
OPTIMIZING OpenGL BASED SOFTWARE SYSTEMS

THROUGH REVERSE ENGINEERING

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Joseph E. Sullivan, B.S.

San Marcos, Texas
December, 2007

C O PYR IG H T

by

Joseph E. Sullivan

2007

ACK N O W LE D G M E N TS

My sincerest thanks and admiration go to Professor Wilbon Davis: his

advice, knowledge, guidance, and patience have been invaluable in the preparation

of this thesis.

I would like to thank the entire faculty and staff of the computer science

department at Texas State University-San Marcos, in particular, the members of

my committee.

My thanks also to my family, friends, and colleagues for their support, ideas,

and encouragement.

I would also like to mention the legendary blues artists Elmore James,

Robert Johnson, and Sonny Boy Williamson.

This manuscript was submitted on October 24, 2007.

IV

TABLE OF CONTENTS

Page

ACKN OW LEDGM EN TS.. v

LIST OF T A B L E S .. ix

LIST OF F IG U R E S ... x

A B S T R A C T ... xi

CHAPTER

I. IN TRO D U CTIO N ... 1

1.1 M otiva tion .. 1

II. OVERVIEW OF PREVIOUS R E S E A R C H ... 4

2.1 Conceptual Software Functionality.. 4

2.2 Structural Software Functionality.. 5

III. OPTIMIZING GRAPHICAL SOFTWARE SY STE M S................................ 6

3.1 Current Optimization S trateg ies .. 6

IV. STRUCTURE OF OpenGL .. 8

4.1 Process for Identifying Functionalities of a Software S y s te m 8

4.2 Determining the Functionalities of O p e n G L .. 14

4.2.1 Mesa 3 D ... 15

4.2.2 Profiling .. 16

4.2.3 Overview of Applications Used for Generating Profiles 18

4.2.4 S to p p in g .. 19

4.2.5 OpenGL Functionalities in Relation to A p p lica tion s 21

4.2.6 Complexity of O p e n G L .. 21

4.3 Sample Programs and OpenGL Functionalities.................................... 22

4.4 GLHeretic and OpenGL Functionalities.. 28

4.5 Neverball and OpenGL Functionalities .. 34

4.6 Summary of A pplications..(.............................. 42

V. A P PL IC A TIO N ... 75

5.1 Application 44

5.2 Threading... 44

5.3 Functionality Level Profiling .. 45

5.4 Caching.. 46

5.5 In lin ing .. 47

5.6 Functionality Driven C o m p ile s .. 48

5.7 A rch itectu re ... 48

5.8 T o o l s .. 49

VI. CON CLU SION ... 50

APPENDIX A: SOURCE CODE L IS T IN G S .. 52

A .l sleipnir.py... 52

A.2 fenris.py... 78

A.3 gullfaxi.py .. 87

A.4 g d r v .s h ... 96

A.5 fdrv.sh ... 96

B IB L IO G R A P H Y .. 97

vi

LIST OF TABLES

Table PaSe

1 Edge Index M a p p in g .. 13

2 Example Equivalence Classes .. 14

3 OpenGL Level 1 Funes. 8¿ Deses. Based on Samples............................. 26

4 OpenGL Level 2 Funes. & Deses. Based on Samples............................. 27

5 OpenGL Level 3 Funes. & Deses. Based on Samples............................. 31

6 OpenGL Level 1 Funes. & Deses. Based on G L H eretic 33

7 OpenGL Level 2 Funes. & Deses. Based on GLHeretic 35

8 OpenGL Level 3 Funes. $¿ Deses. Based on G L H eretic 36

9 OpenGL Level 1 Funes. & Deses. Based on N everball.......................... 37

10 OpenGL Level 2 Funes. & Deses. Based on N everball.......................... 42

11 OpenGL Level 3 Funes. & Deses. Based on N everball.......................... 44

vii

LIST OF FIGURES

Figure Page

1 Sample Call G r a p h ... 12

2 Digraph of Equivalence Classes .. 15

3 Optimized Digraph of Equivalence C la sses ... 15

4 Comparison of New Functionalities versus Test C a s e s 23

5 OpenGL Equivalence Class Digraph.. 24

6 Level 1 Functionalities of OpenGL Based on S am p les 25

7 Level 1 Functionalities of OpenGL with Higher Fan Out 26

8 Level 2 Functionalities of OpenGL Based on Samples (part 1) 28

9 Level 2 Functionalities of OpenGL Based on Samples (part 2) 29

10 Level 3 Functionalities of OpenGL Based on S am p les 32

11 Level 1 Functionalities of OpenGL Based on G LH eretic....................... 33

12 Level 2 Functionalities of OpenGL based on G L H eretic....................... 34

13 Level 3 Functionalities of OpenGL Based on G LH eretic....................... 36

14 Level 1 Functionalities of OpenGL Based on Neverball 37

15 Level 2 Functionalities of OpenGL Based on Neverball (part 1) 39

16 Level 2 Functionalities of OpenGL Based on Neverball (part 2) 40

17 Level 2 Functionalities of OpenGL Based on Neverball (part 3) 41

18 Level 3 Functionalities of OpenGL Based on Neverball 44

19 Functionality Driven Optimized Build Pipeline....................................... 52

A B STR A C T

OPTIMIZING OpenGL BASED SOFTWARE SYSTEMS

THROUGH REVERSE ENGINEERING

by

Joseph E. Sullivan, B.S.

Texas State University-San Marcos

December, 2007

SUPERVISING PROFESSOR: CAROL HAZLEWOOD

Dynamic execution traces of the OpenGL application programming interface

(API) were gathered to identify the functionalities provided by OpenGL. The traces

were gathered from the open source implementation of the OpenGL API, Mesa3D.

The execution traces were gathered from OpenGL by using a software profiler and

three open source driver programs to exercise the API. Several tools were developed

to preprocess the execution traces. The tools extracted the call graph information

from the execution traces and removed any call chains not related to the driver

programs or OpenGL. The tools also formatted the call graph so that it would be

acceptable input for the tools used to identify the functionalities. The preprocessed

execution traces were then used to identify the functionalities of the API. There

were 362 unique functionalities discovered with 1212 edges among them. The

functionalities were identified. The hierarchical relationships among the

functionalities were examined. Several optimizations, tools, and architectural

analysis techniques are discussed using the information gathered.

IX

CH APTER I

INTRODUCTION

1.1 Motivation

Regardless of the application’s intent, be it entertainment, medical imaging, or

scientific modeling, performance is critical for graphically intensive software systems.

Significant performance gains can be achieved utilizing traditional optimization

methods, such as profiling a system to isolate bottlenecks and then hand tuning the

problem code to mitigate the bottleneck. However, there is a point when the

software system’s architecture will begin to be the limiting factor of performance,

and no amount of code massaging will provide significant performance gains.

Optimizing a software system that utilizes OpenGL, a software interface

specification for graphics hardware, presents a significant challenge (Woo, Neider,

Davis, & Shreiner, 1997). The transformations of vertices for animation by

themselves represent a significant amount of computation and allocation of system

resources. Can new optimizations be formulated by examining the usage patterns of

the OpenGL functionalities, as defined by Hall and Davis (2004), or of the software

that uses the application programming interface (API)? An API is a specification of

an software interface. An API does not specify implementation details but rather

the behavior of any identifiers specified in the interface. OpenGL is an API.

Graphics are a major component of many software systems, including video

games, video and photo editing software, and scientific and medical imaging

software. In general most optimizations for graphics are accomplished by hardware

1

2

acceleration, partially because hardware floating point calculations are much faster

than even the best software floating point emulation (Paul, 1997). Hardware is only

part of the story where graphics optimizations are concerned. There will be some

software component of any implementation of the API, and there is an opportunity

to optimize that software (Paul, 1997). This paper discusses the internal structure

of the API, and some possible optimizations of interest to developers implementing

the API or to developers utilizing the API.

A number of OpenGL based applications were used to gather execution

traces of the API. Tools were written to preprocess the execution traces, eliminating

call chains from the traces that did have an execution path that crossed into the

OpenGL API. The processed execution traces were then used to identify the

functionalities of OpenGL, as well as the hierarchical relationships among the

functionalities. The functionalities were then examined, and a number of different

scenarios using the functionality analysis were identified. Examining the

functionalities is useful, not only for identifying possible optimizations, but also for

locating defects, and for the refactoring of existing systems. Refactoring is changing

the code to be more efficient, reliable, and readable while still performing the same

operations (Mancl, 2001).

The applications'for this study were chosen to generate complete software

execution coverage of the API. Mesa 3D was the OpenGL API implementation

examined. Three libraries of source code were used to aid in the harvesting of the

OpenGL execution traces: (1) A subset of the tutorial style sample programs

provided with the OpenGL Programming Guide known also as the “Redbook” , and

two open source video games (2) GLHeretic and (3) Neverball.

A technique for profiling the dynamic execution of OpenGL is developed.

The technique developed for profiling a middle layer like OpenGL is one of the

contributions of this paper. The analysis of OpenGL revealed approximately 360

different functionalities with about 1200 edges among the functionalities. Several

3

optimizations, refactoring strategies, and tools to aid in the development of software

and increase performance are suggested from thé functional analysis of OpenGL.

Functionality analysis provides powerful insight into the software system and can be

used to assist in many areas of software maintenance and development.

C H APTER II

OVERVIEW OF PREVIOUS RESEARCH

Reverse engineering is, in essence, a method for discovering technical details about a

particular system by observation of actions and developing a reasonable explanation

for those actions (Canfora & Di Penta, 2007). Reverse engineering is useful for

determining exactly how a software system works. Knowledge of how a software

system works can be used for developing new software systems or for refactoring

and optimizing existing software.

2.1 Conceptual Software Functionality

A definition for software functionality is, at best, ephemeral. Developers,

users, and system architects all have different ideas regarding what exactly

constitutes a “software functionality” . Hall and Davis (2004) have developed a

conceptual definition of a software functionality:

conceptually, a software functionality is a set of software modules

that always execute together (Hall & Davis, 2004, P- 3).

Software systems are created to help a user accomplish a particular task.

The purpose of a program can be viewed as the overall, or top level, functionality

(Hall & Davis, 2004). An integrated development environment would provide a

developer with a single environment in which to develop code for example. There

can be many sub-functionalities provided by the system to aid in this task. Editor,

debugger, and compiler interfaces may be provided to aid the program purpose.

There are layers, or levels, of functionalities with the lower level functionalities

4

5

acting to help the higher level functionalities fulfill their purposes. In this example

the top level functionality would be a full-featured development environment, and

the editor, compiler, and debugger interfaces would be sub-functionalities. In this

manner a hierarchical view of the functionalities can be developed to show the

relationships among functionalities. Each functionality is made up of software

modules that can be viewed as procedural functions or member methods of a class

(Hall & Davis, 2004). Modules can be members of more than one functionality

(Hall & Davis, 2004). There exists a non-empty set of modules that will always be

invoked, and these modules constitute the level 0, or top level, functionality (Hall &

Davis, 2004).

2.2 Structural Software Functionality

Based on the conceptual definition of a software functionality, a structural

definition can be derived allowing the functionalities to be described (Hall & Davis,

2004). The functionalities are derived from equivalence classes. An equivalence class

being a subset of a given set with an equivalence relation among the members of the

subset (Stoll, 1979). An equivalence relation is a relationship R from which the

members of a set can not be differentiated by R (Stoll, 1979). The process for

identifying the functionalities is demonstrated using a sample program in section

4.1. A transition is an explicit call between two modules (Hall & Davis, 2004).

Using the dynamic execution traces the transitions that make up the software

system can be assigned to equivalence classes. A functionality is the set of target

modules of the transitions that constitute the equivalence class.

Structurally, a software functionality is defined by the set of

transition targets in the equivalence class associated with the

functionality (Hall & Davis, 2004, P- 10).

6

The set of modules that constitute a functionality is unique, however a

module may belong to more than one functionality (Hall & Davis, 2004). If two

functionalities contain the same set of modules then they are the same functionality

(Hall & Davis, 2004).

C H AP TER III

OPTIMIZING GRAPHICAL SOFTWARE SYSTEMS

3.1 Current Optimization Strategies

A developer faced with a software system that is failing to meet performance

goals has several options available even with little control over how the OpenGL

API is implemented. Most optimization for OpenGL based software systems

involves optimizing data to streamline operation. Data reduction is not the only

option, but that is the area of the software system over which the developer has the

most control. However the reductions in data are almost always accompanied by a

corresponding loss in the quality of the images being displayed.

Increases in performance can be realized by reducing the number of bits per

color component, reducing the number of pixels when performing polygon fill, and

utilizing lower quality texture filters (Kuehne, True, Commike, & Shreiner, 2005).

