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Analytic solutions of n-th order differential

equations at a singular point ∗

Brian Haile

Abstract

Necessary and sufficient conditions are be given for the existence of
analytic solutions of the nonhomogeneous n-th order differential equation
at a singular point. Let L be a linear differential operator with coefficients
analytic at zero. If L∗ denotes the operator conjugate to L, then we will
show that the dimension of the kernel of L is equal to the dimension of
the kernel of L∗. Certain representation theorems from functional analysis
will be used to describe the space of linear functionals that contain the
kernel of L∗. These results will be used to derive a form of the Fredholm
Alternative that will establish a link between the solvability of Ly = g at
a singular point and the kernel of L∗. The relationship between the roots
of the indicial equation associated with Ly = 0 and the kernel of L∗ will
allow us to show that the kernel of L∗ is spanned by a set of polynomials.

1 Introduction

In 1969, Harris, Sibuya and Weinberg [6] proved a theorem, based on certain
techniques of functional analysis, that contains as corollaries the existence theo-
rems of O. Perron and F. Lettenmeyer. Harris, Sibuya and Weinberg were able
to show, under certain conditions, that there exists a polynomial f(z) such that
the linear differential system

zD
dy

dz
−A(z)y = f(z),

where A(z) is analytic at z = 0, and D = diag{d1, . . . , dn} with nonnegative
integers di, has a solution analytic at z = 0. Two years later, H.L. Turrittin [9]
posed the following problem: Given the equation

dW

dz
=
∞∑
j=0

z−jAjW +
∞∑
j=1

z−jBj

∗Mathematics Subject Classifications: 30A99, 34A30, 34M35, 46E15.
Key words: linear differential equation, regular singular point, analytic solution.
c©2002 Southwest Texas State University.

Submitted July 28, 2001. Published February 4, 2002.

1
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where both series converge if |z| ≥ z0 > 0, with a formal solution

W (z) =
∞∑
j=0

z−jCj ,

what are the necessary and sufficient conditions that the formal solution con-
verges? At the same time Turrittin speculated that the afore mentioned paper
of Harris, Sibuya and Weinberg might lead to an answer to this question.

L.J. Grimm and L.M. Hall answered the question posed by Turrittin in
[2]. Although their initial work was inspired by the Harris, Sibuya and Wein-
berg paper, Grimm and Hall actually employed the theory of normally solvable
and Noetherian operators, much as Korobĕinik did, to derive an analogue of
the Fredholm alternative for certain systems of functional differential opera-
tors. Then they used A.E. Taylor’s representation of Banach spaces of analytic
functions [8] to obtain conditions for the solvability of certain nonhomogeneous
equations they had studied previously in [3].

The primary difficulty encountered when applying the results of [2] comes
when attempting to describe the cokernel (see [2], [4], [5]) of the operator.

In this paper we will completely describe the cokernel of the operator L,
defined by

Ly(z) = zny(n)(z) + zn−1a1(z)y(n−1)(z) + · · ·+ an(z)y(z) (1.1)

where a1(z), . . . , an(z) are analytic at the point z = 0.
We will produce solvability conditions for the nonhomogeneous Bessel equa-

tion, that are independent of the order, but match those of [5] if it is an equation
of integer order.

First, we will define a collection of Banach spaces, each containing functions
analytic at the origin, and such that L is a continuous linear operator on this
collection. We will show that the dimension of the kernel of L is equal to
the dimension of the cokernel of L. Then we will use Taylor’s representation
of Banach spaces of analytic functions [8] to essentially set up a relationship
between the roots of the indicial equation (from the Frobenius method) and the
necessary form of the nonhomogeneous term g that allows us to find a solution
to Ly = g analytic at the origin.

2 Definitions and Preliminaries

Let B1 and B2 be Banach spaces and let T : B1 → B2 be a continuous linear
operator with domain B1. Denote the conjugate of T by T ∗.

Definition The operator T is normally solvable if T (B1) is closed in B2.

