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EXISTENCE AND NONEXISTENCE FOR SINGULAR

SUBLINEAR PROBLEMS ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH A. IAIA

Abstract. In this article we study the existence of radial solutions of ∆u +
K(|x|)f(u) = 0 on the exterior of the ball of radius R > 0 centered at the

origin in RN with u = 0 on ∂BR, and lim|x|→∞ u(x) = 0 where N > 2,

f(u) ∼ −1
|u|q−1u

for u near 0 with 0 < q < 1, and f(u) ∼ |u|p−1u for large |u|
with 0 < p < 1. Also, K(|x|) ∼ |x|−α with N + q(N − 2) < α < 2(N − 1) for

large |x|.

1. Introduction

In this article we study the radial solutions of:

∆u+K(|x|)f(u) = 0, x ∈ RN\BR (1.1)

u = 0 on ∂
(
RN\BR

)
(1.2)

u→ 0 as |x| → ∞ (1.3)

where BR is the ball of radius R > 0 centered at the origin in RN , K(x) > 0 and
u : RN → R with N > 2. In addition, we suppose f : R \ {0} → R is locally
Lipschitz and

(H1) f is odd, there exists β > 0 such that f < 0 on (0, β), f > 0 on (β,∞).
(H2) g1 : R→ R is continuous and

f(u) =
−1

|u|q−1u
+ g1(u)

where 0 < q < 1 and g1(0) = 0.
(H3) g2 : R→ R is continuous and f(u) = |u|p−1u+ g2(u), where 0 < p < 1 and

limu→+∞ g2(u)/|u|p = 0.

We let F (u) =
∫ u
0
f(s) ds. Since f is odd it follows that F is even and from (H2) it

follows that f is integrable near u = 0. Thus F is continuous and F (0) = 0. It also
follows that F is bounded below by −F0 with F0 > 0 and from (H3) we see there
exists γ with 0 < β < γ such that

(H4) F < 0 on (0, γ), F > 0 on (γ,∞), and F > −F0 on R.

(H5) K and K ′ are continuous on [R,∞) with K(r) > 0, 2(N − 1) + rK′

K > 0,
N + q(N − 2) < α < 2(N − 1) and limr→∞ rK ′/K = −α.

(H6) There exists K1 > 0 such that limr→∞ rαK(r) = K1 > 0.
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Interest in the topic for this article comes from recent papers [2, 7, 9, 10] about
solutions of differential equation problems on exterior domains. In [1] we studied
(1.1)–(1.3) with K(r) ∼ r−α, where f is singular at 0 and grows superlinearly at
∞, with various values of α. We proved existence of an infinite number of solutions.
In this article we consider the case when f is singular at 0 and grows sublinearly
at ∞. In this article we prove the following results.

Theorem 1.1. Let N > 2, R > 0, 0 < p, q < 1, N + q(N − 2) < α < 2(N − 1),
and suppose (H1)–(H6) hold. Then given a non-negative integer, n0, then there are
solutions u0, u1, . . . , un0

of (1.1)–(1.3) where uk has exactly k zeros on (R,∞) and
limr→∞ uk(r) = 0 if R is sufficiently small.

Theorem 1.2. Let N > 2, R > 0, 0 < p, q < 1, N + q(N − 2) < α < 2(N − 1),
and suppose (H1)–(H6) hold. Then there are no radial solutions of (1.1)–(1.3) if
R > 0 is sufficiently large.

2. Preliminaries

Since we are interested in studying radial solutions of (1.1)–(1.3), we assume

that r = |x| =
√
x21 + x22 + · · ·+ x2N , u(r) = u(|x|) where x ∈ RN and u satisfies

u′′(r) +
N − 1

r
u′(r) +K(r)f(u(r)) = 0 on (R,∞), (2.1)

u(R) = 0, lim
r→∞

u(r) = 0. (2.2)

To prove existence we make the change of variables

u(r) = v(r2−N ). (2.3)

Then

u′(r) = (2−N)r1−Nv′(r2−N ),

u′′(r) = (2−N)(1−N)r−Nv′(r2−N ) + (2−N)2r2(1−N)v′′(r2−N ).

Letting t = r2−N and r = t
1

2−N in (2.1)–(2.2) gives

v′′(t) + h(t)f(v(t)) = 0 for 0 < t < R2−N (2.4)

where from (H1)–(H6),

h(t) =
1

(N − 2)2
t
2(N−1)
2−N K(t

1
2−N ) ∼ t−α̃

(N − 2)2
with α̃ =

2(N − 1)− α
N − 2

> 0. (2.5)

Note that 2 − α̃ = α−2
N−2 > 0. Also from (H5) and (H6) it follows that there is a

constant h1 > 0 with

lim
t→0+

tα̃h(t) = h1, h′(t) < 0 on (0, R2−N ], 0 < α̃+ q < 1. (2.6)

Then there are h0 > 0 and h2 > 0 such that

h0 ≤ tα̃h(t) ≤ h2 on (0, R2−N ]. (2.7)

We now consider (2.4) with

v(0) = 0, v′(0) = a ≥ 0 (2.8)

and we try to find a ≥ 0 such that v(R2−N ) = 0. We write va to emphasize the
dependence of v on a. Let a ≥ 0. We first show that there is a solution va of
equation (2.4) on (0, ε) for small ε along with (2.8) and va, v′a continuous on [0, ε).
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This is a bit lengthy so we postpone this proof to the Appendix. We now assume
va solves (2.4) on (0, ε) and va, v′a continuous on [0, ε).

Next let (0, B) ⊂ (0, R2−N ) be the maximal open interval where the solution of
(2.4) exists along with (2.8). We will show B = R2−N . First, from the proof in the
appendix we have that there exists ε > 0 such that 0 < ε ≤ B ≤ R2−N .

Now we define the energy of solution (2.4), (2.8) as

Ea(t) =
1

2

v′2a (t)

h(t)
+ F (va(t)) for 0 < t < B. (2.9)

Differentiating Ea, using (2.4) and since we know from (2.6) that h′(t) < 0, then

E′a(t) = −v
′2
a (t)h′(t)

2h2(t)
≥ 0 on (0, B). (2.10)

Thus Ea is nondecreasing on (0, B). Therefore,

0 = lim
t→0+

Ea(t) ≤ Ea(t) =
1

2

v′2a (t)

h(t)
+ F (va(t)) (2.11)

so it follows that

Ea(t) > 0 for 0 < t < B. (2.12)

Next we see that (1

2
v′2a (t) + h(t)F (va(t))

)′
= h′(t)F (va(t)). (2.13)

Now let us show for fixed a ≥ 0 that va and v′a are continuous on [0, R2−N ].

