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POSITIVE SOLUTIONS TO A GENERALIZED SECOND-ORDER
THREE-POINT BOUNDARY-VALUE PROBLEM ON TIME
SCALES

HUA LUO, QIAOZHEN MA

ABSTRACT. Let T be a time scale with 0,7 € T. We investigate the existence
and multiplicity of positive solutions to the nonlinear second-order three-point
boundary-value problem

uAV (@) +a(t)f(u(t)) =0, te€[0,T]CT,
u(0) = Bu(n), uw(T) = au(n)

on time scales T, where 0 < n < T, 0 < a < %,0<ﬂ<
constants.

T—an

T—, are given

1. INTRODUCTION

In recent years, many authors have begun to pay attention to the study of
boundary-value problems on time scales. Here two-point boundary-value problems
have been extensively studied; see [T}, 2] [3, [4, 5] and the references therein. However,
the research for three-point boundary-value problems is still a fairly new subject,
even though it is growing rapidly; see [6] [7] [8 [@].

In 2002, inspired by the study of the existence of positive solutions in [I0] for the
three-point boundary-value problem of differential equations, Anderson [9] consid-
ered the following three-point boundary-value problem on a time scale T,

utV () +a(t)f(u(t)) =0, te[0,T]CT, (1.1)
w(0) =0, u(T)=au(n). (1.2)

He investigated the existence of at least one positive solution and of at least three
positive solutions for the problem - by using Guo-Krasnoselskii’s fixed-
point theorem and Leggett-Williams fixed-point theorem, respectively.

In this paper, we extend Anderson’s results to the more general boundary-value
problem on time scale T,

utV () +a(t)f(u(t)) =0, te[0,T]CT, (1.3)
u(0) = Bu(n), u(T) = au(n), (1.4)
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where « > 0, 8 > 0, 7 € (0,T) C T are given constants. Clearly if 8 = 0,
then reduces to . We also point out that when T = R, g = 0, —
becomes a boundary-value problem of differential equations and just is the
problem considered in [I0]; when T = Z, 8 =0, — becomes a boundary-
value problem of difference equations and just is the problem considered in [II].
We will use Guo-Krasnoselskii’s fixed-point theorem and Leggett-Williams fixed-
point theorem to investigate the existence and multiplicity of positive solutions
for the problem (L.3)-(T.4). Our main results extend the main results of Ma[l0],
Anderson[9], Ma and Raffoul[IT].

The rest of the paper is arranged as follows: we state some basic time-scale
definitions and prove several preliminary results in Section 2. Section 3 is devoted
to the existence of a positive solution of —, the main tool being the Guo-
Krasnoselskii’s fixed-point theorem. Next in Section 4, we give a multiplicity result
by using the Leggett-Williams fixed-point theorem. Finally we give two examples
to illustrate our results in Section 5.

2. PRELIMINARIES

For convenience, we list here the following definitions which are needed later.
A time scale T is an arbitrary nonempty closed subset of real numbers R. The
operators o and p from T to T, defined by [12],

ot)=inf{r e T:7 >t} €T,
pt)=sup{reT:7<t}eT
are called the forward jump operator and the backward jump operator, respectively.
In this definition
inf@:=supT, sup®:=infT.
The point ¢t € T is left-dense, left-scattered, right-dense, right-scattered if p(t) = t,
p(t) <t,o(t) =t, o(t) > t, respectively.
Let f: T — R and ¢t € T (assume ¢ is not left-scattered if ¢ = sup T), then the
delta derivative of f at the point t is defined to be the number f2(t)(provided it

exists) with the property that for each € > 0 there is a neighborhood U of ¢ such
that

[f(o(t) = f(s) = 20 (t) = 5)| < [o(t) —s|, forallseU.
Similarly, for ¢t € T (assume ¢ is not right-scattered if ¢ = inf T), the nabla derivative

of f at the point t is defined in [I] to be the number fV (¢)(provided it exists) with
the property that for each € > 0 there is a neighborhood U of ¢ such that

F(pt) = £(5) = FY(B)(p(t) = 9)] < |p(t) — 8], forall s € U,

A function f is left-dense continuous (i.e. 1d-continuous), if f is continuous at each
left-dense point in T and its right-sided limit exists at each right-dense point in T.
It is well-known[13] that if f is ld-continuous, then there is a function F(t) such
that F'V(t) = f(t). In this case, it is defined that

b
/ F(O)VE= F(b) — Fla).

