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EXISTENCE AND NONEXISTENCE FOR SINGULAR
SUBLINEAR PROBLEMS ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH A. IAIA

ABSTRACT. In this article we study the existence of radial solutions of Au +
K(Jz|)f(u) = 0 on the exterior of the ball of radius R > 0 centered at the
origin in RN with w = 0 on 8Bpg, and lim| |00 u(®) = 0 where N > 2,
flu) ~ W%IH for u near 0 with 0 < ¢ < 1, and f(u) ~ |u|P~1u for large |u|

with 0 < p < 1. Also, K(|z|) ~ |z|7 with N + ¢(N —2) < a < 2(N — 1) for
large |z|.

1. INTRODUCTION

In this article we study the radial solutions of:

Au+ K(|z|)f(u) =0, ze€RN\Bg (1.1)
u=0 ond(RV\Bg) (1.2)
u—0 as|z]—= o0 (1.3)

where Bp, is the ball of radius R > 0 centered at the origin in RY, K(z) > 0 and
u: RY — R with N > 2. In addition, we suppose f : R\ {0} — R is locally
Lipschitz and

(H1) f is odd, there exists 8 > 0 such that f < 0 on (0,8), f > 0 on (8, 0).
(H2) ¢1 : R — R is continuous and
-1

f(u)zm

where 0 < ¢ < 1 and ¢;(0) = 0.
(H3) g2 : R — R is continuous and f(u) = |u[P~1u + g2(u), where 0 < p < 1 and
limy,— 400 g2(u)/[uf? = 0.
We let F(u) = [, f(s)ds. Since f is odd it follows that F is even and from (H2) it
follows that f is integrable near u = 0. Thus F' is continuous and F'(0) = 0. It also
follows that F' is bounded below by —Fy with Fy > 0 and from (H3) we see there
exists v with 0 < 8 < v such that
(H4) F <0on (0,7), F>0on (y,00), and F > —Fy on R.
(H5) K and K’ are continuous on [R,c0) with K(r) > 0, 2(N —1) + TTK/ > 0,
N+g¢(N-2)<a<2(N-1)and lim,, rK'/K = —a.
(H6) There exists K7 > 0 such that lim, ., r*K(r) = K; > 0.

+ g1(u)

2010 Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domains; singular problem; sublinear; radial solution.
(©2021 Texas State University.

Submitted June 11, 2020. Published January 7, 2021.
1



2 M. ALI, J. A. TAIA EJDE-2021/03

Interest in the topic for this article comes from recent papers [2, [7, O [10] about
solutions of differential equation problems on exterior domains. In [I] we studied
f with K(r) ~ r~%, where f is singular at 0 and grows superlinearly at
00, with various values of a. We proved existence of an infinite number of solutions.
In this article we consider the case when f is singular at 0 and grows sublinearly
at co. In this article we prove the following results.

Theorem 1.1. Let N >2, R>0,0<p,g<1, N+¢qg(N —-2) <a<2(N-1),
and suppose (H1)—(H6) hold. Then given a non-negative integer, ng, then there are
solutions ug, u1, ..., Un, of f where uy, has exactly k zeros on (R, 00) and
lim, o0 ur(r) = 0 if R is sufficiently small.

Theorem 1.2. Let N > 2, R>0,0<p,g<1, N+¢qg(N-2)<a<2(N-1),
and suppose (H1)-(H6) hold. Then there are no radial solutions of (L.1)-(L.3)) if
R > 0 is sufficiently large.

2. PRELIMINARIES

Since we are interested in studying radial solutions of (1.1))—(1.3]), we assume
that 7 = |z| = \/2? + 22 + - - - + 2%, u(r) = u(|z|) where z € RY and u satisfies

u"(r) + — 1u’(r) + K(r)f(u(r)) =0 on (R,oc0), (2.1)
u(R) =0, Tlggo u(r) = 0. (2.2)

To prove existence we make the change of variables
u(r) = vo(r*~). (2.3)
Then
u'(r) = (2 = N)rt =Ny (r27N),
W(r) = (2= N)(1 = N)yr N/ (r*N) + (2 = N)>r2-Ny (27N,

1

Letting t = 72~ and r = ==~ in (2.1)-(2.2) gives

O"(t) + h(t)f(v(t) =0 for 0 <t< R>N (2.4)
where from (H1)-(H6),
B 1 2N t=a . d_2(N—1)—a
h(t) = mt K(t>7) N2z with & = N3 > 0. (2.5)

Note that 2 — & = £=2 > 0. Also from (H5) and (H6) it follows that there is a
constant hi > 0 with

lin, t%h(t) = h1, K (t)<O0on (0,R* ], 0<a+qg<l. (2.6)
t—
Then there are hg > 0 and hs > 0 such that
ho < t%h(t) < hy on (0, R*~N]. (2.7)
We now consider (2.4]) with
v(0)=0, v'(0)=a>0 (2.8)

and we try to find @ > 0 such that v(R?>~") = 0. We write v, to emphasize the
dependence of v on a. Let a > 0. We first show that there is a solution v, of
equation ([2.4)) on (0, €) for small € along with (2.8) and v,, v, continuous on [0, €).
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This is a bit lengthy so we postpone this proof to the Appendix. We now assume
Vg solves on (0,¢€) and v,, v}, continuous on [0, €).

