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NONEXISTENCE RESULTS FOR WEIGHTED p-LAPLACE
EQUATIONS WITH SINGULAR NONLINEARITIES

KAUSHIK BAL, PRASHANTA GARAIN

ABSTRACT. In this article we present some nonexistence results concerning
stable solutions to the equation

div (w(z)\Vu|p72Vu) =g(@)f(u) mRN, p>2

when f(u) is either w9 4+ w7 with 8,7 > 0 or e!/% where w, g are suitable
weight functions.

1. INTRODUCTION

Elliptic problems with singular nonlinearity have been a subject of extensive re-
search which is evident by the bast literature available in the field. Following the
paper by Crandall et al [2], questions of existence, uniqueness, regularity, multi-
plicity and asymptotic behavior have been widely explored. Interested readers may
find the papers by Boccardo-Orsina [I], Lazer-Mckenna [11], Mohammed [10] and
the reference therein very helpful. In this article we are interested in the study of
nonexistence of stable solutions to two singular equations. To put it in perspec-
tive let us look at related literature available concerning this type of equations. In
Ma-Wei [9], the problem

Au=u"% inR"
was considered for any > 0 and among many other properties it was proved that
the problem does not admit a positive stable solution provided

2gn<2+li+5(5+\/52+5).

A generalized problem related to the Liouville theorem for stable solution of the
equation —Au = f(u) was studied by Dupaigne-Farina [5] and showed to admit
no bounded stable solution provided f > 0 and 1 < n < 4. Similar results about
nonexistence were also provided in higher dimension which requires convexity re-
quirement on f was done in [6]. Guo and Mei [§] studied the problem

Apu=u"%inR"
and showed the nonexistence of stable solution for some range of § > 0 and 2 <
p < n among other results. Chen et al [3] generalized the results of Guo and Mei
[8] for the problem
Apu = f(z)u™® in R"
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for some f € Lj . such that f behaves like a radial function for large enough z.
This was recently generalized by Le et al [12] for the weighted p-laplace equation.
Readers may also find the paper by Du and Guo [7] a good read related to singular
problems. In this work we consider the problem

— div (w(2)|VuP2Vu) = g(z)f(u) n RY, u>0inRY (1.1)

where f(u) is either —u~% — 4~ to be denoted by s, or —e'/* to be denoted
by e, and 6,y > 0. We also assume p > 2, N > 1 and the weight functions
w,g € L, .(RY) both positive a.e. in RY such that g=! € L>(R") unless otherwise
mentioned.

Definition 1.1. We say that u € C'(R") is a weak solution to (L.1)) if u > 0 in
RY and for all ¢ € CL(RY) we have

/w(w)|Vu|P_2VuV<pdx:/ g(@)e(x) f(u) de. (1.2)
RN

RN

Definition 1.2. A weak solution u of (I.1) is said to be stable if for all ¢ € C}(RY)
we have

/ w(@)| VP2Vl dz + (p - 2) / w(@) [ ValP ) (V, Vo) P do
RN RN

(1.3)
- [ s@f @) do > 0
RN
Therefore, if u is a stable solution of equation (|1.1)) then
[ s@f@etde<p-1) [ w@)Tupivel (14)
RN RN

In this article we provide suitable conditions on the weight functions w, g to guar-
antee the nonexistence of stable solutions for with a power nonlinearity and
an exponential nonlinearity both of which are singular as the solutions approaches
0. We achieve this by using special test functions which are adapted from Dupaigne
[] to arrive at a contradiction.

Notation.

Equation will be denoted by (n), for f(u) = —u=® —u™7 with 6,7 > 0;
while will be denoted by (n). for f(u) = —e'/*, with n = 1,2,3,4. Without
loss of generality, we assume 0 < § < 7.

We denote by B,.(0) to be the ball centered at 0 with radius r > 0. ¢ as a generic
constant whose values may vary depending on the situation. If ¢ depends on € we
denote it by c.. Moreover, if ¢ depends on aq, s, -+ , @, (n > 2) then we denote it
by c(a1, 0z, - ).

For p1, p2 > 0 such that p; > 1, by ||w| Ifm( o) = o(rP?), we mean there exist

B,
a fixed constant ¢ > 0 independent of 7 such that |Jwl|"}, (Ban(0)) < €772

We say that (9, p) belongs to the class
(1) P, if either 6 > 1for2<p<3ord>1forp=3ord> (p:f)z for p > 3
respectively.

(2) Py if either § >0 forp=2ord > (p;1)2 for p > 2 respectively.
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‘We denote

26 -1
oD 5= forp>2.

