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Abstract. We present the notion of mean-square exponential dichotomies

for linear stochastic differential equations. We study the robustness of the
mean-square exponential dichotomies, in the sense of the existence of a mean-

square exponential dichotomy for a given linear stochastic equation persists

under sufficiently small linear perturbations. As a special case, we consider
mean-square exponential contractions.

1. Introduction

The notion of exponential dichotomies [20] plays an important role in the theory
of differential equations and dynamical systems, particularly in what concerns the
study of stable and unstable invariant manifolds, and therefore has attracted much
attention during the last few decades. We refer to [3, 6, 18, 21] for details related
to exponential dichotomies. Exponential dichotomy of stochastic cocycles was first
introduced in [22]. Among those results concerning exponential dichotomies, the
so-called robustness problem is very important and has a long history. We refer
to [4, 5, 6] and the references therein for the study of robustness of exponential
dichotomies.

Let I be any interval on R and A(t) = (Aij(t))n×n, G(t) = (Gij(t))n×n be
Borel-measurable, bounded functions. In this study, we will introduce the notion
of mean-square exponential dichotomies for the nonautonomous linear stochastic
differential equations (SDEs for short)

dx(t) = A(t)x(t)dt+G(t)x(t) dω(t), t ∈ I, (1.1)

and limit our attention to the robustness, which means that such a mean-square
exponential dichotomy persists under sufficiently small linear perturbations. Pre-
cisely, we consider the perturbed stochastic differential equation

dy(t) = (A(t) +B(t))y(t)dt+ (G(t) +H(t))y(t) dω(t), (1.2)

and we prove that (1.2) admits a mean-square exponential dichotomy for any ar-
bitrary small perturbations B,H if the same happens for (1.1). We also explore
the continuous dependence with the perturbation of the constants in the notion of
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dichotomies. Note that in (1.2) the perturbations appear in the “drift” as well as
in the “volatility” and the proofs of the main results will become more complicated
and difficult than those for linear determined equations.

Stochastic differential equations have been studied by many researchers on var-
ious problems because SDEs have important applications in many scientific area.
We refer the reader to [1, 7, 9, 15, 17, 19] for more information about SDEs. Among
those topics, the study of mean-square dynamical behavior of SDEs is an important
and interesting one and has attracted many researchers [8, 11, 12, 13, 14]. Mean-
square dynamical behavior are essentially deterministic with the stochasticity built
into or hidden in the time-dependent state spaces. In [14], Kloeden and Lorenz
provided a definition of mean-square random dynamical systems and studied the
existence of pullback attractors (we refer to [2] for details on random dynamical
systems). In [8, 16], the concept of mean-square almost automorphy for stochas-
tic process is introduced and the existence, uniqueness and asymptotic stability of
mean-square almost automorphic solutions of some linear and nonlinear stochastic
differential equations are established. In [11], Higham provided a stochastic version
of the theta method for mean-square asymptotic stability.

Now we introduce some notation. Let (Ω,F , {Ft}t≥0,P) be a standard filtered
probability space, i.e., (Ω,F ,P) is a complete probability space, {Ft}t≥0 is a fil-
tration with F0 contains all P-null sets. For a matrix or a vector A, we use AT to
denote its transpose. Let ω(t) = (ω1(t), . . . ωn(t))T be an n-dimensional Brownian
motion defined on the space (Ω,F , {Ft}t≥0,P). Let ‖ · ‖ be the Euclidean norm
in Rn or operator norm. In addition, let L2

Fs
(Ω,Rn) denote the family of all Fs-

measurable Rn-valued random variables, i.e., ξs : Ω → Rn such that E‖ξs‖2 < ∞
for all s ≥ 0. Let I2

≥ := {(t, s) ∈ I2 : t ≥ s} and I2
≤ := {(t, s) ∈ I2 : t ≤ s}.

The rest part of this article is organized as follows. In Section 2, we present the
robustness of mean-square exponential contractions, and the robustness of mean-
square exponential dichotomies is showed in Section 3.

2. Robustness of mean-square exponential contractions

In this section we consider the robustness of mean-square exponential contrac-
tions.