By reducing the color resolution, the number of bits needed per frame will be

significantly reduced. For example, lowering the color resolution from 8-8-8 (32-bit)

color to 5-6-5 (16-bit) color results in approximately 33% fewer bits to set per pixel

(Kuehne et al., 2005). Backface culling is a technique in which polygons not visible

are culled or not drawn, or even sent to the drawing buffer. OpenGL has an

algorithm to perform this optimization (Woo, et al., 1997). Textures are generally

square and, they are manipulated (interpolated) to fit onto a polygon with minimal

distortion. Depending on the shape of the polygon OpenGL provides a number of

filters, or interpolation functions, to specify how to interpolate the points between

7
N

8

the texture and the polygon (Woo et al., 1997). By using an interpolation function

with fewer variables, texture coordinates can be calculated faster.

The above optimizations fall into the category of pixel operation reduction.

There are also optimizations for reducing the number of vertex operations. Vertex

optimization generally concentrates on reduction in lighting, light data, and

appropriate use of connected polygons, like triangle strips to reduce the total

number of vertices (Kuehne et al., 2005).

State sorting is an additional technique available to developers for optimizing

an OpenGL based software system. State sorting consists of organizing an

application to reduce the number of state changes in the rendering pipeline. Some

changes to the OpenGL state machine result in validation of the state machine. For

example, changing the polygon type being rendered from triangle strips to quad

strips would cause the state machine to validate. Validation is an internal operation

of the API in which the OpenGL state machine is reconfigured to keep its internal

state consistent with the rendering pipeline (Kuehne et al., 2005). In order to

reduce time lost in validation of the state machine, it makes sense to sort rendering

requests to minimize the number of state changes (Kuehne et al., 2005). Some state

changes are more expensive in terms of lost cycles, so care must be taken when

sorting the render requests (Kuehne et al., 2005).

Data transfer to the graphics hardware can be a bottleneck (Chow, 1997).

Geometry compression is one technique used to resolve this issue. Static geometry

data are compressed, allowing for a smaller memory footprint. The data are sent to

the rendering pipeline in a compressed format and is decompressed using special

hardware (Chow, 1997). This technique does result in some data loss due to lossy

compression (Chow, 1997).

This listing of optimizations is by no means complete, and is presented only

as an example of some of the current techniques. Optimizing software systems that

utilize OpenGL is not without challenges. Profiling and other measuring techniques

can help to identify hot spots that need to be addressed in order to achieve the

desired performance goals. There are relatively few techniques that don’t require

some kind of trade off between execution speed and quality of display.

C H AP TER IV

STRUCTURE OF OpenGL

4.1 Process for Identifying Functionalities of a Software System

Hall and Davis (2004) describe the process for identifying the functionalities

of a software system using a small sample program. Allow M to represent the set of

software modules for a system, and assume that M provides a set of functionalities,

F (Hall & Davis, 2004). The set P represents the set of all execution profiles

possible. An execution profile being a set of transitions that occur during a specific

execution of the software system (Hall & Davis, 2004). A call graph is a multigraph

with edges representing calls between the modules (Arnold & Grove, 2005). Allow

X to represent the set of explicit transitions, a call to a module, in the dynamic call

graph (Hall & Davis, 2004). There is at least one special start transition

represented by ’$’ which represents the flow of control from the operating system to

the software system.

Figure 1 contains an example call graph of the sample software system. The

digraphs in this paper were created with Graphviz. The sample system has a single

entry point. The ’$’ symbol in Figure 1 has been replace with ’START’ for clarity.

The digraph in Figure 1 is used to demonstrated the process of identifying

functionalities. The nodes represent the modules and the edges represent the

explicit transitions among the modules (Hall & Davis, 2004). The sets M and X

can be determined from the call graph of the sample.

10

M = {a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o }

X = {Sa, ab, ac, ad, bf, ce, eg, dh, eg, fi, fj, gl, gk, jm, jn, no}

The number of distinct execution profiles for a system can be large. The

total number of execution profiles for the system is the number of unique, connected

sub-digraphs with a common root that can be obtained from the system’s call graph

(Hall & Davis, 2004). The technique for identifying functionalities can be

demonstrated with a small number of execution traces (Hall & Davis, 2004). Below

is a representation of execution profiles numbered from one to six. Each pair in the

list represents a transition in the call graph. The listing of traces may or may not

be the complete set of execution traces for the software system. Only a small

number of traces are necessary to demonstrate the technique.

1 = {$a, ab, ac, ad, ce, eg, gk, kn, no}

2 = ($a, ab, ac, ad, ce, eg, dh}

3 = {$a, ab, ac, ad, ce, bf, eg, fi, fj, jm }

4 = {$a, ab, ac, ad, ce, eg, dh, gl}

5 = {$a, ab, ac, ad, ce, bf, fi, fj, jn, no}

6 = {$a, ab, ac, ad, ce, eg}

Knowing a functionality is a set of modules which always execute together,

the first step is to identify the sets of modules always occuring together (Hall &

Davis, 2004). By tracking the execution trace in which a transition occurs, a list of

equivalence classes can be built. The labels on the edges in Figure 1 are indices into

a table mapping the set of execution profiles in which that edge occurs (Hall &

Davis, 2004). For example, the edges in the graph labeled as ’6’ in the graph

indicated that module transitions b —» / , / —> j , and / —> i, occurred in execution

traces 3 and 5.

11

Figure 1: Sample Call Graph

13

Table 1: Edge Index Mapping
Edge Label Execution Profile Set

1 {1,5}
2 {1,2,3,4}
3 11,2,3,4,5,6}
4 {1 }
5 {3 }
6 {3,5}
7 {5 }
8 {4 }
9 {6 }
10 {2,4}

There will be some set of modules essential to the execution of the system.

There will also be an equivalence class representing these essential modules, as well

as the flow of control into the software system. The fifth entry of Table 1 represents

the set of modules common to every execution of the sample system for this

example. Table 1 provides the mapping of edge labels to execution profile sets. This

paper does not focus on the top level application layer, or the flow from the OS into

the software system, but focuses on flow from software system to API layer.

Therefore, there is more than one entry point when analyzing the API. This can be

resolved by providing a special transition for each entry point into the system (Hall,

n.d.).

Equivalence classes for the system can now be identified by examining

recurring patterns of transitions and finding equivalence classes in the call graph

(Hall & Davis, 2004). The relation of I? on A is made of all pairs (x ,y) where x and

y have the same label (Hall & Davis, 2004). A set of transitions equivalent to x

within R can be created given a transition x (Hall & Davis, 2004). The equivalence

classes are sets of transitions that execute together. An unordered set of equivalence

classes for this example are listed in Table 2.

14

Table 2: Example Equivalence Classes
Equivalence Class Transition Set

1 . {no}
2 {eg}
3 {$a,ab,ac,ad,ce}
4 {gk,kn}
5 {jm }
6 {bf,fj,fi}
7 M
8 (gl>
9 {eg}
10 {dh }

A determination of which level a particular equivalence class belongs to can

be made by creating a directed graph of the equivalence classes (Hall & Davis,

2004). The nodes in the graph represent the equivalence classes, and the edges

indicate that there exist in the parent equivalence class a target module that is the

source of a module in the child equivalence class. The root of the digraph will be

the equivalence class common to all executions, in this case equivalence class 3 (Hall

& Davis, 2004). The other equivalence classes will be represented as nodes in the

digraph. The nodes of the digraph are assigned edges between them if, and only if,

a transition target in an equivalence class is the source of a transition in another

equivalence class (Hall & Davis, 2004). Figure 2 depicts the digraph of equivalence

classes for this example. The numbering of the nodes is not consistent and each

execution trace may have different numbers for the same functionalities. This is

caused by the identification of new functionalities from the software system.

Determining the level of a functionality is accomplished by computing the

shortest path from the root to the node in question (Hall & Davis, 2004). Since a

module may be shared by multiple functionalities, they cannot be identified by the

modules that belong to that functionality alone from an execution trace. However,

the equivalence class transitions allow the functionalities to be identified in

15

Figure 2: Digraph of Equivalence Classes

Figure 3: Optimized Digraph of Equivalence Classes

relatively straight forward manner. The target modules of an equivalence class

describe a functionality (Hall & Davis, 2004). For example the module ’o ’ describes

the functionality for equivalence class 1.

The nodes 2 and 9 in the digraph depicted in Figure 2 have exactly the same

set of target modules. Two functionalities are actually the same functionality when

they have the same set of modules that execute together (Hall & Davis, 2004). The

graph can be optimized by collapsing these duplicate nodes. Figure 3 depicts the

graph with functionalities 2 and 9 merged.

16

The level of a functionality can now easily be determined from the digraph.

From the digraph in Figure 3 it can be determined that the functionality of node 3

is the root functionality. The determination that node 3 is the root functionality is

straight forward in this case, simply identify the node with the transition ’$a’ (Hall

& Davis, 2004). Nodes 2, 6, and 10 constitute the level 1 functionalities, and will be

conditionally invoked to satisfy the root functionality. There are a total of four level

2 functionalities: nodes 4, 5, 7, and 8, and there is one level: 3 functionality, node 1.

The functionality information is cumulative across the execution traces. As

each execution trace is processed, the functionality information from that trace is

combined with the information from the previous traces. This cumulative effect

means that only the final execution trace from a software system need be examined

to observe all the functionalities of that system.

By examining the modules that constitute a particular functionality, some

identification of the functionality can be made. This identification, in conjunction

with an assignment of functionalities to levels, provides a basis for examining

software in terms of performance, architecture, and security, etc.

4.2 Determining the Functionalities of OpenGL

To identify and examine the functionalities provided by the OpenGL API,

execution traces were generated using the Valgrind profiling tools suite in particular

Callgrind. The goal for profiling is to provide execution coverage so that each

functionality of the API is exercised discretely at least one time. The number of

unique execution profiles for a system is the number of unique sub-digraphs with a

common root that can be obtained from a system’s call graphs (Hall & Davis,

2004). When applied to an API with multiple entry points, the number of unique

execution profiles becomes quite large indeed. There is a statistical method for

determining when generating further profiles does not provide any benefit (Hall,

1997). The stopping criterion will be covered in section 4.2.4. The approach taken

17

for profiling OpenGL was to use a set of small tutorial programs, along with two

larger, more complex source bases provided by two open source games. This

strategy allows the examination of the usage of OpenGL by complex systems (the

games) in terms of the low level functionalities provided by the API. There are

approximately 50 small samples. Each one attempts to demonstrate a single feature

of the API. These samples are distributed with the OpenGL Programming Guide as

tutorial programs, and provided as source code on the OpenGL website. The other

two applications are both games provided as source, each of which represents a

different style of game. GLHeretic is a first person shooter in which a player

navigates through an environment engaging the game environment (mobile

constructs, doors etc.) using keyboard commands and the mouse. The object of the

game is to clear an area of enemies, and then find the exit. The other game is

Neverball, an open source puzzle game, in which the player attempts to steer a ball

across a playing field by using the mouse, with the purpose being to collect a

number of coins and then navigate to an end target goal.

After the execution traces are processed and functionalities determined, the

functionalities have to be identified in terms of what processing is provided. A

determination of the nature of a functionality is obtained by examining the modules

which constitute the functionality in conjunction with the source code for the

modules making up the functionality.

4.2.1 Mesa 3D

Profiling OpenGL itself is not a particularly trivial problem since most

distributions of the API are from commercial hardware vendors, making source code

access impractical. There is no way to know the names of modules that make up

the API without source code or symbolic information from the OpenGL

implementation being analyzed. Traces would reveal that one address was called by

another address, but there is not a way to determine the name of the module that

18

corresponds to either address. Mesa 3D provides an open source implementation of

the OpenGL API on multiple platforms. Mesa 3D has passed the OpenGL

conformance tests (Paul, n.d.), making it a suitable for research involving OpenGL.

It is understood that hardware implementations provide significant advantages over

software implementations in terms of performance, but examining a software

implementation provides a greater insight into many areas, and may present ideas

for new hardware design.

Another issue is related to the nature of an API. By design, libraries are not

stand alone applications. They require a driver program of some kind. This makes

the gathering of execution traces more complicated. Instrumenting profilers such as

gprof that insert performance tracking code into an executable either by recompiling

with flags or by inserting directly into the binary itself, are generally not able to

instrument dynamically linked objects. While using an instrumenting profiler is

completely satisfactory for profiling the driver program, it will not capture any

information about a dynamically linked objects like those of the OpenGL API.

Sampling profilers are able to capture data across the dynamic link. Sampling

profilers usually accomplish this by recording the stack. A sampling profiler is

limited in that it does not record all information rather it records information after

some time interval or event. The result is that the gathered profiles are incomplete.