Next let (0, B) C (0, R*~") be the maximal open interval where the solution of
exists along with . We will show B = R?>~Y. First, from the proof in the
appendix we have that there exists € > 0 such that 0 < e < B < R*>~N.

Now we define the energy of solution (2.4)), as

_ 1)
Ea®) =570

Differentiating E,, using (2.4) and since we know from (2.6) that A'(¢) < 0, then

+ F(vg(t)) for0<t< B. (2.9)

12 t)hl(t)
B () = e OFE) B). 2.1
(==t =0 o (0.) (210)
Thus E, is nondecreasing on (0, B). Therefore,
1v2(t)
= 1i < =__@ A1
0= lim Eu(t) < Ea(t) = 3 10 + F(va(t)) (2.11)
so it follows that
E,(t)>0 for0<t<B. (2.12)
Next we see that
1 /
(5020 + hOF@a®)) = W (OF (va(t)): (2.13)

Now let us show for fixed a > 0 that v, and v/, are continuous on [0, R>~%].

Lemma 2.1. Assume (H1)-(H6) hold, N > 2, and a > 0. Suppose v, solves ([2.4).
Then |va(t)] < C and |V, (t)| < C for some constant C on [0, R*N] and v,,v! are
continuous on [0, RZ~N].

Proof. We first assume that there is a t,, € [0, B) such that v,(t,~) = 7 and
0<wv, <vyonl0,tgn).
We know from (H4) that F(v,) <0 when t € [0,t, ] so we have

0 puaey < 30

Thus v], > 0 on [0,t,,]. Also if we multiply (2.4)) by vZ, use (H2), and integrate by
parts on (0,¢) this gives

vy’ — tvqls s t v9(8)g1(v4(s)) ds = t s)ds. .
1), /0" ()0 <>d+/0h<>a<>g<<>>d /Ohud (2.14)

Thus

—~
~

on (0,tq4]

t t
vdv!, +/ h(s)vi(s)g1(va(s))ds > / h(s) ds. (2.15)
0 0
Integrating 1] again and using (2.7)) gives

vItL(¢ i
q+1 / / Yol (x)g1 (ve(x dxds—/ / x)dxds

(2.16)
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Let L; be the Lipschitz constant for g; on [0,7] so then |g;(vs)| < Ljv, on
[0,%4,~]. using this and since v}, > 0 on [0, t, ] then:

/ / 2)vi(x)g1(ve(x) da:d5<L1/ / vq+1 )dx ds
<L11)‘H'1 // z)dx ds.

using this in (2.16) and using (2.7)) again we see that
2—a 2-a
IR S
2-a)(1-a) g+1 (2-a)(1-a)
1 L1hoR2-N)(2-a)
<of (1) + = ol ]
qg+1 2-a)1l-a)

Therefore
2—a&
va(t) = C1t750 on [0, 4,5 (2.17)
where
c —[ ho(q +1) }ril>0
YT l@= &)1 —a) + Liha(q + HDREDE-® :

Evaluating (2.17)) at t = ¢, 4 gives

tay < (a) e (2.18)

Then from (2.17) and (2.7) we see that
h(t) hg —a—2q
< St e on (0,ta4]
( ) Cl ( 07’)’]
Rewriting (2.4)) and substituting gives
h(t) h2 —&—2q —&a
vl (t) = o h(t)g1(va(t)) < C—lqt 0+ hoLit™%y on (0,tq].  (2.19)

Integrating on (0,t) gives

V(1) < a+ Oyt T+ Cstt ™% on [0, t,,] (2.20)
where Cy = %, Cs = hQL” Integrating (2 on (0,t) we have
2-a C3 2—&
v (t) < at + Cyt TFa + 2_7~t on [0,tq ] (2.21)
where
O = ha(1+q)*

Cil—a-q(2-a)
Evaluating (2.21)) at ¢t = ¢, , and using (2.18]) we obtain

1;55‘1 Cg y (1*;}1(;4’(1)
<t, —( = =t, 2.22
vt 7(‘”C‘*(Cl) +2—0¢(Cl> ) =taslo+Cs)  (222)
where
1—a—g (A-&)(1+q)
= Cs v\ 25 =
Gs=ai(g;) (o
5 = (4 c; + Cy
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From (2.22) we have

1
<atG (2.23)
ta,’y Y
Now from (2.20) and for ¢ € [0,t,,] we obtain
0<vL(t) <a+ Coty 150 + Catar ™ <a+Cs on [0,ta,] (2.24)

where Cs = CQR% + C3RZ=N)(=®) Thus |v/| is bounded on [0,t, ] if
tany < B.