Definition 2.1. We say that (1.1) admits a mean-square exponential contraction if
there exist positive constantsM and α such that, for any solution x(t) ∈ L2

Ft
(Ω,Rn)

of (1.1),
E‖x(t)‖2 ≤Me−α(t−s)E‖x(s)‖2, ∀(t, s) ∈ I2

≥. (2.1)

Lemma 2.2. Let Φ(t) be a fundamental matrix solution of (1.1). Then (1.1)
admits a mean-square exponential contraction if and only if

E‖Φ(t)Φ−1(s)‖2 ≤Me−α(t−s), ∀(t, s) ∈ I2
≥.

Proof. From [15, 17] it follows that Φ(t) of (1.1) is invertible with probability 1 for
all t ∈ I. First, we have

E‖x(t)‖2 = E[‖Φ(t)Φ−1(s)x(s)‖2] = E‖Φ(t)Φ−1(s)‖2E‖x(s)‖2,
where Φ(t)Φ−1(s) and x(s) are independent, and therefore

E‖Φ(t)Φ−1(s)‖2 =
E‖x(t)‖2

E‖x(s)‖2
,
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where E‖x(s)‖2 6= 0; or else (1.1) admits a “trivial” solution due to (2.1), i.e.,
E‖x(t)‖2 = 0 for all (t, s) ∈ I2

≥. Thus we can obtain from (2.1) that

E‖Φ(t)Φ−1(s)‖2 ≤Me−α(t−s), ∀(t, s) ∈ I2
≥.

the proof of the converse is very similar. �

The following variation of parameters formula will be essential to prove our main
result of this section. The corresponding version of the nonlinear perturbation of
(1.1) can be found in [17].

Lemma 2.3 ([15, Section 2.4.2]). Let Φ(t) be a fundamental matrix of (1.1). Then
the solution of (1.2) is given as

y(t) = Φ(t)Φ−1(s)y(s) +
∫ t

s

Φ(t)Φ−1(τ)
[
B(τ)−G(τ)H(τ)

]
y(τ)dτ

+
∫ t

s

Φ(t)Φ−1(τ)H(τ)y(τ) dω(τ),
(2.2)

for all (t, s) ∈ I2
≥.

Theorem 2.4. Assume that (1.1) admits a mean-square exponential contraction
with (2.1). Furthermore, assume that B(t), G(t) and H(t) are all Borel-measurable
and there exist nonnegative constants β, g, h such that

‖B(t)‖ ≤ β, ‖G(t)‖ ≤ g, ‖H(t)‖ ≤ h, t ∈ I. (2.3)

Then any solution y(t) of (1.2) satisfies

E‖y(t)‖2 ≤ 3Me(−α+3MK)(t−s)E‖y(s)‖2, ∀(t, s) ∈ I2
≥, (2.4)

where K = 2β2 + 2g2h2 + h2. In particular, (1.2) also admits a mean-square
exponential contraction if

K <
α

3M
. (2.5)

Proof. Given any initial value y(s) at time s, using Lemma 2.3, the solution of (1.2)
can be expressed as (2.2) with (t, s) ∈ I2

≥.
Using conditions (2.3), the Hölder’s inequality and the elementary inequality

‖
m∑
k=1

ak‖2 ≤ m
m∑
k=1

‖ak‖2 (2.6)

one can obtain that

‖y(t)‖2 ≤ 3‖Φ(t)Φ−1(s)‖2‖y(s)‖2 + 3
∥∥∫ t

s

Φ(t)Φ−1(τ)H(τ)y(τ) dω(τ)
∥∥2

+ 3
∫ t

s

‖Φ(t)Φ−1(τ)‖2‖B(τ)−G(τ)H(τ)‖2‖y(τ)‖2dτ

≤ 3‖Φ(t)Φ−1(s)‖2‖y(s)‖2 + 3
∥∥∫ t

s

Φ(t)Φ−1(τ)H(τ)y(τ) dω(τ)
∥∥2

+ 6(β2 + g2h2)
∫ t

s

‖Φ(t)Φ−1(τ)‖2‖y(τ)‖2dτ.

