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REITERATED HOMOGENIZATION OF
HYPERBOLIC-PARABOLIC EQUATIONS IN DOMAINS

WITH TINY HOLES

HERMANN DOUANLA, ERICK TETSADJIO

Abstract. This article studies the homogenization of hyperbolic-parabolic

equations in porous media with tiny holes. We assume that the holes are

periodically distributed and that the coefficients of the equations are periodic.
Using the multi-scale convergence method, we derive a homogenization result

whose limit problem is defined on a fixed domain and is of the same type as

the problem with oscillating coefficients.

1. Introduction

In porous media with tiny holes, we study the asymptotic behaviour (as ε→ 0)
of the solution to the following problem with rapidly oscillating coefficients:
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∇uε · νε = 0 on (∂Ωε \ ∂Ω)× (0, T ),

uε = 0 on (∂Ωε ∩ ∂Ω)× (0, T ),

uε(x, 0) = u0(x) in Ωε,

ρ(
x

ε2
)
∂uε
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1
2 (
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ε2
)v0(x) in Ωε,

(1.1)

where Ω is a bounded domain in RN (N ≥ 3) locally located on one side of its
Lipschitz boundary ∂Ω, f ∈ L2(0, T ;L2(Ω)), u0 ∈ H1

0 (Ω), v0 ∈ L2(Ω), T > 0 is
a fixed real number representing the final time of the process and Ωε is a domain
with periodically distributed tiny holes. The coefficients ρ, β and the matrix A are
periodic. A detailed description of the domain Ωε and precise assumptions on the
coefficients are given in the next section.

Equations of the form (1.1) are usually called hyperbolic-parabolic equations (H-
P equations) and appears when modelling wave processes arising for instance, in
heat theory (ρ = 0 and β 6= 0), theories of hydrodynamics, electricity, magnetism,
light, sound and in elasticity theory (ρ 6= 0 and β 6= 0) (see e.g., [17, 18]). It
is also well known [2, 20] that equations of the form (1.1) model the process of
small longitudinal linear elastic vibration in a thin inhomogeneous rod, in this case,
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ρ 6= 0 is the linear density of the rod, β = β(y) 6= 0 the dissipation coefficient, A
the Young’s modulus, f the distribution of the density of an external force directed
along the rod and uε the displacement function.

The homogenization problem for H-P equations was first studied by Bensoussan,
Lions and Papanicolau [3] in a fixed domain by means of compactness arguments
and Tatar’s test function method. Bakhvalov and Panasenko [2] considered the
same problem and utilized the formal asymptotic expansion method combined with
maximum principles to prove homogenization results.

To the best of our knowledge, Migorski [11] was the first to address the homoge-
nization problem for H-P equations in perforated domains. In a domain perforated
with holes of size ε, he considered a Y -periodic matrix A and assumed some strong
convergence hypotheses on ρε and βε to prove a homogenization theorem by means
of the test function method. Timofte [21] considered the same problem as Migorski
but with ρε = ε and a non-linear source term. Yang and Zhao [23] addressed the
same problem as Migorski by means of the periodic unfolding method. It is worth
pointing out that none of the just mentioned works falls within the framework of
reiterated homogenization and those in perforated domains deal with holes of size
ε.

In the situations where ρ 6= 0 and β = 0, or ρ = 0 and β 6= 0 there are numerous
works that are indeed related to the homogenization problem for H-P equations. In
this direction we quote [4, 5, 6, 7, 9, 10, 12, 13, 14, 22] and references therein. We
also mention that Nnang [16] has studied the deterministic homogenization problem
for weakly damped nonlinear H-P equations in a fixed domain with ρ = 1.

In this work, the matrix A oscillates on two scales and our domain is perforated
with tiny holes of size ε2 so that our work falls within the scope of reiterated
homogenization. Moreover, we have a time dependent function βε and we utilised
Nguetseng’s two scale convergence method [15]. A passage to the limit (as ε→ 0)
yields a macroscopic problem which is of the same type as the ε-problem: an H-P
equation.

This article is organized as follows. Section 2 deals with the geometric setting
of the problem and detailed assumptions on the data. In Section 3 some estimates
and compactness results are proven. In Section 4, we recall the basics of the multi-
scale convergence theory and formulate a suitable version of its main compactness
theorem to be used in the proof of our main result. We also proved some preliminary
convergence results. In the fourth section our main result is formulated and proved.

2. Setting of the problem

Let us recall here the setting for the perforated domain Ωε (see e.g., the pioneer-
ing work on homogenization of differential equations in perforated domains [4]). Let
Z = (0, 1)N be the unit cube in RN and let Θ ⊂ Z be a compact set in RN with
a smooth boundary ∂Θ, a non-empty interior and such that the Lebesgue measure
of the set Z \Θ is different from zero. For ε > 0, we set

tε = {k ∈ Z : ε2(k + Θ) ⊂ Ω}, Θε = ∪k∈tεε2(k + Θ)

and we define the porous medium as:

Ωε = Ω \Θε.

It appears by construction that tε is finite since Ω is bounded. Hence Θε is closed
and Ωε is open. One can observe that Ωε represents the subregion of Ω obtained
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from Ω by removing a finite number of periodically distributed holes {ε2(k + Θ) :
k ∈ tε} of size ε2. In the ε-problem (1.1), νε is the outward unit normal to Ωε on
∂Ωε \ ∂Ω. If we set Z∗ = Z \Θ and denote by χG the characteristic function of the
set G, the perforated domain Ωε can also be defined by

Ωε =
{
x ∈ Ω : χZ∗(

x

ε2
) = 1

}
.

Hence
χΩε(x) = χZ∗(

x

ε2
) (x ∈ Ω).

For further needs we introduce the Hilbert space

Vε = {u ∈ H1(Ωε) : u = 0 on ∂Ω}
endowed with the gradient norm

‖u‖Vε = ‖∇u‖(L2(Ωε))N (u ∈ Vε).
We now state the assumptions on the data. The ε-problem (1.1) is constrained

as follows:
(A1) Uniform ellipticity. The matrix A(y, z) = (aij(y, z))1≤i,j≤N ∈ L∞(RN ×

RN )N×N is real, symmetric and there exists a positive constant Λ > 0 such
that

‖aij‖L∞(RN×RN ) ≤ Λ for 1 ≤ i, j ≤ N,
N∑
ij=1

aij(y, z)ζiζj ≥ Λ−1|ζ|2 for a.e. (y, z) ∈ RN × RN and all ζ ∈ RN .

(A2) Positivity of ρ and β. The functions ρ(z) ∈ C1(RN ) and β(y, τ) ∈ L∞(RN×
R) satisfy

ρ(z) ≥ 0 in RN ,

β(y, τ) ≥ α > 0 a.e. in RN × R.
(2.1)

(A3) Periodicity. Let Y = (0, 1)N , Z = (0, 1)N and T = (0, 1). We assume that
the function β is Y ×T -periodic and that for any 1 ≤ i, j ≤ N , the function
aij is Y ×Z-periodic. We also assume that the function ρ is Z-periodic and
further satisfy

MZ∗(ρ) =
∫
Z∗
ρ(z)dz > 0.

The main result of this article reads as follows (the matrix Â appearing therein
is defined later).

Theorem 2.1. Assume that hypotheses (A1)–(A3) hold and let uε (ε > 0) be the
unique solution to (1.1). Then as ε→ 0 we have

uε → u0 in L2(ΩT ),

where u0 ∈ L2(0, T ;H1
0 (Ω)) is the unique solution to(∫

Z∗
ρ(z)dz

)∂2u0

∂t2
+
(∫ 1

0

∫
Y

β(y, τ) dy dτ
)∂u0

∂t
− 1
|Z∗|

div
(
Â∇xu0

)
= f(x, t)

in Ω× (0, T ),

u0 = 0 on ∂Ω× (0, T ),

u0(x, 0) = u0(x) in Ω,
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Z∗
ρ(z)dz

)∂u0

∂t
(x, 0) =

(∫
Z∗

√
ρ(z)dz

)
v0(x) in Ω.