Lemma 2.1. Assume (H1)–(H6) hold, N > 2, and a ≥ 0. Suppose va solves (2.4).
Then |va(t)| ≤ C and |v′a(t)| ≤ C for some constant C on [0, R2−N ] and va, v

′
a are

continuous on [0, R2−N ].

Proof. We first assume that there is a ta,γ ∈ [0, B) such that va(ta,γ) = γ and
0 ≤ va < γ on [0, ta,γ).

We know from (H4) that F (va) ≤ 0 when t ∈ [0, ta,γ ] so we have

0 <
1

2

v′2a (t)

h(t)
+ F (va(t)) ≤ 1

2

v′2a (t)

h(t)
on (0, ta,γ ].

Thus v′a > 0 on [0, ta,γ ]. Also if we multiply (2.4) by vqa, use (H2), and integrate by
parts on (0, t) this gives

vqav
′
a −

∫ t

0

qvq−1a (s)v′2a (s) ds+

∫ t

0

h(s)vqa(s)g1(va(s)) ds =

∫ t

0

h(s) ds. (2.14)

Thus

vqav
′
a +

∫ t

0

h(s)vqa(s)g1(va(s)) ds ≥
∫ t

0

h(s) ds. (2.15)

Integrating (2.15) again and using (2.7) gives

vq+1
a (t)

q + 1
+

∫ t

0

∫ s

0

h(x)vqa(x)g1(va(x)) dx ds =

∫ t

0

∫ s

0

h(x) dx ds

≥ h0t
2−α̃

(2− α̃)(1− α̃)
.

(2.16)
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Let L1 be the Lipschitz constant for g1 on [0, γ] so then |g1(va)| ≤ L1va on
[0, ta,γ ]. using this and since v′a > 0 on [0, ta,γ ] then:∫ t

0

∫ s

0

h(x)vqa(x)g1(va(x)) dx ds ≤ L1

∫ t

0

∫ s

0

h(x)vq+1
a (x) dx ds

≤ L1v
q+1
a (t)

∫ t

0

∫ s

0

h(x) dx ds.

using this in (2.16) and using (2.7) again we see that

h0t
2−α̃

(2− α̃)(1− α̃)
≤ vq+1

a (t)
[ 1

q + 1
+

L1h2t
2−α̃

(2− α̃)(1− α̃)

]
≤ vq+1

a (t)
[ 1

q + 1
+
L1h2R

(2−N)(2−α̃)

(2− α̃)(1− α̃)

]
.

Therefore

va(t) ≥ C1t
2−α̃
1+q on [0, ta,γ ] (2.17)

where

C1 =
[ h0(q + 1)

(2− α̃)(1− α̃) + L1h2(q + 1)R(2−N)(2−α̃)

] 1
q+1

> 0.

Evaluating (2.17) at t = ta,γ gives

ta,γ ≤
( γ

C1

) 1+q
2−α̃

. (2.18)

Then from (2.17) and (2.7) we see that

h(t)

vqa(t)
≤ h2
C1

q t
−α̃−2q

1+q on (0, ta,γ ].

Rewriting (2.4) and substituting gives

v′′a(t) =
h(t)

vqa(t)
− h(t)g1(va(t)) ≤ h2

C1
q t
−α̃−2q

1+q + h2L1t
−α̃γ on (0, ta,γ ]. (2.19)

Integrating on (0, t) gives

v′a(t) ≤ a+ C2t
1−α̃−q

1+q + C3t
1−α̃ on [0, ta,γ ] (2.20)

where C2 = h2(1+q)
Cq1 (1−α̃−q)

, C3 = h2L1γ
1−α̃ . Integrating (2.20) on (0, t) we have

va(t) ≤ at+ C4t
2−α̃
1+q +

C3

2− α̃
t2−α̃ on [0, ta,γ ] (2.21)

where

C4 =
h2(1 + q)2

Cq1(1− α̃− q)(2− α̃)
.

Evaluating (2.21) at t = ta,γ and using (2.18) we obtain

γ ≤ ta,γ
(
a+ C4

( γ

C1

) 1−α̃−q
2−α̃

+
C3

2− α̃

( γ

C1

) (1−α̃)(1+q)
2−α̃

)
= ta,γ(a+ C5) (2.22)

where

C5 = C4

( γ

C1

) 1−α̃−q
2−α̃

+
C3

2− α̃

( γ

C1

) (1−α̃)(1+q)
2−α̃

.
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From (2.22) we have

1

ta,γ
≤ a+ C5

γ
. (2.23)

Now from (2.20) and for t ∈ [0, ta,γ ] we obtain

0 ≤ v′a(t) ≤ a+ C2ta,γ
1−α̃−q

1+q + C3ta,γ
1−α̃ ≤ a+ C6 on [0, ta,γ ] (2.24)

where C6 = C2R
(2−N)(1−α̃−q)

1+q + C3R
(2−N)(1−α̃). Thus |v′a| is bounded on [0, ta,γ ] if

ta,γ ≤ B.
Now continuing to assume ta,γ ≤ B we integrate (2.13) on (ta,γ , t), using (2.24),

h′ < 0, and −F0 ≤ F (va) (by (H4)) then we obtain

1

2
v′2a (t)− h(t)F0 ≤

1

2
v′2a (t) + h(t)F (va)

=
1

2
v′2a (ta,γ) +

∫ t

ta,γ

h′(s)F (va(s)) ds

≤ 1

2
(a+ C6)2 −

∫ t

ta,γ

h′(s)F0 ds

=
1

2
(a+ C6)2 − h(t)F0 + h(ta,γ)F0.

using (2.23) in the above we have

1

2
v′2a (t) ≤ 1

2
(a+ C6)2 + h(ta,γ)F0 ≤

1

2
(a+ C6)2 + h2F0

(a+ C5

γ

)α̃
. (2.25)

Thus it follows from (2.25) and standard inequalities that |v′a| is bounded as

|v′a| ≤ a+ C7 on [0, B) (2.26)

for some C7 that does not depend on a if 0 < ta,γ ≤ B. Then

|va| =
∣∣∣∫ t

0

v′a ds
∣∣∣ ≤ (a+ C7)t ≤ (a+ C7)B on [0, B) (2.27)

so |va| is also bounded on [0, B) if ta,γ ≤ B.
On the other hand if 0 ≤ va < γ on [0, B) then a similar argument shows that

(2.17) and (2.20) hold on [0, B) and so again we see that |va|, |v′a| are bounded on
[0, B).