(2.7)
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By (2.7) and

E
[( ∫ t

s

x(τ) dω(τ)
)2]

= E
[ ∫ t

s

x2(τ)dτ
]
, x(τ) ∈ L2

Fτ
(Ω,Rn) for τ ∈ [s, t] (2.8)

we have

E‖y(t)‖2 ≤ 3E‖Φ(t)Φ−1(s)‖2E‖y(s)‖2 + 3
∫ t

s

E‖Φ(t)Φ−1(τ)‖2E‖H(τ)y(τ)‖2dτ

+ 6(β2 + g2h2)
∫ t

s

E‖Φ(t)Φ−1(τ)‖2E‖y(τ)‖2dτ

≤ 3Me−α(t−s)E‖y(s)‖2 + 3MK

∫ t

s

e−α(t−τ)E‖y(τ)‖2dτ.

(2.9)
Let

u(t) = eαtE‖y(t)‖2, U(t) = 3Mu(s) + 3MK

∫ t

s

u(τ)dτ. (2.10)

We can rewrite inequality (2.9) as

u(t) ≤ U(t), for all t ≥ s.

On the other hand, d
dtU(t) = 3MKu(t), and thus,

d

dt
U(t) ≤ 3MKU(t).

Integrating the above inequality from s to t and note that U(s) = 3Mu(s), we
obtain

u(t) ≤ U(t) ≤ 3Mu(s)e3MK(t−s), for all (t, s) ∈ I2
≥.

Now the inequality (2.4) follows from (2.10) and the proof is complete. �

Remark 2.5. Assume that (1.1) and (1.2) have the same initial condition, that is,
x(s) = y(s). By using the Theorem 2.4, for β, g, h being sufficiently small, we have

E‖y(t)− x(t)‖2 ≤ 2K
∫ t

s

E‖Φ(t)Φ−1(τ)‖2E‖y(τ)‖2dτ

≤ 6M2K

∫ t

s

e−α(t−τ)e(−α+3MK)(τ−s)dτ

= 6M2Ke−α(t−s) e
3MK(t−s) − 1

3MK

≤ 2Me(−α+3MK)(t−s).

Thus for each β, g and h with (2.5), we have

lim
t→+∞

1
t

log(E‖y(t)− x(t)‖2) = −α+ 3MK < 0,

which means that the solution of the linear perturbation equation (1.2) is forward
asymptotic to the solution of (1.1) in mean-square sense if they have the same
initial data.

In the rest of this section, as a special case of (1.2), we consider

dy(t) = (A(t) +B(t))y(t)dt+G(t)y(t) dω(t), (2.11)
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in which the perturbed term only appears in the “drift”. Of course, Theorem 2.4
can be applicable to (2.11). In the following, we will obtain another robustness
result for (2.11), in which the constants can be improved slightly. In this case, the
results are more similar to those for ordinary differential equations [10].

Lemma 2.6 ([15, Theorem 2.3.1]). Let Φ(t) be a fundamental matrix of (1.1).
Then the matrix Φ−1(t) is a fundamental matrix solution of the adjoint equation

dx(t) = x(t)[−A(t) +G2(t)]dt− x(t)G(t) dω(t), t ∈ I. (2.12)

As a special case of Lemma 2.3, we know that every solution of (2.11) can be
written as

y(t) = Φ(t)
[
Φ−1(s)y(s) +

∫ t

s

Φ−1(τ)B(τ)y(τ)dτ
]
, τ ∈ I,

where Φ(t) is a fundamental matrix of (1.1).

Theorem 2.7. Assume that the first inequality in (2.3) holds. Then any solution
y(t) of (2.11) satisfies

E‖y(t)‖2 ≤ 2Me(−α+2Mβ2)(t−s)E‖y(s)‖2, ∀(t, s) ∈ I2
≥. (2.13)

In particular, if β <
√
α/(2M), then (2.11) also admits a mean-square exponential

contraction.

Proof. Given any initial value y(s) at time s, the solution of (2.11) can be expressed
as

y(t) = Φ(t)Φ−1(s)y(s) +
∫ t

s

Φ(t)Φ−1(τ)B(τ)y(τ)dτ,

for all (t, s) ∈ I2
≥, where Φ(t) is the fundamental matrix of (1.1).