Note that if (6, p) belongs to either P, or P,, then we have s, > 0.
V}fe denote S =1+ p—ziié and Sg =1+ pfiiy for p > 2. We denote m =
g™ llso-

Let us fix a constant M such that M > 0 for p =2 and 0 < M < ﬁ for

{(5—1—\/52—1—(5 for p =2,
Sp =

p > 2 respectively. Denote

1 /1 1
P M‘i‘ M—"_W fOI‘p=2, (15)

P 2 -1
m—% forp>2

We define the number T}, = 1+ 2% for p > 2. Observe that ¢, > 0 for any p > 2
and therefore T, > 1.
Throughout this article 1z € C}(RY) is a test function such that

0<t¢r<1inRY, wr=1in Bg(0),
Ygr =0 in RN \ Byg(0)
with
<

|Vig| < 7

for some constant ¢ > 0 (independent of R).

2. MAIN RESULTS

Theorem 2.1 (Caccioppoli type Estimate). Let u € C*(RY) be a stable solution
to (1.1)s. Then the following holds:

(1) Let (8,p) belong to the class P, such that 6 < . Assume that 0 < u <1
in RN. Then for any B € (0,s,), there exists a constant ¢ = c(3,p,m) > 0
such that for every ¢ € CLRN) with 0 < ¢ <1 in RY, we have

/ mmﬁ¥W%+Mmgc/ w (2)| V[Pl da (2.1)
RN U RN
where

9_25—1—17—1—&-6 9,_2ﬁ+p—1+6

a 26 e p—1446

(2) Let (6,p) belong to the class P, such that § < -y where v > 1. Assume
that w > 1 in RN. Then for any 3 € (0, sp), there exists a constant ¢ =
c(B,p,m) > 0 such that for every v € CHRN) with 0 < < 1 in RY, we
have

[ oGt ce [ wb@ivepta (2.2)
RN u RN

where

:25+p—1+'y 0,:25+p—1+’y

0 ;
’ 23 ’ p—1+7
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(3) Let (6,p) belong to the class P, such that § = v > 1. Assume that u > 0
in RN. Then for any B € (0,s,), there exists a constant ¢ = ¢(B,p,m) > 0
such that for every ¢ € CLRN) with 0 < <1 in RY, we have

/ g(z)(ﬁ)%ﬂ)fl” de < e / wa (2)| VPP da (2.3)
RN u RN
where

0_25—1—;0—1—&-5 9,_25—1—;0—1—&-6

a — 2/@ 9 a p— 1 _|_ 6

Theorem 2.2. Let (§,p) belong to the class P, such that § <~ and u € C*(RY)
such that 0 < u < 1 in RN. Assume that there exist o fized constant Ay > 0 such
that
Sp _ Ap a a
Hw”LSs(BQR(O)) _O(R )a )‘p <pSp-
Then u is not a stable solution of (1.1))s.

Theorem 2.3. Let (6,p) belong to the class Py such that 6 < v with v > 1 and
u € CY(RYN) such thatu > 1 in RN . Assume that there exist a fized constant )\Z >0
such that

S —o(RM), A < pS
L% (Bag(0)) , P r
Then u is not a stable solution of 5,

[[]]

Theorem 2.4. Let (6,p) belong to the class P, such that§ =y > 1 andu € C*(RY)
such that v > 0 in RN . Assume that there exist a fived constant Ay, > 0 such that

S

— Ap c a
L5 (Ban(0)) — o(R%r) and A, < pSp.

[[]]

Then u is not a stable solution of (1.1))s.

Remark 2.5. For w € L>(RY), one can choose A%, \’, \¢ equal to the dimension

p>\pr p
N of RY in Theorems and

Theorem 2.6 (Caccioppoli type estimate). Let u € C*(RY) be a bounded stable
solution to (L1))e such that ||u]| @~y < M for some positive constant M. Then
for any B € (0,t,), there exists a constant ¢ = c(8,p,m) > 0 such that for every
€ CHRY) with 0 < <1 in RN, we have

/ g(x)(?)wﬂ’ dr <c / w? |V [P da (2.4)
RN

(A RN

where 0 = —Qg;p and ' = 28+2.
P

Theorem 2.7. Let u € C*(RY) be positive such that ||ul| @~y < M for some
positive constant M. Assume that there exists a fived constant p, > 0 such that

T, )
||wHLTp(BQR(0)) =o(R"), pp < pTp.
Then u is not a stable solution of (1.1)).

Remark 2.8. For w € L>°(RY), one can choose i, = N in Theorem
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3. PROOF OF MAIN RESULTS

Before proving the main results, we prove an important lemma.