Thus limt→B− va(t) = D ∈ R. Also since h(t)F (va(t)) and h′(t)F (va(t)) are
continuous on [ε, B) it follows by integrating (2.13) on [ε, B) that limt→B− v

′
a(t) =

D1 ∈ R. From (2.12) we know 0 < Ea(t) ≤ 1
2
D2

1

h(B) + F (D) on [0, B) so D and

D1 cannot both be zero. If B < R2−N then the solution va can be extended to
[0, B+ ε) for some ε > 0 by using the fact that D,D1 are not both zero for if D 6= 0
then we can just use the standard existence theorem from differential equations and
if D = 0 then D1 6= 0 and we can use the contraction mapping principle as we did
in the appendix which contradicts the definition of B. Thus we see B = R2−N .
Also since va, v

′
a are bounded on [0, R2−N ) then we see limt→(R2−N )− va exists and

limt→(R2−N )− v
′
a exists. Thus va, v

′
a are continuous on [0, R2−N ]. This completes

the proof. �
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Lemma 2.2. Let N > 2, a ≥ 0. Assume (H1)–(H6) hold, and suppose va(t) solves
(2.4), (2.8). Then the solutions va(t) continuously depend on the parameter a ≥ 0
on [0, R2−N ].

Proof. Let 0 ≤ a1 < a2. Since va, v′a are continuous on [0, R2−N ] it follows from
(2.26) and (2.27) that va, v′a are bounded on [0, R2−N ]. Then notice from (2.26)
and (2.27) we have

|v′a(t)| ≤ a2 + C7 on [0, R2−N ] ∀a with 0 ≤ a1 ≤ a ≤ a2, (2.28)

|va(t)| ≤ (a2 + C7)R2−N on [0, R2−N ] ∀a with 0 ≤ a1 ≤ a ≤ a2. (2.29)

Thus we see that |v′a| and |va| are uniformly bounded on [0, R2−N ] for all a with
0 ≤ a1 ≤ a ≤ a2.

Next, let a∗ ≥ 0 with 0 ≤ a1 ≤ a∗ ≤ a2. We will now show that va → va∗

uniformly on [0, R2−N ] as a→ a∗. We prove this by contradiction so suppose not.
Then there exist Aj with a1 ≤ Aj ≤ a2 such that Aj → a∗ as j →∞, tj ∈ [0, R2−N ]
and there is an ε2 > 0 such that

|vAj (tj)− va∗(tj)| ≥ ε2 ∀j. (2.30)

Since Aj → a∗ as j →∞ and 0 ≤ a1 ≤ Aj ≤ a2, by (2.28), (2.29) we see that vAj
and v′Aj are uniformly bounded on [0, R2−N ] and therefore the vAj are equicontin-

uous on [0, R2−N ]. Then by the Arzela-Ascoli theorem there is a subsequence vAjl
of vAj such that vAjl → va∗ uniformly on [0, R2−N ]. So as l→∞,

0← |vAjl (tjl)− va∗(tjl)| ≥ ε2 > 0 which is impossible.

Thus va varies continuously with a on [0, R2−N ] for all a with 0 ≤ a1 ≤ a ≤ a2.
This completes the proof. �

Lemma 2.3. Let va(t) satisfy (2.4), (2.8) and assume that (H1)–(H6) hold. Then
lima→∞ max[0,R2−N ] va(t) = ∞. In addition, if va(t) has a first local maximum,

Ma, with 0 < Ma ≤ R2−N , then va(Ma) → ∞ as a → ∞. Further, if a is
sufficiently large, then va is increasing on [0, R2−N ] and va(R2−N )→∞ as a→∞.

Proof. We assume by the way of contradiction that max[0,R2−N ] va(t) ≤ C8 for
some constant C8 > 0 which does not depend on a for a large. Since f(va) =
− 1
|v|q−1va

+ g1(va) and g1(va) is continuous on [0, C8] then there is a C9 > 0 such

that |g1(va)| ≤ C9 on [0, R2−N ]. Now either v′a > 0 or va has a local maximum
Ma and v′a > 0 on [0,Ma). We show that va cannot have a local maximum Ma for
large a.

Integrating (2.4) over (0, t) and estimating gives

v′a(t) = a+

∫ t

0

h(s)
1

|v|q−1a va
ds−

∫ t

0

h(s)g1(va) ds ≥ a− C9

∫ t

0

h(s) ds. (2.31)

Recalling from (2.6) that α̃+ q < 1 and q > 0 it follows that α̃ < 1. Also from (2.7)
we have −h(t) ≥ −h2t−α̃. Then using this in (2.31) implies

v′a(t) ≥ a− C9h2
1− α̃

t1−α̃. (2.32)

Now if va has a local maximum then evaluating (2.32) at Ma gives

C9h2
1− α̃

R(2−N)(1−α̃) ≥ C9h2
1− α̃

M1−α̃
a ≥ a (2.33)
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but the right-hand side goes to infinity as a → ∞ while the left-hand side is fixed
and thus we obtain a contradiction. Thus we see if a > 0 is sufficiently large and va
is bounded above by a constant that it is independent of a then v′a > 0 on [0, R2−N ].
Next integrating (2.32) on (0, t) we obtain:

C8 ≥ va(t) ≥ at− C9h2
(1− α̃)(2− α̃)

t2−α̃. (2.34)

Thus

C8 ≥ va(R2−N ) ≥ aR2−N − C9h2
(1− α̃)(2− α̃)

(R2−N )2−α̃ (2.35)

therefore the right-hand side of (2.35) approaches infinity as a approaches infin-
ity, but the left-hand side is bounded by C8. so we have a contradiction. Thus
lima→∞max[0,R2−N ] va(t) =∞.