Using the elementary inequality ‖a+b‖2 ≤ 2(‖a‖2+‖b‖2), the Hölder’s inequality,
we obtain that

‖y(t)‖2 ≤ 2‖Φ(t)Φ−1(s)‖2‖y(s)‖2 + 2β2

∫ t

s

‖Φ(t)Φ−1(τ)‖2‖y(τ)‖2dτ. (2.14)

It follows from (2.14) and (2.8) that

E‖y(t)‖2 ≤ 2E‖Φ(t)Φ−1(s)‖2E‖y(s)‖2 + 2β2

∫ t

s

E‖Φ(t)Φ−1(τ)‖2E‖y(τ)‖2dτ

≤ 2Me−α(t−s)E‖y(s)‖2 + 2Mβ2

∫ t

s

e−α(t−τ)E‖y(τ)‖2dτ.

(2.15)
Let

u(t) = eαtE‖y(t)‖2, U(t) = 2Mu(s) + 2Mβ2

∫ t

s

u(τ)dτ.

Then (2.15) can be rewritten as

u(t) ≤ U(t), for all t ≥ s.

On the other hand, d
dtU(t) = 2Mβ2u(t), and thus

d

dt
U(t) ≤ 2Mβ2U(t).
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Integrating the above inequality from s to t and using the relation U(s) = 2Mu(s),
we obtain that

u(t) ≤ U(t) ≤ 2Mu(s)e2Mβ2(t−s), for all (t, s) ∈ I2
≥,

which implies (2.13) and completes the proof.
Note that in Theorem 2.7 we do not impose any condition on G(t).

Example 2.8 (Geometric Brownian motion [1, 17]). Consider the equation

dx(t) = −ax(t)dt+ σx(t) dω(t), (2.16)

with initial data x(0), where a, σ are constants satisfying a > 0 and σ2 < 2a. Then
the solution of (2.16) is given as

x(t) = x(0) exp[
(
− a− σ2

2
)t+ σω(t)

]
.

Further, we can obtain

E‖x(t)‖2 ≤ e(−2a+σ2)(t−s)E‖x(s)‖2

with t ≥ s. Using Theorem 2.4 and Theorem 2.7, we know that

dx(t) = (−a+ b)x(t)dt+ (σ + η)x(t) dω(t),

dx(t) = (−a+ b)x(t)dt+ σx(t) dω(t)

admits a mean-square exponential contraction if |b| and |η| are all sufficiently small.

3. Robustness of mean-square exponential dichotomies

In this section we consider the robustness of mean-square exponential dichotomies.
We assume that the phase space Rn can be split as

Rn = X1 ⊕X2,

where X1 is a linear subspace of Rn and X2 is the complementary subspace of X1.

Definition 3.1. We say that (1.1) admit a mean-square exponential dichotomy if
there exist positive constants M and α such that, for any solution x(t) with initial
data in X1,

E‖x(t)‖2 ≤Me−α(t−s)E‖x(s)‖2, ∀(t, s) ∈ I2
≥, (3.1)

and for any solution x(t) with initial data in X2,

E‖x(t)‖2 ≤Me−α(s−t)E‖x(s)‖2, ∀(t, s) ∈ I2
≤. (3.2)

The subspaces X1 and X2 are called the stable and instable spaces, respectively
[19, 22]. Let P (t) be the projections for each t ∈ I such that

Φ(t)Φ−1(s)P (s) = P (t)Φ(t)Φ−1(s), ∀(t, s) ∈ I2
≥

and
x(t) = Φ(t)Φ−1(s)P (s)x(s)

for any solution x(t) with initial data in X1. Thus,

E‖x(t)‖2 = E[‖Φ(t)Φ−1(s)P (s)x(s)‖2] = E‖Φ(t)Φ−1(s)P (s)‖2E‖x(s)‖2,
which is just

E‖Φ(t)Φ−1(s)P (s)‖2 =
E‖x(t)‖2

E‖x(s)‖2
.
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Hence from (3.1) we obtain

E‖Φ(t)Φ−1(s)P (s)‖2 ≤Me−α(t−s), ∀(t, s) ∈ I2
≥. (3.3)

Similarly, we can obtain

E‖Φ(t)Φ−1(s)Q(s)‖2 ≤Me−α(s−t), ∀(t, s) ∈ I2
≤, (3.4)

where Q(t) = Id − P (t) is the complementary projection of P (t). We will use the
estimates (3.1)-(3.2) as well as the equivalent formulation (3.3)-(3.4).