Unless otherwise specified, vector spaces throughout are considered over R, and
scalar functions are assumed to take real values. The numerical space RN and its
open sets are provided with the Lebesgue measure denoted by dx = dx1...dxN . The
usual gradient operator will be denoted by ∇. Throughout, C denotes a generic
constant independent of ε that can change from one line to the next. We will use
the following notation. The centered dot stands for the Euclidean scalar product
in RN while the absolute value or modulus is denoted by | · |.

Let F (Rm), (m ≥ 3 integer) be a given function space and let U be a bounded
domain in Rm. The Lebesgue measure of U is denoted by |U | and the mean value
of a function v over U is denoted and defined by

MU (v) =
1
|U |

∫
U

v(x) dx.

We denote by Fper(U) the space of functions in Floc(Rm) (when it makes sense)
that are U -periodic, and by F#(U) the space of those functions v ∈ Fper(U) with∫
U
v(y)dy = 0.
The letter E denotes throughout a family of strictly positive real numbers (0 <

ε < 1) admitting 0 as accumulation point while a fundamental sequence is any
ordinary sequence of real numbers 0 < εn < 1, such that εn → 0 as n→ +∞. The
time derivatives ∂u

∂t and ∂2u
∂t2 are sometimes denoted by u′ and u′′, respectively. For

ε > 0 the functions x 7→ χZ∗( xε2 ), x 7→ ρ( xε2 ), (x, t) 7→ β(xε ,
t
ε2 ) and x 7→ A(xε ,

x
ε2 )

are sometimes denoted by χεZ∗ , ρ
ε, βε and Aε, respectively.

3. Estimates and compactness results

We recall that [3, Theorem 1.1] for any ε > 0 the evolution problem (1.1) admits
a unique solution uε that satisfies

uε ∈ L∞(0, T ;Vε) ∩ L2(0, T ;V ′ε ),

u′ε ∈ L2(0, T ;L2(Ωε)),
√
ρεu′ε ∈ L∞(0, T ;L2(Ωε)),

ρεu′′ε ∈ L2(0, T ;V ′ε )

uε(0) = u0, ρεu′ε(0) =
√
ρεv0.

Proposition 3.1. Under hypotheses (A1)–(A3), the following estimates hold:

‖uε‖L∞(0,T ;Vε) ≤ C, (3.1)

‖
√
ρεu′ε‖L∞(0,T ;L2(Ωε)) ≤ C, (3.2)

‖u′ε‖L2(0,T ;L2(Ωε)) ≤ C, (3.3)

‖ρεu′′ε‖L2(0,T ;V ′ε ) ≤ C, (3.4)

where C is a positive constant which does not depend on ε.

Proof. We follow [3]. Let t ∈ [0, T ]. We multiply the first equation of (1.1) by u′ε
and integrate over Ωε to get∫

Ωε

[
ρ
( x
ε2

)
u′′εu

′
ε + β

(x
ε
,
t

ε2

)
(u′ε)

2 − u′ε div
(
A(
x

ε
,
x

ε2
)∇uε

)]
dx =

∫
Ωε
fu′εdx.
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Which is also written
1
2

∫
Ωε
ρ
( x
ε2

)
[(u′ε)

2]′dx+
∫

Ωε
β
(x
ε
,
t

ε2

)
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2dx

−
∫
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u′ε div

(
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x

ε
,
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ε2
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)
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=
∫
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fu′εdx.

(3.5)

But
1
2

∫
Ωε
ρ(
x

ε2
)[(u′ε)

2]′dx =
1
2
d

dt

(∫
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ρ(
x

ε2
)
[
(u′ε)

2
]
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)

=
1
2
d

dt
(ρ(

x

ε2
)u′ε, u

′
ε)L2(Ωε)

and ∫
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β
(x
ε
,
t

ε2

)
(u′ε)

2dx =
(
βεu′ε, u

′
ε

)
L2(Ωε)

,

so that, on setting
∫

Ωε
Aε∇uε∇u′εdx := Aε(uε, u′ε), the Green formula

−
∫

Ωε
u′ε div(A(

x

ε
,
x

ε2
)∇uε)dx =

∫
Ωε
Aε∇uε∇u′εdx

and the following consequence of the symmetry hypothesis on A,

−
∫

Ωε
u′ε div

(
A(
x

ε
,
x

ε2
)∇uε

)
dx =

1
2
d

dt
Aε(uε, uε)

allow us to rewrite (3.5) as follows

1
2
d

dt
(ρεu′ε, u

′
ε)L2(Ωε) + (βεu′ε, u

′
ε)L2(Ωε) +

1
2
d

dt
Aε(uε, uε) = (f, u′ε)L2(Ωε). (3.6)

We now integrate (3.6) on [0, t] and obtain
1
2

(ρεu′ε(t), u
′
ε(t))L2(Ωε) −

1
2

(ρεu′ε(0), u′ε(0))L2(Ωε) +
1
2
Aε(uε(t), uε(t))

− 1
2
Aε(uε(0), uε(0)) +

∫ t

0

(
βεu′ε(s), u

′
ε(s)

)
L2(Ωε)

ds

=
∫ t

0

(f(s), u′ε(s))L2(Ωε)ds.

Using the initial conditions, we obtain

1
2
‖
√
ρεu′ε(t)‖2L2(Ωε) +

1
2
Aε(uε(t), uε(t)) +

∫ t

0

(βεu′ε(s), u
′
ε(s))L2(Ωε)ds

=
1
2
Aε(u0, u0) +

1
2
‖v0‖2L2(Ωε) +

∫ t

0

(f(s), u′ε(s))L2(Ωε)ds.

Using the positivity of β, the boundedness and ellipticity hypotheses on A, the
Cauchy-Schwartz and Young’s inequalities, one readily arrives at

‖
√
ρεu′ε(t)‖2L2(Ωε) +

1
Λ
‖uε(t)‖2Vε + 2α

∫ t

0

‖u′ε(s)‖2L2(Ωε)ds

≤ Λ‖∇u0‖2L2(Ω)N + ‖v0‖2L2(Ω) + α

∫ t

0

‖u′ε(s)‖2L2(Ωε)ds+
2
α

∫ t

0

‖f(s)‖2L2(Ω)ds,
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which implies (3.1)-(3.3) as easily seen from

‖
√
ρεu′ε(t)‖2L2(Ωε) + ‖uε(t)‖2Vε +

∫ t

0

‖u′ε(s)‖2L2(Ωε)ds

≤ C
(
‖u0‖2H1

0 (Ω) + ‖v0‖2L2(Ω) + ‖f‖2L2(0,T ;L2(Ω))

)
.

(3.7)

We use the main equation in (1.1) to deduce that

‖ρεu′′ε‖L2(0,T ;V ′ε ) = ‖ − βεu′ε + div(Aε∇uε) + f‖L2(0,T ;V ′ε ) ≤ C,

which completes the proof. �

Since solutions of (1.1) are defined on ΩεT = (0, T ) × Ωε but not on ΩT =
(0, T ) × Ω, we introduce a family of extension operators so that the sequence of
extensions to Ω of solutions to (1.1) belongs to a fixed space in which we can study
its asymptotic behaviour. The following result is a classical extension property
[4, 11].

Proposition 3.2. For any ε > 0, there exists a bounded linear operator Pε such
that

Pε ∈ L(L2(0, T ;Vε); L2(0, T ;H1
0 (Ω))) ∩ L(L2(0, T ;L2(Ωε)); L2(0, T ;L2(Ω)))

and

Pεu = u a.e. in ΩεT , (3.8)

Pεu
′ = (Pεu)′ a.e. in ΩεT , (3.9)

‖Pεu‖L2(0,T ;L2(Ω)) ≤ C‖u‖L2(0,T ;L2(Ωε)), (3.10)

‖Pεu‖L2(0,T ;H1
0 (Ω)) ≤ C‖u‖L2(0,T ;Vε). (3.11)

An immediate consequence of Proposition 3.1 and Proposition 3.2 is the following
estimates that will be useful in the sequel.