For the rest of this article, T denotes a time scale with 0,7 € T. Also we denote the
set of left-dense continuous functions from [0,7] C T to E C R by C14([0,T], E),



EJDE-2005/17 THREE-POINT PROBLEMS ON TIME SCALES 3

which is a Banach space with the maximum norm [ju|| = max,c[, 7y [u(t)|. We now
state and prove several lemmas before stating our main results.

Lemma 2.1. Let 8 # T{—f‘ﬁ" Then for y € C14([0,T], R), the problem
uAV(t)+y(t)=0, tel0,T]CT, (2.1)
u(0) = Bu(n), uw(T) = au(n)
has a unique solution
t
= - v
ut) = = [ (¢~ (s)Vs+
(1—pB)t+pBn
(T —an) =BT —n
Proof. From 7 we have
t t
u(t) = u(0) + u®(0)t — / (t—s)y(s)Vs := A+ Bt — / (t —s)y(s)Vs.
0 0

Since

(6 — )t = BT
(T'—am) = B(T =

7 0 (Vs

"0~ $)y(s)Vs
)A (2.3)

UW%:A+BU—A%U—@M@V$

uw(T)=A+ BT — / (T — s)y(s)Vs,
0
by from u(0) = Bu(n), we have
(1=mA-Bog=—0 [ (1= s)ulsVs
0
from u(T") = au(n), we have
T "
(1—-—a)A+ B(T —an) = /0 (T — s)y(s)Vs — a/o (n—s)y(s)Vs.

Therefore,

= B ' —s)y(s)Vs
A= T ag —aw Jy T
BT d ,
o (rrriaes v MUBRVONE
= 1_ﬁ ! — S S S
B e Jy

a—pf n
T e gy J, 0V

from which it follows that

B
(T'—an) =BT —n
BT "

T e g J, 0 Vs

u(t) =

i/ (- (Vs
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(1L-B)t ’
T o Jy (T
(0 = D)t

- e == [ = e vs
(8 —a)t—pT

t
=— t—s)y(s)Vs+
/0( (o) (T —oan)—B(T'—n
(1= B)t+ fn / g
T — s)y(s)Vs.

T—an) o —n) Jy T~
The function u presented above is a solution to the problem —, and the
uniqueness of u is obvious. ([l
Lemma 2.2. Let 0 <a < L, 0 <8 < T2 Ify € Ciu([0,T), [0,00)), then the

unique solution u of the problem (2.1))-(2.2)) satisfies
u(t) >0, tel0,T]CT.

| / (n— 8)y(s)Vs

Proof. Tt is known that the graph of u is concave down on [0, 7] from u?V (t) =
—y(t) <0, so

u(n) —u(©0) _ w(T) — u(0)
" - T
Combining this with (2.2)), we have
1-0 a—0
> .
p u(n) 2 —5—u(n)
If u(0) < 0, then u(n) < 0. It implies that 5 > TTian", a contradiction to 8 < TTio;".

If u(T) < 0, then u(n) < 0, and the same contradiction emerges. Thus, it is true
that «(0) > 0, u(T") > 0, together with the concavity of u, we have

u(t) >0, tel0,T)]CT.
as required. ([l

Lemma 2.3. Let an # T, § > max{TT__(j;’,O}. If y € C14([0,77,[0,00)), then

problem (2.1)-(2.2)) has no nonnegative solutions.

Proof. Suppose that problem (2.1)-(2.2) has a nonnegative solution u satisfying
u(t) > 0,t € [0,7T] and there is a to € (0,T) such that u(tg) > 0.
If w(T) > 0, then u(n) > 0. It implies

u(0) = Bu(n) >

T —an
T—n

u(n) =

that is
u(T) —u(0) _ um) = u(0)
T n ’
which is a contradiction to the concavity of u.
If w(T) = 0, then u(n) = 0. When ty € (0,7), we get u(tg) > u(n) = u(T),
a violation of the concavity of u. When tq € (n,T), we get u(0) = Bu(n) =0 =
u(n) < u(ty), another violation of the concavity of u. Therefore, no nonnegative

solutions exist. O

Remark 2.4. When § = 0, the result similar to Lemma 2.3 has been obtained in
Lemma 5 of [9] for an > T.
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Lemma 2.5. Let 0 < a < %, 0<pB< 7;,1_7_0‘7;’ If y € C1q([0,77,[0,00)), then the
unique solution to the problem (2.1)-(2.2) satisfies

i t) > 2.4
min u(®) 2 yul. (24)

where

a(T —n) an B(T —n) @}. (2.5)

Wzmm{ T—ay T' T T
Proof. Tt is known that the graph of u is concave down on [0,T] from u®V (t) =
—y(t) < 0. We divide the proof into two cases.