The following lemma, due to Korobĕinik [7], gives another characterization
of normal solvability. The annihilator of the set W will be denoted by W ⊥.
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Lemma 2.1 Let B1 and B2 be Banach spaces, and let T : B1 → B2 be a
continuous linear operator. Then the following two properties are equivalent.

(a) T is normally solvable.

(b) The equation Ty = u, u ∈ B2, is solvable in B1 if and only if u ∈
(kerT ∗)⊥.

Definition The d-characteristic of T is the ordered pair (α(T ), β(T )), where
α(T ) = dim(kerT ) and β(T ) = dim(B2/T (B1). β(T ) is called the defect number
of T .

Definition The index of the operator T , denoted by ind(T ), is the number
β(T )− α(T ).

Definition The operator T is called a Noetherian operator if T is normally
solvable and if both α(T ) and β(T ) are finite.

Remark If β(T ) <∞, then β(T ) = dim(cokerT ) = dim(kerT ∗).
The following theorem is due to I.C. Gohberg and M.G. Krĕin [1].

Theorem 2.2 Let T : B1 → B2 be a continuous Noetherian operator, and let
T1 : B1 → B2 be a compact operator. Then T2 = T+T1 is a Noetherian operator
from B1 into B2 with ind(T2) = ind(T ).

For an arbitrary Noetherian operator the following theorem holds.

Theorem 2.3 (Fredholm Alternative) If B1 and B2 are Banach spaces and
T : B1 → B2 is a Noetherian operator with conjugate T ∗, then

(i) The equation T y = u has a solution (in B1) if and only if u ∈ (kerT ∗)⊥.

(ii) The equation T ∗ f = g has a solution (in B∗2) if and only if g ∈ (kerT ∗∗)⊥.

The proof of this theorem can be found in Korobĕinik [7, Lemma 2.1].

3 Properties of the Operator

Let G = {z : |z| < 1} and define Ap to be the Banach space of functions υ(z)
analytic in G and p times continuously differentiable on G, with norm

‖υ(z)‖p = {max |υ(i)(z)|, 0 ≤ i ≤ p, |z| = 1}.

Consider the operator L : An → A0, defined in (1.1), where the ai are now
in A0. In order to apply Theorem 2.2 to the operator L, we need the following
two results. A proof for each of these two lemmas can be easily obtained by
following the techniques used by Korobĕinik [7].
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Lemma 3.1 The operator l0 : An → A0 defined by l0y(z) ≡ zny(n)(z) is
Noetherian with α(l0) = β(l0).

Lemma 3.2 The operator li : An → A0, 1 ≤ i ≤ n, defined by
liy(z) = zn−iai(z)y(n−i)(z), ai ∈ A0, is compact.

Now we are able to apply Theorem 2.2 to the operator L to obtain the
following theorem.

Theorem 3.3 L is a Noetherian operator with α(L) = β(L).

4 Description of the Banach Spaces

Let Ã be the space of all functions that are analytic in G. If f ∈ Ã, f(z) can
be expanded in a power series in z,

f(z) =
∞∑
k=0

fkz
k, convergent in G.

Definition If f and g are elements of Ã such that

f(z) =
∞∑
k=0

fkz
k and g(z) =

∞∑
k=0

gkz
k ,

we define the Hadamard product of f and g by

B(f, g; z) =
∞∑
k=0

fkgkz
k , z ∈ G.

The seriesB(f, g; z), thus defined, is an element of Ã and defines a continuous
linear functional of f over A0.

Definition Define A0
0 as the class of all F ∈ Ã such that

lim
r→1−

B(u, F ; r)

exists for each u ∈ A0.

