, where we move 

forward with 3,834,362 after data cleaning. Thus, we have a total of 30,392 missing 

values (0.79%). In total, we have 43,605 birth deliveries with an Apgar 10 score below 7 

in 2017. The descriptive statistics for 2017 presented in Table 37 show almost the same 

distribution as the 2018 dataset (Table 33). 
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Table 37: Descriptive statistics of numerical variables for birth delivery data 2017 

 

 

 

 

Figure 24: Frequency chart of binary variables for US births 2017 

 

In Figure 24, we provide an overview over the binary complications in 2017. 

Compared to the 2018 dataset, we see very similar incidents of birth related 
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Percentage of maternal complications for US birth data of 
2017

Variable mean std skewness kurtosis 

Birth weight (g) 3264.68 588.03 -0.84 5.67 

Mother’s age 28.84 5.81 0.1 2.52 

Combined gestation 38.62 2.44 -1.89 12.41 

Apgar score after  
5 minutes 

8.8 0.79 -5.35 42.85 

Apgar score after 10 minutes 
without non measured  

6.02 2.66 -0.88 2.66 

Apgar score after 10 minutes 87.07 8.7 -9.23 86.33 
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complications in the 2017 dataset. Admission to NICU is the most frequent occurrence in 

2017 as well with 9%. We will move forward with applying the same normalization 

methods as for our 2018 data. 

Since the datasets 2018 and 2017 are very similar, we follow the same 

normalization steps as described in chapter III. We apply MLM and WLS estimation for 

our SEM model, to see if MLM remains to outperform WLS. We present the SEM model 

on 2017 data in comparison to our previous 2018 dataset in Table 38. 

 

Table 38: SEM model comparison between 2018 and 2017 data 

*90% CI 

Table 38 shows a comparison of SEM performance for the 2018 and 2017 dataset. 

We clearly see that our model works even better for the 2017 dataset. The SEM MLM 

shows less residuals and a TLI of one, indicating a good model. Furthermore, we see that 

the null hypothesis, our hypothesized model fits the data, is not being rejected. This 

shows the robustness of SEM MLM methods on the birth data, considering that the test 

statistic is highly sensitive for large sample sizes.  We take a closer look at the 

distribution of the estimated birth delivery quality for 2017 (Figure 25 & Table 39). 

 

SEM WLS model on 
transformed 2018 
data 

SEM MLM model 
on transformed 
2018 data 

SEM WLS model 
on transformed 
2017 data 

SEM MLM 
model on 
transformed 
2017 data 

Chi square 526.044 14.041 311.236 1.15 

degrees of freedom 1 1 1 1 

p value 0 0 0 0.284 

Robust CFI 0.999 1 0.999 1 

Robust TLI 0.991 1 0.994 1 

Robust RMSEA  0.012 0.002 0.009 0 

RMSEA lower bound 
CI* 

0.011 
0.001 

0.008 0 

RMSEA upper bound 
CI* 

0.013 
0.003 

0.009 0.001 

Robust SRMR  0.003 0 0.002 0 
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Table 39: Latent variable distribution for 2017 data 

              

From Figure 25 and Table 39 

we notice that the results are very 

similar to our 2018 dataset. We see a 

trimodal distribution where the 

majority of cases varies tightly 

around zero. The second modal in 

our distribution is centered around -

1.5 with a heavy left tail. This is 

reflected in the summary statistics for 

the distribution as well, it reflects our 

negatively skewed distribution with kurtosis. An almost unnoticeable third modal of 

cases peaks around -3.8. This explains our third cluster with statistical significance and 

should be investigated in further studies.  

  

Mean sd min max skewness kurtosis 

-0.08 0.63 -6.66 2.27 -2.35 8.8 

Figure 25: Density plot of latent variable estimated by 

SEM MLM for 2017 
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In Figure 26, we 

present a heatmap to 

showcase the correlation 

between the observed 

variables and our latent 

variable. The strongest 

correlation is a negative 

correlation between the IRT 

outcome, representing a 

strong linear association 

between the occurred 

complications and the birth 

delivery quality. This is because complications which likely require emergency care and 

directly affect mother’s and baby’s well-being. Our latent variable is also moderately 

correlated with combined gestation time, and the baby’s birth weight and its Apgar 5 

score. This result is similar as well to our 2018 model. Different from our 2018 dataset, 

we notice a stronger positive correlation between Apgar 5 and our latent variable. It is 

negative because we applied an inverse log transformation, hence a score of zero 

represents a good clinical status for the baby after 10 minutes. Compared to our 2018 

dataset, we observe a much stronger correlation between mother’s age and birth delivery 

complications.  