Lemma 3.1. Assume p > 2 and let u € C*(RY) be a stable solution to (I.1). Fix
a constant 8 > 0. Then for every given € € (0,28 + p — 1), there exists a constant
ce = ce(B,p) > 0 such that for any nonnegative ¢ € CH(RY), we have

[ g w2 o
RN

< e /RN w(x)u_zﬁ\va dx (3.1)

—1 D _1)2 4 ¢
- 2;(f;211+ AN9<x>f(U>u‘26‘p+1wpdx.

Proof. Suppose u € C1(RY) be a stable solution of equation (1.1)) and v € C}(RY)
be nonnegative. We prove the lemma in two steps.

Step 1: Suppose u € C*(RY) is a weak solution of (1.1)) and let o > 0. Choosing
© =u"*YP as a test function in the weak form (|1.2]), since

Vo = —au " 1PV + pypP~lu=2Vp

we obtain

a/ w(x)u™* P | VulP do
R (3.2)
<p [ wleye wr TP Teldo - [ glo)u )i da,
RN RN
Now using Young’s inequality for € € (0, a) we obtain
p [ ol wr vl Vel ds
RN

p—a—1

=p / (W u ™ [VuP =ty (wru T [Ve])da
RN

< e/ w(x)u7“71¢p|Vu|pdx+cs/ w(x)uP~ | V| da.
RN RN

Plugging this estimate in (3.2) and defining

A= w(z)u”* " YP|VulP de, B = / w(z)uP~ VY|P de,
RN RN

we obtain

(a—e¢)A<c.B-— /RN g(@)u™ f(u)yP dx. (3.3)

Step 2: Suppose u € C*(RY) is a stable solution of (I.1)) and let 3 > 0. Choosing
= uw P~ 54145 as a test function in the stability equation (1.4), since

Vo= —(8+ 5 - Du T EyEvu+ Lyt E vy
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we obtain
/ g(2) f' (wyu=28P+2yP i
RN

SE-VG+5 17 [l e ds

2

F -1 [ e T v de
RN

(3.4)

plp= D@+ 5~ 1) [ wlo)u Ty do
RN
=X+Y+Z

Let « =26 +p— 1. Then we have X = (p —1)(f + & — 1)2A. Now we prove the
required estimate for p = 2 and p > 2 separately in the cases a and b below.

Case a. Let p = 2. Therefore
Y = / w(z)u=?P|Vy|?de = B.
RN

Using the exponents p’ = ﬁ and p in Young’s inequality, we obtain

Z =28 w(z)u" 2P| Vul| V| da
RN
=28 | (wrpu P Vul)(wiuP|Vy|) do
RN
< e/ w(z)u~ P22 Vul? dz + c. / w(z)u= 2P|V d
RN RN

=€eA+ c.B.

Now putting o = 25+ 1 > 0 in (3.3 we obtain

1
A< 7{ B —26-1y2 4 } 3.5
< rr—{eB - [ a@re e i (35)
Using (3.5) together with the above estimates on Y and Z in (3.4)), we obtain
/ o) (2R de < e B — € / g(@)f (u)u™?""19? da.
RN - Qﬁ + 1-— € RN

Case b. Let p > 2. Therefore, using the exponents z% and £ in Young’s inequality,
we have

Y= (-1 / w(@)u= 2B P22 VP2 Vi 2
RN

2 - - —p)(P—
- -5 / @ Va0 V) de
R

IN
I

/ w(z)u =P PYP|VulP dx + %/ w(z)u"2P|Vip|P dx
2 RN 2 RN

€ c
—A+ =B.
2 * 2
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Also using the exponents p’ = 1% and p in Young’s inequality, we obtain

Z=plo-1(E+5 - 1) [ ) vVl da
2 v

= p(p — 1)(5 + g - 1)/ (wﬁwp—luy‘va—l)(w%uy,|V¢|) dzx
RN

< E/ w(a)u” P PYP|Vul? d + C—/ w(z)u2 | VP da
2 RN 2 RN
€ c
2 + 277
Wherey: —% andy':_Qﬁ_p_i_l_F%'
Now putting o =28 +p —1> 0 in (3.3) we obtain

1
P R )
e et CL Rl BTN el (36)
Using (3.6)) together with the above estimates on Y and Z in (3.4)), we obtain
[ s e do
RN

(pP—1)(B+E -1+
2864+p—1—c¢

<cB—

/ o) (wyu= 2P~ yp da
RN
[l

Proof of Theorem [2.1 Let u € C1(RY) be a positive stable solution to (T.1))s. Then
by Lemma using that 0 < § < v and f(u) = —u~% — u~7 in the inequality
(3.1f), we obtain
1 1
65/ g(:zc)(—(S + 7)u—2ﬁ—p+1¢p dr < ce/ w(x)u*%\vadx
RN u u” RN

where

(- 1(B+5 - 12+
ﬁe:@_ 25—1—])—21—6 )

Observe that for every 8 € (0, s,),

: (P-1)(B+5-1)7

lim Be = (5_ Wr+p—1 ) > 0.