4.2.2 Profiling

The profiler used to gather profiles for this research was Callgrind. Callgrind

is part of the Valgrind profiling tools suite, which is an open source application

available on PowerPC and X86 Linux platforms. Tools in this suite work by adding

instrumentation code to an existing executable and running the instrumented code

in a simulated environment. At program termination an execution trace is output

to a file as plain text. The execution of the profiled program in the simulator is

somewhat slower than native hardware execution, but the execution traces are

19

complete and have information recorded from the dynamically linked objects.

Completeness of the execution traces is not a practical expectation for a sampling

profiler, and profiling into dynamically linked objects is problematic for many other

profiling systems.

The execution traces gathered were typically very large, being anywhere from

20,000 to 80,000 lines long. A small snippet of an execution profile is listed below.

fl= (7) ex.c
fn=(220) te stl
14 3
+1 1
cfn=(222) test2
calls=l +7
* 5
* 1
+2 2

fn=(218) main
9 10
+1 1
cfn=(220)
calls=l +4
* 12
+1 2

Each file, function, and binary object, an executable or library, is assigned

an unique identifier used throughout that profile to identify that object. Files are

abbreviated as “fl” , functions are abbreviated as “fn” , and child functions are “cfn” .

Each block of information in the profile lists the calling function followed by each

function that it calls. Information about the number of times a child function is

called, line number information, and time spent in the calls are listed in the

information block as well. After the execution traces were gathered from the various

software systems, each profile was preprocessed and formatted for the tools used to

identify equivalence classes and functionalities.

20

The first preprocessor, called sliepnir (see section A .l), is a two pass parser.

On the first pass it builds a list of relative binary objects, Mesa3d for example, and

a second list of functions (modules) from those binary objects. On the second pass

sliepnir.py records any call pairs involving the relative binary objects. The call

chains are recorded into an list as a pair of pairs, [[bin:func]:[bin:func]], using the

assigned identifier for the object and function. After the file is analyzed the call

chains are printed by using the identifiers in the pair of pairs as an index into the

lists of objects and functions. The call chains are printed out in the form of bin.func

—> bin.func. Since the software system to be analyzed was an API, sliepnir.py

removed all calls that did not either involve the driver program or cross into the

OpenGL API. Calls from the sample program into libc for example, were ignored by

sliepnir.py. At this stage the special start transition pair “START” —* main(), was

added to the list of transitions.

A second tool, fenris.py (see section A.2), further distilled the data by

processing the output from sliepnir.py. Fenris.py handled the multiple entries into

the API by adding the “START” —> “APLENTRY” transitions and eliminated any

sample software call chains that did not cross into the API. Calls internal to the

API were simply recorded. Calls with their origins in the driver application that

crossed into the API were pruned at the transition into the API. The example call

chain below represents a theoretical call chain before it is pruned:

“main()” “local call A” -> “local call B” -► “OpenGL call” .

The second pass would remove main() and add the special start transition. The

resulting call chain would be:

“START” - » “local call B” -> “OpenGL call” .

The removal and pruning of the call chains reduced the amount of data to be

processed and restricted the domain to OpenGL as much as possible.

4.2.3 Overview of Applications Used for Generating Profiles

21

A two pronged approach was used to profile the API. Large complex systems

like complete games do not provide a complete breakdown of the functionalities of

OpenGL by themselves. The first part of the approach was to use small programs

that exercise individual functionalities of the API, giving a base by which more

complex systems could be analyzed. For example, the API provides a method for

setting the'pixel size. At least one test case should exercise the pixel setting

functionality, with a minimal number of other functionalities being exercised. The

intent is to create a minimal set of the functionalities required for the functionality

being executed in a particular run (Eisenbarth, Koschke, & Simon, 2001). There

were a total of 51 sample programs profiled. These samples are intended as tutorial

programs and, in general, cover only one aspect of OpenGL per sample (Woo et al.,

1997). The code for each sample provides the same function names, “display” is the

name of the drawing function for each sample for example. This provides uniform

entry points into OpenGL. The sample programs were intended to break up the

OpenGL functionalities. The programs range in purpose from setting up the view

port and drawing functions to rendering complex textured and curved surfaces.

There was some consideration given to determining the functionalities that make up

that portion of OpenGL dealing with initialization but, due to the limited number

of times those functionalities are executed, they are not ideal candidates for

optimizations. While some of the initialization routines are called more than one

time, in general, most are called only a single time.

GLHeretic is an open source version of Heretic, a commercial first person

shooter type game. The player navigates though a rendered environment engaging

different animated enemies. In addition to game play, GLHeretic provides options

for adjusting various settings such as level of difficulty and effects. GLHeretic also

provides operations for saving and loading games. There were a total of 22 profiles

generated, and each profile attempts to exercise different functionalities through

manipulation of options or interaction with the game environment. For example,

one execution trace exercises the dynamic lighting effects.

The second open source game profiled is Neverball. The object of the game

is to navigate a ball around a playing field and to gather a predetermined number of

coins. The player then has to steer the ball to a goal area on the playing field.

Neverball provides user adjustable settings for various graphical effects, as well as

saving and replaying games. Unlike GLHeretic, Neverball had fewer options due in

part to the different nature of the games. There were 12 total execution profiles

derived from Neverball.

4.2.4 Stopping

The number of unique execution paths through a software system can be

quite large, and a determination has to be made to stop generating any new

execution profiles (Hall & Davis, 2004). Assuming that a software system has a

main function that cannot be called recursively or by any other function, a system

that has K functions has K * (K — 1) possible explicit calls. If Y is the total

number of explicit calls in the system, there are potentially Y Y execution profiles

possible in a system. In practice the number of execution profiles will be less than

that. Ideally profiles would no longer be generated after the number of

functionalities has stabilized and no new functionalities are being discovered and

before the functionalities begin to deteriorate into individual functions. When the

functionalities are complete, additional profiles will not yield further discoveries of

equivalence classes (Hall, n.d.). Hall (1997) determined a statistical method for

halting the gathering of traces. Empirically, stopping can be determined by

examining the number of functionalities versus the number of test cases.

It can be determined by examining the graph from Figure 4 when new

software systems were introduced into the data set. There is a minor but abrupt

rise in the number of functionalities discovered with the introduction of each new

22

23

Figure 4: Comparison of New Functionalities versus Test Cases

source base. The introduction of the 22 execution traces from GLHeretic increased

the number of functionalities discovered by 15, a 6.4% increase. The introduction of

the 12 Neverball traces increased the number of functionalities by 24, an 8.6%

increase. A portion of the new functionalities are a result of introduction of new

entry point source modules into the analysis. The remaining newly discovered

functionalities are OpenGL functionalities revealed from the introduction of the

new traces into the analysis.

4.2.5 Functionalities Derived from OpenGL in Relation to Applications

Comparing the number of new functionalities generated per execution

profile, the number of functionalities should begin to approach a limit. This curve

can be used to help determine when a satisfactory number of profiles has been

gathered. The curve in Figure 4 depicts the addition of test cases to the data set,

versus the number of equivalence classes discovered. The curve has indeed started

to approach a limit indicating the functionality set has stabilized and few

24

Figure 5: OpenGL Equivalence Class Digraph

functionalities remain undiscovered. There are the two small spikes in the curve

that correspond to the addition of a new source base to the analysis. These spikes

are expected when a new source base is introduced into the analysis. While the

curve has begun to flatten and seems to be approaching a limit, adding execution

profiles from a few more applications would be necessary to conclusively say that

the functionality set has completely stabilized. The functionalities have stabilized

enough however for a proof of concept.

4.2.6 Complexity of OpenGL

OpenGL is a large API. Figure 5 provides a glimpse into the complex nature

of OpenGL. The figure depicts the equivalence class digraph derived from OpenGL

without a level restriction. There are approximately 360 different nodes, and 1200

different edges between the nodes. A graph this complex provides little useful

information about the software system (Hall, & Davis, 2004). Since the overall

architecture of the software system is so complex, analyzing the overall system

nearly impossible. A different approach will need to be taken. By focusing on levels

of functionalities a simplified view of the system can be realized allowing analysis of

the system to proceed.

4.3 Sample Programs and OpenGL Functionalities

The Digraph in Figure 6 depicts the level 1 functionalities of the OpenGL

API discovered by the sample programs. There are 5 level 1 functionalities

25

Figure 6: Level 1 Functionalities of OpenGL Based on Samples

discovered through the 51 sample programs. There is not a large fan out of

functionalities at level 1. Digraphs generated from the earlier sample program

execution traces had a larger number of level 1 functionalities. Figure 7 shows an

example of this. Regardless of the order that the sample execution traces are

analyzed, the last sample execution trace identified the same functionalities at the

same levels. This demonstrates that the order in which the execution traces are

analyzed does not affect the functionalities discovered. The early instability

demonstrates the need for obeying the stopping rules discussed in section 4.2.4. The

high fan out of functionalities from the earlier execution traces indicates that the

functionalities had not yet stabilized. There is not much useful information that can

be gleaned from Figure 7, however it does help to demonstrate that a number of

execution traces are required before the functionalities of the software system will

stabilize. The description of the functionalities for Figure 6 can be found in Table 3.

One of the difficulties in analyzing a library layer like OpenGL is that there

are multiple legitimate entry points into the system. An application generally has

one entry point. In a C language application the entry from the operating system to

main() for example. Since there are multiple entries into a library, the root

functionality can seem a bit arbitrary. An API does not serve a single program

purpose in the traditional sense but instead provides a service to multiple programs.

Each of which has its own purpose. This explains why the root of the program will

tend to drift to some degree as different programs are analyzed.

26

Table 3: OpenGL Level 1 Funcs.a &; Descs.b Based on Samples
Struct. Func. c Description Equiv. Class d

0 Callback Entry Points & Fog Rendering
Calculations 241

1 Software Renderer 98
2 Translate (transform) 106
3 Matrix Manipulation(push and pop) 114
4 Setup and Execute Translation 209

5 Saving Matrix and Attribute State before
a change 227

“Functionalities
descriptions
“Structural Functionality
^Equivalence Class

The level 1 functionalities are involved with rendering, display list creation,

and translation. These are functionalities that a graphics API would be expected to

provide as high level functionalities.

The digraph for level 2 has been split into two digraphs. In Figure 8 the

functionalities with an edge from node 98 have been mostly removed, only nodes

with an edge to 98 and another level 1 functionality are in included in Figure 8.

Figure 9 provides a complete listing of the level 2 functionalities for node 98.

Figures 8 and 9 depict the functionalities derived from the 51 sample programs at

level 2. Several of the level 1 functionalities have a large number of level 2

27

sub-functionalities. Functionalities 98 and 247 in particular have large numbers of

sub-functionalities. In Figure 8 node 241 is still the root functionality. Looking at

the graph though, it appears that 98 has become the root. Graphviz attempts to

minimize intersecting lines and has moved node 98 higher in the graph. At this level

node 98 does have an edge to the root, indicating that the root functionality is one

of its sub-functionalities.

The Digraph for Level 2 has 63 nodes and a complete listing of each

functionality would not be practical. However, from the digraph for level 2, a few

nodes of interest have begun to present themselves. The level 1 functionalities 106

and 209, have the functionality described by node 224 in common. Node 224

involves matrix translation and updating part of the OpenGL state machine. Other

nodes of interest are 246, which is the functionality that creates display lists, and

node 24, which is the functionality relating to creating and updating the stencil

buffer. Another important functionality discovered at level 2 is represented by node

110, the functionality for initialization and startup of OpenGL. Most modules

within the initialization functionality are exercised only infrequently, making the

functionality a less than ideal candidate for optimizations, however it is still an

important functionality. Table 4 provides a listing of some of the level 2

functionalities discovered from the sample programs.

Table 4: OpenGL Level 2 Funcs. &; Descs. Based on Samples
Struct. Func. Description Equiv. Class

6 Translate and Update 244
7 Stencil Buffer 246
8 Initialization and Start up 110
9 Points Renderer and State Machine Validation 79
10 Rendering and Clipping 3
11 Polygon Render and Clipping 187
12 Setup Software Renderer for Triangles 152
13 Setup Software Renderer for Triangles Strips 211
14 Line Renderer and State Machine Validation 128

Figure 8: Level 2 Functionalities of OpenGL Based on Samples (part 1)

to00

f t ! m-t i / '

' i \ /
M > ^ T /{ . i Ha) /? V y /
; I ~ /
> \ v___ /
: \ i \
i \%
! (I* }

V (13s

\ 2JA

Figure 9: Level 2 Functionalities of OpenGL Based on Samples (part 2)

toCO

30

The Digraph at level 3 becomes large with approximately 235 nodes. Figure

10 presents partial digraphs the level 3. Some nodes have been pjuned for

readability. Node 110 was one of the major nodes pruned from the graph, the

functionality is well understood without visualizing it. Although the digraph is

quite large there is some clustering of nodes that warrant further investigation into

their nature. There are three level 2 functionalities that have large numbers of level
/

3 sub-functionalities namely: 79, 110, and 128.