Theorem 4.1 A0
0 is a Banach space if the norm is defined by

‖F‖ = lim
r→1−

sup
‖u‖0=1

|B(u, F ; r)|, u ∈ A0.
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Let A∗0 denote the space of all linear functionals defined on A0. Recall
that, as u varies over A0, B(u, F ; r) defines a linear functional with norm
sup‖u‖0=1 |B(u, F ; r)|, u ∈ A0. Then, if F ∈ A0

0,

γ(u) = lim
r→1

B(u, F ; r), u ∈ A0 (4.1)

defines an element γ of A∗0.
Define the mapping Λ : A0

0 → A∗0 by Λ(F ) = γ. Let φ ∈ A∗0 and define the
function

H(z) =
∞∑
k=0

φ(zk)zk, z ∈ G.

Theorem 4.2 H(z) ∈ A0
0.

Now, we may also define the mapping Γ : A∗0 → A0
0 by Γ(φ) = H.

Theorem 4.3 The mapping Λ is an isometric isomorphism and Λ−1 = Γ.

Therefore, as a result of theorems 4.2 and 4.3, each linear functional in A∗0
can be uniquely represented (or determined) by an element in A0

0. We restate
this result in the following theorem.

Theorem 4.4 Every linear functional γ ∈ A∗0 is representable in the form

γ(u) = lim
r→1

1
2π

∫ 2π

0

u(ρeiθ)F
( r
ρ
e−iθ

)
dθ, u ∈ A0, (4.2)

where r < ρ < 1 and F ∈ A0
0. F uniquely determines and is uniquely determined

by γ, and ‖γ‖ = ‖F‖.

5 Description of the Cokernel

Using the results of Theorem 4.4, we can apply the Fredholm Alternative to
obtain the following theorem which gives necessary and sufficient conditions for
the solvability of Ly = g, g ∈ A0.

Theorem 5.1 For g ∈ A0, the equation Ly = g has a solution in An if and
only if

lim
r→1

B(g, f ; r) = 0 (5.1)

for all f ∈ A0
0 such that

lim
r→1

B(Ly, f ; r) = 0 (5.2)

for all y ∈ An.
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Proof. Define the space F(L) by F(L) = Γ(ker(L∗)). Hence F(L) is a sub-
space of A0

0 and can be represented by

F(L) = {f ∈ A0
0 : f satisfies (5.2) for all y ∈ An}. (5.3)

Now, from Theorem 2.3, the equation Ly = g has a solution in An if and only if
u is in ker(L∗)⊥, and u is in ker(L∗)⊥ if and only if γ(u) = 0 for all γ ∈ ker(L∗).
But by Theorem 4.4 this means

γ(u) = lim
r→1

B(g, f ; r) = 0

for every f ∈ Γ(ker(L∗)) = F(L). ♦
Equation (5.2) characterizes the cokernel of L (ker(L∗)) and equation (5.1)

characterizes the annihilator of the cokernel of L (ker(L∗)⊥). Next, we will use
theorems 3.3 and 5.1 to describe completely the structure of the cokernel of
L. We will do this by developing a rather intriguing relationship between the
coefficients of a Frobenius series solution for Ly = 0 and the coefficients of a
series for any member of A0

0 that satisfies (5.2).

Definition The “factorial function” r(k) is defined as follows, according to the
value of k:

(a) if k = 1, 2, 3, . . ., then r(k) = r(r − 1)(r − 2) · · · (r − k + 1),

(b) if k = 0, then r(0) = 1,

(c) if k = −1,−2,−3, . . ., then r(k) = 1
(r+1)(r+2)···(r−k) ,

(d) if k is not an integer, then r(k) = Γ(r+1)
Γ(r−k+1) .

If we seek a Frobenius series solution for Ly = 0 of the form
w(z) =

∑∞
k=0 ckz

k+r, the indicial equation will be

F (r) = r(n) + r(n−1)a10 + · · ·+ r(2)a(n−2)0 + r(1)a(n−1)0 + an0 = 0.

The following theorem is an immediate consequence of theorem 3.3 and 5.1.

Theorem 5.2 If the equation F (r) = 0 does not have a nonnegative integer
root, then the equation Ly = g has a solution in An for any g ∈ A0.