Case 1. 0 < a <1, then TT%;;’ > a. For u(0) = Bu(n) = gu(T), it may develop in
the following two possible directions.

(i) 0 < a < 8. It implies that u(0) > u(T), so

i t) =u(T).
tg[lolg]U( ) =u(T)
Assume |lul| = u(t1), t1 € [0,T), then either 0 <t; <n < p(T),or 0 <n <ty <T.
If0<t; <n<p(T), then

u(T) — u(n)
T
u(T) — u(n)
———2(0-T
T (0-T)
Tu(n) — nu(T)
T—n
T—an
= Y ),
o'
from which it follows that mingejo 7y u(t) > O‘}%;Z)Huﬂ
fo<n<ty <T, from

u(t) < u(T) + (t1 =T)

~

<u(T) +

I 33|

u(n) | ulty) | ultr)
n — t1 — T
together with u(T") = au(n), we have

so that, min,eo 7 u(t) > F||ul|.
(ii) 0 < B < a. It implies that u(0) < u(T), so

in_u(t) = u(0).
tg[g};]u() u(0)

Assume ||ul| = u(te), t2 € (0,77, then either 0 < to <n < p(T),0or 0 <n <ty <T.
If0 <ty <n<p(T), from

u(n) _ ults) _ ult)
T—-n~"T—ty,~ T '

together with «(0) = Bu(n), we have

u( > 22D ),
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hence, min; e,y u(t) > MHUH
fo<n<ty, <T, from
u(tz) _ u(tz)
T = t n
together with u(0) = Bu(n), we have

u(0) 2 Zlute),

so that, min,ejo, 7 u(t) > %Hu”

Case 2. % > « > 1, then TT__‘XU” < «a. In this case, # < « is true. It implies that
u(0) < u(T). So,

in u(t) = u(0).
té?éf%]“() u(0)

Assume ||lu|| = u(ta), t2 € (0,T] again. Since a > 1, it is known that u(n) < u(T),
together with the concavity of u, we have 0 < n < to < T. Similar to the above
discussion,

Summing up, we have

where ( ) 5 W
. (a(T—n) an T-—n 77}
= — — 1
0<y mln{ T—on’ T T T <
This completes the proof. O

Remark 2.6. If 5 = 0, Anderson obtained the inequality in [9, Lemma 7] that is
min u(t) > r||u|,
i a(t) > rlul
where
T —m) an ﬂ}
T—an’ T T)
The following two theorems, Theorem [2.7] (Guo-Krasnoselskii’s fixed-point theo-
rem)and Theorem [2.8| (Leggett-Williams fixed-point theorem), will play an impor-
tant role in the proof of our main results.

ro= min{

Theorem 2.7 ([14]). Let E be a Banach space, and let K C E be a cone. Assume
Q1,Q9 are open bounded subsets of E with 0 € Q1, Q1 C Qs, and let

AKﬂ(ﬁg\Ql)%K

be a completely continuous operator such that either

(i) ||[Au|| < JJull, we KN, and ||Au| > |jull, ve K NoQs; or
(ii) ||Au|l > |lu]l, ve KNoQ, and ||Au|| < |Ju|, uwe KN

hold. Then A has a fived point in K N (Q \ Q).
Theorem 2.8 ([15]). Let P be a cone in the real Banach space E. Set
P.:={zeP:|z| <c}, (2.6)
P(tp,a,b) :={z € P:a<y(zx),|z|] <b}. (2.7
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Suppose A : P, — P, be a completely continuous operator and Y be a nonnegative
continuous concave functional on P with ¥(x) < ||z|| for all x € P.. If there exists
0 <a<b<d<c such that the following conditions hold,
(i) {z € P(¢,b,d) : ¢¥(z) > b} # 0 and v(Ax) > b for all x € P(¢),b,d);
(ii) Az <a for ||z < a;
(iii) Y (Az) > b for x € P(3,b,c) with ||Az|| > d.
Then A has at least three fized points x1,xo and x3 in P, satisfying

lz1]| < a, w(x2) >0, a<|xs|| withy(zs) <bd.
3. EXISTENCE OF POSITIVE SOLUTIONS

We assume the following hypotheses:
(A1) f € C([0,00),[0,00));
(A2) a € C14([0,T7],]0,00)) and there exists to € (0,T), such that a(tg) > 0.