The functionality for node 110 has 36 sub-functionalities. The functionality

has already been described as the initialization and startup of OpenGL. The

modules that make up this functionality are infrequently called. Gullfaxi.py (see

A.3) examines an execution trace and reports the number of times each module is

called. Examining the results from this tool confirmed that most routines were

called one time. Because the routines are called so infrequently, optimizing the start

up is much more challenging, and the optimization investment would likely be

better utilized elsewhere.
i

Functionalities 79 and 128 both have a fairly large number of

sub-functionalities and are themselves sub-functionalities to several nodes. These

functionalities have high fan out since they are both major components of the

software Tenderer. Functionality 128 builds the polygons, and functionality 79

involves rendering points mostly in terms of polygon fill. Node 128 has 10

sub-functionalities as indicated by the digraph. Node 79 has 19 sub-functionalities.

Both functionalities validate the state machine. Nodes 79 and 128 have edges from

and to node 98, indicating that they are both integral to the software render of

Mesa 3d.

Another interesting cluster of functionalities in the Digraph is the interaction

of the level 2 nodes: 3, 211, and 152. Each of which has edges to a subset of the

nodes with edges from the level 2 functionality 187, indicating that they all may

31

have very similar purposes. Functionality 42’s purpose is to extract and interpolate

colors, functionality 122 does setup for interpolation functions, and functionality

197 starts the drawing. Functionalities 42, 122, and 197 are all integral to rendering

of polygons and triangles. Examining functionalities 3, 211, 152, and 187, it is

apparent that each of these functionalities is involved with rendering of polygons.

Table 5 gives a listing of the functionalities. The parent functionality listed in Table

5 can be found in Table 4. Figure 10 provides several partial graphs of the level 3

functionalities.

Table 5: OpenGL Level 3 Funcs. Sz Descs. Based on Samples
Struct. Func. Description Equiv. Class Parent Func.

15 Flush Vertices 132 79
16 Interpolate Z (depth) 160 79
17 Interpolate fog 235 79
18 Polygon Stippling 18 79
19 Polygon Gesturing 120 79
20 Setup Interpolation Function 122 3 & 187
21 Draw/Render Start 197 3 & 187
22 Extract and Interpolate Color 42 3 & 187
23 Software Triangle Raster 81 152, 211 & 187

4.4 GLHeretic and OpenGL Functionalities

The second software system profiled was GLHeretic. The execution traces

from the sample programs were included in the analysis of the execution traces from

GLHeretic. Combining the execution traces together may not seem to be correct

initially, but this allows the functionalities of OpenGL to be explored in terms of

the game. If the GLHeretic data is examined without the execution traces from the

samples, there are a total of 24 functionalities identified. When the execution traces

from GLHeretic and the sample programs are combined, over 300 functionalities

become evident. The low number of functionalities derived from the GLHeretic

execution traces alone is explained by the organization of the game and its

utilization of OpenGL. GLHeretic provides very few options in terms of the settings

32

(c) Level 3 Cluster of Rendering Functionalities

Figure 10: Level 3 Functionalities of OpenGL Based on Samples

33

Figure 11: Level 1 Functionalities of OpenGL Based on GLHeretic

for graphics, allowing fewer unique execution paths through the API. With fewer

execution paths, there will be fewer functionalities identified.

The Digraph depicted in Figure 11 shows the level 1 functionalities of

GLHeretic. As noted in section 4.1, functionality information is cumulative across

execution traces. Since the functionality information is cumulative, only the last

execution trace from OpenGL was examined.

There are seven level 1 functionalities, and the root functionality has shifted

into GLHeretic. The root functionality is related to drawing to the screen and the

OpenGL interface callbacks for using the API. In examining Table 6 it appears that

Nodes 264 and 281 seem to be very similar, as both deal with Begin/End; however,

they each have distinct behavior. Functionality 264 is the entry point to the API,

while 281 is used internally by the API.

Table 6: OpenGL Level 1 Funcs. fe Descs. Based on GLHeretic
Struct. Func. Description Equiv. Class

0 Render Text 284
1 Bind Texture 1
2 Execute Render Pipeline 54
3 Render and State Machine Setup 97
4 Texture Coordinates 176
5 Begin/End for drawling lists 264
6 Setup Begin/End Function Pointers 281
7 Setup Function Pointers for Creating Vertices 286

There is a slightly higher fan out at level 1 for GLHeretic than was observed

with the sample programs. GLHeretic has a different usage of the API compared to

the sample programs, and this difference has caused some functionalities to move up

34

to level 1 from some lower level. This movement is expected since the functionalities

have not completely stabilized.

Nodes 54, 97, and 176 are significant functionalities found at level 1.

Functionality 54 is the functionality running the graphics Tenderer pipeline.

Functionality 54 also saves display lists, which allows a programmer to use the same

geometry or state changes multiple times while only specifying them once (Woo et

al., 1997). Functionality 97 represents the Tenderer and performs state machine

setup. Functionality 176 is the texture coordinates functionality and is responsible

for choosing the texture filter that will be used by the API. Functionality 97

initializes the software pipeline and validates the state machine. Functionality 176

is responsible for texturing objects, and then sending the textured objects to the

render pipeline. Functionality 176 also is responsible for buffer swapping.

The level 2 digraph of GLHeretic has a total of 30 nodes, with 22 level 2

functionalities. There are fewer level 2 functionalities for GLHeretic than for the

sample programs. This is because GLHeretic has less total coverage of the API, and

hence, fewer functionalities are encountered.

Figure 12 depicts the digraph of GLHeretic and the level 2 Functionalities.

- Node 54 has eight level 2 sub-functionalities, three of which are shared with several

other functionalities. Functionality 97 has 10 level 2 sub-functionalities.

Functionality 176 has six level 2 sub functionalities.

35

The level 2 functionality 157 is shared by level 1 functionalities 54, 97 and

176. Node 157 provides internal support for saving the OpenGL state machine and

for allocating memory. Functionality 41, which is shared by level 1 functionalities

281 and 54 sets up the internal function pointers used by the API for flushing

vertices. Functionality 108, which is shared by the level 1 functionalities 54 and 97,

is the display list compiler responsible for building display lists. A partial listing of

the level 2 functionalities can be found in Table 7.

Table 7: OpenGL Level 2 Funcs. fe Descs. Based on GLHeretic
Struct. Func. Description Equiv. Class Parent Func.

8 “Compiler” for Building Display
Lists 108 54 & 97

9 Execute Display List 292 54

10 setup glBegin through Function
Pointer 152 281

11 Update State Machine 162 54

12 Setup glEnd through Function
Pointer 208 264 & 281

13 Buffer Swap 222 176
14 Initializations and Start up 233 54

15 Interface to Xwindows & screen
drawing 237 1

16 State Machine Update and
Memory Allocation 157 54, 97, & 176

17 Setup for Vertex Flush Func
tions 41 54 & 281

More is understood about the level 1 functionalities By looking at the level 2

functionalities, and some thoughts about the API and its organization begin to

become evident. At level 2 the graph for GLHeretic is still small enough to be

manageable. It is easy to examine the graph and gain insight into the software

system. Even at a relatively high level, examining the functionalities provides some

evidence that by introducing threading into the API and placing the functionalities

176 and 54 in separate threads a performance gain may be realized.

36

(a) Partial Level 3 Functionalities

Figure 13: Level 3 Functionalities of OpenGL Based on GLHeretic

At level 3 the digraph is still easily understood as only 16 new functionalities

are introduced into the graph at that level. The functionality for node 237 has the

largest number of sub-functionalities at this level. The unshared portion of

sub-functionalities for node 237 have been listed in Figure 13. Functionality 237 has

26 total sub-functionalities, and 15 of the 16 functionalities discovered at level 3. It

also has edges to each of the level 1 functionalities. The functionality represented

by node 237 is a core functionality of OpenGL. It is the functionality that interfaces

with the OS and does the actual drawing on the screen. The digraph for level 3 is

depicted in Figure 13. Table 8 provides descriptions for some of the functionalities

from level 3.

4.5 Neverball and OpenGL Functionalities

The last software system profiled for this study is Neverball. The execution

traces gathered from Neverball were combined with the traces from the samples and

GLHeretic. Reasons for combining execution traces from the sample programs and

37

Table 8: 0 penGL Level 3 Funcs. & Descs. Based on GLHeretic
Struct. Fune. Description Equiv. Class Parent Fune.

18 Texture Validation 232 237
19 Swap Buffer System Call 35 237
20 Viewport 121 237
21 ClearColor 147 237

Figure 14: Level 1 Functionalities of OpenGL Based on Neverball

the larger software systems has already been addressed. However, the combining of

the two production software systems has not. Combining the traces from each of the

production systems allows for an examination of the differences in how each system

uses the API and, conversely, which functionalities overlap across each system. As

in section 4.4, only the last execution trace from Neverball was examined.

The digraph in Figure 14 depicts the level 1 functionalities of OpenGL

derived from Neverball. Neverball does provide some of control of the graphic

effects, for example shadows can be toggled on and off. The various options

provided by Neverball were exercised during profiling.

The Level 0 functionality relates to the OpenGL render mode, and

specifically feedbackbuffer mode. The level 0 functionality is represented by node

344. There are a total of 14 level 1 functionalities. Table 7 gives a partial listing of

the level 1 functionalities. A complete listing is not necessary as several of the level

1 functionalities are related to OpenGL state validation and function pointer

initialization and are very similar to ones already listed.

Examining the level 1 functionalities, there are several functionalities that

are also level 1 and level 2 functionalities for GLHeretic. Functionalities 197, 246,

and 257 were previously described in Table 6, section 4.4 as part of the level 1

38

Table 9: OpenGL Level 1 Funcs. Sz Pèses. Based on Neverball
Struct. Fun'c. Description Equiv. Class

0 OpenGL RenderMode Setup 344
1 State Machine validation for Vertices 5
2 Setup Orthographic Projection 152
3 s Clear Color 167
4 Begin/End for Drawing List 197
5 “Compiler” for Building Display Lists 211
6 Setup Begin/End Function Pointers 246
7 Execute Render Pipeline 257
8 Point Renderer 286
9 Build Normals 305
10 Setup Function Pointers for Normals 260

functionalities discovered from GLHeretic. Fvmctionality 211 has also been seen

with GLHeretic as a level 2 functionality. The description for the functionality is in

Table 7.

There are three additional level 1 functionalities identified by the Neverball

traces. Functionality 152 has to do with setting up the 3D projection matrix for

Neverball. Functionality 286 sets up the software point Tenderer while functionality

305 has to do with building normals. Neverball uses a much more robust lighting

model compared to GLHeretic and uses normals for many of the lighting

calculations.

A complete digraph of the level 2 functionalities has 104 nodes, with 124

edges between them. The graph has been broken into 3 parts for display, with

digraphs for the sub-functionalities of nodes 286, and 211 depicted separately.

Figure 15 lists both 286 and 211 for level 1 completeness.

In Figure 15 the nodes 257 and 305 have three sub-functionalities in

common. Functionality 10 represents the callbacks the API provides as entries into

the system, functionality 20 is memory and list cleanup, and functionality 29 is

geometry transform functions.
•e

Node 211 is depicted in Figure 17. In all, Functionality 11 has forty four

39

X { l 4 6 f l VtY / X f 171 ̂ (107^ T i t « ' ; *\ 15-''l L67 } f IL2jX ^ I!&5) ~"~*T 286''l/ V ̂ S-h; •'-—-< *s-~s. v"—
X " X x " / 1 X *’ /

■ Jtp * ' f ,-•> ^ -S, S %— ■> ’*> ',«k- ’V 'A -''—̂ V- "•
X - X (5 J / (_ 2» j 1̂ 176 ; ^ 257^ \ { l l j [^ J \ { m) i ^ 5 4 ^ I 206) \ 1 U i \ m '1 \Z0°) (& 3 C j 540 /

1 X I \ X \ X X \
V \ V -^ '•••. v -x v • v~ •,. v -~ ,-i —

' *•*' * •• V '**/• - .• A / \ •■ •“ ' ' -
I 211 j i VJ>\ (1 1 0] 1, 25 J I 135 j (lit , J (» ? } j A ’ . !^16 ; (102 : (3' j J j \

(X Q®jT(» S Ĉ") {5*0 {-«) ̂ *0

Figure 15: Level 2 Functionalities of OpenGL Based on Neverball (part 1)

sub-functionalities. Most of the sub-functionalities deal with clipping and rendering

of a specific primitive, for example functionality 80 represents rendering line strips.

Figure 15 depicts the sub-functionalities of node 286 for which there are 23.