Figure 26: Heatmap for correlation of SEM MLM model variables 

for 2017 
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5: CONCLUSION 

 

In this paper, a measure for birth delivery quality was created featuring mother 

and child as one entity to address the lack of quality measures in the area of birth 

delivery. The proposed methodology is provided as a potential solution to fill the gap 

regarding the lack of quality measures in maternal care. The score quantitates and 

identifies the indirect measurable health status of the mother and newborn and provides a 

solid estimate for the level of required medical care. An applicable clinical method is 

provided to quantify the well-being of the mother and newborn. Percentiles to identify 

different levels of birth delivery outcomes are also provided.   

Overall, a variety of models were applied: factor analysis, SEM using MLM and 

WLS estimation, HMC, and clustering, in order to estimate the hidden birth delivery 

quality. Since variables such as birth weight and gestation time are correlated, SEM 

proved to be the best estimation methods allowing residual covariance between the 

observed variables to be specified. The clustering methods k-means and dbscan did not 

provide sufficient results and require future study. 

The estimated latent variable aimed to establish a measure to quantify birth 

delivery. The SEM MLM estimation model proved to be the best method for the 

calculating the health score. Before applying the model, data preprocessing was 

necessary. The binary complications: Maternal Transfusion, Ruptured Uterus, Unplanned 

Hysterectomy, Admit to Intensive Care, Admission to NICU, Assisted Ventilation 

(immediately), Surfactant, Antibiotics for Newborn, Cyanotic Congenital Heart Disease, 

and Cleft Lip with or without Cleft Palate were transformed into a continuous score using 
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a nonparametric IRT model. Then, the skewness of the data was mitigated by creating an 

artificial left tail of the IRT distribution. This was followed by approximating a normal 

distribution for the other numerical model measures: Apgar 5, birth weight, and gestation 

time using the R function Gaussianize from the LambertW package (Georg, 2020). The 

value of Apgar 10 that was not measured was replaced with the value 12 for further 

analysis. Lastly, the birth weight was transformed from grams to pounds.  

In conclusion, a birth delivery quality measure using SEM MLM estimation 

resulting in a trimodal distribution was created where the third much smaller peak 

represents the lower quality of birth deliveries. A negative score would require medical 

attention and potential longer hospital stays. Furthermore, a Health score below the 25% 

was shown to represent severely impacted cases requiring further medical care and longer 

hospital stays.  

The score represents an easy-to-understand measure for non-healthcare 

professionals with limited medical knowledge (terms and structures) of birth delivery. 

Strategic management can use this measure to avoid emergency bottlenecks in birth 

delivery areas of care. Furthermore, this measure can used to adjust hospital planning 

according to the needs of mothers and newborns. Considering a wider perspective, 

politicians can utilize this measure for policy-making and arranging long-term 

improvements in the birth delivery process. 

While the Apgar score only takes the newborn’s situation into account, this newly 

created score gives a comprehensive measure for the overall clinical condition of mother 

and child after birth delivery. It can be applied as a standardized measure for individual 

birth delivery quality in hospitals and allows direct comparison of birth delivery quality 
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between different hospitals.  

The Apgar score is a score assigned by an individual doctor based on the baby’s 

first impression and appearance. This results in a more subjective score which may vary 

based on an individual physician’s judgement. Compared to the Apgar score, the latent 

score is a more comprehensive score because it includes the use of objective data: 

occurred complications during birth delivery, birth weight, and gestation time, in its 

calculation. 

Siddiqui et al. (2017) uncovered a large variation of Apgar scores across 

European countries based on different assessments used by individual nations. Thus, 

model scores can be compared nationally but not across borders. Even though this model 

cannot be applied across borders, the methodology can be applied by individual nations: 

if a country has similar birth delivery measures, the proposed models (factor analysis, 

SEM, and clustering) can be applied to the data and the best overall model chosen based 

on model-fit and residual criteria, as proposed in this study. Hence, this study created a 

general applicable method of variable selection based on model-fit criteria that can be 

applied on national level in multiple countries. In this study, the developed model works 

in the United States, but the methodology can be applied to similar data from other 

countries.  