Theorem 3.2. Assume that (1.1) admits a mean-square exponential dichotomy in
I and

K <
α

10M
. (3.5)

Then (1.2) also admits a mean-square exponential dichotomy and for any solution
y(t) with initial data in X1,

E‖y(t)‖2 ≤M1e
−
√
α(α−10MK)(t−s)E‖y(s)‖2, ∀(t, s) ∈ I2

≥,

and for any solution y(t) with initial data in X2,

E‖y(t)‖2 ≤M1e
−
√
α(α−10MK)(s−t)E‖y(s)‖2, ∀(t, s) ∈ I2

≤,

where the positive constant M1 is given as

M1 = max
{ 5M

(
α+

√
α(α− 10MK)

)
α+

√
α(α− 10MK)− 5MK

, 1
}
.

Proof. Firstly, we introduce the spaces

Lc := {Φ̂ : I2
≥ → L2

Ft
(Ω,Rn) : ‖Φ̂‖c <∞},

with the norm

‖Φ̂‖c = sup
{

(E‖Φ̂(t)Φ̂−1(s)P̂ (s)‖2)
1
2 : (t, s) ∈ I2

≥

}
,

and
Ld := {Φ̂ : I2

≤ → L2
Ft

(Ω,Rn) : ‖Φ̂‖d <∞},
with the norm

‖Φ̂‖d = sup
{

(E‖Φ̂(t)Φ̂−1(s)Q̂(s)‖2)
1
2 : (t, s) ∈ I2

≤

}
,

where Φ̂(t) is the fundamental matrix solution of (1.2), P̂ (t) are projections for
each t ∈ I and Q̂(t) = Id − P̂ (t) is the complementary projection. One can verify
that both (Lc, ‖ · ‖c) and (Ld, ‖ · ‖d) are Banach spaces. �

Next we show several auxiliary results.

Lemma 3.3. For each (t, s) ∈ I2
≥, it holds

y(t) = Φ(t)Φ−1(s)P (s)y(s) +
∫ t

s

Φ(t)Φ−1(τ)P (τ)[B(τ)−G(τ)H(τ)]y(τ)dτ

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)y(τ) dω(τ)

−
∫ ∞
t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ) dω(τ)

−
∫ ∞
t

Φ(t)Φ−1(τ)Q(τ)[B(τ)−G(τ)H(τ)]y(τ)dτ ∈ Lc,

(3.6)
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and for each (t, s) ∈ I2
≤,

y(t) = Φ(t)Φ−1(s)Q(s)y(s)−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)[B(τ)−G(τ)H(τ)]y(τ)dτ

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ) dω(τ)

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)H(τ)y(τ) dω(τ)

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)[B(τ)−G(τ)H(τ)]y(τ)dτ ∈ Ld.

(3.7)

Proof. Set

ξ̂(t) = Φ−1(s)P (s)y(s) +
∫ t

s

Φ−1(τ)P (τ)[B(τ)−G(τ)H(τ)]y(τ)dτ

+
∫ t

s

Φ−1(τ)P (τ)H(τ)y(τ) dω(τ)−
∫ ∞
t

Φ−1(τ)Q(τ)H(τ)y(τ) dω(τ)

−
∫ ∞
t

Φ−1(τ)Q(τ)[B(τ)−G(τ)H(τ)]y(τ)dτ.