Node 286 has 211 as a child node, and is itself a child node of 211, both functionality

211, and 286 are similar, as both deal with rendering. 211 is involved with vertices,

and building geometry with primitives like triangle. Functionality 286 is involved

with pixel operations polygon stippling, texturing, and color interpolation.

Table 10 lists part of the functionalities from Neverball at level 2. Unlike

GLHeretic at this level, there is a significant increase in the number of

functionalities generated by Neverball.

There are 122 nodes and 203 edges in the digraph for Neverball

functionalities at level 3. The sub-functionalities that make up level 3 provide more

detailed information about the level 2 functionalities. For example, present at this

level is the function _mesa_pow which is the power function, used primarily for

lighting calculations. The module _mesa_pow is the sole member of functionality

and is represented by node 131. The parent functionality is 100 which represents

fast lighting. Fast lighting is a technique used in graphics to quickly calculate

specular highlights and is one of the few calculations in graphics that involves an

exponent. Examining the graph, the power functionality is used only by the fast

lighting functionality.

Figure 16: Level 2 Functionalities of OpenGL Based on Neverball (part 2)

Figure 17: Level 2 Functionalities of OpenGL Based on Neverball (part 3)

42

Table 10: OpenGL Level 2 Funcs. Sz Pesos. Based on Neverball
Struct. Func. Description Equiv. Class Parent Func.

11 Software Raster Update 1 286
12 Color Interpolation 12 286

13 OpenGL Start up and Initializa
tion 29 257 & 305

14 Fog Interpolate 59 286
15 Stencil 86 286
16 Update State Machine 102 257
17 Polygon Stipple 103 286
18 Clip 137 286
19 Validate and Run Renderer 211 286

20 Software Renderer for Lines and
Triangles 216 257

21 Texture Internals 300 286
22 Depth Test 302 286
23 Clean Up on Shutdown 306 286
24 Clip and Render 43 211
25 Texture Polygons 47 211
26 Raster / Flush 65 211
27 Triangle Strip Clip and Render 9 211
28 Transform Normals 27 211
29 Lighting Pass 85 211

30 Light Table Validation and Up
date 89 211

31 Fast Lighting 100 211
32 Render Line Strips 80 211
33 Clip and Render Quad Strips 292 211
34 Matrix Scale and Rotate 159 211
35 Matrix Multiply and Invert 212 211
36 Invalidate State 230 211
37 Clip and Render Quad Vertices 236 211
38 Line Stipple 342 211
39 Rotate 339 211

A limited digraph of level 3 is depicted in Figure 18. Functionalities from

level 1 and 2 that have no level 3 sub-functionality are removed. Functionality 211

has been separated to some degree as well to help with readability.

There are several of the nineteen new functionalities discovered at level 3

shared by level 2 functionalities. The level 2 functionalities associated with level 1

43

functionality 211 have 16 level 3 functionalities. Functionalities 255, 53, and 8, are

some of the more interesting functionalities. The functionality represented by node

255 is interpolation and rendering of clipped polygons; 53 is triangle color; and 8 is

raster line. Table 11 provides a listing of some of the functionalities of level 3.

Table 11: OpenGL Level 3 Funcs. Sz Descs. Based on Neverball
Struct. Fune. Description Equiv. Class Parent Fune.

40 Triangle Color 53 9, 43, 199, 234, &288

41 Interpolate and Ren
der Polygons 255 9, 43, 199, 236

42 Save Attributes and
Information 32 50 & 106

43 Translate 75 339
44 Light 242 339
45 Matrix Operations 28 339
46 Raster Triangles 14 130 & 136
47 Quad RGBA 333 353

48 Render Unfilled Tri
angles 216 257, 288, & 353

49 Power Function 131 100

(a) Partial Level 3 Functionalities

Figure 18: Level 3 Functionalities of OpenGL Based on Neverball

45

4.6 Summary of Applications

The OpenGL sample programs provided a very good way of breaking down

the functionalities of OpenGL. The sample programs provided a base of 274

functionalities. The main purpose of the sample programs was not to provide

enough data for analysis of the API by themselves, but rather to provide

supplemental information about the nature of the API so that functionalities could

be derived in conjunction with real use cases, in this instance the games. Each

application had to be profiled to gather execution traces in order to derive the

functionalities.

The tutorial programs had very little user controlled input so capturing

traces was a simple matter of running them in the profiler. Each game had several

options and game play scenarios to be profiled in order to have reasonable coverage

of the source code. Profiling the games was more problematic. In order to profile

the games, each option was exercised singularly in the profiler. The save mechanism

provided by each game was used to profile game play. The game was saved at a

point just before the event of interest was to be observed, and then the game was

restarted in the profiler. The saved game would be reloaded at this point, and then

the event would be triggered and profiled.

GLHeretic in comparison to Neverball is a much older game. The parent

game Heretic was released in 1994. The game does not use as many features of the

API as Neverball does. The numbers of level 1 functionalities provides some insight

into the feature coverage of the API. GLHeretic has 7, while Neverball has twice

that many with 14. GLHeretic is a sprite based game with extensive use of texture

mapping of effects and the game environment. Neverball however takes advantage

of stipple buffer to provide reflections and shadows, as well as using rendered

objects as opposed to textures for the environment, etc. Comparing the various

functionalities used by GLHeretic and Neverball, differences and commonalities in

46

usage are apparent. GLHeretic and Neverball have some functionalities in common

such as pipeline execution. Differences in usage also appear: Neverball makes use of

stippling and stenciling, while GLHeretic tends to use more texturing techniques.

Neverball also uses normals indicating that it takes advantage of 3d graphics, as

opposed to the 2d used by GLHeretic.

The tutorial programs in combination with the games provided a breakdown

of the functionalities of the API. By examining these functionalities and their

relationships, a better understanding of the internal operations of the API is

attained, allowing for development of new optimizations, tools and development

techniques.

CH APTER V

APPLICATION

5.1 Application

Now that the functionalities of OpenGL are identified, and a hierarchy has

been established, can that information be used to improve the software system?

5.2 Threading

As has already been noted in Section 4.4, segregating the major

functionalities of the API into separate threads could yield performance

improvements. Equivalence class analysis provides a convenient way to start the

process of assigning modules to threads and suggests which functionalities require

locks (mutexes). Two functionalities begin to emerge from GLHeretic as candidates

for threading. Functionalities 54 and 176 are the high level functionalities handling

the major portions of the API. Functionality 54 is the level 1 functionality for

running the software pipeline, and 176 handles the texturing of polygons, and filling

the drawing buffer. These functionalities make good candidates because their

behaviors complement each other. One runs the rendering pipeline, and the other

swaps the display buffers, and feeds textures into the pipeline. The through put of

the pipeline will be increased if both functionalities are allowed to run in parallel.

The edges of the digraphs indicate dependency among modules, hence, where locks

will most likely be required for safety. They also indicate which modules would be

exclusive to a particular thread. Functionality 237 from the level 2 GLHeretic

digraph may also prove to be a candidate to add to threading model. More research

is required to make any determination however.

47

48

The same basic functionalities appear again with the Neverball execution

traces. Functionalities 257 and 286 are the candidates for threading. Placing

functionality 211, the compiler for display lists, in its own thread may also be a

possibility. GLHeretic and Neverball both had the suggested functionalities as

major high level functionalities. There was some difference in level for the display

list compiler. However, the concept of threading the API is still valid. More software

systems would need to be profiled to determine how to best implement the model.

As mentioned in section 1.1, there will always be some portion of the API

that will be purely software. Threading will allow for parallel processing of different

parts of the API which will provide a significant boost to a purely software

implementation of the API, as well as software portions of any other

hardware/software implementation. Threading will also show significant boost in

performance if the threading model is able to utilize some of the multi-core

processor architectures that are increasingly available. A threaded API more closely

resembles the multi-core graphics solutions that are in most dedicated graphics

hardware currently available.

5.3 Functionality Level Profiling

Recalling that a module may be shared by multiple functionalities,

identifying functionalities by module is not possible. However, each functionality

will always have at least one unique transition (Hall & Davis, 2004). This unique

transition can be used as an identifier for a functionality. By instrumenting the

unique call of each functionality with a counter in the software system source code,

a simple profiling system at the functionality level can be created.
I

The ability to identify a unique transition for each equivalence class allows

for instrumentation information to be gathered about entire functionalities. It is

guaranteed that if one module of a functionality is executed, all other modules will

be as well (Hall & Davis, 2004). It is not certain how many times each module in a

functionality will be exercised.

49

Since a functionality is a group of modules always executing together, the

functionality profiler has uses in optimizing code, for suggesting a caching strategy,

and in debugging (Hall & Davis, 2004).

5.4 Caching

Hall and Davis (2004) suggests that a caching strategy may become apparent

by examining the digraph. A strategy for cache miss reduction can be developed by

combining data from a functionality profiler and information about call frequency.

Caching is a containment problem in that the limited space provided by the

cache(s) will not be able to hold the entire program. Every time a datum is loaded

into the cache, it forces another datum to be flushed from the cache. There are

various strategies designed to help insure that required data are in the cache and

that frequently used data are not removed. By examining information on the

frequency of calls and cache misses, the cache can be preloaded with the required

functionalities helping to reduce cache misses.

The execution traces gathered contain information about the number of

times a parent function called a child. A tool was written, gullfaxi.py (see A.3), to

extract the call frequency data. By examining this data and the functionality

analysis data, determinations can be made on which modules to preload and when

to preload them. For example, in the Neverball samples functionality 131 was

identified to be the power functionality consisting of the module _mesa_pow, which

is used for lighting calculations by functionality 100. When functionality 100 is

entered, a cache preloader can preload _mesa_pow. This is a rather obvious

example, but it does illustrate the point.

Knowing that a functionality is a group of modules executed together,

another approach for reducing cache misses presents itself. Whenever a target

module of an identifying transition is loaded, the remaining members of the

functionality could be loaded into the cache. Since a module can appear in more

than one functionality, it is necessary to insure that the correct functionality is

50

identified so that the correct remaining modules of the functionality are loaded. A

way of identifying functionalities by unique transitions has already been discussed

in section 5.3. Using the unique transition profiler information and standard profiler

information about cache misses, the modules of the functionality that are causing a

cache miss can be identified. Once the modules are identified, attempts tq rectify

the cache misses can be made. Cache misses are unavoidable once a program is

larger than the available cache. The goal is not to eliminate the misses all together,

but rather to minimize as much as possible the most expensive cache misses. This

caching strategy also works to flush functionalities that are no longer needed.

Knowing what to flush from the cache is as important as what to load.

This caching strategy has benefits in loading and flushing, both of which are

important to good cache performance. This strategy has the potential to provide a

significant performance boost.

5.5 Inlining

The inliner is an integral part of the compiler optimization step (Hazelwood

& Groove, 2003). Inlining has several nice effects: it allows other optimizations to

run on larger blocks of code and it eliminate some branches. Branches are expensive

in terms of the time required to load the requested memory, plus they generally

invalidate instructions that are already in the pipeline. When inlining, the compiler

simply replaces a function call with the actual code of the function being called.

This has the nice effect of removing a jump and in some cases, actually preventing

an I-cache miss, since the function does not actually have to be loaded. There is a

limit to how far inlining can proceed before the returns axe negligible, or

detrimental to performance. The inline keyword is really a hint to the compiler and

not guaranteed to have an effect. Examining functionalities can provide insight into

how to use the keyword to get maximum efficacy out of the optimization. The

_mesa_pow module is a good candidate for inlining as few modules utilize it. Others

that would be good candidates are the state machine update functions like

51

save_attrib_2_3 for example. Module save_attrib_2_3 is called approximately 30,000

times, with approximately 95% of the call from one parent, during a single

execution of Neverball.

By examining the functionalities and the layout of a program in memory, a

determination can be made about the nature of the branches between each module

of a functionality, and its sub-functionalities. By selectively inlining modules either

from within the functionality or from sub-functionalities the code speed could be

improved.

5.6 Functionality Driven Compiles

The functionalities from each graphics system could be used to build a

database of OpenGL functionalities. This database could aid in the optimization of

new graphics software systems. Figure 19 depicts a build pipeline using a

functionality database. Using the functionality database, the code preprocessor

adds directives to the compiler and linker into the source code to enable different

optimizations. Using the functionality information to direct caching and inlining as

has already been discussed could be an important part of the directives to the

compiler and linker. Profile directed builds have the potential to greatly increase

the execution speed.

5.7 Architecture

The information provided by equivalence class analysis does not have to be

used solely for tuning and optimizations. Siff and Reps (1999) use concept analysis

to identify a modularization strategy for legacy software systems. This technique

provides a similar hierarchical view of the software system. Functionality analysis

can readily be applied to examining the architecture of the software system. The

digraph can be used to suggest how to proceed when creating a new architecture in

cases of a system rewrite. If the API was to be refactored into an object oriented

system in the C + + language, the digraph could be used to determine classes and

the relationships between classes.