Proposition 3.3. Let ε > 0 and let uε be the solution to (1.1). There exists a
constant C > 0 independent of ε such that

‖Pεuε‖L2(0,T ;H1
0 (Ω)) ≤ C, (3.12)

‖(Pεuε)′‖L2(0,T ;L2(Ω)) ≤ C, (3.13)

‖(Pεuε)′‖L2(0,T ;H−1(Ω)) ≤ C. (3.14)

We are now in a position to formulate our first compactness result.

Theorem 3.4. The sequence (Pεuε)ε>0 is relatively compact in L2(0, T ;L2(Ω)).

Proof. It is a consequence of proposition 3.3 and a classical embedding result. We
define

W = {u ∈ L2(0, T ;H1
0 (Ω)) : u′ ∈ L2(0, T ;H−1(Ω))}

and endow it with the norm

‖u‖W = ‖u‖L2(0,T ;H1
0 (Ω)) + ‖u‖L2(0,T ;H−1(Ω)) u ∈W.

It is well known from Aubin-Lions’ lemma that the injection W b L2(0, T ;L2(Ω))
is compact. The proof is complete since the sequence (Pεuε)ε>0 is bounded in W
as seen from (3.12)-(3.14). �
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4. Multiscale convergence and preliminary results

In this section, we recall the definition and main compactness theorem of the
multi-scale convergence theory [1, 15]. We also adapt some existing results in this
method to our framework. We eventually prove some preliminary convergence
results needed in the homogenization process of problem (1.1).

4.1. Multiscale convergence method.

Definition 4.1. A sequence (uε)ε∈E ⊂ L2(ΩT ) is said to weakly multi-scale con-
verge towards u0 ∈ L2(ΩT × Y × Z × T ) (denoted uε

w−ms−−−−→ u0) in L2(ΩT ), if as
ε→ 0, ∫

ΩT

uε(x, t)ϕ(x, t,
x

ε
,
x

ε2
,
t

ε2
) dx dt

→
∫∫∫∫

ΩT×Y×Z×T
u0(x, t, y, z, τ)ϕ(x, t, y, z, τ) dx dt dy dz dτ

(4.1)

for all ϕ ∈ L2(ΩT ; Cper(Y × Z × T )).
A sequence (uε)ε∈E ⊂ L2(ΩT ) is said to strongly multi-scale converge towards

u0 ∈ L2(ΩT ×Y ×Z×T ) (denoted uε
s−ms−−−−→ u0) in L2(ΩT ), if it weakly multi-scale

converges to u0 in L2(ΩT × Y × Z × T ) and further satisfies

‖uε‖L2(ΩT ) → ‖u0‖L2(ΩT×Y×Z×T ) as ε→ 0.

Remark 4.2. (i) Let u ∈ L2(ΩT ; Cper(Y × Z × T )) and define for ε ∈ E,
uε : ΩT → R by

uε(x, t) = u
(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
for (x, t) ∈ ΩT .

Then uε
w−ms−−−−→ u and uε

s−ms−−−−→ u in L2(ΩT ) as ε → 0. We also have
uε → ũ in L2(ΩT ) -weak as ε→ 0, with

ũ(x, t) =
∫∫∫

Y×Z×T
u(·, ·, y, z, τ) dy dz dτ.

(ii) Let u ∈ C(ΩT ;L∞per(Y × Z × T )) and define uε like in (i) above. Then

uε
w−ms−−−−→ u in L2(ΩT ) as ε→ 0.

(iii) If (uε)ε∈E ⊂ L2(ΩT ) and u0 ∈ L2(ΩT ×Y ×Z×T ) are such that uε
w−ms−−−−→

u0 in L2(ΩT ), then (4.1) still holds for ϕ ∈ C(ΩT ;L∞per(Y × Z × T )).
(iv) Since χΩε(x) = χZ∗( xε2 ) for almost every x ∈ Ω and any ε ∈ E, we deduce

from (ii) above that, as ε→ 0, χΩε
w−ms−−−−→ χZ∗ in L2(Ω).

The following two theorems are the backbone of the multi-scale convergence
method [1, 15].

Theorem 4.3. Any bounded sequence in L2(ΩT ) admits a weakly multi-scale con-
vergent subsequence.

Theorem 4.4. Let (uε)ε∈E be a bounded sequence in L2(0, T ;H1
0 (Ω)), E being a

fundamental sequence. There exist a subsequence still denoted by (uε)ε∈E and a
triplet (u0, u1, u2) in the space

L2(0, T ;H1
0 (Ω))× L2(ΩT ;L2(T ;H1

per(Y )))× L2(ΩT ;L2(Y × T ;H1
per(Z)))
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such that, as ε→ 0,

uε → u0 in L2(0, T ;H1
0 (Ω))-weak (4.2)

∂uε
∂xi

w−ms−−−−→ ∂u0

∂xi
+
∂u1

∂yi
+
∂u2

∂zi
in L2(ΩT ) (1 ≤ i ≤ N). (4.3)

Remark 4.5. In theorem 4.4, the functions u1 and u2 are unique up to additive
functions of variables x, t, τ and x, t, y, τ , respectively. It is therefore crucial to fix
the choice of u1 and u2 in accordance with our needs. To formulate the version of
theorem 4.4 we will use, we introduce the space

H1
#ρ(Z

∗) =
{
u ∈ H1

per(Z) :
∫
Z∗
ρ(z)u(z) dz = 0

}
and its dense subspace

C∞#ρ(Z∗) =
{
u ∈ C∞per(Z) :

∫
Z∗
ρ(z)u(z) dz = 0

}
.

Theorem 4.6. Let (uε)ε∈E be a bounded sequence in L2(0, T ;H1
0 (Ω)), E being a

fundamental sequence. There exist a subsequence still denoted by (uε)ε∈E and a
triplet (u0, u1, u2) in the space

L2(0, T ;H1
0 (Ω))× L2(ΩT ;L2(T ;H1

#(Y )))× L2(ΩT ;L2(Y × T ;H1
#ρ(Z

∗)))

such that, as ε→ 0,

uε → u0 in L2(0, T ;H1
0 (Ω))-weak (4.4)

∂uε
∂xi

w−ms−−−−→ ∂u0

∂xi
+
∂u1

∂yi
+
∂u2

∂zi
in L2(ΩT ) (1 ≤ j ≤ N). (4.5)

4.2. Preliminary results. Before formulating some preliminary convergence re-
sults needed later, we recall some results on periodic distributions (see e.g., [7,
19]). As above, let L2

#ρ(Z
∗) denotes the space of functions u ∈ L2

per(Z) with∫
Z∗
ρ(z)u(z)dz = 0, and consider the following Gelfand triple

H1
#ρ(Z

∗) ⊂ L2
#ρ(Z

∗) ⊂ (H1
#ρ(Z

∗))′.

If u ∈ L2
#ρ(Z

∗) and v ∈ H1
#ρ(Z

∗), we have [u, v] = (u, v) where [·, ·] denotes the
duality pairing between (H1

#ρ(Z
∗))′ and H1

#ρ(Z
∗) while (·, ·) denotes the scalar

product in L2
#ρ(Z

∗). The topological dual of L2(Y × T ;H1
#ρ(Z

∗)) is L2(Y ×
T ; (H1

#ρ(Z
∗))′) and C∞per(Y )⊗ C∞per(T )⊗ C∞#ρ(Z∗) is dense in L2(Y × T ;H1

#ρ(Z
∗)).