Now continuing to assume ¢, ., < B we integrate on (tq,,t), using (2.24),
K <0, and —Fy < F(v,) (by (H4)) then we obtain

SO0~ h(OFy < Su2(1) + h(1)F(n,)
__;vg<uhv>+jifyh%s>ﬁxva«a>ds
< 5la+ 0o = [ WiRas
- %(a +Co)? — h(t)Fy + hlta) Fo.

using (2.23) in the above we have

1 1 1
SV < 5(a+Co)? + htag)Fo < 5(a+Co)* + haFo

ot C"’)d. (2.25)

Thus it follows from (2.25) and standard inequalities that |v)| is bounded as
[v)| <a+C; onl0,B) (2.26)

for some C7 that does not depend on a if 0 < t,, < B. Then
t
[va| = ‘/ vl ds‘ <(a+Cy)t<(a+C7)B on [0,B) (2.27)
0

80 |v,| is also bounded on [0, B) if ¢, 4 < B.

On the other hand if 0 < v, < v on [0, B) then a similar argument shows that
and hold on [0, B) and so again we see that |v,], [v},| are bounded on
[0, B).

Thus lim;_.g- v,(t) = D € R. Also since h(t)F(vq(t)) and h'(t)F(v,(t)) are
continuous on [e, B) it follows by integrating on [e, B) that lim,_, g v/,(t) =
D, € R. From we know 0 < E,(t) < %% + F(D) on [0,B) so D and
D; cannot both be zero. If B < R?>~N then the solution v, can be extended to
[0, B+¢€) for some € > 0 by using the fact that D, D; are not both zero for if D # 0
then we can just use the standard existence theorem from differential equations and
if D =0 then D; # 0 and we can use the contraction mapping principle as we did
in the appendix which contradicts the definition of B. Thus we see B = R?>~%.
Also since vq, v, are bounded on [0, R*~) then we see lim;_, (g2-~)- v, exists and
limy_, (g2-~y- v;, exists. Thus v,,v, are continuous on [0, R2~N]. This completes
the proof. O
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Lemma 2 2. Let N > 2, a > 0. Assume (H1)-(H6) hold, and suppose v,(t) solves
, Then the solutions v, (t) continuously depend on the parameter a > 0
on [0, R -

Proof. Let 0 < a; < ap. Since v,, v/, are continuous on [0, R2~"] it follows from

(2-26) and (2.27) that v,, v/, are bounded on [0, R>~¥]. Then notice from ([2.26)
and (2.27) we have

[vl ()| < ag+C7; on [0, R* ] Va with 0 < a; < a < ay, (2.28)

[va(t)| < (ag + C7)R2_N on [0, RQ_N} Va with 0 < a; < a < as. (2.29)

Thus we see that |v),| and |v,| are uniformly bounded on [0, R2~"] for all a with
0<a; <a<as.

Next, let a* > 0 with 0 < a7 < a* < ag. We will now show that v, — v~
uniformly on [0, R2~"] as a — a*. We prove this by contradiction so suppose not.
Then there exist A; with a; < A; < ag such that A; — a* as j — oo, t; € [0, RZ~V]
and there is an €5 > 0 such that

|'UAj (tj) — Vg * (tj)| Z €2 Vj (230)
Since A; = a* as j - oo and 0 < a1 < Aj < ag, by (2.28), we see that va;
and v/, are uniformly bounded on [0, R2~¥] and therefore the v 4, are equicontin-
uous on [0, R2~Y]. Then by the Arzela-Ascoli theorem there is a subsequence v Aj
of v4; such that va; — ve- uniformly on [0, R2=N]. So as | — oo,

0« [va,, (t) — va=(tj,)| > €2 > 0 which is impossible.

Thus v, varies continuously with a on [0, R>~] for all @ with 0 < a; < a < as.
This completes the proof. O

Lemma 2.3. Let v,(t) satisfy (2.4), and assume that (H1)-(H6) hold. Then
limg 0o maxyg g2-~va(t) = 0o. In addition, if v, (t) has a first local mazimum,
M,, with 0 < M, < R>™N, then v,(M,) — 00 as a — oo. Further, if a is
sufficiently large, then v, is increasing on [0, R*~N] and v, (R*~N) — o0 as a — .

Proof. We assume by the way of contradiction that maxy g2-n~jva(t) < Cg for
some constant Cg > 0 which does not depend on a for a large. Since f(v,) =
*lv‘qlfl% + g1(ve) and g1(v,) is continuous on [0, Cg| then there is a Cg > 0 such
that |g1(va)| < Co on [0, R2~V]. Now either v/, > 0 or v, has a local maximum
M, and v!, > 0 on [0, M,). We show that v, cannot have a local maximum M, for
large a.

Integrating over (0,t) and estimating gives

v (t) = a+/0 h(s) ! ds 7/0 h(s)g1(ve)ds > a—C'g/O h(s)ds. (2.31)

|4 v,
Recalling from (2.6]) that &@+¢ < 1 and g > 0 it follows that & < 1. Also from (2.7))
we have —h(t) > —hat~%. Then using this in (2.31]) implies

h -
v (t) > a— 109_7;151*&. (2.32)
Now if v, has a local maximum then evaluating (2.32) at M, gives
Cohs p2-n)a-a) > C9h2 M1 &>y (2.33)

lfa
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but the right-hand side goes to infinity as a — oo while the left-hand side is fixed
and thus we obtain a contradiction. Thus we see if a > 0 is sufficiently large and v,
is bounded above by a constant that it is independent of a then v/, > 0 on [0, RZ~].