We can obtain

dξ̂(t) = Φ−1(t)
[
B(t)−G(t)H(t)

]
y(t)dt+ Φ−1(t)H(t)y(t) dω(t). (3.8)

Let y(t) = Φ(t)ξ̂(t). Using (3.8), Itô product rule and the following fact

dΦ(t) = A(t)Φ(t)dt+G(t)Φ(t) dω(t),

we obtain that

dy(t) = dΦ(t)ξ̂(t) + Φ(t)dξ̂(t) +G(t)Φ(t)Φ−1(t)H(t)y(t)dt

= A(t)y(t)dt+G(t)y(t) dω(t) +
[
B(t)−G(t)H(t)

]
y(t)dt

+H(t)y(t) dω(t) +G(t)H(t)y(t)dt

= (A(t) +B(t))y(t)dt+ (G(t) +H(t))y(t) dω(t),

which means that y(t) given by (3.6) is a solution of (1.2). Now we show that y(t)
is unique in the space (Lc, ‖ · ‖c). Set

T̂ y(t) = Φ(t)Φ−1(s)P (s)y(s) +
∫ t

s

Φ(t)Φ−1(τ)P (τ)[B(τ)−G(τ)H(τ)]y(τ)dτ

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)y(τ) dω(τ)

−
∫ ∞
t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ) dω(τ)

−
∫ ∞
t

Φ(t)Φ−1(τ)Q(τ)[B(τ)−G(τ)H(τ)]y(τ)dτ.

Using (2.3), the Hölder’s inequality and the inequality (2.6), we have

‖T̂ y(t)‖2
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≤ 5‖Φ(t)Φ−1(s)P (s)‖2‖y(s)‖2 + 10(β2 + g2h2)
∫ t

s

‖Φ(t)Φ−1(τ)P (τ)‖2‖y(τ)‖2dτ

+ 5
∥∥∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)y(τ) dω(τ)
∥∥2

+ 5
∥∥∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ) dω(τ)
∥∥2

+ 10(β2 + g2h2)
∫ ∞
t

‖Φ(t)Φ−1(τ)Q(τ)‖2‖y(τ)‖2dτ.

Using (2.8) we can show that

E‖T̂ y(t)‖2 ≤ 5E‖Φ(t)Φ−1(s)P (s)‖2E‖y(s)‖2

+ 10(β2 + g2h2)
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2E‖y(τ)‖2dτ

+ 5
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2E‖H(τ)y(τ)‖2dτ

+ 5
∫ ∞
t

E‖Φ(t)Φ−1(τ)Q(τ)‖2E‖H(τ)y(τ)‖2dτ

+ 10(β2 + g2h2)
∫ ∞
t

E‖Φ(t)Φ−1(τ)Q(τ)‖2E‖y(τ)‖2dτ

≤ 5Me−α(t−s)E‖y(s)‖2 + 5MK

∫ t

s

e−α(t−τ)E‖y(τ)‖2dτ

+ 5MK

∫ ∞
t

e−α(τ−t)E‖y(τ)‖2dτ.

Note that y(t) = Φ̂(t)Φ̂−1(s)P̂ (s)y(s). Hence,

E‖T̂ Φ̂(t)Φ̂−1(s)P̂ (s)‖2E‖y(s)‖2

≤ 5MK

∫ t

s

e−α(t−τ)E‖Φ̂(τ)Φ̂−1(s)P̂ (s)‖2E‖y(s)‖2dτ

+ 5MK

∫ ∞
t

e−α(τ−t)E‖Φ̂(τ)Φ̂−1(s)P̂ (s)‖2E‖y(s)‖2dτ + 5Me−α(t−s)E‖y(s)‖2.

Thus,

‖T̂ Φ̂‖2c ≤ 5M +
10MK

α
‖Φ̂‖2c <∞,

and T̂ : Lc → Lc is well-defined. Proceeding in the same procedure above, for any
Φ̂1, Φ̂2 ∈ Lc, we have

‖T̂ Φ̂1 − T Φ̂2‖c ≤
√

10MK

α
‖Φ̃1 − Φ̃2‖c.