52

Figure 19: Functionality Driven Optimized Build Pipeline

This type of analysis could be used to confirm that a software systems

architecture meets the design criteria set forth in the design documentation (Hall,

n.d.).

Reverse engineering is particularly useful when refactoring a system. Kuhn,

Greevy, and Girba (2005) suggest a method for examining the dynamic execution

traces. Using latent semantic analysis to analyze source bases, similar methods are

clustered together (Kuhn, 2005). This information can then be used in a refactoring

effort. Functionality analysis is able to perform the same kinds of clustering.

5.8 Tools

A commercial security system has been developed using functionality

analysis. By noting changes in how the activities of the Linux kernel deviated from

a standard pattern of behavior intrusion attempts into a system were able to be

detected and prevented (Elbaum & Munson, 1999).

This type of analysis could also be used to implement a debugging tool for

complex systems. Bugs are a reality of software and some can be fiendishly hard to

locate and quash. It may be possible to determine which module the bug is located

in by using this analysis to monitor a system. It may be possible to locate bug in a

53

system by noting changes in the membership of modules that define a

functionality, or by the addition/subtraction of a functionality either as

sub-functionality, or as a change in the level of the functionality.

CH APTER V I

CONCLUSION

A technique for profiling a middle, or library, layer like the OpenGL API has been

developed. Execution traces were gathered from OpenGL and processed to identify

functionalities provided by the API and the relationship among those

functionalities. The functionalities were identified by using the modules that make

up the functionality, and examining the source code of the modules. By identifying

the functionalities of the API and their interdependent relationships, further ideas

of how to optimize the API have been suggested, in particular threading, cache

pre-loading strategy, and inlining. New tools have also been theorized, including

debuggers and architecture analysis tools.

Most of the current optimization techniques involve some form of trade offI
between the quality of the graphic displayed and the speed of the application.

Finding an acceptable balance between the quality and speed is a challenge.

Improvements to the API do not have the same issue, although increasing the

architectural complexity of the API introduces its own issues. The changes to the

API cannot cause it to become too difficult for developers to understand and use.

Whether a software system that utilizes OpenGL is for entertainment or

something more serious, performance is critical. New optimization can be indeed be

found using equivalence class analysis. To utilize the technology to its fullest, new

tools will have to be created. In the future a dynamic system for performing

functionality analysis would be critical.

54

The optimizations suggested are, for the most part, complex. The inlining

strategy is by far the simplest, with simple analysis, minor editing of the source

code, and a recompile of the API adequate to implement the optimization.

Threading and pre-caching would require a more significant investment.

Investments in time, tools, and analysis would be needed to determine the best

strategy for proceeding. Pre-caching would require cache analysis to determine the

scenarios in which a particular functionality causes cache misses.

The observations on optimizations, tools, and refactoring observations in this

paper are by no means the limit of what can be accomplished by examining

functionalities of a software system. There are many other uses: and these are just

a few of the possibilities.

55

APPEN D IX A

SOURCE CODE LISTINGS

A .l sleipnir.py

#!/usr/bin/python

#J0E SULLIVAN
#23/12/2006
#This script will parse an call graph output from callgrind
#and process each function into a set of parent -> child
#calls.
#AREGUMENTS: argv[0] this script
argv[l] name of input file,
argv[2] name of the concatenated data file to
add parsed data to
#

T0D0 #1: BUILD A LIST CORELATING FUNCTIONS NAMES AND
NUMBERS (done)

T0D0 #2: BUILD A LIST OF CORELATING OBJECT NAMES AND
NUMBERS, LIST IS LIMITED TO OBJECTS OF INTEREST,
EXAMPLE OpenGL LIBRARY (done)

TODO #3 MAIN TO DEAL WITH THE SPECIAL CASE FUNCTION:
mainO

TODO #4: NEED TO ADD A CHECK SO THAT ALL THE MINIMAL # OF
CALLS INVOLVONG SDL ARE RECORDED. ALGORITHM FOR
THIS CHECK IS GOING TO ASSUME THAT OpenGL DOES NOT
MAKE ANY CALLS TO SDL. (done)
#
dealing with things like

56

57

#
#
sdl— ->sdl
/
/
game-- >sdl
\
\
sdl— >gl
#
poses some problem. To be sure that situation
like the above are handled, the algorithm has
to be sure and save any new "PARENT -> CHILD"
pairs encountered while processing the list of
functions. Any new pairs can be placed on the
list to be dealt with later, (done)

TODG #5: SEVERAL PARENT CHILD CALLS SEEM TO BE
REPEASTED IN THE CALLGRIND DATA, NEED TO FILTER
THOSE OUT. (done)
#

#---
#INCLUDES
import sys
import os
import re
import copy
import time
#---

#---
#GL0BALS
0BJ_LIST = []
OBJ.COUNT = 0

FUNC_LIST = []
FUNC_COUNT = 0

MASTER.LIST = []
MASTER.IDX = 0

SDL_LIST = []
SDL_IDX = 0

SDL.REG = []
#-----------

58

#---
#REGULAR EXPESSIONS
glheretic = re.compile(’glheretic’)
neverball = re.compile(’neverball’)
binname = re.compile('sample’)
libgl = re.compile(’libGL.so\.[0-9]\.[0-9]\.[0-9]+’)
libsdl = re.compile(’libSDL-[0-9]\.[0-9]\.so\.[0-9] \\

.[0-9] [0-9]\. [0-9]’)
--

--
#REM0VE DUPLICATES FROM THE LIST

J #
#INPUT: LIST TO REMOVE DUPS FROM
#C0DE IS FROM TUG (Prof. Davis and Hall)
def nodups(list):

new_list = []
for i in 1:

if i not in z:
z.append(i)

return z

#---
#F0RMATED OUTPUT FUNCTION
#
#INPUT:
#ofile: name of the output file
#tfile: name of the file containing the concatenated
output of all data from a profile seesion of
an application
def output_list(tfile):

outstr = []

try:
catfile = open(tfile, ’a ’)

except IOError, e:
print "could not open file: ", e, "exiting"
return False

try:
catfile.write(str(len(globals()[’MASTER.LIST’])))
catfile.write(’\n’)

59

for x in range(len(globals()[,MASTER_LIST>])):
outstr = globalsO [’OBJ.LIST’] [int(globals()\

[’MASTER_LIST’] [x] [0])] [1] + \ » + \
globalsO [’FUNCLLIST’] [int(globals()\

[’MASTER.LIST’] [x] [1])] [1] + ’ : ’ + \
globalsO ['OBJ.LIST»] [int(globals()\

[’MASTER.LIST’] [x] [2])] [1] + ’. ’ + \
globalsO [’FUNC.LIST’] [int(globals()\

[’MASTER.LIST’][x] [3])] [1]
c a t fi le .write(outstr)
catf i l e .write("\n")

except IOError, e:
print "could not output to file: ", e, exiting
return False

except IndexError, e:
print "index out of range error: ", e
return False

catfile.write("\n");
return True

--

#---
#PRINT RESULTS TO STDOUT
#
#INPUT: VOID
#
def output():

outstr = []

try:
print(str(len(globals()[’MASTER_LIST’])))

for x in range(len(globals()[’MASTER.LIST'])):
outstr = globalsO [’OBJ_LIST’] [int(globals()\

[,MASTER_LIST»][x][0])] [1] + ».’ + \
globalsO [’FUNC.LIST’] [int(globals()\

[,MASTER_LIST>] [x][1])][1] + ’ : ’ + \
globalsO [’OBJ.LIST’] [int(globals()\

[’MASTER_LIST’][x][2])][1] + ».» + \
globalsO [’FUNC.LIST’] [int(globals()\

[’MASTER_LIST’][x][3])][1]

p r i n t (o u t s t r)

except IOError, e:
print "could not output to file: ", e, exiting
return False

except IndexError, e:
print "index out of range error: ", e
return False

return True
#--

---r --
#RETURN TRUE IF A OBJECT IS AN OBJECT OF INTEREST
#
#INPUT ARGS: num
#num: object number assigned to binary by callgrind
def target_obj(num):

try:
x = OBJ_LIST[int(num)][0]

except IndexError, e:
return False

return True
#---

#---
#RETURN THE BINARY NUMBER OF AN OBJECT ASSIGNED BY CALLGRIND
#
#INPUT ARGS: bname
#bname: name of | a binary
def lookup_binary.number(bname):

for x in range(len(0BJ_LIST)):
try:

if(0BJ_LIST[x][1] == bname):
return(OBJ_LIST[x][0])

except:
pass

#---

#---
#RETURN A THE BINARY ABBREVIATION FOR THE GIVEN OBJECT NAME
#
#INPUT ARGS: obj.name

#obj_name: name of the object
def lookup_brief_name(obj_name):

name = []
if(glheretic.match(obj_name)):

name = 'GLH’
if(neverball.match(obj_name)) :

name = ’NVB’
if(libgl.match(obj_name)):

name = ’oGL’
if(libsdl.match(obj_name)):

name = ’SDL’
if(binname.match(obj_name)) :

name = 'TPROJ'
return name

--
#RETURN THE OBJECT NUMBER FROM A LINE OF INPUT
#
#INPUT ARGS: line
#line: a line of input from callgrind output
def obj_numCline):

num = ’’
spl_str = []

#T0KENIZE THE STRING AND START PROCESSING
spl_str = line.split(" ")

#DETERMINE THE CALLGRIND ASSIGNED NUMBER OF THE OBJECT
num = spl_str[0] [spl_str[0].index('(’)+l : -1]

return num

--
#ADD A NEW "OBJECT" (function, file, or binary) TO THE
#APROPRIATE LIST
#
#INPUT: o_num, o_name, 0B_TYPE
#o_num: the number of the "OBJECT" assinged by
callgrind
#o_name: the name of the "OBJECT"
#0B_TYPE: the "OBJECT" type
def add_name_pair(o_num, o_name, 0B_TYPE):

62

bin_name = []

«FUNCTIONS
if(OB_TYPE == "FUNC"):

if (o_name[-2:] == "()"):
o_name = o_name[:-2]

x_factor = int(o_num) - globalsQ[’FUNC_COUNT’]
while(x_factor >= 0):

globals()[»FUNC.LIST’].append([])
x_factor = x_factor - 1
globals()[’FUNC_COUNT’] = globals()\

[’FUNC_COUNT’] + 1
globalsO [’FUNC_LIST’] [int(o_num)] .append\

(copy.deepcopy(o_num))
globalsO [’FUNC.LIST’] [int(o_num)] .append\

(copy.deepcopy(o_name))

«BINARIES
if(0B_TYPE == "BIN"):

bin_name = o_name.split(’/’)
x_factor = int(o_num) - globalsO [’OBJ_C0UNT’]
while(x_factor >= 0):

globalsO [’0BJ_LIST’] .appendi [])
x_factor = x_factor - 1
globalsO [’OBJ_C0UNT’] = globals()\

[’0BJ_C0UNT’] + 1

if((glheretic.match(bin_name[-1]))
or (neverball.match(bin_name[-1]))
or (libsdl.match(bin_name[-l]))
or (libgl.match(bin_name[-1]))
or (binname.match(bin_name[-1]))):

globalsO [’0BJ_LIST’] [int(o_num)] .append\
(copy.deepcopy(o_num))

globalsO [’0BJ_LIST’] [int(o_num)] A
append(copy.deepcopy\

(lookup_brief_name(bin_name[-1]))) #---

«PROCESS A LINE OF THE FILE BASED ON THE TYPE
#
«INPUT ARGS: line, OB.TYPE
«line: a line of input from callgrind output

#OB_TYPE: the type of the object
def process_line(line, 0B_TYPE):

num = ’ ’

name = ’'
spl_str = []

#T0KENIZE THE STRING AND START PROCESSING
spl_str = line, split (" 11)
num = spl_str[0][spl_str[0].index(’(’)+! : -1]