Proposition 4.7. Let u ∈ D′per(Y × T × Z) and assume that u is continuous on
C∞per(Y )⊗C∞per(T )⊗C∞#ρ(Z∗) endowed with the L2

per(Y ×T ;H1
#ρ(Z

∗))-norm. Then
u ∈ L2

per(Y × T ; (H1
#ρ(Z

∗))′), and further

〈u, ϕ〉 =
∫ 1

0

∫
Y

[u(y, τ), ϕ(y, τ, ·)] dy dτ

for all ϕ ∈ C∞per(Y ) ⊗ C∞per(T ) ⊗ C∞#ρ(Z∗), where 〈·, ·〉 denotes the duality pairing
between D′per(Y × T × Z) and C∞per(Y × T × Z).

Proposition 4.8. Let

V =
{
u ∈ L2(Y × T ;H1

#ρ(Z
∗)) : ρχZ∗

∂2u

∂τ2
∈ L2(Y × T ; (H1

#ρ(Z
∗))′)

}
.
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(i) The space V is a reflexive Banach space when endowed with the norm

‖u‖ = ‖u‖L2(Y×T ;H1
#ρ(Z∗)) +

∥∥ρχZ∗ ∂2u

∂τ2

∥∥
L2(Y×T ;(H1

#ρ(Z∗))′)
(u ∈ V ).

(ii) It holds that∫ 1

0

∫
Y

[
ρχZ∗

∂2u

∂τ2
, v
]
dy dτ =

∫ 1

0

∫
Y

[
u, ρχZ∗

∂2v

∂τ2

]
dy dτ for all u, v ∈ V.

We can now formulate the main result of this section.

Theorem 4.9. Let (uε)ε∈E be the sequence of solution to (1.1), E being a funda-
mental sequence. There exist a subsequence E′ of E and a triplet (u0, u1, u2) in the
space

L2(0, T ;H1
0 (Ω))× L2(ΩT ;H1

#(Y ))× L2(ΩT ;L2(Y × T ;H1
#ρ(Z

∗)))

such that, as E′ 3 ε→ 0,

Pεuε → u0 in L2(ΩT ), (4.6)

∂(Pεuε)
∂t

w−ms−−−−→ ∂u0

∂t
in L2(ΩT ), (4.7)

∂(Pεuε)
∂xi

w−ms−−−−→ ∂u0

∂xi
+
∂u1

∂yi
+
∂u2

∂zi
in L2(ΩT ) (1 ≤ i ≤ N). (4.8)

The proof of Theorem 4.9 requires two preliminary results and is therefore post-
poned.

Lemma 4.10. Let E,E′, (uε)ε∈E and the triplet (u0, u1, u2) be as in Theorem 4.9.
It holds that

lim
ε→0

1
ε2

∫
ΩT

uε(x, t)ρ(
x

ε2
)χZ∗(

x

ε2
)ϕ
(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
dx dt

=
∫∫∫∫

ΩT×Y×Z×T
u2(x, t, y, z, τ)ρ(z)χZ∗(z)ϕ(x, t, y, z, τ) dx dt dy dz dτ

for all ϕ ∈ D(ΩT )⊗ C∞per(Y )⊗ C∞per(Z)⊗ C∞per(T ) such that∫
Z

χZ∗ρ(z)ϕ(z)dz = 0 for all (x, t, y, τ) ∈ ΩT × Y × T .

Proof. Let ϕ ∈ D(ΩT ) ⊗ C∞per(Y ) ⊗ C∞per(Z) ⊗ C∞per(T ) with
∫
Z
χZ∗ρ(z)ϕ(z)dz = 0,

we deduce from the Fredholm alternative the existence of a unique w ∈ D(ΩT ) ⊗
C∞per(Y )⊗H1

#ρ(Z
∗)⊗ C∞per(T ) such that

∆zw = ϕρχZ∗ in Z,

w(x, t, y, τ) ∈ H1
#ρ(Z

∗) for all (x, t, y, τ) ∈ ΩT × Y × T .
(4.9)

But the restriction to Z∗ of the function w defined by (4.9) belongs to C3(Z∗) so
that we have

div(∇zw)ε = (div∇zw)ε +
1
ε

(divy∇zw)ε +
1
ε2

(∆zw)ε in ΩεT ,

and therefore
1
ε2

∫
ΩT

uε(x, t)ρ(
x

ε2
)χZ∗(

x

ε2
)ϕ
(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
dx dt
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= −
∫

ΩT

∇uε · χεZ∗(∇zw)ε dx dt−
∫

ΩT

uεχ
ε
Z∗(div∇zw)ε dx dt

− 1
ε

∫
ΩT

uεχ
ε
Z∗(divy∇zw)ε dx dt.

As, E′ 3 ε→ 0, (4.8) and (iii) of Remark 4.2 reveal that the first term in the right
hand side of this equality converges to

−
∫∫∫∫

ΩT×Y×Z×T
(∇xu0 +∇yu1 +∇zu2) · χZ∗(∇zw) dx dt dy dz dτ

=
∫∫∫∫

ΩT×Y×Z×T
u2χZ∗(∆zw) dx dt dy dz dτ,

while the second one converges to zero. As regards the third term, since the test
function therein, (divy∇zw)ε, depends on the z variable, its limit cannot be com-
puted as usual like in [8, Theorem 2.3] even if its mean value over Y is zero. This
requires some further investigation. From

div(∇yw)ε = (div∇yw)ε +
1
ε

(divy∇yw)ε +
1
ε2

(divz∇yw)ε in ΩεT

and
(divz∇yw)ε = (divy∇zw)ε in ΩεT ,

it follows that

− 1
ε

∫
ΩT

uεχ
ε
Z∗(divy∇zw)ε dx dt

= ε

∫
ΩT

uεχ
ε
Z∗(div∇yw)ε dx dt+

∫
ΩT

uεχ
ε
Z∗(∆yw)ε dx dt

+ ε

∫
ΩT

∇uε · χεZ∗(∇yw)ε dx dt.

Therefore,

− 1
ε

∫
ΩT

uεχ
ε
Z∗(divy∇zw)ε dx dt

→
∫∫∫∫

ΩT×Y×Z×T
u0χZ∗(∆yw) dx dt dy dz dτ = 0

as E′ 3 ε→ 0. The proof is complete. �

Lemma 4.11. Let E,E′, (uε)ε∈E and the triplet (u0, u1, u2) be as in Theorem 4.9.
It holds that

lim
ε→0

1
ε

∫
ΩT

uε(x, t)ρ(
x

ε2
)χZ∗(

x

ε2
)ϕ
(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
dx dt

=
∫∫∫∫

ΩT×Y×Z×T
u1(x, t, y, z, τ)ρ(z)χZ∗(z)ϕ(x, t, y, z, τ) dx dt dy dz dτ

for all ϕ ∈ D(ΩT )⊗ C∞per(Y )⊗ C∞per(Z)⊗ C∞per(T ) such that∫
Y

ϕ(y)dy = 0 for all (x, t, z, τ) ∈ ΩT × Z × T .



EJDE-2017/59 HYPERBOLIC-PARABOLIC EQUATIONS IN POROUS MEDIA 11

Proof. Let ϕ ∈ D(ΩT ) ⊗ C∞per(Y ) ⊗ C∞per(Z) ⊗ C∞per(T ) with
∫
Y
ϕ(y)dy = 0 and

consider w ∈ D(ΩT )⊗ C∞per(Y )⊗ C1
per(Z)⊗ C∞per(T ) such that

∆yw = ϕρ in Y,

w(x, t, z, τ) ∈ C∞# (Y ) for all (x, t, z, τ) ∈ ΩT × Z × T .

Recalling that

div(∇yw)ε = (div∇yw)ε +
1
ε

(divy∇yw)ε +
1
ε2

(divz∇yw)ε in ΩT ,

the following holds

1
ε

∫
ΩT

uε(x, t)ρ(
x

ε2
)χZ∗(

x

ε2
)ϕ
(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
dx dt

=
1
ε

∫
ΩT

uε(x, t)χZ∗(
x

ε2
)(∆yw)

(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
dx dt

= −
∫

ΩT

∇uε · χεZ∗(∇yw)ε −
∫

ΩT

uεχ
ε
Z∗(div∇yw)ε dx dt

− 1
ε2

∫
ΩT

uεχ
ε
Z∗(divz∇yw)ε dx dt.