When condition (3.5) holds, T̂ is a contraction operator. Hence, there exist a
unique Φ̂ ∈ Lc such that T̂ Φ̂ = Φ̂. In a similar manner, we can also prove (3.7). �

Lemma 3.4. Let x(t) be a bounded, continuous real-valued function such that

x(t) ≤ De−α(t−s)ζ + δD

∫ t

s

e−α(t−τ)x(τ)dτ + δD

∫ ∞
t

e−α(τ−t)x(τ)dτ, (3.9)
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where D,α, δ are all positive constants. If α > 2δD, then

x(t) ≤ K̃ζe−α̃(t−s), (t, s) ∈ I2
≥,

where

α̃ =
√
α(α− 2δD), K̃ = max

{ D(α+ α̃)
α+ α̃− δD

, 1
}
.

Proof. Let x̃(t) be any bounded continuous function satisfying the integral equation

x̃(t) = De−α(t−s)ζ + δD

∫ t

s

e−α(t−τ)x̃(τ)dτ + δD

∫ ∞
t

e−α(τ−t)x̃(τ)dτ, (3.10)

with the initial condition x(s) = x̃(s). It is easy to verify that

x̃′(t) = −αDe−α(t−s)ζ − αδD
∫ t

s

e−α(t−τ)x̃(τ)dτ + αδD

∫ ∞
t

e−α(τ−t)x̃(τ)dτ,

and

x̃′′(t) = α2De−α(t−s)ζ + α2δD

∫ t

s

e−α(t−τ)x̃(τ)dτ

+ α2δD

∫ ∞
t

e−α(τ−t)x̃(τ)dτ − 2αδDx̃(t).

Then it is easy to verify that x̃(t) is a solution of differential equation

x̃′′ = α(α− 2δD)x̃.

Note that α > 0, α− 2δD > 0 and x̃(t) is a bounded continuous function, then

x̃(t) = x̃(s)e−α̃(t−s).

In addition, setting t = s in (3.10) gives

x̃(s) = Dζ + δDx̃(s)
∫ ∞
s

e−(α+α̃)(τ−s)dτ.

Note that α+ α̃ > 0, we obtain that

x̃(s) ≤ D(α+ α̃)
α+ α̃− δD

ζ.

Thus for any (t, s) ∈ I2
≥, it has

x̃(t) ≤ K̃ζe−α̃(t−s).

Set Υ(t) = x(t)− x̃(t) for (t, s) ∈ I2
≥. It follows from (3.9) and (3.10) that

Υ(t) ≤ δD
∫ t

s

e−α(t−τ)Υ(τ)dτ + δD

∫ ∞
t

e−α(τ−t)Υ(τ)dτ. (3.11)

Let Υ = sup{Υ(t) : (t, s) ∈ I2
≥}. Then Υ is finite. It follows from (3.11) that

Υ ≤ δDΥ sup
t≥s

∫ t

s

e−α(t−τ)dτ + δDΥ sup
t≥s

∫ ∞
t

e−α(τ−t)dτ

≤ 2δD
α

Υ.

Since α > 2δD, then Υ ≤ 0 and thus x(t) ≤ x̃(t) for (t, s) ∈ I2
≥, which means that

x(t) ≤ K̃ζe−α̃(t−s), (t, s) ∈ I2
≥,

and the proof is complete. �
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The proof of the following lemma is similar to that of Lemma 3.4, so we omit it.

Lemma 3.5. Let y(t) be a bounded, continuous real-valued function such that

y(t) ≤ De−α(s−t)ζ + δD

∫ s

t

e−α(τ−t)y(τ)dτ + δD

∫ t

−∞
e−α(t−τ)y(τ)dτ,

where D,α, δ are all positive constants. If α > 2δD, then

y(t) ≤ K̃ζe−α̃(s−t), (t, s) ∈ I2
≤.

As in the proof for Theorem 3.2, we consider Φ̂ ∈ Lc. Then it follows from
Lemma 3.3 that the unique solution of (1.2) in the space (Lc, ‖ · ‖c) is given as
(3.6). Then we have

E‖y(t)‖2 ≤ 5E‖Φ(t)Φ−1(s)P (s)‖2E‖y(s)‖2

+ 10(β2 + g2h2)
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2E‖y(τ)‖2dτ

+ 5
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2E‖H(τ)y(τ)‖2dτ

+ 5
∫ ∞
t

E‖Φ(t)Φ−1(τ)Q(τ)‖2E‖H(τ)y(τ)‖2dτ

+ 10(β2 + g2h2)
∫ ∞
t

E‖Φ(t)Φ−1(τ)Q(τ)‖2E‖y(τ)‖2dτ

≤ 5Me−α(t−s)E‖y(s)‖2 + 5MK

∫ t

s

e−α(t−τ)E‖y(τ)‖2dτ

+ 5MK

∫ ∞
t

e−α(τ−t)E‖y(τ)‖2dτ.