Proof. We know that dim(ker(L∗)) = 0 from Theorem 3.3. So f ≡ 0 is
the only solution to (5.2) and (5.1) is satisfied for any g ∈ A0. Therefore, by
Theorem 5.1, equation Ly = g has a solution in An for any
g ∈ A0. ♦

Now assume that the indicial equation, F (r) = 0, has at least one nonneg-
ative integer root. We will show that the cokernel of L is always spanned by
a set of polynomials and therefore the existence of a solution to Ly = g in An
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depends only on a finite number of the coefficients in the series expansion of
g(z). First, we need to rewrite equation (5.2). Let

f(z) =
∞∑
k=0

fkz
k and ai(z) =

∞∑
k=0

aikz
k, i = 1, . . . , n.

Then another form of (5.2) is:

F (0)f0 +
∑∞
k=1 ank fk = 0

F (1)f1 +
∑∞
k=1

[
a(n−1)k + ank

]
fk+1 = 0

F (2)f2 +
∑∞
k=1

[
2a(n−2)k + 2a(n−1)k + ank

]
fk+2 = 0

F (3)f3 +
∑∞
k=1

[
6a(n−3)k + 6a(n−2)k + 3a(n−1)k + ank

]
fk+3 = 0

...
F (n)fn +

∑∞
k=1

[
n(n−1)a1k + n(n−2)a2k + · · ·+ na(n−1)k + ank

]
fk+n = 0

...
F (r)fr +

∑∞
k=1

[
r(n−1)a1k + r(n−2)a2k + · · ·+ ra(n−1)k + ank

]
fk+r = 0

...
(5.4)

Theorem 5.3 If the equation F (r) = 0 has exactly one nonnegative integer
root, r, then the cokernel of L is spanned by a polynomial of degree r.

Proof. Since there is only one nonnegative integer root, r, we may reduce
(5.4) to

F (0)f0 +
∑r
k=1 ank fk = 0

F (1)f1 +
∑r−1
k=1

[
a(n−1)k + ank

]
fk+1 = 0

F (2)f2 +
∑r−2
k=1

[
2a(n−2)k + 2a(n−1)k + ank

]
fk+2 = 0

F (3)f3 +
∑r−3
k=1

[
6a(n−3)k + 6a(n−2)k + 3a(n−1)k + ank

]
fk+3 = 0

...
F (r − 1)fr−1 +

[
(r − 1)(n−1)a11 + · · ·+ (r − 1)(1)a(n−1)1 + an1

]
fr = 0

F (r)fr = 0
(5.5)

by setting fk = 0 for k > r. Back substitution for fk, k < r, yields a polynomial
of degree r in the cokernel of L. We also know that dim(ker(L)) = 1, which
implies, from Theorem 3.3, that dim(ker(L∗)) = 1. Therefore the cokernel of L
is spanned by a polynomial of degree r. ♦

We now assume that the indicial equation for Ly = 0 has q > 1 nonnegative
integer roots, r1, . . . , rq. Assume r1 > r2 > · · · > rq and let N = r1−rq. Under
these assumptions we are guaranteed, following the standard Frobenius series
solution technique, at least one solution in An. If there is to be more than one
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linearly independent solution in An, it can be determined by using the smaller
root, rq, of the indicial equation and calculating the first N + 1 coefficients of
the Frobenius series. If c0, c1, . . . , cN denote these coefficients and H = (hi,j)
is the upper-triangular matrix where

hi,j =


0, if i > j
F (r1 − i+ 1), if i = j
(r1 − j + 1)(n−1)a1j−i + · · ·
+(r1 − j + 1)(1)a(n−1)j−i + anj−i , if i < j

then the system of equations, H~c = ~0,

F (r1) h1,2 h1,3 · · · h1,N h1,N+1

0 F (r1 − 1) h2,3 · · · h2,N h2,N+1

0 0 F (r1 − 2) · · · h3,N h3,N+1

... · · · 0
. . . · · ·

...

0 · · ·
...