(4.10)

As
∫
Z

divz(∇yw)dz = 0 we follow the lines of reasoning in the proof of Lemma 4.10
to compute the limit of the last term in (4.10). We find that as E′ 3 ε → 0 the
right-hand side of (4.10) converges to∫∫∫∫

ΩT×Y×Z×T
χZ∗

[
− (∇xu0 +∇yu1 +∇zu2) · (∇yw)− u0(div∇yw)

− u2(divz∇yw)
]
dx dt dy dz dτ

=
∫∫∫∫

ΩT×Y×Z×T
u1χZ∗(∆yw) dx dt dy dz dτ

=
∫∫∫∫

ΩT×Y×Z×T
u1χZ∗ϕρ dx dt dy dz dτ,

and the proof is complete. �

Proof of Theorem 4.9. According to Proposition 3.3, Theorem 3.4 and Theorem 4.6,
it remains to prove (4.7) and to justify that the function u1 in the triplet given by
Theorem 4.6 actually belongs to L2(ΩT ;H1

#(Y )), i.e., u1 does not depend on the
variable τ . We start with the fact that u1 ∈ L2(ΩT ;H1

#(Y )). To prove this, let
ψ ∈ D(ΩT )⊗ C∞# (Y )⊗ C∞per(T ) and consider the function ψε ∈ D(ΩT ) defined by

ψε(x, t) = ε3ψ
(
x, t,

x

ε
,
t

ε2

)
, (x, t) ∈ ΩT .

Using ψε as a test function in problem (1.1), we obtain∫
ΩT

ρεχεZ∗(Pεuε)
∂2ψε

∂t2
dx dt+

∫
ΩT

βεχεZ∗
∂(Pεuε)
∂t

ψε dx dt

+
∫

ΩT

Aε∇(Pεuε) · χεZ∗∇ψε dx dt =
∫

ΩT

fχεZ∗ψ
ε dx dt.
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Letting E′ 3 ε→ 0 in this equation, the term in the right-hand side and the second
and third terms on the left hand side obviously converge to zero, so that

lim
E′3ε→0

∫
ΩT

ρεχΩε(Pεuε)
∂2ψε

∂t2
dx dt = 0. (4.11)

However,
∂2ψε

∂t2
= ε3 ∂

2ψ

∂t2
+ 2ε

∂2ψ

∂t∂τ
+

1
ε

∂2ψ

∂τ2
. (4.12)

Substituting (4.12) in (4.11) we realize that

lim
E′3ε→0

1
ε

∫
ΩT

(Pεuε)(x, t)ρ(
x

ε2
)χZ∗(

x

ε2
)
∂2ψ

∂τ2
(x, t,

x

ε
,
t

ε2
) dx dt = 0.

Using Lemma 4.11, this is equivalent to∫∫∫∫
ΩT×Y×Z×T

u1(x, t, y, τ)ρ(z)χZ∗(z)
∂2ψ

∂τ2
(x, t, y, τ) dx dt dy dz dτ = 0,

which, by taking ψ = ψ1⊗ψ2⊗ψ3 with ψ1 ∈ D(ΩT ), ψ2 ∈ C∞# (Y ) and ψ3 ∈ C∞per(T ),
also writes∫

Z∗
ρ(z)dz

∫∫
ΩT×Y

ψ1(x, t)ψ2(y)
( ∫
T
u1(x, t, y, τ)

∂2ψ3

∂τ2
(τ)dτ

)
dx dt dy = 0.

The hypothesis MZ∗(ρ) > 0 and the arbitrariness of ψ1 and ψ2 yields∫ 1

0

u1(x, t, y, τ)
∂2ψ3

∂τ2
(τ)dτ = 0 for all ψ3 ∈ C∞per(T ).

Taking in particular ψ3(τ) = e−2iπpτ (p ∈ Z \ {0}), we obtain∫ 1

0

u1(x, t, y, τ)e−2iπpτdτ = 0 for all p ∈ Z \ {0}. (4.13)

The Fourier series expansion of the periodic function τ 7→ u1(x, t, y, τ) writes

u1(x, t, y, τ) =
∑
p∈Z

Cpe
2iπpτ where Cp =

∫ 1

0

u1(x, t, y, τ)e−2iπpτdτ.

However, (4.13) implies that Cp = 0 for all p ∈ Z\{0}, so that u1(x, t, y, τ) = C0 =∫ 1

0
u1(x, t, y, τ)dτ . This proves that the function u1 is independent of τ .
We now prove (4.7). It follows from (3.13) and Theorem 4.3 that there exists

w ∈ L2(ΩT × Y × Z × T ) such that, as E′ 3 ε→ 0,

∂(Pεuε)
∂t

w−ms−−−−→ w in L2(ΩT ). (4.14)

Since (4.6) implies that ∂(Pεuε)
∂t → ∂u0

∂t weakly in D′(ΩT ) as E′ 3 ε → 0, while

(4.14) implies ∂(Pεuε)
∂t

w−ms−−−−→ MY×Z×T (w) weakly in D′(ΩT ) as E′ 3 ε → 0 it is
sufficient to prove that the function w does not depend on the variables y, z and
τ to conclude that w = ∂u0

∂t in L2(ΩT ). Firstly, we prove that the function w
does not depend on the variable z. Let θ ∈ D(ΩT ), ϕ ∈ C∞per(Y ), ψ ∈ C∞per(Z) and
ϑ ∈ C∞per(T ) and define wε(x, t) = θ(x, t)ϕ(xε )ψ( xε2 )ϑ( t

ε2 ) for ε ∈ E′ and (x, t) ∈ ΩT .
Passing to the limit as E′ 3 ε→ 0 in the equality

− ε2
〈 ∂

∂xj

(∂(Pεuε)
∂t

)
, wε

〉
L2(0,T ;H−1(Ω)),L2(0,T ;H1

0 (Ω))
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=
∫

ΩT

ϑ
( t
ε2

)∂(Pεuε)
∂t

[
ε2 ∂θ

∂xj
ϕεψε + θϕε

( ∂ψ
∂zj

)ε + εθ
( ∂ϕ
∂yj

)ε
ψε
]
dx dt,

we obtain (keep in mind that (3.13) implies the boundedness in L2(0, T ;H−1(Ω))
of the first term in the duality bracket just above)

0 =
∫

ΩT×Y×Z×T
w(x, t, y, z, τ)θ(x, t)ϕ(y)

∂ψ

∂zj
(z)ϑ(τ) dx dt dy dz dτ

which by the arbitrariness of θ, ϕ and ϑ implies∫
Z

w(x, t, y, z, τ)
∂ψ

∂zj
(z)dz = 0 for all (x, t, y, τ) ∈ ΩT × Y × T ,

which proves that w does not depend on the variable z. Similarly, one easily proves
that w does not depend on y by passing to the limit in the following equality (where
wε(x, t) = θ(x, t)ϕ(xε )ϑ( t

ε2 ) for ε ∈ E′ and (x, t) ∈ ΩT )

− ε
〈 ∂

∂xj
(
(∂(Pεuε)

∂t

)
, wε

〉
L2(0,T ;H−1(Ω)),L2(0,T ;H1

0 (Ω))

=
∫

ΩT

ϑ(
t

ε2
)
∂(Pεuε)
∂t

[
ε
∂θ

∂xj
ϕε + θ(

∂ϕ

∂yj
)ε
]
dx dt.