Now we show that if va has a first local maximum, Ma, on [0, R2−N ], then
lima→∞ va(Ma) = ∞. For if not we may again appeal to (2.33) as we did earlier
to again get a contradiction. Thus the assumption that va(Ma) is bounded is false.
Therefore if Ma ∈ [0, R2−N ] exists, then

lim
a→∞

va(Ma) =∞. (2.36)

Next we show that v′a > 0 on [0, R2−N ] if a is sufficiently large. So suppose not.
Then there exists a first local maximum, Ma, of va, with 0 < Ma ≤ R2−N . From
(2.10)–(2.12) we have Ea(t) > 0 and E′a(t) ≥ 0. Thus for 0 ≤ t ≤Ma we have

1

2

v′2a (t)

h(t)
+ F (va(t)) ≤ F (va(Ma)). (2.37)

Rewriting and integrating (2.37) on (0,Ma) gives∫ Ma

0

v′a(t) dt√
2
√
F (va(Ma))− F (va(t))

≤
∫ Ma

0

√
h(t) dt

≤
√
h2

∫ R2−N

0

t−α̃/2 dt

=
2
√
h2

2− α̃
(R2−N )

1− α̃2 .

(2.38)

Since va(Ma) → ∞ as a → ∞ from (2.36) it follows from (H3) that F (va(Ma)) −
F (s) ≤ C10va

p+1(Ma) for some constant C10 > 0. Then after changing variables
on the left-hand side of (2.38) and rewriting we obtain

va
1−p
2 (Ma)√
2C10

=
va(Ma)√

2
√
C10vap+1(Ma)

≤
∫ va(Ma)

0

ds√
2
√
F (va(Ma))− F (s)

=
2
√
h2

2− α̃
(R2−N )

1− α̃2 .

(2.39)

This yields a contradiction since the right-hand side of (2.39) is finite but 0 < p < 1
and by (2.36) the left-hand side of (2.39) goes to infinity as a → ∞. Thus the
assumption that va has a local maximum on [0, R2−N ] if a is sufficiently large is
false. Therefore if a is sufficiently large then va is increasing on [0, R2−N ] and
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so va(R2−N ) = max[0,R2−N ] va(t). Since from the first part of the proof we know

that lima→∞max[0,R2−N ] va(t) = ∞ it follows that lima→∞ va(R2−N ) = ∞. This
completes the proof. �

Lemma 2.4. Let va(t) satisfy (2.4), (2.8) and assume (H1)–(H6) hold. Let R > 0
be sufficiently small. Then va(t) has a local maximum, Ma, and a zero, Za, with
0 < Ma < Za < R2−N if a is sufficiently small. In addition, if R > 0 is sufficiently
small then va has n zeros on [0, R2−N ].

Proof. Let us suppose instead that v′a(t) > 0 on [0, R2−N ] for all sufficiently small
a and R sufficiently small. Then from (2.18) it follows that ta,γ ≤ C11 where C11 is
independent of a. Thus ta,γ < R2−N if R is sufficiently small. Since va is continuous
and increasing then for t > ta,γ we have γ = va(ta,γ) < va(t). Since v′a(t) > 0 and
f(va) > 0 on [γ,∞) with f(va)→∞ as va →∞ by (H3) it follows that there exists
C12 > 0 such that f(va) ≥ C12 > 0 on [ta,γ , R

2−N ]. Then

v′′a(t) + C12h(t) ≤ v′′a(t) + h(t)f(va(t)) = 0 on [ta,γ , R
2−N ]. (2.40)

Rewriting and integrating on (ta,γ , t) gives

0 < v′a(t) ≤ v′a(ta,γ)− C12

[ t1−α̃ − t1−α̃a,γ

1− α̃
]
. (2.41)

From (2.6) we know 0 < α̃ < 1 and it follows from (2.26) that if 0 ≤ a ≤ a0 then

|v′a(t)| ≤ a+ C7 ≤ a0 + C7. (2.42)

Thus v′a(ta,γ) is bounded by a constant that is independent of a when a is sufficiently
small and so it follows that the right-hand side of (2.41) becomes negative if R is
sufficiently small which contradicts the assumption that v′a(t) > 0 on [0, R2−N ].
Thus if a is sufficiently small and R is sufficiently small then there is an Ma with
0 < Ma < R2−N such that v′a > 0 on (0,Ma) and v′a(Ma) = 0.

Next, we want to show that va has a zero on [0, R2−N ] if a and R are sufficiently
small. In order to do this we will show that va → v0 uniformly on [0, R2−N ] as
a→ 0+ where

v′′0 + h(t)f(v0) = 0,

v0(0) = 0 = v′0(0).

Then we will show v0 has a zero and since va → v0 uniformly as a → 0+ it will
follow that va has a zero if a is sufficiently small and R is sufficiently small.

It follows from Lemmas 2.1 and 2.2, and (2.28)–(2.29) that va, v
′
a are uniformly

bounded on [0, R2−N ] for all 0 ≤ a ≤ a0 for some a0 > 0. Therefore there is a
subsequence of the va, say vaj , such that vaj → v0 uniformly on [0, R2−N ] by the
Arzela-Ascoli Theorem as aj → 0.

Now we assume there is a ta,β with 0 < ta,β < R2−N such that va(ta,β) = β and
0 ≤ va(t) < α on [0, ta,β). It follows from (2.21) and an argument similar to (2.22)
that

β ≤ ta,β(a+ C5) (2.43)

and as in (2.19) we have

0 ≤ v′′a ≤
h2
Cq1

t
−α̃−2q

1+q + h2L1βt
−α̃ ≤ C13t

−α̃−2q
1+q on [0, ta,β ] (2.44)

where C13 = h2

Cq1
+ h2L1βR

(2−N)(2−α̃)q
1+q .
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Thus for 0 < x < y < ta,β and since 0 < 1−α̃−q
1+q < 1 we have

0 ≤ v′a(y)− v′a(x) =

∫ y

x

v′′a(t) dt

≤ C13

∫ y

x

t
−α̃−2q

1+q dt

= C14|y
1−α̃−q

1+q − x
1−α̃−q

1+q |

≤ C14|y − x|
1−α̃−q

1+q

(2.45)

where C14 = 1+q
1−α̃−qC13. And since 0 < β

a0+C5
≤ ta,β from (2.43) it follows from

this that the v′a are equicontinuous on [0, β
a0+C5

] for 0 ≤ a ≤ a0 and so v′aj → v′0
uniformly on [0, β

a0+C5
] by the Arzela-Ascoli Theorem.