Next integrating (2.32) on (0,t) we obtain:
Cohs 5

Cg 2 'Ua(t) Z at — th_a. (234)
Thus ooh
2— 2— 972 2—N\2—a&
Cs > va(R*™N) > aR*™N — W(R M) (2.35)

therefore the right-hand side of approaches infinity as a approaches infin-
ity, but the left-hand side is bounded by Cg. so we have a contradiction. Thus
limg 00 maxg, g2-~) va(t) = 0.

Now we show that if v, has a first local maximum, M,, on [0, R2~V], then
limg_ 00 va(M,) = co. For if not we may again appeal to as we did earlier
to again get a contradiction. Thus the assumption that v, (M,) is bounded is false.
Therefore if M, € [0, R?~"] exists, then

lim v,(M,) = oco. (2.36)

a—r o0
Next we show that v/, > 0 on [0, R2~] if a is sufficiently large. So suppose not.
Then there exists a first local maximum, M,, of v,, with 0 < M, < R>~V. From
(2.10)—(2.12) we have E,(t) > 0 and E’(t) > 0. Thus for 0 <t < M, we have
1z (t)
2 h(t)
Rewriting and integrating (2.37) on (0, M,) gives

/\f\/Fv ()dt <[ VG

= F(va (1)) — Jo

+ F(va(t)) < F(va(Ma))- (2.37)

Since vg(M,) — 00 as a — oo from (2.36) it follows from (H3) that F'(ve(M,)) —
F(s) < Ciov,PT1(M,) for some constant Cg > 0. Then after changing variables
on the left-hand side of (2.38]) and rewriting we obtain

Ual_Tp(Ma) . va(Ma)
\/2010 \@ ClOUap+1(Ma)

va (M) ds
(2.39)
A 200~ 7

~ 2Vhy -

= 22 (!
This yields a contradiction since the right-hand side of is finite but 0 < p < 1
and by the left-hand side of goes to infinity as a — oo. Thus the
assumption that v, has a local maximum on [0, R>~"] if a is sufficiently large is
false. Therefore if a is sufficiently large then v, is increasing on [0, R2~"] and
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$0 v4(R?*™N) = maxy g2-~) va(t). Since from the first part of the proof we know
that lim, o, maxp ge-~jva(t) = oo it follows that lim, e va(R?*~N) = co. This
completes the proof. O

Lemma 2.4. Let v,(t) satisfy (2.4), and assume (H1)—(H6) hold. Let R > 0
be sufficiently small. Then vq(t) has a local mazimum, M,, and a zero, Z,, with
0< M, < Zy < R*N ifa is sufficiently small. In addition, if R > 0 is sufficiently
small then v, has n zeros on [0, RZ~V].

Proof. Let us suppose instead that v/, (t) > 0 on [0, R2~"] for all sufficiently small
a and R sufficiently small. Then from it follows that ¢, , < Ci1 where Cyy is
independent of a. Thus ¢, ., < B>~ if R is sufficiently small. Since v, is continuous
and increasing then for ¢ > ¢, we have v = vg(ta,y) < vq(t). Since v/, (t) > 0 and
f(vg) > 0on [y, 00) with f(v,) = 00 as v, — oo by (H3) it follows that there exists
C12 > 0 such that f(’Ua) >Ci2 >0o0n [ta,’ya RQiN]. Then

v (t) + Crah(t) < () + h(t) f(va(t)) =0 on [t,, R*V]. (2.40)
Rewriting and integrating on (tq -, t) gives

1-G& _ 41-G
¢ ~tay

0 <0, (t) < vltay) = Cra[—7—2"]- (2.41)
From ([2.6) we know 0 < & < 1 and it follows from (2.26)) that if 0 < a < ag then
lva ()| < a+Cr < ao+ Cr. (2.42)

Thus v}, (t4,~) is bounded by a constant that is independent of @ when a is sufficiently
small and so it follows that the right-hand side of becomes negative if R is
sufficiently small which contradicts the assumption that v/, (¢) > 0 on [0, RZ~].
Thus if a is sufficiently small and R is sufficiently small then there is an M, with
0 < M, < R*>¥ such that v/, > 0 on (0, M,) and v/, (M,) = 0.

Next, we want to show that v, has a zero on [0, R2~M] if a and R are sufficiently
small. In order to do this we will show that v, — v uniformly on [0, R*~"] as
a — 0" where

vy + h(t)f(vo) =0,
1)0(0) =0= 1)6(0)

Then we will show vy has a zero and since v, — vy uniformly as a — 07 it will
follow that v, has a zero if a is sufficiently small and R is sufficiently small.

It follows from Lemmas and and (2.28)-(2.29) that v,, v} are uniformly
bounded on [0, R2~N] for all 0 < a < ag for some ag > 0. Therefore there is a
subsequence of the v, say vg;, such that v,; — vo uniformly on [0, R?~N] by the
Arzela-Ascoli Theorem as a; — 0.