As for the independence of u1 from the variable τ , we have the following equality,
where wε(x, t) = θ(x, t)ϑ( t

ε2 ) for ε ∈ E′ and (x, t) ∈ ΩT

− ε2
〈
ρε
∂2uε
∂t2

, wε
〉
L2(0,T ;V ′ε ), L2(0,T ;Vε)

=
∫

ΩT

ρ(
x

ε2
)χZ∗(

x

ε2
)
∂(Pεuε)
∂t

[
ε2 ∂θ

∂t
ϑε + θ

(∂ϑ
∂τ

)ε]
dx dt,

which, after a limit passage as E′ 3 ε→ 0 (keeping (3.4) in mind) leads to

0 =MZ∗(ρ)
∫ 1

0

w(x, t, τ)
∂ϑ

∂τ
dτ for all (x, t) ∈ ΩT .

However MZ∗(ρ) > 0 and the proof is complete. �

Remark 4.12. To capture all the microscopic and mesoscopic behaviours of the
phenomenon modelled by problem (1.1), one must take test functions of the form

ψε(x, t) = ψ0(x, t) + εψ1

(
x, t,

x

ε
,
t

ε2

)
+ ε2ψ2

(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
,

with ψ0 ∈ D(ΩT ), ψ1 ∈ D(ΩT ) ⊗ C∞# (Y ) ⊗ C∞per(T ) and ψ2 ∈ D(ΩT ) ⊗ C∞per(Y ) ⊗
C∞#ρ(Z∗)⊗ C∞per(T ). Theorem 4.9 informs us that the function u1 does not depend
on the variable τ so that in the homogenization process of problem (1.1) we can
instead use test functions of the form

ψε(x, t) = ψ0(x, t) + εψ1

(
x, t,

x

ε

)
+ ε2ψ2

(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
, (4.15)

where ψ1 ∈ D(ΩT )⊗ C∞# (Y ) and ψ0, ψ2 are as above.

5. Homogenization process

In this section, we pass to the limit in the limit in the variational formulation of
problem (1.1) and formulate the microscopic problem, the mesoscopic problem and
the macroscopic problem, successively.
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5.1. Global limit problem for (1.1). The setting being that of Theorem 4.9, let
ψ0 ∈ D(ΩT ), ψ1 ∈ D(ΩT )⊗C∞# (Y ) and ψ2 ∈ D(ΩT )⊗C∞per(Y )⊗C∞#ρ(Z∗)⊗C∞per(T ),
and consider for any ε ∈ E, the function ψε ∈ D(ΩT ) defined as in (4.15). We aim
at passing to the limit (as E′ 3 ε→ 0) in the equality∫

ΩT

ρ(
x

ε2
)χZ∗(

x

ε2
)(Pεuε)

∂2ψε
∂t2

dx dt

+
∫

ΩT

β
(x
ε
,
t

ε2

)
χZ∗(

x

ε2
)
∂(Pεuε)
∂t

ψε(x, t) dx dt

+
∫

ΩT

χZ∗(
x

ε2
)A
(x
ε
,
x

ε2

)
∇(Pεuε) · ∇ψε dx dt

=
∫

ΩT

f(x, t)ψε(x, t)χZ∗(
x

ε2
) dx dt.

(5.1)

We will consider each term of (5.1) separately. We start with the first term in the
left hand side and denote it by L1. Recalling that

∂2ψε
∂t2

=
∂2ψ0

∂t2
+ ε
(∂2ψ1

∂t2

)ε
+ ε2

(∂2ψ2

∂t2

)ε
+ 2
(∂2ψ2

∂t∂τ

)ε
+

1
ε2

(∂2ψ2

∂τ2

)ε
in ΩT ,

we have
L1

=
∫

ΩT

ρεχεZ∗(Pεuε)
∂2ψ0

∂t2
dx dt+ ε

∫
ΩT

ρεχεZ∗(Pεuε)
(∂2ψ1

∂t2

)ε
dx dt

+ ε2

∫
ΩT

ρεχεZ∗(Pεuε)
(∂2ψ2

∂t2

)ε
dx dt+ 2

∫
ΩT

ρεχεZ∗(Pεuε)
(∂2ψ2

∂t∂τ

)ε
dx dt

+
1
ε2

∫
ΩT

ρεχεZ∗(Pεuε)(x, t)
(∂2ψ2

∂τ2

)ε
dx dt.

(5.2)

As ε → 0, (4.6) and (iii) of Remark 4.2, imply that the second and third terms in
the right hand side of (5.2) converge to zero and the fourth term converges to

2
∫∫∫

ΩT×Y×Z
ρ(z)χZ∗(z)u0(x, t)

(∫ 1

0

∂

∂τ
(
∂ψ2

∂t
)dτ
)
dx dt dy dz = 0

while, using the weak-strong convergence theorem in L2(ΩT ), we realize that the
first term converges to(∫

Z∗
ρ(z)dz

)(∫
ΩT

∂2u0

∂t2
ψ0(x, t)dx dt

)
.

As for the last term, Lemma 4.10 applies and yields the following limit∫
ΩT

(∫ 1

0

∫
Y

[
u2, ρχZ∗

∂2ψ2

∂τ2

]
dy dτ

)
dx dt.

Hence, as ε→ 0, L1 converges to(∫
Z∗
ρ(z)dz

)(∫
ΩT

∂2u0

∂t2
ψ0(x, t)dx dt

)
+
∫

ΩT

(∫∫
Y×T

[
u2ρχZ∗ ,

∂2ψ2

∂τ2

]
dτdy

)
dx dt.

(5.3)
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Considering now the second term in the left hand side of (5.1) which we denote
by L2, we have

L2

=
∫

ΩT

βεχεZ∗
∂(Pεuε)
∂t

ψ0(x, t) dx dt+ ε

∫
ΩT

βεχεZ∗
∂(Pεuε)
∂t

ψ1(x, t,
x

ε
) dx dt

+ ε2

∫
ΩT

βεχεZ∗
∂(Pεuε)
∂t

ψ2

(
x, t,

x

ε
,
x

ε2
,
t

ε2

)
dx dt.

(5.4)

The second and third terms in (5.4) tend to zero as ε → 0. As the first term is
concerned, (4.7) and item (iii) of Remark 4.2 help to obtain the limit∫∫∫∫

ΩT×Y×Z×T
β(y, τ)χZ∗(z)

∂u0

∂t
ψ0 dx dt dy dz dτ

= |Z∗|
(∫ 1

0

∫
Y

β(y, τ)dy dτ
)(∫

ΩT

∂u0

∂t
ψ0 dx dt

)
.

Finally, it is known that the third term in the left hand side of (5.1) converges to∫∫∫∫
ΩT×Y×Z×T

A(y, z)(∇xu0 +∇yu1 +∇zu2) · χZ∗(z)
(
∇xψ0 +∇yψ1

+∇zψ2

)
dx dt dy dz dτ,

(5.5)

while its right-hand side tends to

|Z∗|
∫

ΩT

f(x, t)ψ0(x, t)dx dt. (5.6)

To formulate our global limit problem, we need to prove that u2(x, t) ∈ V for
almost all (x, t) ∈ ΩT , such that we can rewrite the duality bracket in (5.3) using
the formula in Proposition 4.8, viz.,∫ 1

0

∫
Y

[
u2, ρχZ∗

∂2ψ2

∂τ2

]
dy dτ =

∫ 1

0

∫
Y

[
ρχZ∗

∂2u2

∂τ2
, ψ2

]
dy dτ a.e. in ΩT .

Proposition 5.1. The function u2 ∈ L2(ΩT ;L2
per(Y × T ;H1

#ρ(Z
∗))) defined by

Theorem 4.9 satisfies

u2(x, t) ∈ V for almost all (x, t) ∈ ΩT .