. . . F (rq + 1) hN,N+1

0 0 0 · · · 0 F (rq)





cN
cN−1

cN−2

...
c1
c0


=



0
0
0
...
0
0


(5.6)

determines these coefficients. In other words, the number of linearly independent
solutions to (5.6) coincides with the number of linearly independent solutions
in An of Ly = 0.

Definition Let

B =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n

 ,
then define the backward transpose of B as

Bt =


bn,n · · · b2,n b1,n

...
. . .

...
...

bn,2 · · · b2,2 b1,2
bn,1 · · · b2,1 b1,1

 .
Return to the infinite set of equations (5.4) which determine the cokernel of

L. We want to consider the system of equations

F (rq) hN,N+1 hN−1,N+1 · · · h2,N+1 h1,N+1

0 F (rq + 1) hN−1,N · · · h2,N h1,N

0 0 F (rq + 2) · · · h2,N−1 h1,N−1

... · · · 0
. . . · · ·

...

0 · · ·
...

. . . F (r1 − 1) h1,2

0 0 0 · · · 0 F (r1)





frq
frq+1

frq+2

...
fr1−1

fr1


=



0
0
0
...
0
0


(5.7)
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given specifically by the rqth through the r1th equations of (5.4). The coefficient
matrix for this system of equations will be denoted by Ht since it is the backward
transpose of the matrix H in (5.6).

If we set fk = 0, k > r1, then the number of linearly independent solutions
to (5.7) coincides with the number of linearly independent polynomials in the
cokernel of L. The following lemma is the basis of a very lucrative relationship
between the number of linearly independent solutions in An of Ly = 0 and the
number of linearly independent polynomials in the cokernel of L.

Lemma 5.4 Let B be an n× n matrix and Bt be its backward transpose, then
Bt ∼ B.

Proof. Denote the n× n backward identity by P, i.e.,

P =


0 · · · 0 0 1
0 · · · 0 1 0
... · · ·

...
0 1 0 · · · 0
1 0 0 · · · 0

 .

Then Bt = PBTP where BT is the usual transpose of B. It is known that
BT ∼ B which implies that there exists a nonsingular matrix R such that
BT = RBR−1. So, if we let Q = PR then Q is a nonsingular matrix such that
Bt = QBQ−1. ♦

Now, from Lemma 5.4, we know that H ∼ Ht. In other words, there exists
a nonsingular matrix, Q, such that QH = HtQ. Therefore, equations (5.6)
and (5.7) will have the same number of linearly independent solutions directly
related to each other by the matrix Q. We state this result in the following
lemma.

Lemma 5.5 If Q is a nonsingular matrix such that QH = HtQ and [cN · · · c0]T

is a solution of (5.6) then Q[cN · · · c0]T is a solution of (5.7).

Together, lemmas 5.4 and 5.5 describe the unique relationship between the
kernel and cokernel of the operator L. Thus, we can completely describe the
structure of the cokernel of L when F (r) = 0 has two or more nonnegative
integer roots. These results are presented in the following theorem.

Theorem 5.6 Assume the indicial equation, F (r) = 0, has q (q ≤ n) nonneg-
ative integer roots, r1, . . . , rq, with r1 > r2 > · · · > rq. Let Ni = ri − ri+1 and
η(p) =

∑p
i=1Ni, p ∈ {1, . . . , q − 1}. Then, if Ly = 0 has m + 1 (m + 1 ≤ q)

linearly independent solutions in An, there exist integers p1 < p2 < · · · < pm ≤
q− 1 such that the cokernel of L is spanned by the functions f0(z) ∪ {fj(z)}mj=1

where f0(z) is a polynomial of degree rq and fj(z) is a polynomial of degree
rq + η(pj).
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Proof. Following the Frobenius method for solving Ly = 0 we find a solution
in An associated with the largest root, r1. Then we check for a solution in An
associated with each of the smaller roots. With the hypotheses above we will
get solutions associated with the following m+ 1 roots,