Now if 0 < va < β on [0, R2−N ] then we see (2.44) and (2.45) hold [0, R2−N ].

Next we choose t0 with 0 < t0 <
β

a0+C5
. Then integrating (2.13) on (t0, t) gives:

1

2
v′2aj (t) + h(t)F (vaj (t)) =

1

2
v′2aj (t0) +

∫ t

t0

h′(s)F (vaj (s)) ds. (2.46)

Now since vaj → v0 uniformly and since v′aj (t0) → v′0(t0) it then follows that

v′aj → v′0 uniformly on [t0, R
2−N ], and so combined with the earlier fact v′aj → v′0

uniformly on [0, β
a0+C5

] we see that v′aj → v′0 uniformly on [0, R2−N ].

Now taking limits in (2.46) gives

1

2
v′20 (t) + h(t)F (v0(t)) =

1

2
v′20 (t0) +

∫ t

t0

h′(s)F (v0(s)) ds on (0, R2−N ].

Letting t0 → 0+ gives

1

2
v′20 (t) + h(t)F (v0(t)) =

∫ t

0

h′(s)F (v0(s)) ds.

Then from (2.4) and (H3) we see that v′′aj → v′′0 at all points where v0(t) 6= 0 and
at these points we have

v′′0 + h(t)f(v0) = 0,

v0(0) = v′0(0) = 0.

As at the beginning of the proof of this lemma it follows that v0 has a local
maximum, M0, and v0(M0) > γ if R > 0 is sufficiently small. Now we assume by

way of contradiction v0 > γ on [M0, R
2−N ]. Then we have f(v0)

v0
> 0 on [M0, R

2−N ]

so there is a C15 > 0 such that f(v0)
v0
≥ C15 > 0 when γ ≤ v0 ≤ v0(M0). Thus

substituting in (2.4) and using (2.7) we obtain

v′′0 (t) +
h0C15

tα̃
v0(t) ≤ 0.

So v′′0 < 0 while γ ≤ v0 ≤ v0(M0). Integrating v′′0 < 0 twice on (M0 + ε, t) we have

v0(t) ≤ v0(M0 + ε) + v′0(M0 + ε)(t− (M0 + ε)). (2.47)

Now if R is sufficiently small then R2−N will be very large and thus we may
choose t sufficiently large so that the right-hand side of (2.47) becomes negative
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contradicting that v0 ≥ γ. So there exists tγ0 > M0 such that v0(tγ0) = γ and
v′0 < 0 on (M0, tγ0) if R is sufficiently small.

Next while β < γ+β
2 ≤ v0 ≤ γ then f(v0) > 0 so v′′0 < 0. Integrating v′′0 < 0

twice on (tγ0 , t) gives

v0(t) < γ + v′0(tγ0)(t− tγ0) with v′0(tγ0) < 0.

Now again if R is sufficiently small then R2−N is very large and so we can choose
t sufficiently large from which it would follow that v0(t) < γ+β

2 contradicting that

v0(t) ≥ γ+β
2 . So there is a tγ1 > tγ0 such that v0(tγ1) = γ+β

2 .

Now assume v0(t) > 0 on (M0, R
2−N ). Then recall that 1

2
v′20
h(t) + F (v0) > 0 and

there exists C16 > 0 so −F (v0) ≥ C16v
1−q
0 for t > tγ1 . Therefore,

− v′0

v
1−q
2

0

≥
√

2C16h0 t
−α̃/2 on (tγ1 , t).

Integrating on (tγ1 , t) gives

0 < v
1+q
2

0 (t) ≤
(γ + β

2

) 1+q
2 − (1 + q)

√
2C16h0

2− α̃
[
t
2−α̃
2 − t

2−α̃
2

γ1

]
. (2.48)

And again if R is sufficiently small then we can choose t sufficiently large so that
the right-hand side of (2.48) becomes negative contradicting that v0 > 0. Thus
v0 has a first positive zero, Z1, on [0, R2−N ] if R > 0 is sufficiently small. Also

0 < 1
2
v′20
h(t) + F (v0) for t > 0 so 0 < 1

2
v′20 (Z1)
h(Z1)

and therefore v′0(Z1) < 0. Thus

v0(Z1 + ε) < 0 for ε > 0 sufficiently small. Then since va → v0 uniformly on
[0, Z1 + ε] it follows that va(Z1 + ε) < 0 if a is sufficiently small and therefore if
a > 0 and R are sufficiently small we see that va has a zero 0 < Z1,a < R2−N . Then
as at the beginning of the proof where we showed that va has a local maximum,
a similar argument shows va has a local minimum, ma, with Z1,a < ma and then
va has a second zero, Z2,a, with Z2,a > ma, if a > 0 and R are sufficiently small.
Continuing in this way we can find n zeros on [0, R2−N ] if R is small enough. This
completes the proof. �

3. Proof of main Results

Proof of Theorem 1.1. Consider the set

S0 = {a > 0 : va(t) > 0 on (0, R2−N )}.

If a is sufficiently large then va(t) > 0 on (0, R2−N ) by Lemma 2.3 and therefore
va ∈ S0 if a is sufficiently large. Thus S0 6= ∅. Also if a and R are sufficiently small
then va has a zero on (0, R2−N ) by Lemma 2.4. Thus S0 is bounded from below by
a positive constant if R is sufficiently small. Now let

a0 = inf S0.

We now show that va0 > 0 on (0, R2−N ) and va0(R2−N ) = 0. Suppose on the
contrary that there exists a zero, Za0 ∈ (0, R2−N ), and va0 > 0 on (0, Za0) with

va0(Za0) = 0. Then 0 < Ea(Za0) = 1
2

v′2a0
(Za0 )

h(Za0 )
so v′a0(Za0) < 0.

Thus for Za0 < t1 < R2−N and t1 close to Za0 we have va0(t1) < 0. Then
for a close to a0 with a < a0 then va(t1) < 0 by continuous dependence (Lemma
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2.2) but this contradicts the definition of a0. Thus va0 > 0 on (0, R2−N ) and so
va0(R2−N ) ≥ 0.