Proof. After the passage to the limit in (5.1), we obtain(∫
Z∗
ρ(z)dz

)∫
ΩT

∂2u0

∂t2
ψ0 dx dt+

∫
ΩT

(∫ 1

0

∫
Y

[
u2, ρχZ∗

∂2ψ2

∂τ2

]
dy dτ

)
dx dt

+ |Z∗|
(∫ 1

0

∫
Y

β(y, τ) dy dτ
)∫

ΩT

∂u0

∂t
ψ0 dx dt

+
∫∫∫∫

ΩT×Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2) ·

(
∇xψ0 +∇yψ1

+∇zψ2

)
dx dt dy dz dτ

= |Z∗|
∫

ΩT

f(x, t)ψ0(x, t)dx dt,
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for all (ψ0, ψ1, ψ2) ∈ D(ΩT ) × (D(ΩT ) ⊗ C∞# (Y )) × (D(ΩT ) ⊗ C∞per(Y ) ⊗ C∞per(T ) ⊗
C∞#ρ(Z∗)). Taking in this equation ψ0 = ψ1 = 0 and ψ2 = ϕ⊗ φ where ϕ ∈ D(ΩT )
and φ ∈ C∞per(Y ×T )⊗C∞#ρ(Z∗), and using the arbitrariness of ϕ, we obtain almost
everywhere in ΩT ,∫ 1

0

∫
Y×T

[
u2, ρχZ∗

∂2φ

∂τ2

]
dy dτ

= −
∫∫∫

Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2) · (∇zφ)dy dz dτ.

Let (x, t) ∈ ΩT and consider the linear functional

φ 7→ −
∫∫∫

Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2)(∇zφ) dy dz dτ.

It is easy to see that the boundedness of the matrix A implies that the above linear
functional is continuous on C∞per(Y × T )⊗ C∞#ρ(Z∗) for the L2

per(Y × T , H1
#ρ(Z

∗))-

norm. Proposition 4.7 applies and gives ρχZ∗ ∂
2u2
∂τ2 ∈ L2

per(Y × T , (H1
#ρ(Z

∗))′)
almost everywhere in ΩT . This completes the proof. �

The passage to the limit in (5.1) as E′ 3 ε→ 0 proved the following result.

Proposition 5.2. The triplet (u0, u1, u2) defined by Theorem 4.9 is a solution to
the variational problem:

(u0, u1, u2) ∈ L2(0, T ;H1
0 (Ω))× L2(ΩT ;H1

#(Y ))× L2(ΩT ;L2(Y × T ;H1
#ρ(Z

∗))),(∫
Z∗
ρ(z)dz

)∫
ΩT

∂2u0

∂t2
ψ0 dx dt+

∫
ΩT

(∫∫
Y×T

[ρχZ∗
∂2u2

∂τ2
, ψ2] dy dτ

)
dx dt

+ |Z∗|
(∫∫

Y×T
β(y, τ) dy dτ

)∫
ΩT

∂u0

∂t
ψ0 dx dt

+
∫∫∫∫

ΩT×Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2) ·

(
∇xψ0 +∇yψ1

+∇zψ2

)
dx dt dy dz dτ

= |Z∗|
∫

ΩT

f(x, t)ψ0(x, t) dx dt

for all (ψ0, ψ1, ψ2) ∈ D(ΩT )× (D(ΩT )⊗ C∞# (Y ))

×(D(ΩT )⊗ C∞per(Y )⊗ C∞per(T )⊗ C∞#ρ(Z∗)).
(5.7)

The variational problem (5.7), sometimes called global limit problem, is equiva-
lent to the following system of three problems:∫

ΩT

(∫ 1

0

∫
Y

[
ρχZ∗

∂2u2

∂τ2
, ψ2

]
dy dτ

)
dx dt

+
∫∫∫∫

ΩT×Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2)

· (∇zψ2) dx dt dy dz dτ = 0

for all ψ2 ∈ D(ΩT )⊗ C∞per(Y )⊗ C∞per(T )⊗ C∞#ρ(Z∗);

(5.8)
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ΩT×Y×Z∗×T

A(y, z)(∇xu0 +∇yu1 +∇zu2)

· (∇zψ1) dx dt dy dz dτ = 0 for all ψ1 ∈ D(ΩT )⊗ C∞# (Y );
(5.9)

and (∫
Z∗
ρ(z)dz

)∫
ΩT

∂2u0

∂t2
ψ0 dx dt

+ |Z∗|
(∫ 1

0

∫
Y

β(y, τ) dy dτ
)∫

ΩT

∂u0

∂t
ψ0 dx dt

+
∫∫∫∫

ΩT×Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2)

· (∇xψ0) dx dt dy dz dτ

= |Z∗|
∫

ΩT

f(x, t)ψ0(x, t)dx dt for all ψ0 ∈ D(ΩT ).

(5.10)

We are now in a position to derive equations describing the microscopic, the
mesoscopic and the macroscopic behaviours of the phenomenon modelled by (1.1).
We start at the microscopic scale.

5.2. Microscopic problem. Taking in (5.8), ψ2 = ϕ ⊗ θ ⊗ φ, with ϕ ∈ D(ΩT ),
θ ∈ C∞per(Y ) and φ ∈ C∞#ρ(Z∗) ⊗ C∞per(T ) we obtain by the arbitrariness of ϕ and θ

and for almost all (x, t, y) ∈ ΩT × Y ,∫ 1

0

[ρχZ∗
∂2u2

∂τ2
, φ]dτ = −

∫ 1

0

∫
Z∗
A(y, z)(∇xu0 +∇yu1 +∇zu2) · (∇zφ)dz dτ.

Therefore, for almost all (x, t, y) ∈ ΩT × Y , the function u2(x, t, y) solves the
variational problem:

u2(x, t, y) ∈ L2
per(T ;H1

#ρ(Z
∗)),∫ 1

0

[
ρχZ∗

∂2u2

∂τ2
, v
]
dτ +

∫ 1

0

∫
Z∗
A(y, z)(∇zu2) · (∇zv)dz dτ

= −
∫ 1

0

∫
Z∗
A(y, z)(∇xu0 +∇yu1) · (∇zv)dz dτ

for all v ∈ L2
per(T ;H1

#ρ(Z
∗)).

(5.11)

Moreover, the variational problem (5.11) admits a solution uniquely defined on
Z∗ × T since, if v1, v2 ∈ L2

per(T ;H1
#ρ(Z

∗)) are two solutions, then v = v1 − v2 ∈
L2

per(T ;H1
#ρ(Z

∗)) will be solution of the linear homogeneous equation

ρ(z)
∂2v

∂τ2
+ divz(A(y, z)(∇zv)) = 0 in Z∗ × T

with zero Cauchy data, we therefore we deduce that v = 0 in Z∗×T and uniqueness
follows.
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As customary, let y ∈ Y be fixed and let χi(y) (1 ≤ i ≤ N) be the unique
solution to the microscopic problem

χi(y) ∈ L2
per(T ;H1

#ρ(Z
∗)),∫ 1

0

[
ρχZ∗

∂2χi
∂τ2

, φ
]
dτ +

∫ 1

0

∫
Z∗
A(y, z)(∇zχi) · (∇zφ)dz dτ

= −
∫ 1

0

∫
Z∗

N∑
1=1

aik(y, z)
∂φ

∂zk
dz dτ,

for all φ ∈ L2
per(T ;H1

#ρ(Z
∗)) (i ∈ {1, · · · , N}).