Now we assume there is a t, 5 with 0 < t, 5 < R*~" such that v,(t, ) = 8 and
0 <wy(t) <aonl0t,ps). It follows from and an argument similar to
that

b < ta)g(a + 05) (2.43)
and as in (2.19) we have
h —a—2q 5 —&—2q
0<v! < C—it T+ ho Ly ftS < Cygt it on [0, tag) (2.44)

1
(2=N)(2=d&)q

where C13 = % + hoL1BR I+



EJDE-2021/03 SINGULAR SUBLINEAR PROBLEMS ON EXTERIOR DOMAINS 9

126=9 1 we have

Thus for 0 <z <y < t4 s and since 0 <
Y
0< (o) ~vlo) = [ ey

Y
< 013/ t 1+a 1+‘1 dt
. (2.45)
= Culy T —a T |
< Culy — 33|%

where C4 =

1 P qug And since 0 < [3 < tq,p from it follows from
this that the v/, are equ1cont1nu0us on [0 +C ] for 0 < a < ap and so v, — v

uniformly on [0, a0 +C | by the Arzela-Ascoli Theorem

Now if 0 < v, < B on [0, R?~ N] then we see and ( ) hold [0, R2~M].
Next we choose to with 0 <t < - +C Then 1ntegrat1ng on (tg,t) gives:

3020+ BOF (w0, (0) = 502 t0) + [ WPl () ds.  (2:40)

to

Now since vq; — vo uniformly and since vy (to) — vg(to) it then follows that

/

Uaj

uniformly on [0, - -EC ] we see that v — v uniformly on [0, R*N).

Now taking limits in gives
1 1 K
SV () + h(t)F(vo(t) = gvéz(to) +/ h'(s)F (vo(s)) ds on (0, R*M].

to

— v}y uniformly on [tg, R?~"], and so combmed with the earlier fact vy, — vj

Letting tg — 0% gives

SO+ HOF0o(0) = [ W6 Plun(s) ds.

Then from (2.4) and (H3) we see that v;, — vy at all points where vo(t) # 0 and
at these points we have

vy + h(t)f(vo) =0,
v0(0) = v(0) = 0.

As at the beginning of the proof of this lemma it follows that vy has a local
maximum, My, and vo(Mp) > v if R > 0 is sufficiently small. Now we assume by
way of contradiction vy > v on [My, R*~"]. Then we have f(vo) > 0 on [Moy, R>~N]
so there is a 015 > 0 such that f(v" > Ci5 > 0 when ~ < vo < vo(Mp). Thus
substituting in and using ( . we obtain

hoCis
ol () + Otoj vo(t) < 0.
So v < 0 while v < vy < vo(Mp). Integrating vf < 0 twice on (M + €,t) we have
vo(t) < vo(Mo + €) + vy (Mo + €)(t — (Mo + €)). (2.47)

Now if R is sufficiently small then R?2~" will be very large and thus we may
choose t sufficiently large so that the right-hand side of (2.47) becomes negative
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contradicting that vg > . So there exists ¢,, > My such that vo(t,) = v and
vy < 0 on (Mo, t,,) if R is sufficiently small.

Next while 8 < # < vy < 7 then f(vg) > 0 so vj < 0. Integrating vj < 0
twice on (t,,,t) gives

UO(t) <7+ ’Ué(t%)(t - t"/o) with U(I)(t’m) <0.

Now again if R is sufficiently small then B2~V is very large and so we can choose
t sufficiently large from which it would follow that vy (t) < 8 contradicting that

p
vo(t) > # So there is a t., > t,, such that vy(t,) = #

Now assume vg(t) > 0 on (Mg, R2~V). Then recall that %%"; + F(vp) > 0 and

there exists C16 > 0 so —F(vg) > Cmv(lfq for t > t,,. Therefore,

3 ~
- é 2 \ QClgho t_a/2 on (t'yl;t)'

2
Vo

Integrating on (t,,,t) gives

& (M>12ﬁ _ M[tﬂ 2_&]

0 2 () < T — 12 |
<UO ()— 2 2_@& 71

And again if R is sufficiently small then we can choose t sufficiently large so that
the right-hand side of becomes negative contradicting that vy > 0. Thus
v has a first positive zero, Z;, on [0, R?~N] if R > 0 is sufficiently small. Also
0 < %% + F(vg) for t > 0s0 0 < %U,éi(zzll)) and therefore v)(Z1) < 0. Thus
vo(Z1 + €) < 0 for € > 0 sufficiently small. Then since v, — vy uniformly on
[0,Z1 + €] it follows that v,(Z; + €) < 0 if a is sufficiently small and therefore if
a > 0 and R are sufficiently small we see that v, has a zero 0 < Z; 4 < R2~N . Then
as at the beginning of the proof where we showed that v, has a local maximum,
a similar argument shows v, has a local minimum, m,, with Z; , < m, and then
v, has a second zero, Zs 4, with Zz 4 > mg, if @ > 0 and R are sufficiently small.
Continuing in this way we can find n zeros on [0, R2~™] if R is small enough. This
completes the proof. O

(2.48)

3. PROOF OF MAIN RESULTS
Proof of Theorem[I.1. Consider the set
Sp={a>0:v,(t) >0 o0n (0, RZM)}

If a is sufficiently large then v,(t) > 0 on (0, R>~") by Lemma [2.3| and therefore
vq € Sp if a is sufficiently large. Thus Sy # (). Also if @ and R are sufficiently small
then v, has a zero on (0, R>~) by Lemma Thus Sy is bounded from below by
a positive constant if R is sufficiently small. Now let

ag = inf So.