A limitation of the study is the lack of different years in the model. The model 

was applied only to birth delivery data between 2017 and 2018. The model can be 

extended further as a longitudinal model to discover trends in birth delivery quality. 

Furthermore, the applicability to other countries was not tested. This study focused on US 

birth deliveries. Other countries may have different birth delivery characteristics or may 
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not record certain parameters such as Apgar scores. Additionally, the current model 

assumes that heavier babies result in better health is not true. In fact, babies with a birth 

weight of 10 lbs or above are considered too large and associated with low blood sugar, 

increased obesity, diabetes and metabolic syndrome (Rettner, 2013). To match this 

clinical background, the current model variable birth weight needs to be adjusted in 

future research. Lastly, the dataset only includes vital birth records. Mothers with a 

stillbirth may still have severe complications such as a ruptured uterus during birth so that 

the baby dies. These cases were not included in the dataset. The score only measures the 

timepoint immediately after birth delivery, and does not include potential complications 

during the pregnancy phases. The most accurate method to estimate the quality of birth 

deliveries is SEM using an MLM estimation. However, further investigation is needed to 

analyze the background and reason for those three quality categories. Further research for 

different clustering methods is necessary which could result in easier-to-understand 

groups of patients with group-specific characteristics such as pre-term birth deliveries, 

low birth weight, and classification of complications.  
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APPENDIX SECTION 

Table 40: PCA vectors for 95% variance 
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3 0.000 0.000 -0.001 0.000 0.000 0.001 0.000 -0.001 0.000 0.000 0.000 0.001 

4 0.000 0.000 -0.003 -0.001 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 -0.001 

5 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 0.000 

7 0.000 0.000 -0.002 -0.001 0.000 -0.002 0.000 0.000 0.000 -0.002 0.000 0.000 
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   Table 41: PCA vectors for 99% variance part I 
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 mm_mtr mm_plac mm_rupt mm_uhyst mm_aicu ab_aven1 ab_aven6 ab_nicu ab_surf ab_anti ab_seiz 

1 0.560 0.010 -0.001 0.001 0.002 0.008 0.437 0.215 0.841 0.063 0.227 0.004 

2 0.185 0.008 0.005 0.001 0.001 0.002 0.777 0.305 -0.526 0.074 0.143 0.003 

3 0.090 0.008 0.008 0.000 0.000 -0.001 -0.321 0.143 -0.126 0.098 0.923 0.005 

4 0.046 0.009 0.498 0.001 0.000 -0.001 0.276 -0.767 0.005 -0.185 0.230 -0.002 

5 0.045 0.021 0.867 0.000 0.002 0.004 -0.159 0.439 0.003 0.101 -0.142 0.001 

6 0.023 0.974 -0.022 0.018 0.078 0.197 -0.007 -0.025 -0.004 0.060 -0.014 0.002 

7 0.020 -0.066 0.005 -0.001 -0.004 -0.003 0.014 -0.243 -0.001 0.966 -0.059 -0.002 

8 0.008 -0.207 0.002 0.024 0.143 0.968 -0.003 0.000 -0.005 -0.010 0.002 0.002 

9 0.003 0.000 0.000 0.001 0.000 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 

10 0.003 -0.001 0.000 0.002 0.008 0.000 -0.001 -0.004 -0.005 0.001 0.001 0.006 

11 0.003 0.000 0.000 0.000 -0.005 0.001 0.000 0.001 0.000 0.000 0.000 0.001 

12 0.002 -0.049 0.000 0.254 0.953 -0.157 0.000 0.000 0.000 0.000 0.001 0.015 

13 0.002 -0.001 -0.001 0.805 -0.221 0.011 -0.002 -0.002 -0.001 0.000 -0.003 0.550 
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    Table 42: PCA vectors for 99% variance part II 
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 ca_anen ca_mnsb ca_cchd ca_cdh ca_omph ca_gast ca_limb ca_cleft ca_clpal ca_downs ca_disor ca_hypo 