(3.12)

Applying Lemma 3.4 to (3.12) and note the condition (3.5), we have

E‖y(t)‖2 ≤M1e
−
√
α(α−10MK)(t−s)E‖y(s)‖2, ∀(t, s) ∈ I2

≥.

Similarly, consider Φ̂ ∈ Ld, then from Lemma 3.3 it follows that the unique solution
of (1.2) in the space (Ld, ‖ · ‖d) is given as (3.7), and we have

E‖y(t)‖2 ≤M1e
−
√
α(α−10MK)(s−t)E‖y(s)‖2, ∀(t, s) ∈ I2

≤.

Now the proof is complete. �

The following theorem is equivalent to Theorem 3.2.

Theorem 3.6. Assume that (1.1) admits a mean-square exponential dichotomy
and condition (3.5) holds. Then there exist projections P̂ (t) and Q̂(t) = Id− P̂ (t)
such that

‖Φ̂(t)Φ̂−1(s)P̂ (s)‖ ≤M1e
−
√
α(α−10MK)(t−s), ∀(t, s) ∈ I2

≥, (3.13)

‖Φ̂(t)Φ̂−1(s)Q̂(s)‖ ≤M1e
−
√
α(α−10MK)(s−t), ∀(t, s) ∈ I2

≤, (3.14)

where Φ̂(t) is the fundamental matrix solution of (1.2).

The following result is a direct consequence of Theorem 3.2.
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Theorem 3.7. Assume that (1.1) admits a mean-square exponential dichotomy in
I and β2 < α

20M . Then (2.11) also admits a mean-square exponential dichotomy
with

E‖y(t)‖2 ≤M2e
−
√
α(α−20Mβ2)(t−s)E‖y(s)‖2, ∀(t, s) ∈ I2

≥,

for any solution y(t) with initial data from X1, and

E‖y(t)‖2 ≤M2e
−
√
α(α−20Mβ2)(s−t)E‖y(s)‖2, ∀(t, s) ∈ I2

≤,

for any solution y(t) with initial data from X2, where

M2 = max
{ 5M(α+

√
α(α− 20Mβ2))

α+
√
α(α− 20Mβ2)− 5Mβ2

, 1
}
.

Next, we present an example to illustrate the robustness of mean-square expo-
nential dichotomies.

Example 3.8. Consider the equation

dx(t) = −ax(t)dt+ σx(t) dω(t),

dy(t) = ay(t)dt+ σy(t) dω(t),
(3.15)

with initial data (x(0), y(0)), where a, σ are constants satisfying a > 0 and σ2 < 2a.
Then the solution of (3.15) is given as

x(t) = x(0) exp
[(
− a− σ2

2
)
t+ σω(t)

]
,

y(t) = y(0) exp
[(
a− σ2

2
)
t+ σω(t)

]
.

It is easy to verify that

E‖x(t)‖2 ≤ e(−2a+σ2)(t−s)E‖x(s)‖2, t ≥ s,

E‖y(t)‖2 ≤ e−(2a+σ2)(s−t)E‖y(s)‖2, s ≥ t,

and therefore (3.15) admits a mean-square exponential dichotomy. Using Theorem
3.2 and Theorem 3.7, we know that

dx(t) = (−a+ b)x(t)dt+ (σ + η)x(t) dω(t),

dy(t) = (a+ b)y(t)dt+ (σ + η)y(t) dω(t),

and

dx(t) = (−a+ b)x(t)dt+ σx(t) dω(t),

dy(t) = (a+ b)y(t)dt+ σy(t) dω(t),

also admit a mean-square exponential dichotomy if |b| and |η| are small enough.
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