(5.12)

Multiplying the ith equation of (5.12) by ∂u0
∂xi

+ ∂u1
∂yi

and then summing the resulting
equations over i = 1, · · · , N , it appears that the function (x, t, y, z, τ) 7→ χ(y, z, τ) ·
(∇xu0(x, t) +∇yu1(x, t, y)) is a solution to (5.11). Hence, setting χ = (χi)1≤i≤N it
holds almost everywhere in ΩT × Y × Z∗ × T that

u2(x, t, y, z, τ) = χ(y, z, τ) · (∇xu0(x, t) +∇yu1(x, t, y)). (5.13)

On putting

(∇zχ)ij =
∂χi
∂zj

(1 ≤ i, j ≤ N),

From (5.13) we can deduce that

∇zu2 = ∇zχ · (∇xu0 +∇yu1) a.e. in ΩT × Y × Z∗ × T . (5.14)

5.3. Mesoscopic problem. Taking ψ1 = ϕ⊗ φ⊗ θ with ϕ ∈ D(ΩT ), θ ∈ C∞per(T )
and φ ∈ C∞# (Y ) in (5.9) and using (5.14) and the arbitrariness of ϕ and θ, we realise
that for almost every (x, t) ∈ ΩT , the function u1(x, t) is the unique solution to the
following variational problem (where I denotes the N ×N identity matrix)

u1(x, t) ∈ H1
#(Y ),∫

Y

(∫ 1

0

∫
Z∗
A(I +∇zχ)dz dτ

)
∇yu1 · ∇yφdy

= −
∫
Y

(∫ 1

0

∫
Z∗
A(I +∇zχ)dz dτ

)
∇xu0 · ∇yφdy for all φ ∈ H1

#(Y ).

(5.15)

To abbreviate notation, we put

Ã(y) =
∫ 1

0

∫
Z∗
A(y, z)(I +∇zχ)dz dτ (y ∈ Y ),

and recall that there exists a unique θ = (θi)1≤i≤N ∈ (H1
#(Y ))N solution to the

mesoscopic problem

θi ∈ H1
#(Y ),∫

Y

Ã∇yθi · ∇yv dy = −
∫
Y

∑
k

ãik
∂v

∂yk
dy

for all v ∈ H1
#(Y ) (i = 1, · · · , N).

(5.16)

It is easy to check that the function (x, t, y) 7→ θ(y) · ∇xu0(x, t) is also a solution
to (5.15) so that by the uniqueness of the solution to (5.15) we have

u1(x, t, y) = θ(y) · ∇xu0(x, t) for a.e. (x, t, y) ∈ ΩT × Y.
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On setting

(∇yθ)ij =
∂θi
∂yj

(1 ≤ i, j ≤ N),

it follows that

∇yu1(x, t, y) = ∇yθ(y) · ∇xu0(x, t) a.e. in ΩT × Y. (5.17)

5.4. Macroscopic problem. As far as (5.10) is concerned, we use (5.14) and
(5.17) to write

∇xu0 +∇yu1 +∇zu2 = (I +∇zχ)(I +∇yθ)∇xu0 a.e. in ΩT × Y × Z∗ × T

where the functions χ and θ are the solutions to problems (5.12) and (5.16), re-
spectively. We have∫∫∫∫

ΩT×Y×Z∗×T
A(y, z)(∇xu0 +∇yu1 +∇zu2) · (∇xψ0) dx dt dy dz dτ

=
∫∫

ΩT×Y
(
∫ 1

0

∫
Z∗
A(y, z)(I +∇zχ)dzdτ)(I +∇yθ)∇xu0 · ∇xψ0 dx dt dy

=
∫∫

ΩT×Y
Ã(y)(I +∇yθ)∇xu0 · ∇xψ0 dx dt dy

=
∫

ΩT

(
∫
Y

Ã(y)(I +∇yθ)dy)∇xu0 · ∇xψ0 dx dt

=
∫

ΩT

Â∇xu0 · ∇xψ0 dx dt,

(5.18)

where Â =
∫
Y
Ã(I+∇yθ)dy. With this notation, variational problem (5.10) implies(∫

Z∗
ρ(z)dz

)∫
ΩT

∂2u0

∂t2
ψ0 dx dt+ |Z∗|

(∫ 1

0

∫
Y

β(y, τ) dy dτ
)∫

ΩT

∂u0

∂t
φ dx dt

−
∫

ΩT

div(Â∇xu0)ψ0 dx dt

= |Z∗|
∫

ΩT

f(x, t)ψ0(x, t) dx dt for all ψ0 ∈ D(ΩT ),

(5.19)
which is nothing but the weak formulation of

MZ∗(ρ)
∂2u0

∂t2
+MY×T (β)

∂u0

∂t
− 1
|Z∗|

div(Â∇u0) = f(x, t) in ΩT . (5.20)

We are almost done with the proof of the following theorem which is the main result
of this article.

Theorem 5.3. Assume that hypotheses (A1)–(A3) hold and let uε (ε > 0) be the
unique solution to (1.1). Let u0 be the function defined by Theorem 4.9 and solution
to the variational problem (5.10). Then as 0 < ε→ 0 we have

uε → u0 in L2(ΩT ), (5.21)
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where u0 ∈ L2(0, T ;H1
0 (Ω)) with ∂u0

∂t ∈ L
2(0, T : L2(Ω)), is the unique solution to

MZ∗(ρ)
∂2u0

∂t2
+MY×T (β)

∂u0

∂t
− 1
|Z∗|

div(Â∇xu0) = f(x, t)

in Ω× (0, T ),

u0 = 0 on ∂Ω× (0, T ),

u0(x, 0) = u0(x) in Ω,

MZ∗(ρ)
∂u0

∂t
(x, 0) =MZ∗(

√
ρ)v0(x) in Ω.

(5.22)

Proof. The arbitrariness of the fundamental sequence E in the limit passage in this
section and the uniqueness of the solution to (5.22) prove that we have (5.21) for the
whole generalised sequence ε > 0. Hence, it remains to justify the initial conditions
appearing in the macroscopic problem (5.22). We start by justifying that u0(x, 0) =
u0(x) for almost every x ∈ Ω. This is obvious since u0, Pεuε ∈ C([0, T ];L2(Ω))
(ε > 0) and Pεuε → u0 strongly in L2(ΩT ) with Pεuε(x, 0) = u0(x).

Next, we justify the initial condition satisfied by ∂u0
∂t (x, 0). We consider a func-

tion φ ⊗ ϕ where φ ∈ D(Ω) and ϕ ∈ D([0, T ]) with ϕ(T ) = 0 and ϕ(0) = 1. After
multiplying the main equation in (1.1) by φ(x)ϕ(t), we integrate over ΩεT and per-
form an integration by parts with respect to the variable t in the integral containing
the term ∂2uε

∂t2 ϕ (with the initial condition ρ( xε2 )∂uε∂t (x, 0) = ρ
1
2 ( xε2 )v0(x) in mind),

we obtain:

−
∫

Ωε
ρ

1
2 (
x

ε2
)v0(x)φ(x)dx−

∫
ΩεT

ρ(
x

ε2
)φ(x)

∂uε
∂t

ϕ′(t) dx dt

+
∫

ΩεT

β(
x

ε
,
t

ε2
)
∂uε
∂t

φ(x)ϕ(t) dx dt+
∫

ΩεT

A(
x

ε
,
x

ε2
)ϕ(t)∇uε · ∇φ(x) dx dt

=
∫

ΩεT

f(x, t)φ(x)ϕ(t) dx dt.

When 0 < ε→ 0, using the same arguments as in the derivation of the global limit
problem, we obtain

−MZ∗(
√
ρ)
∫

Ω

v0(x)φ(x)dx−MZ∗(ρ)
∫

ΩT

∂u0

∂t
ϕ′(t)φ(x) dx dt

+MY×T (β)
∫

ΩT

∂u0

∂t
ϕ(t)φ(x) dx dt− 1

|Z∗|

∫
ΩT

div(Â∇u0)φ(x)ϕ(t) dx dt

=
∫

ΩT

f(x, t)φ(x)ϕ(t) dx dt.

(5.23)
Keeping (5.22) in mind, an integration by parts with respect to the variable t in
the second term of (5.23) yields∫

Ω

(
MZ∗(ρ)

∂u0

∂t
(x, 0)−MZ∗(

√
ρ)v0(x)

)
φ(x)dx = 0, (5.24)

which implies

MZ∗(ρ)
∂u0

∂t
(x, 0) =MZ∗(

√
ρ)v0(x) in Ω.

The proof is complete. �
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