#CHECK FOR A NAME FOR THIS FILE
if(spl_str[0] != spl_str[-1]):

if(spl_str[-1][-1] ==
name = spl_str[l].split("(")
name = name[0]

else:
name = spl_str[-l]

if(len(name) != 0):
#ADD TO THE APROPRIATE LIST

add_name_pair(num, name, 0B_TYPE)
--

--
#PARSE THE callgrind OUTPUT AND GENERATE FUNCTION AND
#BINARY LISTS
#
#INPUT ARGS: infile
#infile: the data file generated by a single profiled
#execution i
def build_lists(indat):

os.lseek(indat.f ilenoO , 0, 0)
for line in indat.read().split("\n"):

if(len(line) == 0):
continue

if((line[:2] == "ob") or (line[:3] == "cob")):
process_line(line, ’BIN')

if((line[:2] == "fn") or (line[:3] == "cfn")):
process_line(line, ’FUNC’)

return True
--

#CHECK A CALL CHAIN FOR AN SDL CHILD, ADD ANY UNIQUE #

#CHILDREN TO GAME->SDL LIST
#
#INPUT ARGS clist, PARENT_OBJ, sdl
#clist: the chain chain pair to add to list
#PARENT_OBJ: object number of the parent
#sdl: object number for sdl
def check_sdl_chain(clist, PARENTJDBJ, sdl):

pobj_num = clist [0]
cobj_num = clist[2]
NEW_SDL_CHAIN = True
ret = False
#IF CHILD IS IN libSDL, SAVE TO SDL LIST
if((cobj_num == sdl)
and (PARENT.OBJ == True)
and (pobj_num != sdl)):

ret = True
if (globalsO [’SDL.IDX*] == 0):

globalsO [’SDL.LIST’] .appendW
(copy.deepcopy(clist))
globalsO [»SDL.IDX»] = \\
globalsO [’SDL.IDX’] + 1
NEW_SDL_CHAIN = False

else:
for x in range(len(globals()\\

[»SDL.LIST»])):
if (clist == globalsO\\

[,SDL_LIST>][x]):
NEW_SDL_CHAIN = False

if(NEW_SDL_CHAIN == True):
globalsO [»SDL_LIST»] .appendW
(copy.deepcopy(clist))
globalsO C’SDL.IDX’] = \\
globalsO [»SDL.IDX»] + 1

return ret
#---

#---
#ADD A CALL CHAIN PAIR TO MASTER.LIST AS LONG AS IT IS
#UNIQUE
#
#INPUT ARGS: clist
#clist: the call chain pair to add to list
def check_app_chain(clist):

NEW_APP_CHAIN = True
if (globalsO ['MASTER.IDX’] == 0):

globalsO[’MASTER.LIST’].append(copy.deepcopy(clist))
globalsO ['MASTER.IDX'] = globalsO ['MASTER.IDX'] + 1
NEW_APP_CHAIN = False

else:
for x in range(len(globals()['MASTER.LIST'])):

if(clist == globalsO ['MASTER.LIST'] [x]) :
NEW_APP_CHAIN = False

if(NEW_APP_CHAIN — True):
globalsO[’MASTER_LIST’] .append(copy.deepcopy(clist))
globalsO ['MASTER.IDX'] = globalsO [’MASTER.IDX’] + 1.

--

--
#ADD AN EXTENDED SDL CALL CHAIN TO SDL.LIST
#
#INPUT ARGS: chain
#chain: the new chain to add to the list
def extend_chain(chain):

globalsO['SDL.LIST'].append(copy.deepcopy(chain))
globalsO [’SDL.IDX’] = globalsO [’SDL.IDX’l + 1

#---

--
#APPEND A GAME->SDL...->GL CALL CHAINS TO THE MASTER.LIST
#
#INPUT ARGS: chain
#chain: call chain to be added to master list
def add_chain(chain):

x = 0
temp = []
while(x < len(chain)-3):

temp = [chain[x], chain[x+1], chain[x+2], chain[x+3]]
MASTER_LIST.append(copy.deepcopy(temp))
globalsO ['MASTER.IDX’] = globalsO ['MASTER.IDX'] + 1
x = x + 2

--

--
def add.reject(chain):

globalsO['SDL.REG’] ,append(copy.deepcopy(chain))
--

--
def check.reject(chain):

try:

globalsO [,SDL_REGJ] . index (chain)
return True

except:
return False

#--

#--
#ITERATE THOUGH THE SDLJLIST, CHECKING FOR A OpenGL
#TEMINATING CALL
#
#INPUT ARGS: index, indat
#index index into SDL_LIST, lookup for list member
#to process
#indat file pointer
def close_sdl(index, indat):

pobj =
conj = ’ ’

HP = False
HC = False
new_chain = □
temp = []

temp = [globalsO [’SDL.LIST’] [index] [-4] ,\
globalsO [’SDL_LIST’] [index] [-3] ,\
globalsO [»SDL_LIST»] [index] [-2] ,\

globalsO [»SDL.LIST»] [index] [-1]]

if(check_reject(temp) == True):
return True

del temp[:]

#MOVE CURSOR TO START OF FILE
os.lseek(indat.fileno(), 0, 0)

for line in indat.read().split("\n"):
if(len(line) == 0):

if(HP == True):
return True

else:
continue

if(line[:2] == "ob"):
pobj = obj_num(line)
cobj = pobj

if(line [:3] == "cob"):
cobj = obj_num(line)

if((line[:2] == "fn")
and (obj _num(line) == globals()\\

[’SDL.LIST’][index][-1])):
HP = True
cobj = pobj

if((HP == True) and (line[:3] == "cfn")):
CHECK_FN = False
new_chain = copy.deepcopy(globals()\\

[’SDL_LIST’] [index])
new_chain.append(cobj)
new_ chain.append(obj _num(1ine))

if(cobj == lookup_binary.number("oGL")):
add.chain(new.chain)
return True

if(cobj == lookup_binary_number("SDL")):
try:

globalsO [’SDL.LIST’] . index (new. chain)
temp = [new.chain[-4], new.chain[-3],\

new.chain[-2] , new_chain[-l]]
add.rej ect(temp)
del temp[:]

except:
ext end.chain(new.chain)

del new_chain[:]
cobj = pobj

return True
#---

#---
#PARSE THE CALL CHAINS FROM callgrind
#
#INPUT ARGS: infile
#infile: the data file generated by a single profiled
#execution
def p a rse .ch a in s (in d a t):

pobj _num = ’ ’
cobj.num = ’ ’

68

pfunc.num = ’ ’

cfunc_num = ’’
PARENT.OBJ = False
CHILD_OBJ = False
HAVE.COB = False

sdl = lookup.binary.number(’SDL’)
os.lseek(indat.filenoO , 0, 0)

for line in indat.readO.split("\n"):
if(len(line) == 0):

continue

#GET THE OBJECT NUMBER
if(line[:2] == "ob"):

pobj.num = obj_num(line)
#NEED TO HANDLE INTERNAL OBJECT CALL
#HAVE CHILD = PARENT UNTIL CHILD OBJECT IS FOUND
cobj.num = pobj.num
PARENT.OBJ = target.obj(pobj.num)
CHILD.OBJ = PARENT.OBJ

if(line[:3] == "cob"):
HAVE.COB = True
cobj.num = obj.num(line)
CHILD.OBJ = target.obj(cobj.num)

if(line[:2] == "fn"):
pfunc.num = obj.num(line)
#THE CHILD OBJECT SPECIFIER cob=(xxx) IS ONLY GOOD
#F0R THE FUNCTION IMMEDIATELY FOLLOWING THE
#SPECIFIER, HAVE TO RESET COB TO WHATEVER THE
#PARENT IS
if(HAVE.COB == True):

cobj.num = pobj.num
CHILD.OBJ = PARENT.OBJ
HAVE.COB = False

if(line[:3] == "cfn"):
cfunc.num = obj.num(line)
#CHECK TO SEE IF IT IS A CHILD AND PARENT
#0F INTEREST
if((PARENT.OBJ = True) and (CHILD.OBJ == True)):

temp = [pobj.num, pfunc.num, cobj.num, cfunc.num]

69

if(check_sdl_chain(temp, PARENT_OBJ, sdl) == True)
continue

elif (temp[0] != sdl):
check_app_chain(temp)

del temp[:]
#THE CHILD OBJECT SPECIFIER cob=(xxx) IS ONLY
#GOOD FORTHE FUNCTION IMMEDIATELY FOLLOWING
#THE SPECIFIER, HAVE TO RESET COB TO WHATEVER
#THE PARENT IS
if(HAVE_COB == True):

cobj_num = pobj_num
CHILD_0BJ = PARENT_OBJ
HAVE_C0B = False

return True
#---

#---
def mainO :

»VARIABLES
parents = []
ofile = []
indat = []
sdl_func = 0
s_time =0.0
e_time =0.0
t_time =0.0
global binname

»REQUIRED ARGUMENT CHECK
if(len(sys.argv) < 2):

print "usage: python sleipnir.py cinput file> \
[-f <output file>]"
sys.exitO

»else:
if(True):

try:
indat = open(sys.argv[l], "r")

except IOError, e:
print "could not open file: ", e, "exiting"
return False

»BUILD LIST OF OBJECT AND FUNCTION NUMBER /
»NAME LISTS

70

s_time = time.clockO
if(build_lists(indat) == False):

return False

print » sys.stderr, "build list time elapsed = ", \
(time.clockO - s_time)

s_time = time.clockO
if(parse_cbains(indat) == False):

return False

print » sys.stderr, "call chain list time elapsed = ", \
(time.clockO - s_time)

s_time = time.clockO
while(sdl.func < globalsO [»SDL.IDX»]) :

if(close_sdl(sdl_func, indat) == False):
return False

sdl_func = sdl_func + 1
print » sys.stderr, "SDL closure list time elapsed = ", \

(time.clockO - s_time)

#WRITE TO OUTPUT FILE IF REQUESTED
s_time = time.clockO
if((len(sys.argv) >3) and (sys.argv[2] == ’-f’)):

if(output_list(sys.argv[3]) == False):
return False

else:
if(output() == False):

return False
print » sys.stderr, "output listing time elapsed = ", \

(time.clockO - s_time)

return True

------- ---
i f _name_== "___main_":

if(main() == False):
print "sleipnir parser did not complete\n"

sys.exitO
#--

A .2 fenris.py

#!/usr/bin/python

#J0E SULLIVAN
#20/02/2007
#This script filters out GAME->GL, LIB->GL and GL-GL calls,
#and writes those call chains out to a data file
#AREGUMENTS: argv[0] this script
argv[l] name of input file,
argv[2] name of the concatenated data file
to add data to
#

#----------------------
import os;
import sys;
import string;
import copy;
#----------------------

--
#GL0BALS
MASTER_LIST = []
SLIST = []
START.OGL = False
#----------------

#---
#PRINT RESULTS TO STDOUT
#
#INPUT: VOID
#
def output():

#WRITE NUMBER OF CALLS IN OUTPUT FILES
try:

print str((len(MASTER_LIST)+len(SLIST)))

for idx in range(len(globals()[,MASTER_LIST>])):
print(str(globalsQ ['MASTER.LIST'] [idx]))

if(START_0GL = False):

for cnt in range(len(globals()[’SLIST'])):
print "$START :", SLIST[cnt]

except e :
print "could not output to file: ", e, exiting,
return False

return True
#---

#---
#ADD A GL->GL or ENTRY->GL CALL TO THE MASTER LIST
#
#INPUT:
#ostring: string to be added to list
def mlist_add(ostring):

try:
MASTER_LIST.append(copy.deepcopy(ostring))

except NameError, e:
print "Unexpected error adding to Master List:", e
return False

return True
#---

#---
#ADD A $START->GL ENNTRY TO THE START LIST
#
#INPUT:
#entry: string to be added to list
def slist_add(entry):

try:
if(len(SLIST) == 0):

SLIST.append(copy.deepcopy(entry))
else:

for i in range(len(SLIST)):
if(entry not in SLIST):

SLIST.append(copy.deepcopy(entry))
except NameError, e:

print "Unexpected error adding to START List:", e
return False

return True
#---

#--
#FILTER THE PARSED DATA FROM DATA_PARSER.PY FOR ENTRY->GL
#and GL->GL CALLS
#
#INPUT:
#InFile: name of the file to be opened for parsing
def filter_gl_calls(InFile):

indat = []
outstr = ""
ret = True

try:
indat = open(InFile, ’r ’)

except IOError, e:
print "could not open file: ", e, "exiting"
return False

for lines in indat.read().split("\n"):
#REM0VE ANY BLANK LINES
if(len(lines) == 0):

continue

#SPLIT THE DATA INTO A LIST
nstr = lines.rsplit(’:’)

#REM0VE ANY 1 ELEMENT LIST
$(number of calls for example)
if(len(nstr) == 1):

continue

#CHECK FOR ENTRY->GL & GL->GL CALLS
if((nstrCO][:3] == "GLH")
or (nstr[0][:3] == "NVB")
or (nstr[0][:3] == "SDL")
or (nstr[0][:5] == "TPROJ")):

if(nstr[1] [:4] == " oGL"):
if(START_0GL == True):

entry_str = "$START :" + nstr[l]
mlist_add(entry_str)

else:
slist_add(nstr[0])
entry_str = nstr[0] + ’ : ’ + nstr [1]
mlist_add(entry_str)

if(nstr[0][:3] == "oGL"):
outstr = nstr[0] [:-!]+ ’ : ’+ nstr[l][l:]

r e t = m l i s t _ a d d (o u t s t r)

if(ret == False):
return False

try:
del outstr

except:
pass

return True
#--

#---
#0UTPUT MASTER_LIST TO INDIVIDUAL, AND A "GROUPING" FILE
#
#INPUT:
#0utFile: name of the file to write an individual data
file after the list is created
#ccFile: name of the file that contains data concatenated
from all the runs
def output_list(ccFile):

tdat = [] , '
try:

tdat = open(ccFile, ’a')
except IOError, e:

print"could not open file: ", e, " exiting"
return False

#WRITE NUMBER OF CALLS IN OUTPUT FILES
try:

tdat.write(str(len(globals()[’MASTER.LIST’]) \
+ len(globals()['SLIST’])))

tdat.write(’\n’)

for idx in range(len(globals()[,MASTER_LIST’])):
tdat.write(str(globals()[,MASTER_LIST>][idx]))
tdat.write(’\n’)

except IOError, e:
print "could not output to file: ", e, exiting
return False

except e:
print "index out of range error: ", e
return False

return True
--

75

#--
def main() :