{r1, r1 − η(p1), r1 − η(p2), . . . , r1 − η(pm)},

where p1, p2, . . . , pm are integers such that 1 ≤ p1 < p2 < · · · < pm ≤ q − 1,
and these will be linearly independent. Thus (5.6) will have m + 1 linearly
independent solutions, where each of the coefficients

{cN , cN−η(p1), cN−η(p2), . . . , cN−η(pm)}

are arbitrary. From lemmas 5.4 and 5.5, we will get m+ 1 linearly independent
solutions to (5.7), where each of the coefficients

{frq , frq+η(p1), frq+η(p2), . . . , frq+η(pm)}

are arbitrary.
Therefore, each of the polynomials

f0(z) = f00 + f01z + · · ·+ f0rq z
rq

f1(z) = f10 + f11z + · · ·+ f1rq+η(p1)z
rq+η(p1)

f2(z) = f20 + f21z + · · ·+ f2rq+η(p2)z
rq+η(p2)

...
fm(z) = fm0 + fm1z + · · ·+ fmrq+η(pm)z

rq+η(pm)

(5.8)

is an element of ker(L∗). But, from Theorem 3.3 we know that

dim(kerL∗) = dim(kerL) = m+ 1.

Hence, the cokernel of L is spanned by the polynomials in (5.8). ♦
Theorems 5.1, 5.2, 5.3, and 5.6 describe completely the cokernel of the opera-

tor L, which is either zero dimensional or is spanned by polynomials. Therefore,
if the nonhomogeneous term in Ly = g is represented by the series

g(z) =
∞∑
k=0

gkz
k, (5.9)

the solvability inAn of Ly = g is determined by a finite number of the coefficients
in (5.9).

6 Examples

In this section we will illustrate some of the preceding results. Consider the
nonhomogeneous Bessel equation of order ν.
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Example 6.1 Let L1 : A2 → A0 be defined by

L1 y(z) = z2 y′′(z) + zy′(z) + (z2 − ν2)y(z).

If we use the Frobenius method to solve L1y = 0 we obtain the indicial
function F (r) = (r−ν)(r+ν), so ν and −ν are the roots of the indicial equation.
Without loss of generality assume that ν ≥ 0. If ν is not an integer, F (r) = 0
will not have a nonnegative integer root. Thus, by Theorem 5.2, Ly = g will
have a solution in A2 for any function g ∈ A0. If ν is an integer, then F (r) = 0
has exactly one nonnegative integer root, ν. Thus, by Theorem 5.3, the cokernel
of L1 is spanned by a polynomial of degree ν. Following the proof of Theorem
5.3 we are able to produce this polynomial. First, we derive the finite system
of equations

F (0)f0 +
∑ν
k=1 ank fk = 0

F (1)f1 +
∑ν−1
k=1

[
a(n−1)k + ank

]
fk+1 = 0

F (2)f2 +
∑ν−2
k=1

[
2a(n−2)k + 2a(n−1)k + ank

]
fk+2 = 0

F (3)f3 +
∑ν−3
k=1

[
6a(n−3)k + 6a(n−2)k + 3a(n−1)k + ank

]
fk+3 = 0

...
F (ν − 1)fν−1 +

[
(ν − 1)(n−1)a11 + · · ·+ (ν − 1)(1)a(n−1)1 + an1

]
fν = 0

F (ν)fν = 0,

similar to those in (5.5); then, back substitution yields the polynomial

f(z) = zν +
b ν2 c∑
m=1

(ν −m− 1)!
22mm!(ν − 1)!

zν−2m,

which spans the cokernel of L1. So, by Theorem 5.1, L1y = g will have a solution
in A2 if and only if the coefficients in the series expansion of g(z) =

∑∞
k=0 gkz

k

satisfy

gν +
b ν2 c∑
m=1

(ν −m− 1)!
22mm!(ν − 1)!

gν−2m = 0.

Remark This example was given previously by Hall [5]. However, by applying
the techniques developed in this article, we have obtained solvability conditions
for L1y = g, the nonhomogeneous Bessel equation of order ν, independent of
the value of ν. We obtained this condition, which matches that of [5] if ν is an
integer, without converting the equation to a system.