Therefore fixing 8 € (0, s,), we can choose an € € (0,1) such that 8. > 0. Hence
we have

/RN g(m)(% + %)u_w_pﬂl/}p dr < C/]RN w(x)u_2B|Vw\pdx (3.7)

for some positive constant c.
Case 1. Since § < yand 0 < u < 1 in RN, for any 8 € (0, s,), inequality (3.7)
becomes

/ g(x)u=2P7PHI=0yP gz < c/ w(z)u~ 2P| Vy|P dz.
RN RN

28+p—1+6

Replacing ¢ by ¢~ » | we obtain

Y - 284+p—1+06\P 283 ,2846—
[t < o EEEIEEN [ ey v
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—c [ R @Ivere') do

Choosing the exponents §, = 25+p-14+3 g7 —

28
obtain

2B4+p—1+4
p—1+0

in Young’s inequality we

[ syttt
RN

u
/ 9:1 ’ /
<{e [ o@EPrr s e, [ uthgm R0 Tyt da).
RN U RN

Now using that ¢g=' € L¥(RY), 0 <+ < 1 and § > 1, we obtain the required
inequality

u

/ g(z)(%)w“’*lﬂ; dz < c/ we |Vip|P%e da.
RN RN

Case 2. Since § <y and u > 1 in RY, for any 3 € (0, s,), inequality (3.7) becomes
/ g(z)u= 2P PP dy < c/ w(z)u 2P |VP dr.
RN

RN
2B+p—1+4y

Replacing ¢ by ¢~ » we obtain

/RN g(x)(%)Qﬁ-i-p—l-i-’Y < 6(2/8+pp_ 1 +7)p/RN w(x)u—25w25+’y—1lvw|p dx

—c [ ¥ (w@veper) de

264p—1t+y g _ 26+p—1lty
» Vb T

Choosing the exponents 6, = 55 11+

obtain

in Young’s inequality we

[ o
RN

u
’ i ’ ’
< {6/ g(x)(g)wﬂklﬂ dw+ce/ wf)bg—eﬁd,(vfl)%wwpeb dx}.
RN (3 RN

Now using that g=1 € L=(RY), 0 < ¢ < 1 and v > 1, we obtain the required
inequality

/ (@) (L)2Hr=147 g < ¢ / W V[P0 (3.9)
RN

u RN
Case 3. Since § = v and u > 0 in RY, for any 3 € (0, s,), inequality (3.7) becomes

/ g(z)u=2P7PH1I=0yP gy < c/ w(z)u" 2P| V[P dz.
RN RN

2B+p—1+446

Replacing ¢ by v~ » | we obtain

/ g(a:)(?)%ﬂkm dr <c <25 +p—1+ 5>p/ w(@)u 2B Ty P da
RN u P RN
= C/RN(%)M (w(a:)\vai/)é*l) dx.
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Choosing the exponents 6, =
obtain

[ a@Eyrrisas
RN

u
’ 9:1 ’ ’
<{e [ o tdn e [ wthg R IRy do),
RN u RN

Now using that g1 € L®(RY), 0 < ¢ < 1 and § > 1, we obtain the required
inequality

2’6“2’;1”, 0! = 2882180 i) Young’s inequality we

p—1+6

[ s Eprtace [ wtigept o
RN u RN
([l

Proof of Theorem[2.3 By contradiction, let us suppose that u is a stable solution
to (1.1))s such that 0 < u < 1 in RY. Then by Theorem we have

/ g(x)(%)w“’*lﬂ; dx < c/ w%\va% dx.
RN u RN
Choosing 1 = g, we obtain
1 ’ !
/ g(x)(=)2PHP=140 gp < cR7PY / w?e da. (3.9)
Br(0) u B2r(0)

2B+p—1+46 < Sz

170 = o(R*), we have

g0
and [Jwl| &

. /
Since 07, = L°? (B2r(0))

/ w’ do < CR%JF%(SS_%).
B2r(0) B
Hence from (3.9)), we obtain
’ AZ_ N a_p’
/ g(a) ()21 g < oS
Br(0) u
for some positive constant ¢ independent of R. Now,
. )\a N a a a
Jim {0 —p)+ 5o (S5 =00} = X; —pS; <.
P P P