#LOCAL VARIABLES
ret = False -
ofile = ""

#CHECK ARGS
if(len(sys.argv) < 1):

print"USAGE: fenris.py FILE <input> \
[-C:[condense APP->GL calls] -f <output>]"

return False
else:

#FIND THE ENTRY->GL & GL->GL CALLS
if((len(sys.argv) >= 3) and (sys.argv[2] == "-C")):

globals()[,START_0GL>] = True

if(filter_gl_calls(sys.argv[l]) == False):
return False

if((len(sys.argv) >= 3) and (sys.argv[2] == ’-f’)):
#DETERMINE OUTPUT FILE NAME
#BASED ON INPUT FILE NAME
if(output_list(sys.argv[3]) == False):

return False
else:

if(output() == False):
return False

return True

#---

#--
#ENTRY:
i f _name__== "___main_" :

if(main() == 0):
print "fenris.py did not complete"

sys.exitO
#--

76
\

A .3 gullfaxi.py

#!/usr/bin/python

#J0E SULLIVAN
#18/05/2007
#This script count the number of times a child function
#is called by each parent call. Writes to stdout,
#AREGUMENTS: argv[0] this script
argv[l] name of input file,

--
#INCLUDES
import sys
import os
import re
import copy
import time
--

#--
#REGULAR EXPESSIONS
glheretic = re.compile(’glheretic’)
neverball = re. compile (’neverball’)
binname = re.compile(’sample')
libgl = re.compile(’libGL.so\.[0-9]\.[0-9]\ .[0-9]+’)
libsdl = re.compile(’libSDL- [0-9]\ . [0-9]\.so\.[0-9]\.\\

[0-9][0-9]\. [0-9]’)
#--

0BJ_DICT = O
FUNC.DICT = {}
FUNC_TAB = []
#-----------------------

#---
def split_name(line, otype):

spl_str = []

spl_str = line, split (11 ")

if(spl_str[0] != spl_str[-1]):
if((otype == "ob") or (otype == "cob")):

nstr = spl_str[-l].split(’/ ’)
OBJ_DICT[num] = nstr[-l]

if((otype == "fn") or (otype == "cfn")):
if(spl_str[-l] [-1] == 0 0 :

nstr = spl_str[1].split(’(0
nstr = nstr[0]

else:
nstr = spl_str[-l]

FUNC_DICT[num] = nstr
return num

#------------------- :---

num = s p l _ s t r [0] [s p l _ s t r [0] . i n d e x (’ (0 + 1 : - 1]

--
def ibin(kval):

if(kval == 1 0:
return False

obj_name = OBJ_DICT[kval]

if(glheretic.match(obj_name)):
return True

if(neverball.match(obj_name)):
return True

if(libgl.match(obj_name)):
return True

if(libsdl.match(obj_name)):
return True

if(binname.match(obj_name)):
return True

return False

#---
def record_call(ncalls, c_func, p_func):

cf_num = 0
p_list = []

p_list. append([])
p_list[0] = [p_func, ncalls]

cf_num = int(c_func)
x_factor = cf_num - len(FUNC_TAB)
while(x_factor >= 0):

FUNC_TAB.append([])
x_factor = x_factor - 1

if(len(FUNC_TAB[cf_num]) == 0):
FUNC_TAB[cf_num].append(copy.deepcopy(FUNC_DICT[c_func]))

FUNC_TAB[cf_num].append(copy.deepcopy(p_list[0]))

#print len(FUNC_TAB)
#print FUNC_TAB[cf_num]

#---------------------------------
def parsefile(file):

WCALLS = False
isvalid = False
P_0BJ = »»
C_0BJ = ”
S_0BJ = »’
pval = ’ ’
pfunc = ’’

#0PEN THE FILE
try:

indat = open(file, "r")

except IOError, e:
print "COULD NOT OPEN FILE: ", e, "exiting"
return False

for line in indat.read().split(,\n'):
if(len(line) == 0):

continue

if(line[:3] == ’cf i’):
continue

79

if(WCALLS == False):
if(line[:2] == "ob"):

C_0BJ = split_name(line, "ob")
S_0BJ = C_0BJ
continue

if(line[:3] == "cob"):
C_0BJ = split_name(line, "cob")
continue

if(ibin(C_0BJ) == True):
if(line[:2] == "fn"):

pval = split_name(line, "fn")

if(line[:3] == "cfn"):
WCALLS = True
cval = split_name(line, "cfn")

else:
C_0BJ = S_0BJ

else:
call = line.split(,=J)
if(call[0] == "calls"):

if((pval in FUNC.DICT) == True):
pfunc = FUNC_DICT[pval]

if(pfunc != ’O :
record_call(call[l].split(’ J)[0], cval, pfunc)

else:
record_call(call[1].split(’ ’)[0],\\

cval, "$START")
WCALLS = False
C_0BJ = S_0BJ
pfunc = ’ ’

return True

def mainO :

#CHECK ARGS TO SCRIPT
if(len(sys.argv) < 2):

print "USAGE: gullfaxi <input file>"
return False

80

#PARSE THE FILE
if(parsefile(sys.argv[l]) == False):

return False

for x in range(len(FUNC_TAB)):
if(len(FUNC_TAB[x]) >0):

print FUNC_TAB[x][0], "CALLED BY:"
for y in range(len(FUNC_TAB[x])):

if(y > 0):
print »\t*, FUNC_TAB[x][y][1], \
’\t:», FUNC_TAB[x][y][0]

print J\n’

#---
i f _name_== "___main_":

if(main() == 0):
print "gullfaxi parser did not complete\n"

sys.exitO

A .4 gdrv.sh
Shell script driver for sliepnir.py and fenris.py

! /bin/sh
for f in $1
do

file=${f##*/}
base=${f ile0/o°/o. *}
./sleipnir.py $f > $base\.pol
/fenris.py $base\.pol -C > $base\.tst
n=$(($n+l))

done

mkdir $2
rm \./*\.pol
mv \./*\.tst $2

mv $2 /home/jes/tools/

A .5 fdrv.sh
Shell script driver for functionality identification tools

#!/bin/sh
n=$3
C=0
for x in $1
do
path=${x°/„/*}
file=${x##*/}
base=${f ile%%.*}
echo $path/$file
cp $path/$file .
./preprocessfiles.1.1 "run*" $2
python ./tug -d $2
dot -Tps $2.des.dot -o gl.ps
ps2pdf gl.ps gl.pdf
mkdir RUN$n
mv $2\.* RUN$n
mv gl\.* RUN$n
n=$(($n+l))

done

mkdir $4
mv RUN* $4

BIBLIO G R APH Y

[1] Anonymous, (n.d.). Sample Programs for the OpenGL Redbook (Version 1.1.)

[Computer source code]. Retrieved September 18, 2007 from

http: / / www.opengl.org/resources / code/samples / redbook/.

[2] Armour-Brown, C. (n.d.). Valgrind (Version 3.2.3) [Computer software and

manual]. Retrieved October 14, 2007, from http://valgrind.org/.

[3] Canfora, G., & Di Penta, M. (2007). “New Frontiers of Reverse Engineering,”

FOSE ’07: 2007 Future of Software Engineering, Washington, DC, USA, pp.

326-341.

[4] Chow, M. (1997). “Optimized Geometry Compression for Real-Time

Rendering.” Proceeding of the 8th IEEE Visualization ’97 Conference, Phoenix,

Az., United States, pp. 347-354.

[5] Eibaum, S., & Munson, J. (1999). “Intrusion detection through dynamic

software measurement,” Proceedings of the 1st conference on Workshop on

Intrusion Detection and Network Monitoring, USA, 1, 5-5.

[6] Eisenbarth, T., Koschke R., & Simon, D. (2001). “Derivation of Feature

Component Maps by means of Concept Analysis,” 5th European Conference on

Software Maintenance and Reengineering, Lisbon, Portugal, pp. 176-179.

[7] Ellson, J. et al. (n.d.). Graphviz (Version 2.2) [Computer software and manual].

Retrieved October 14, 2007, from http://www.graphviz.org/.

82

http://www.opengl.org/resources
http://valgrind.org/
http://www.graphviz.org/

[8] Hall, G. (1997). “Usage patterns: Extracting system functionality from

observed profiles.” Ph.D. dissertation, University of Idaho, United States

Idaho. Retrieved October 24, 2007, from ProQuest Digital Dissertations

83

database. (Publication No. AAT 9731155).

[9] Hall, G. (nd). “Usage Driven Reverse Engineering” Department of Computer

Science, Texas State University-San Marcos, pp. 1-16.

[10] Hall, G., & Davis, W. (2004). “A Structural Definition of Software

Functionality,” Department of Computer Science, Texas State University-San

Marcos, pp. 1-22.

[11] Hazelwood, K., &; Grove, D. (2003). Adaptive Online Context-Sensitive

Inlining. Proceedings of the international symposium on Code generation and

optimization: feedback-directed and runtime optimization, USA, 253-264.

[12] Kooima, R. (n.d.). Neverball (Version 1.4.0) [Source source code]. Retrieved

September 18, 2007, from http://icculus.org/neverball/.

[13] Kuehne, B., True, T., Commike, A., & Shreiner, D. (2005). “Performance

OpenGL: platform independent techniques,” SIGGRAPH ’05: ACM

SIGGRAPH 2005 Courses, New York, NY: ACM Press.

[14] Kuhn, A., Greevy, O., &: Girba T. (2005). “Applying Semantic Analysis to

Feature Execution Traces.” 1st International Workshop on Program

Comprehension Through Dynamic Analysis, Pittsburgh, Pennsylvania, pp.

48-58.

[15] Mancl, D. (2001). Refactoring for software migration. Communications

Magazine, IEEE, 39(10), 88-93.

http://icculus.org/neverball/

84

[16] Paul, B. (n.d.). Mesa (Version 6.4.2) [Computer source code]. Retrieved August

20, 2007 From http://www.mesa3d.org/.

[17] Paul, B. (1997). “OpenGL Performance Optimization.” Retrieved October 3,

2007. From Mesa3d Project. Web site:

http://www.mesa3d.org/brianp/sig97 / perfopt.htm.

[18] Siff, M., & Thomas, R. (1999). “Identifying Modules via Concept Analysis.”

IEEE Transactions on Software Engineering, 25, 749-768.

[19] Stoll, R. (1979). Set Theory and Logic. Mineola, New York: Dover

Publications, Inc.

[20] Wertman, Andre. (2003). GLHeretic (Version 1.2) [Computer source code].

Retrieved September 18, 2007, from

http: / /heretic.linuxgames.com/np/heretic2.shtml.

[21] Woo, M., Neider, J., Davis, T., & Shreiner, D. (1999). OpenGL Programming

Guide. Reading, Massachusetts: Addison-Wesley.

http://www.mesa3d.org/
http://www.mesa3d.org/brianp/sig97

Vita

Joseph E. Sullivan was born in Fort Stockton, Texas, in November 1970 to

Rosalie M. Sullivan and Joseph F. Sullivan. After graduating from Fort Stockton

High School in 1989, he attended Texas Tech University, and Sul Ross University

where he received a Bachelor of Science in May 1994. He was employed by the

Texas Bowl Weevil Eradication Program in Brazoria County, Texas. In 1997 he

entered Texas Tech University for the second time to pursue a degree in computer

science. Mr. Sullivan moved to Austin, Texas with the dot-com boom of the late

90s where he was employed by Metrowerks Inc, a computer software company

specializing in software development tools. He spent 5 years as a member of the

Games Team, doing developer support for the Sony PlayStation 2, and Nintendo

GameCube video game consoles. Mr. Sullivan is currently employed as a compiler

engineer working for the same group under a new company owner. He entered the

Graduate College of Texas State University-San Marcos in January 2003.

Permanent Address: 1113 Glendalough Drive

Pflugerville, Texas 78660

This thesis was typed by Joseph E. Sullivan.