1 0.000 0.001 0.005 0.001 0.001 0.002 0.000 0.001 0.001 0.001 0.001 0.001 

2 0.000 -0.001 -0.001 0.001 0.000 -0.001 0.000 -0.001 0.000 0.000 0.000 0.000 

3 0.000 0.000 -0.001 0.000 0.000 0.001 0.000 -0.001 0.000 0.000 0.000 0.001 

4 0.000 0.000 -0.003 -0.001 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 -0.001 

5 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 0.000 

7 0.000 0.000 -0.002 -0.001 0.000 -0.002 0.000 0.000 0.000 -0.002 0.000 0.000 

8 0.000 0.000 -0.002 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 0.000 

9 0.001 0.001 0.046 0.003 0.001 -0.001 0.004 0.061 0.011 0.004 0.008 0.997 

10 0.005 0.006 0.944 0.012 0.013 0.001 0.008 0.311 0.042 0.053 0.043 -0.063 

11 0.005 0.000 -0.318 -0.001 0.000 0.002 -0.001 0.940 0.117 -0.015 0.011 -0.044 

12 0.000 0.002 -0.009 0.000 0.000 -0.001 0.001 0.002 -0.001 0.000 -0.001 0.000 

13 0.006 0.002 -0.002 0.000 0.000 -0.003 0.001 -0.002 -0.002 -0.004 0.004 0.001 
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Table 43: mPCA vectors 99% variance Matrix of Squared loadings  

Variable Dimension 
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Table 44: Variable names and their actual meaning 

apgar5 apgar10 mager dbwt combgest mm_mtr mm_plac mm_rupt mm_uhyst mm_aicu 

Apgar 5 Apgar 10 mother'
s age 

Birth 
weight 

combined 
gestation 

maternal 
transfusion 

Perineal 
Laceration 

Ruptured Uterus Unplanned 
Hysterectomy 

Admit to 
Intensive Care 

          

ab_aven1 ab_aven6 ab_nicu ab_surf ab_anti ab_seiz ca_anen ca_mnsb ca_cchd ca_cdh 

Assisted 
Ventilation 

(immediately) 

Assisted 
Ventilation 

> 6 hrs 

Admissi
on to 
NICU 

Surfactant Antibiotics 
for 

Newborn 

Seizures Anen-
cephaly 

Meningomyelocele / 
Spina Bifida 

Cyanotic 
Congenital 

Heart Disease 

Congenital 
Diaphragmatic 

Hernia 

            

ca_gast ca_limb ca_cleft ca_clpal ca_downs ca_disor ca_hypo 

Gastroschisis Limb 
Reduction 

Defect 

Cleft 
Palate 
alone 

Cleft Lip w/ 
or w/o Cleft 

Palate 

Down 
Syndrome 

Suspected 
Chromosom
al Disorder 

Hypos-
padias 
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Table 45: dbscan clustering clusters with number of cases 

Cluster number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of cases 1469 295647 103 11 15 7 293 147 19 56 26 24 27 36 14 59 

                 

Cluster number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Number of cases 83 19 38 22 9 14 15 67 21 13 26 31 26 12 10 7 

                 

Cluster number 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

Number of cases 28 38 11 48 15 43 5 15 33 25 9 11 29 5 27 8 

                 

Cluster number 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

Number of cases 40 14 9 8 16 20 25 9 53 27 6 16 7 5 14 6 

                 

Cluster number 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Number of cases 11 17 16 24 17 11 13 10 13 17 11 45 12 9 5 33 

                 

Cluster number 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

Number of cases 14 12 20 21 51 10 9 9 5 8 6 19 9 27 10 8 

                 

Cluster number 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

Number of cases 7 6 13 22 7 5 20 5 5 12 21 19 9 6 7 8 

                 

Cluster number 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

Number of cases 5 8 9 5 7 8 4 11 12 5 6 10 4 11 5 5 

                 

Cluster number 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

Number of cases 5 4 10 5 5 13 6 6 5 5 7 7 7 5 10 6 

                 

Cluster number 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

Number of cases 5 6 6 6 4 6 5 6 5 4 5 5 5 5 6 5 
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4

 

 

 

 

 

 

 

 

Cluster number 160 161 162 163 164 165 

Number of cases 6 5 5 4 5 5 
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