We now show that v,, > 0 on (0, R*~") and v,,(R?>~") = 0. Suppose on the
contrary that there exists a zero, Z,, € (0, R*~%), and v,, > 0 on (0, Z,,) with

vt (Zag)
Vay(Zag) = 0. Then 0 < Eq(Zy,) = 5 h(EZaU(; s0 v, (Za,) < 0.

Thus for Z,, < t; < R>™N and t; close to Z,, we have v,,(t;) < 0. Then
for a close to ag with a < ag then v,(t1) < 0 by continuous dependence (Lemma
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but this contradicts the definition of ag. Thus v, > 0 on (0, R2~") and so
Ve (R2~N) > 0.

Next suppose that va, (R>~") > 0. Then v,, > 0 on (0, R>~"] and for a close
to ag with a < ag then v, > 0 on (O,RQ_N]. But since a < aq, it follows that
a ¢ Sy so v, must have a zero on (0, R>~N] which contradicts that v, > 0 on

(0, R2=N]. Thus v,,(R* ") = 0. Also since E, non-decreasing it follows that
1 Ulzo(RZ—N)

0< Ea(RziN) = iw SO U;O(RziN) < 0.

Next let us define

S1 = {a > 0:v,(t) solves (2.4), (2.8) and has exactly one zero on (0, R*~)}.

If we choose a slightly smaller than ag and R sufficiently small then it follows from
Lemma that v, has at least one zero, Z,,, on (0, R>~") and Z,, is close to
R*>~N . Also we know v}, (R*N) < 0 so if a is sufficiently close to ag then v, < 0
on (Z,,,R*N). Thus v, has at most one zero on (0, RZV) if a is sufficiently
close to ag. Therefore S; is nonempty. We also know from Lemma [2.4] that if R is
sufficiently small then v, has a second zero on (0, R2~%). Therefore S; is bounded
from below. So let

a; = inf Sl.

In a similar way we can show that v,, has exactly one zero on (0, R2~%) and
Vg, (R?~N) = 0. In a similar fashion we can show that if ng is a given nonnegative
integer then if R > 0 is sufficiently small then there exists ag, a1, ..., an, such that
vq, has k zeros on (0, R*~") and v,, (R?>~") = 0. Finally, let uy(r) = vg, (r>~N).
Then uy(r) satisfies (L.1)~(1.3) and uy has k zeros on (R, o0). This completes the
proof. ([l

Proof of Theorem[I.3. Suppose there is a solution, v, of (2.4]) with

04(0) = v,(R?>~N) = 0. This then implies that v, has a local maximum, M,, with
0 < M, < R>*N and v/, (M,) = 0. Since E, is non-decreasing (by (2.10))) then for
0<t< M,,

12

0< %;:(“t) + F(va(t)) = Eq(t) < Eq(Ma) = F(va(M,)). (3.1)

Thus v, (M,) > . Rewriting and integrating (3.1) on (0, M,) gives

Me v/, (t) dt M a2
| ﬂ¢F<va<Ma>>F<va<t>></o Via 0752t

_ Whe 250 (3.2)
2—a  °

< 2Vh2 pooyige
2—-—a

Since & < 1 and from (H4) we have —F (v4(t)) < Fp so it follows that F'(ve(M,)) —
F(va(t)) < F(va(M,)) + Fo which we apply to (3.2) to obtain

a

/M“ vl (t) dt S v (My) '
0 V2VF(a(Ma)) — F(va(t)) ~ V2/F(va(Ma)) + Fp

(3.3)
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Next from (H3) it follows that there is a constant F; > 0 such that F(z) < Fy|z|P*!
for all 2 and therefore it follows from (3.2)-(3.3) and that v,(M,) > v that

L 1-p
7%* . %fm@) _ 2V

2704
\/7 F1+ \/> F1+ P+1(M)

Thus the right-hand side of (3.4)) goes to zero if R sufficiently large but the left-hand
side of (3.4) is positive and independent of R. Thus (1.1)—(1.3) has no solutions if
R is sufficiently large. This completes the proof. ([

2 (RZN)%". (3.4)

4. APPENDIX

Lemma 4.1. Let a > 0 and (H1)—(H6) hold. Then there exists a solution v, of
(12.4), on (0, €] for some € > 0.