Hence, we can choose § € (0, s,) such that

Al N
0 (=L — —(8*—-9¢) <0.
gy )+ g (55— )
Therefore, letting R — oo in the above integral inequality, we obtain
1
[ s as =
RN u
which is a contradiction. O

Proof of Theorem[2.3 By contradiction, let us suppose that u is a stable solution
to (1.1))s such that « > 1 in RY. Then by Theorem we have

[ @G ce [ ubiwurt an
RN

(A RN
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Choosing 1 = ©¥r, we obtain

1 / ’
/ g(2) (228147 4 < o) / W' dz. (3.10)
Br(0) u Bar(0)
b
Since 6, = wyj‘j”%ﬁ < S and ||w||igg(3 @) O(R)\’b’)a we have

b"p N b ’
LN (st _gr)
/ w? dr < cR Sv ",
BQR(O)

Hence from (3.10]), we obtain

’ A;l; ’
[ g < oS
Br(0) u B

for some positive constant ¢ independent of R. Now,
. A N
Jim {9;,(57’; —p)+ g (S) - 0;,)} — AL —pSt < 0.
v P P

Hence, we can choose § € (0, s,) such that
)\b

gg(i —
b
SP

Therefore, letting R — oo in the above integral inequality, we obtain

1
/ g(x)(Ly2r=147 4z = g,
RN

N
p

u

which is a contradiction. O

Proof of Theorem[2.]]. By contradiction, let us suppose that u is a stable solution
to (1.1)s. Then by Theorem we have

| st < [

u R
Now arguing exactly as in Theorem we have the required result. O

Proof of Theorem [2.6 Let u € C*(RY) be a bounded stable solution to (1.1)). such
that ||ul @~y < M. By Lemma using the condition 0 < u < M in RY and

f(u) = —e/* in (3.1)), we obtain
Be/ g(z)el/“u7237p+11/}p dr < ce/ w(z)u725|V1/)|p dx,
RN RN

w |Vap|PPe da.
N

where

5_(1 (p—l)(ﬂ+§—1)2+6)
‘C\M 28+p—1—c¢ '
Observe that

. 1 (p-1)(B+E5-1)
b= (- PRSI s s
Therefore fixing 8 € (0,t,) we can choose an € € (0,1) such that 5 > 0. Now using

the fact el/® > % in the above integral inequality we obtain

/ g(z)u=2P"PyP dx < c/ w(z)u= 2P| V[P dz.
RN

RN
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2B8+p

55 and

Replacing ¢ by 1/)23; * and using Young’s inequality with exponents 6 =
0 = Qﬁ% for e € (0,1), we have

/ o(@) (L do < ¢ / Wl | TylP da
RN u RN
= [ g ) Do) do

u

S6/ 9(@)(L)? 7 do 4, / g7 0w VP da.
RN RN

Therefore we obtain the inequality

/ g(m)(%)w“? dx < C/ g_9//9w9/|vw\p‘9/ dzx.
RN

u RN
Since g~ € L>®(RY), we have

/ g(x)(%)zﬁ“’ dzx < c/ w? |V da.
RN RN

U
(]

Proof of Theorem[2.7. By contradiction, let us suppose that u is a bounded stable
solution to (1.1)). such that 0 < u < M in RY. Then by Theorem 2.6, we have

/ g(x)(%)%ﬂJ dx < c/ w6/|V¢|p9/ dx
RN u RN
where 6 = Qg}-p and 0’ = 2’6%. Choosing 1 = ¥ g, we obtain

1 / /

/ g(z)(=)*P+P dx < cR7P0 / w? de. (3.11)
BRr(0) u B2r(0)
. T,

Since ¢’ = 251’# < T, and ||wHL€pp(BQR(O)) = o(R*»), we have

’ o' pp N —_p
/ w? dr <cR ™ +1, (T 9).
B2R(0)

Hence from (3.11]), we obtain
1

/ (@) (1)2847 gy < R )+ A (To=6)
Br(0) U —=

for some positive constant ¢ independent of R. Now,

im Lo — s N o)) =, -
ﬁlgr;p{&(Tp p)+Tp(Tp 9)} pp — pT, < 0.

Hence, we can choose 8 € (0,t,) such that

N
0'(E2 —py+ (1, - 0) <0
(Tp p) + Tp( P )
Therefore, letting R — oo in the above integral inequality, we obtain
1
[ o@ G an =0,
RN u

which is a contradiction. O
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