Next suppose that va0(R2−N ) > 0. Then va0 > 0 on (0, R2−N ] and for a close
to a0 with a < a0 then va > 0 on (0, R2−N ]. But since a < a0, it follows that
a /∈ S0 so va must have a zero on (0, R2−N ] which contradicts that va > 0 on
(0, R2−N ]. Thus va0(R2−N ) = 0. Also since Ea non-decreasing it follows that

0 < Ea(R2−N ) = 1
2

v′2a0
(R2−N )

h(R2−N )
so v′a0(R2−N ) < 0.

Next let us define

S1 = {a > 0 : va(t) solves (2.4), (2.8) and has exactly one zero on (0, R2−N )}.

If we choose a slightly smaller than a0 and R sufficiently small then it follows from
Lemma 2.4 that va has at least one zero, Za1 , on (0, R2−N ) and Za1 is close to
R2−N . Also we know v′a0(R2−N ) < 0 so if a is sufficiently close to a0 then v′a < 0

on (Za1 , R
2−N ). Thus va has at most one zero on (0, R2−N ) if a is sufficiently

close to a0. Therefore S1 is nonempty. We also know from Lemma 2.4 that if R is
sufficiently small then va has a second zero on (0, R2−N ). Therefore S1 is bounded
from below. So let

a1 = inf S1.

In a similar way we can show that va1 has exactly one zero on (0, R2−N ) and
va1(R2−N ) = 0. In a similar fashion we can show that if n0 is a given nonnegative
integer then if R > 0 is sufficiently small then there exists a0, a1, . . . , an0 such that
vak has k zeros on (0, R2−N ) and vak(R2−N ) = 0. Finally, let uk(r) = vak(r2−N ).
Then uk(r) satisfies (1.1)–(1.3) and uk has k zeros on (R,∞). This completes the
proof. �

Proof of Theorem 1.2. Suppose there is a solution, va, of (2.4) with
va(0) = va(R2−N ) = 0. This then implies that va has a local maximum, Ma, with
0 < Ma < R2−N and v′a(Ma) = 0. Since Ea is non-decreasing (by (2.10)) then for
0 < t < Ma,

0 <
1

2

v′2a
h(t)

+ F (va(t)) = Ea(t) ≤ Ea(Ma) = F (va(Ma)). (3.1)

Thus va(Ma) > γ. Rewriting and integrating (3.1) on (0,Ma) gives∫ Ma

0

v′a(t) dt√
2
√
F (va(Ma))− F (va(t))

≤
∫ Ma

0

√
h2 t

−α̃/2 dt

=
2
√
h2

2− α̃
M

2−α̃
2

a

≤ 2
√
h2

2− α̃
(R2−N )

2−α̃
2 .

(3.2)

Since α̃ < 1 and from (H4) we have −F (va(t)) ≤ F0 so it follows that F (va(Ma))−
F (va(t)) ≤ F (va(Ma)) + F0 which we apply to (3.2) to obtain∫ Ma

0

v′a(t) dt√
2
√
F (va(Ma))− F (va(t))

≥ va(Ma)√
2
√
F (va(Ma)) + F0

. (3.3)
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Next from (H3) it follows that there is a constant F1 > 0 such that F (x) ≤ F1|x|p+1

for all x and therefore it follows from (3.2)-(3.3) and that va(Ma) > γ that

γ
1−p
2

√
2
√
F1 + F0

γp+1

≤ v
1−p
2

a (Ma)
√

2
√
F1 + F0

vp+1
a (Ma)

≤ 2
√
h2

2− α̃
(R2−N )

2−α̃
2 . (3.4)

Thus the right-hand side of (3.4) goes to zero if R sufficiently large but the left-hand
side of (3.4) is positive and independent of R. Thus (1.1)–(1.3) has no solutions if
R is sufficiently large. This completes the proof. �

4. Appendix

Lemma 4.1. Let a > 0 and (H1)–(H6) hold. Then there exists a solution va of
(2.4), (2.8) on (0, ε] for some ε > 0.

Proof. This is similar to the proof of existence in [1] which we include here for
completeness. First integrate (2.4) over (0, t) and use (2.8). This gives

v′a(t) = a−
∫ t

0

h(s)f(va(s)) ds for t > 0. (4.1)

Integrate again over (0, t) and using (2.8) gives

va(t) = at−
∫ t

0

∫ s

0

h(x)f(va(x)) dx ds for t > 0. (4.2)

Now let W (t) = va(t)
t so va(t) = tW (t) and W (0) = limt→0+

va(t)
t = v′a(0) = a.

Rewriting (4.2) we obtain

W (t) = a− 1

t

∫ t

0

∫ s

0

h(x)f (xW (x)) dx ds for t > 0. (4.3)

We now we solve equation (4.3) on (0, ε] by a fixed point method as follows. Let us
define

S =
{
W : [0, ε]→ R with W (0) = a > 0,W ∈ C[0, ε] and

|W (t)− a| ≤ a

2
on [0, ε]

} (4.4)

where C[0, ε] is the set of continuous functions on [0, ε] and ε > 0. Let

‖W‖ = sup
x∈[0,ε]

|W (x)|.

Then (S, ‖ · ‖) is a Banach space. Let us define a map T on S by

TW (t) =

{
a for t = 0

a− 1
t

∫ t
0

∫ s
0
h(x)f (xW (x)) d ds for 0 < t ≤ ε.

From (4.4) we see 0 < a
2 ≤ W (x) ≤ 3a

2 on [0, ε] so it follows that | −1
xqW q(x) | ≤

2qx−q

aq on (0, ε] and since we know from (H1)–(H2) that g1(x) is locally Lipschitz
this then implies that there exists L1 > 0 such that

|g1(x)| ≤ L1|x| on [0, γ]. (4.5)

Now let W ∈ S and suppose 0 < ε < 2γ
3a . Then on [0, ε] we have

0 ≤ xW (x) < ε
3a

2
<

2γ

3a

3a

2
= γ.
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using (H2), (2.6), and (4.5) we estimate

|h(x)f(xW (x))| =
∣∣h(x)

( −1

xqW q(x)
+ g1(xW (x))

)∣∣ ≤ h22q

aq
x−(α̃+q) +

3ah2L1

2
x1−α̃.