Proof. This is similar to the proof of existence in [I] which we include here for
completeness. First integrate (2.4]) over (0,¢) and use (2.8)). This gives

t
vh(t)=a— / h(s)f(va(s))ds for ¢ > 0. (4.1)
0
Integrate again over (0,t) and using (2.8) gives
=at — / / h(z ))dxzds for t > 0. (4.2)

Now let W (t) = vl g6 v,(t) = tW(t) and W(0) = lim;_,o+ v“(t) = v,(0) = a.

t

Rewriting (4.2)) we obtain

a—f//h (@) dzds for ¢ > 0. (4.3)

We now we solve equation ([4.3)) on (0, €] by a fixed point method as follows. Let us
define

S = {W:[O,e] — R with W(0) = a > 0,W € C[0, ¢ and

a (4.4)
W(t)—al <5 on [0,6]}
where C[0, €] is the set of continuous functions on [0, €] and € > 0. Let
W = sup [W(z)].
z€[0,¢€]
Then (S, -||) is a Banach space. Let us define a map T on S by
fort=0
TW(t) = o
afffofo (x)) dds for 0 <t <e.
From (4.4) we see 0 < § < W(x) < 37“ on [0, €] so it follows that |Wi(r)\ <

2949

o— on (0,¢] and since we know from (H1)-(H2) that g;() is locally Lipschitz
this then implies that there exists L; > 0 such that

lg1(z)| < Lafz| on [0,7]. (4.5)
Now let W € S and suppose 0 < € < % Then on [0, €] we have
3 2v 3
OSIW(z)<e—a<l£:7

2 3a 2
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using (H2), (2.6]), and (4.5) we estimate
ho21 ~ 3aho L -
[h() f @W (2))] = |()( g () g

oW @)| < 22

—1
x1Wa(x)
Recalling from (2.6 that & + ¢ < 1 then integrating once over [0, t] gives

Ay
/ |h(z (7)) | dx < 7151 G714 Ayat* @ (4.6)
where A; = (ﬁ% and Ay = 3}52L3) Thus from (4.6) we have
li h(z dx = 0. 4.7
Jm [ ()] dr (47)
Integrating (4.6) again gives
Agt?a—a 4 s
/ / |h(x (z))|dxds < 3T + aA t37e (4.8)
where A3 = % and Ay = % So we see
lim / / |h(z () |dxds = 0. (4.9)
t—0t+

We now show that T'(W) € S for each W e S if € > 0 is sufficiently small so we
first let W € S. It follows then from (4.9)) that T(W) is continuous on [0, ¢]. Thus
we see lim;_,o+ TW (t) = a and so |TW(t) —a| < 5 on [0,€] if € > 0 is sufficiently
small. Therefore T': S — S if € is sufficiently small.

We next prove that T is a contraction mapping if € is sufficiently small. Let
W1, W5 € S and suppose 0 < € < 2—". Then

TWi(t) — TWa(t :_7// F@Wi(2) — faWa(@)]dds.  (4.10)

By (H2) we have f(zW(z)) = —z79W4(x )+gl(:17W( )) where 0 < ¢ < 1.
Then as earlier before ([4.5) we see that 0 < zW; < €32 < v on [0,¢] for i = 1,2
therefore using (4.5)) this gives

F@W(@) = FWa@)] = | 5 7 — ) + 9 @Wa(@) - a@Wa(w))
(4.11)
< % I/Vllq - W’ +L1$|W1 - ng

Next applying the mean value theorem we see that the right-hand side of (4.11)) is
bounded by
1

ol

. T Wi~ Wal] + Lya Wy — Wo

W

where W3 is between Wy and W. Since Wi € S for i = 1,2,3 and |[W; —a| < §
then 2 < W; < 3% on [0,¢]. Therefore it follows that Wit > (%)‘Hl and so we
have

W) ~ FaWa@)] < Wi~ Wl [LC)™ 4 1aa] on(0,d.  (412)
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Recalling that |h(t)] < %2 and a+¢ < 1 from (2.6), and ¢ € (0, €], then using ([£.12)
in (4.10) gives

[TWy — TW,| < //h2|w1 W2|[ ()q“+L1x}dxds

< —HWl W2||/ / 2)* 4 Lya] duds

/\

1qoz

W1 — Wyl [7 + Age* ],

IN

q+1
where A5 R A — and A6 =

Rl ey gy Since

hoLy
B—a)(2—a)"
l—qg—a

. Ase
hm [7
e—0t adtl

+ A@GQ_&] =0,

for € > 0 sufficiently small we see that
|TW1 — TW2| S C||W1 — WQH,

where

A5€1_q_& o
c= W + A662 “, (413)

Thus for e sufficiently small we see 0 < ¢ < 1 and therefore T is a contraction
mapping on S.

Thus by the contraction mapping principle [5] there exists a unique solution
W e StoTW =W on [0,€] for some € > 0. And then v, (t) = tW(t) is a solution
of on (0, €] for some € > 0. This completest the proof. (]

Lemma 4.2. Let a = 0 and (H1)—-(H6) hold. Then there exists a solution vy > 0
of equation (2.4) with vo(0) = v{(0) =0 on (0, €] for some € > 0.