Example 6.2 Let L2 : A2 → A0 be defined by

L2 y(z) = z2 y′′(z)− 2z(z − 2)y′(z) + 2(2− 3z)y(z).
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Here, F (r) = 0 has roots r1 = 4, r2 = 1 and N = r1 − r2 = 3. We will use
Theorem 5.6 to describe the cokernel of the operator L2. First, we obtain the
coefficient matrices of (5.6) and (5.7).

H =


0 0 0 0
0 −2 −2 0
0 0 −2 −4
0 0 0 0

 and Ht =


0 −4 0 0
0 −2 −2 0
0 0 −2 0
0 0 0 0

 .
Then, from Lemma 5.4, we know that H ∼ Ht and so there exists a nonsin-

gular matrix

Q =


1 −2 2 8
0 1 0 −2
0 0 1 2
0 0 0 1


such that QH = HtQ.

Now,
[

1 2 −2 1
]T is a solution to H~(c) = ~0 which implies, by Lemma

5.5, that Q
[

1 2 −2 1
]T =

[
1 0 0 1

]T is a solution to

Ht
[
f1 f2 f3 f4

]T = ~0. Thus, by setting fk = 0, k > 4, in (5.4) we can

use back substitution to get f0 =
3
2
f1. So, we get two linearly independent

polynomials, f1(z) = z4 and
f2(z) = z + 3

2 that span the cokernel of L2.
Thus, by Theorem 5.1, L2y = g will have a solution in A2 if and only if the

coefficients in the series expansion of g(z) satisfy both g4 = 0 and g1 = − 3
2g0.

Remark Back substitution is necessary to find the fk, k < rq = 1, since
the equation Ht

[
f1 f2 f3 f4

]T = ~0 is derived from the first through the
fourth equations of (5.4).

Example 6.3 Let L3 : A4 → A0 be defined by

L3 y(z) = z4 y(4)(z) + z3a1(z)y(3)(z) + z2a2(z)y′′(z) + za3(z)y′ + a4(z)y(z),

where a1(z) = z4 − 4, a2(z) = 12z2 − 1
2z + 6, a3(z) = −3z3 + 13z2 − z − 1, and

a4(z) = 6z4 + z2 − 11z + 1.

In this case, F (r) = 0 has roots r1 = 5, r2 = 4, r3 = 1, and r4 = 0. So,
by Theorem 5.6, we know that the cokernel of L3 is spanned by the function
f0(z) = 1 and, possibly as many as three more polynomials, fj(z), of degree
η(pj), 1 ≤ pj ≤ 3. To apply Theorem 5.6, i.e., determine the polynomials
in the cokernel of L3, it is enough to find the matrix Ht of (5.7) and solve
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Ht
[
f0 f1 f2 f3 f4 f5

]T = ~0.

Ht =


0 −11 1 0 6 0
0 0 −12 14 −3 6
0 0 12 −14 3 −6
0 0 0 12 −17 112
0 0 0 0 0 −21
0 0 0 0 0 0


Thus,

[
f0 f1 f2 f3 f4 f5

]T =
[
α 533

11 β 101β 102β 72β 0
]T

is a solution to Ht
[
f0 f1 f2 f3 f4 f5

]T = ~0, where α and β are arbi-
trary constants.

Therefore, by setting fk = 0, k > 5, we get two linearly independent polyno-
mials, f0(z) = 1 and f1(z) = 533

11 z+101z2 +102z3 +72z4 that span the cokernel
of L3. So there exists only one integer, p1 = 2, such that the cokernel of L3 is
spanned by f0(z), a polynomial of degree r4 = 0, and f1(z), a polynomial of
degree r4 +η(p1) = 0+(1+3). So, by Theorem 5.1, L3y = g will have a solution
in A4 if and only if the coefficients in the series expansions of g(z) satisfy the
conditions g0 = 0 and 533

11 g1 + 101g2 + 102g3 + 72g4 = 0.
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