Recalling from (2.6) that α̃+ q < 1 then integrating once over [0, t] gives∫ t

0

|h(x)f (xW (x)) | dx ≤ A1

aq
t1−α̃−q +A2at

2−α̃ (4.6)

where A1 = h22
q

(1−α̃−q) and A2 = 3h2L1

2(2−α̃) . Thus from (4.6) we have

lim
t→0+

∫ t

0

|h(x)f (xW (x)) | dx = 0. (4.7)

Integrating (4.6) again gives∫ t

0

∫ s

0

|h(x)f (xW (x)) | dx ds ≤ A3t
2−α̃−q

aq
+ aA4t

3−α̃ (4.8)

where A3 = h22
q

(2−α̃−q)(1−α̃−q) and A4 = 3h2L1

2(2−α̃)(3−α̃) . So we see

lim
t→0+

∫ t

0

∫ s

0

|h(x)f (xW (x)) | dx ds = 0. (4.9)

We now show that T (W ) ∈ S for each W ∈ S if ε > 0 is sufficiently small so we
first let W ∈ S. It follows then from (4.9) that T (W ) is continuous on [0, ε]. Thus
we see limt→0+ TW (t) = a and so |TW (t) − a| ≤ a

2 on [0, ε] if ε > 0 is sufficiently
small. Therefore T : S → S if ε is sufficiently small.

We next prove that T is a contraction mapping if ε is sufficiently small. Let
W1,W2 ∈ S and suppose 0 < ε < 2γ

3a . Then

TW1(t)− TW2(t) = −1

t

∫ t

0

∫ s

0

h(x)[f(xW1(x))− f(xW2(x))] d ds. (4.10)

By (H2) we have f(xW (x)) = −x−qW−q(x) + g1(xW (x)) where 0 < q < 1.
Then as earlier before (4.5) we see that 0 ≤ xWi ≤ ε 3a2 < γ on [0, ε] for i = 1, 2
therefore using (4.5) this gives

|f(xW1(x))− f(xW2(x))| = |−1

xq
[

1

W q
1

− 1

W q
2

] + g1(xW1(x))− g1(xW2(x))|

≤ 1

xq
∣∣ 1

W1
q −

1

W2
q

∣∣+ L1x|W1 −W2|.
(4.11)

Next applying the mean value theorem we see that the right-hand side of (4.11) is
bounded by

1

xq
[ q

W q+1
3

|W1 −W2|
]

+ L1x|W1 −W2|

where W3 is between W1 and W2. Since Wi ∈ S for i = 1, 2, 3 and |Wi − a| ≤ a
2

then a
2 ≤ Wi ≤ 3a

2 on [0, ε]. Therefore it follows that W3
q+1 ≥

(
a
2

)q+1
and so we

have

|f(xW1(x))− f(xW2(x))| ≤ |W1 −W2|
[ q
xq
(2

a

)q+1
+ L1x

]
on (0, ε]. (4.12)
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Recalling that |h(t)| ≤ h2

tα̃ and α̃+q < 1 from (2.6), and t ∈ (0, ε], then using (4.12)
in (4.10) gives

|TW1 − TW2| ≤
1

t

∫ t

0

∫ s

0

h2
xα̃
|W1 −W2|

[ q
xq
(2

a

)q+1
+ L1x

]
dx ds

≤ 1

t
‖W1 −W2‖

∫ t

0

∫ s

0

h2
xα̃
[ q
xq
(2

a

)q+1
+ L1x

]
dx ds

≤ ‖W1 −W2‖
[A5ε

1−q−α̃

aq+1
+A6ε

2−α̃],
where A5 = h2 q 2q+1

(2−q−α̃)(1−q−α̃) and A6 = h2L1

(3−α̃)(2−α̃) . Since

lim
ε→0+

[A5ε
1−q−α̃

aq+1
+A6ε

2−α̃] = 0,

for ε > 0 sufficiently small we see that

|TW1 − TW2| ≤ c‖W1 −W2‖,

where

c =
A5ε

1−q−α̃

aq+1
+A6ε

2−α̃. (4.13)

Thus for ε sufficiently small we see 0 < c < 1 and therefore T is a contraction
mapping on S.

Thus by the contraction mapping principle [5] there exists a unique solution
W ∈ S to TW = W on [0, ε] for some ε > 0. And then va(t) = tW (t) is a solution
of (2.4) on (0, ε] for some ε > 0. This completest the proof. �

Lemma 4.2. Let a = 0 and (H1)–(H6) hold. Then there exists a solution v0 > 0
of equation (2.4) with v0(0) = v′0(0) = 0 on (0, ε] for some ε > 0.

Proof. Suppose first that v0 is a solution to (2.4) on (0, ε] with

v0(0) = 0, v′0(0) = 0. (4.14)

Let us determine the behavior of v0(t) on (0, ε). using the fact that f(va) =
−1

|va|q−1va
+ g1(va) where 0 < q < 1, g1(0) = 0, and g1 is continuous at 0, then

integrating (2.4) on (0, t) and using v′0(0) = 0 gives:

v′0(t) = −
∫ t

0

h(s)f
(
v0(s)

)
ds.

Integrating again on (0, t) and using v0(0) = 0 gives

v0(t) = −
∫ t

0

∫ s

0

h(x)f
(
v0(x)

)
dx ds. (4.15)

Now let v0(t) = t
2−α̃
1+qW (t) where W (0) 6= 0. Rewriting (4.15) we have

W (t) =
1

t
2−α̃
1+q

∫ t

0

∫ s

0

h(x)
[ 1

x
(2−α̃)q

1+q W q(x)
− g
(
x

2−α̃
1+qW (x)

)]
dx ds. (4.16)
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Assuming W (t) is continuous at 0, taking the limit of (4.16) and using L’Hôpital’s
rule twice gives

W (0) = lim
t→0+

W (t)

= A7 lim
t→0+

tα̃h(t)
[

t−α̃

t
(2−α̃)q

1+q W q(t)

]
− g1

(
t
2−α̃
1+qW (t)

)
h(t)

t
−α̃−2q

1+q

= A7

[
lim
t→0+

tα̃h(t)

W q(t)
− lim
t→0+

h(t)g1
(
t
2−α̃
1+qW (t)

)
t
−α̃−2q

1+q

]
=

A7h1
W q(0)

−A7 lim
t→0+

h(t)g1
(
t
2−α̃
1+qW (t)

)
t
−α̃−2q

1+q

,

(4.17)

where A7 =
(
1+q
2−α̃

)(
1+q

1−α̃−q
)
. Since tα̃h(t)→ h1 > 0, by (2.6) as t→ 0+, 0 < α̃ < 1

and |g1(v)| ≤ L1|v| on [0, γ] it follows that∣∣∣h(t)g1
(
t
2−α̃
1+qW (t)