Proof. Suppose first that vy is a solution to (2.4 on (0, €] with
vo(0) =0, v((0) = 0. (4.14)

Let us determine the behavior of vg(t) on (0,¢). using the fact that f(v,) =
m + gl(va) where 0 < ¢ < 1, g1(0) = 0, and g¢; is continuous at 0, then

integrating (2.4) on (0,¢) and using v{(0) = 0 gives:

Integrating again on (0,¢) and using vp(0) = 0 gives

/ / ) dz ds. (4.15)

Now let vo(t) = t T W (t) where W(0) # 0. Rewriting (4.15)) we have

= / / h(z)| =z g(x%W(x)>} dz ds. (4.16)
. 1; THq Wq( )
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Assuming W (¢) is continuous at 0, taking the limit of (4.16)) and using L'Hopital’s
rule twice gives

W(0) = lim W(t)

t—0t
- —a& 2-a&
tah(t) [m] — a1 (t 1+q W(t))h(t)
= A7 i AN
7t_1>r(r)1+ I
_ 2-4 (4.17)
t%h(t) . h(t)g (tTTAW(t))
= A7{ — lim —— }
t—>0+ Wa(t) t—o+ +
_ Aty 2O (1751 W (1))
we) AR T mE
where A7 = (1+q)( 1tg ) Since th(t) — hy >0, by R6) ast - 0T, 0<a <1
and |g1 (v)| < Lq|v| on [ ,7] it follows that
2—a ~ 2—&
h(t)g (1 W (t hot =& Lyt 170 s
PO TN | Pt T ) = 5w (o) o
t 1+4q t 1+aq
as t = 07. Then we have
hi(1+ q)?
WItH0) = h1 A7 =
(0) = mAr 2-a)(l-a-q)
hence
hi(1+¢q)* G
W(0) = = by. 4.18
0) {(2—6[)(1—07—(1)} 0 (4.18)

Now let W (t) = bpY (¢). Then Y (0) =1 and (4.16) becomes

i byY
/ / h(x) _a (= 0 (x))} dxds. (4.19)
t1+q I L ‘b q+1yq( ) bo

Now we attempt to solve (4.19)) by using the contraction mapping principle. Let us
define

J = {Y € C[0,¢] : Y(0) =1 and |Y — 1] < § where
(4.20)
0 < § < 1 is sufficiently small}.

Let |Y]| = supg¢o,q |Y (z)|- Then (J,[| - [|) is a Banach space. Now we define 7" on
J by

TY (1)
1 fort=0

= 1 t rs 1 g1 (m%ng(m)) £ <
—== o Jo M) [ T — 5 }dxds or0<t<e.
t 1+g x 1+4q b0q+1Yq(x)

It is straightforward to show TY () is continuous and from (4.18]) and L'Hopital’s
rule lim; g+ TY (t) = 1. Thus it follows that |[TY (t)—1| < § on [0, €) if € sufficiently
small, and therefore T': J — J if € and § are sufficiently small.
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Since Y — 1] < 6 < 1then 0 < 1 -0 <Y < 1+ ¢ and this implies that
L < L1 _ Let us suppose Y7,Ys € J then

Yi = (1-5)4
TY1(t ) TY5(t)
1 1
— dz ds
t1+q / / x(21+o;)qb0‘1+1 (qu(x) YQq(z))} (4.21)

T / / 91 :c1+qb0Y1( )) +91($%boyz($))}dxds,
ot T4

For the integral in since Y7, Y5 € J, then by the mean value theorem there is a
Y3 between Y7, Ys where |Y;—1| < 6 for i =1,2,3 (and therefore 1 -0 < Y3 < 1+9)

then

1 1 q q
|7ﬂ Y7;|=W|Y1—YQ‘SW‘Y1—YQ|.

Then using (2.6)) the integral in ) becomes

1
dx d
t1+q// 2T ‘”"b q+1<Y1 Yqﬂ wds|
< [ 2
— (175)1+qb01+q (2 a)q 0 I(21+v;)q

hgq |Y1 ‘// —(&+2q)
< +a dxds
= _5)1+qb01+q E—d)q

(1+q)2h2q Y1 — Yzl (2=00-9)
2-a)(l-a—-q¢1 - 5)1+q b1

Recalling bo?™ = h1 A7 = hy (= 11g ) ( 1_12311) we obtain the right-hand side of (4.21))
is bounded by

<

hogq (2-a)(1-q)
T T LS
(1=

Since § > 0 and 0 < ¢ < 1 we see that for € > 0 sufficiently small,

hagq 2-a)(-q

For the integral in (4.21)) since g; is locally Lipschitz at 0, it follows that
’91 (90%501/1(%0 -0 (JU%bOYz(m))‘ < Ly by 27 |[Y; - Y|
SO substituting this into 1) gives

b e // 91 z T boY (x )) —g1<m%bo}/2(x))}dxds’

‘Yl Y2|h2L1// —a+332 e (4.22)

tT+a

<y - Y2|h2L1A8tm

where Ag = (1+(24:1r)%176¢))((2+;)+(§*d))'

choose e small enough so that thlAgt% < 1;—‘1 and so combining (4.21]) and

. . 244
Since lim;_,o+ hoL1 Agt™ ¢ = 0 we can
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(4.22)) we obtain
14d
[TYVA(t) = TY> ()] < —— V1 = Y2

where 0 < d < 1 and thus %d < 1.
Thus T' is a contraction mapping, so by the contraction mapping principle 5]

there is a unique solution Y € J to T(Y) =Y on [0, €]. Then v,(t) = ¢ 1% W(t) is
a solution of (2.4]), (4.14) on [0, €] for some € > 0. This completes the proof. O
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