)
t
−α̃−2q

1+q

∣∣∣ ≤ h2t
−α̃L1t

2−α̃
1+q

t
−α̃−2q

1+q

|W (t)| = h2L1t
2−α̃|W (t)| → 0

as t→ 0+. Then we have

W q+1(0) = h1A7 =
h1(1 + q)2

(2− α̃)(1− α̃− q)
,

hence

W (0) =
[ h1(1 + q)2

(2− α̃)(1− α̃− q)

] 1
q+1 ≡ b0. (4.18)

Now let W (t) = b0Y (t). Then Y (0) = 1 and (4.16) becomes

Y (t) =
1

t
2−α̃
1+q

∫ t

0

∫ s

0

h(x)
[ 1

x
(2−α̃)q

1+q b0
q+1Y q(x)

−
g1
(
x

2−α̃
1+q b0Y (x)

)
b0

]
dx ds. (4.19)

Now we attempt to solve (4.19) by using the contraction mapping principle. Let us
define

J =
{
Y ∈ C[0, ε] : Y (0) = 1 and |Y − 1| < δ where

0 < δ < 1 is sufficiently small
}
.

(4.20)

Let ‖Y ‖ = supx∈[0,ε] |Y (x)|. Then (J, ‖ · ‖) is a Banach space. Now we define T on
J by

TY (t)

=


1 for t = 0

1

t
2−α̃
1+q

∫ t
0

∫ s
0
h(x)

[
1

x
(2−α̃)q

1+q b0q+1Y q(x)

− g1

(
x

2−α̃
1+q b0Y (x)

)
b0

]
dx ds for 0 < t ≤ ε.

It is straightforward to show TY (t) is continuous and from (4.18) and L’Hôpital’s
rule limt→0+ TY (t) = 1. Thus it follows that |TY (t)−1| ≤ δ on [0, ε) if ε sufficiently
small, and therefore T : J → J if ε and δ are sufficiently small.
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Since |Y − 1| < δ < 1 then 0 < 1 − δ < Y < 1 + δ and this implies that
1
Y q ≤

1
(1−δ)q . Let us suppose Y1, Y2 ∈ J then

TY1(t)− TY2(t)

=
1

t
2−α̃
1+q

∫ t

0

∫ s

0

h(x)
[ 1

x
(2−α̃)q

1+q b0
q+1

( 1

Y q1 (x)
− 1

Y q2 (x)

)]
dx ds

− 1

b0t
2−α̃
1+q

∫ t

0

∫ s

0

h(x)
[
g1

(
x

2−α̃
1+q b0Y1(x)

)
+ g1

(
x

2−α̃
1+q b0Y2(x)

)]
dx ds.

(4.21)

For the integral in (4.21) since Y1, Y2 ∈ J , then by the mean value theorem there is a
Y3 between Y1, Y2 where |Yi−1| < δ for i = 1, 2, 3 (and therefore 1−δ < Y3 < 1+δ)
then

| 1

Y q1
− 1

Y q2
| = q

Y3
q+1 |Y1 − Y2| ≤

q

(1− δ)q+1 |Y1 − Y2|.

Then using (2.6) the integral in (4.21) becomes∣∣∣ 1

t
2−α̃
1+q

∫ t

0

∫ s

0

h(x)
[ 1

x
(2−α̃)q

1+q b0
q+1

( 1

Y1
q −

1

Y2
q

)]
dx ds|

≤ q

(1− δ)1+qb01+q
|Y1 − Y2|

t
(2−α̃)q

1+q

∫ t

0

∫ s

0

h(x)

x
(2−α̃)q

1+q

dx ds

≤ h2q

(1− δ)1+qb01+q
|Y1 − Y2|

t
(2−α̃)q

1+q

∫ t

0

∫ s

0

x
−(α̃+2q)

1+q dx ds

≤ (1 + q)2h2q

(2− α̃)(1− α̃− q)(1− δ)1+q
|Y1 − Y2|
b0

1+q t
(2−α̃)(1−q)

1+q .

Recalling b0
q+1 = h1A7 = h1

(
1+q
2−α̃

)(
1+q

1−α̃−q
)

we obtain the right-hand side of (4.21)

is bounded by
h2q

h1(1− δ)1+q
ε

(2−α̃)(1−q)
1+q ‖Y1 − Y2‖.

Since δ > 0 and 0 < q < 1 we see that for ε > 0 sufficiently small,

h2q

h1(1− δ)1+q
ε

(2−α̃)(1−q)
1+q ≤ d < 1.

For the integral in (4.21) since g1 is locally Lipschitz at 0, it follows that∣∣∣g1(x 2−α̃
1+q b0Y1(x)

)
− g1

(
x

2−α̃
1+q b0Y2(x)

)∣∣∣ ≤ L1 b0 x
2−α̃
1+q ‖Y1 − Y2‖

so substituting this into (4.21) gives∣∣∣ −1

b0t
2−α̃
1+q

∫ t

0

∫ s

0

h(x)
[
g1

(
x

2−α̃
1+q b0Y1(x)

)
− g1

(
x

2−α̃
1+q b0Y2(x)

)]
dx ds

∣∣∣
≤ |Y1 − Y2|h2L1

t
2−α̃
1+q

∫ t

0

∫ s

0

x−α̃+
2−α̃
1+q dx ds

≤ |Y1 − Y2|h2L1A8t
2+q
1+q

(4.22)

where A8 =
(

1+q
1+(2+q)(1−α̃)

)(
1+q

(2+q)(2−α̃)
)
. Since limt→0+ h2L1A8t

2+q
1+q = 0 we can

choose ε small enough so that h2L1A8t
2+q
1+q < 1−d

2 and so combining (4.21) and
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(4.22) we obtain

|TY1(t)− TY2(t)| ≤ 1 + d

2
‖Y1 − Y2‖

where 0 ≤ d < 1 and thus 1+d
2 < 1.

Thus T is a contraction mapping, so by the contraction mapping principle [5]

there is a unique solution Y ∈ J to T (Y ) = Y on [0, ε]. Then va(t) = t
2−α̃
1+qW (t) is

a solution of (2.4), (4.14) on [0, ε] for some ε > 0. This completes the proof. �
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