Define
fo = lim 7f(u)7 foo = lim 7f(u)
u—0t U u—o0 U

For the boundary-value problem (1.3))-(1.4]), we establish the following existence
theorem by using Theorem (Guo-Krasnoselskii’s fixed-point theorem).
Theorem 3.1. Assume (A1), (A2) hold, and 0 < a < %, 0<pB< TT__O;]”. If either

(C1) fo=0 and foo = 00 (f is superlinear), or

(C2) fo =00 and foo =0 (f is sublinear),
then problem (1.3))-(1.4]) has at least one positive solution.

3 T T—an .
Proof. Tt is known that 0 < a < ot 0<pB< T From Lemma u is a

solution to the boundary-value problem (1.3))-(1.4)) if and only if w is a fixed point
of operator A, where A is defined by

Au(t)

== [ (= el vs +

(1-B)t+pBn
(T'—an) = B(T —n

(B—a)t—pT
(T'—an) = B(T —n

T
) / (T — s)a(s) f (u(s))Vs.

| / (n— 8)a(s) f(u(s)) Vs

(3.1)
Denote
K ={ue Cyu(0,T),R) : u > O7tmin u(t) > v||lul},

€[0,T7]
where ~y is defined in .
It is obvious that K is a cone in Cj4([0,T],R). Moreover, from (Al), (A2),
Lemma and Lemma AK C K. It is also easy to check that A : K — K is
completely continuous.

Superlinear case. fy =0 and f,, = co. Since fy = 0, we may choose H; > 0 so
that f(u) < eu, for 0 < u < Hy, where € > 0 satisfies

T+ 5T +n) ! —s)a(s)Vs
Tan ) ) - vs <1

Thus, if we let
Q1 ={u e Cu([0,T], R) : JJul| < H1},
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then for u € K N0Qy, we get
(B—a)t = 6T

Aut) < T JRCEBIEHTENE
T
+( T — an) t+£77 77)/0 Vs
T O”ms)a(s)f(u(s))w
7 _a;)+ S = 0T< ~ $)a(s) () Vs
< T —an) /O(n Vs
- afj_ ﬁﬂ”(T — [ T(T ~ $)als)f(u(5)) Vs
<7 S LBl = (T~ s)als) f(u()Vs
T+pB(T+n)

T
< dlul gt s | (= a9V < .

Thus || Aul| < ||ull, v € K N 0Qy.

Further, since fo, = oo, there exists Hy > 0 such that fw) > pu, for u > ﬁg,
where p > 0 is chosen so that

T—-n T
e ool ARCOMCER

Let Hy = max{2H1, %} and

Qo ={u e Clu([0, T],R) : |lul]| < Ha}.
Then v € K N 0y implies

i ) > —~H, > H.
tg[lolg]U()_VIIUII vHy > Ho,

and so

Au(n)

= _/()"(W—S)a(S)f(u(s))vS+ ’Bn_an_,@T

(T'—an) = B(T —n

) / (n— s)a(s) f(u(s))Vs

n
e @ e )V

T
0
(n = s)a(s) f(u(s))Vs
T

T —
-T
(T*an)*ﬂ(T*n)/o
U

+

T ), (7 9ee ) v

1
> a g | T ) (T el ) v
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(T—Oﬂl)—ﬂ(T—n)/o sa(s)f(u(s))Vs

_ T
> sl g | sV > [l

Hence, [[Au|| > |lul|, w € K N 0. By the first part of Theorem 2.7, A has a fixed
point in K N (03 \ ©1), such that Hy < |Ju|| < Hz. This completes the superlinear
part of the theorem.

Sublinear case. fy = oo and fo, = 0. Since fy = oo, choose H3z > 0 such that
f(u) > Mu for 0 < u < Hz, where M > 0 satisfies

T—’r] T
(T_Om)—ﬂ(T—n)/o sa(s)Vs > 1.

M~

Let
Qs = {u € Cu([0,T],R) : [Jul| < H3},
then for u € K N 0Q3, we get

T —

n T
M) > G | salorsuts)vs

T—n T
(T—an) — BT —n) /0 sa(s)Vs > [u].

Thus, ||Aul| > ||u], v € K N Q5. Now, since foo = 0, there exists Hy > 0 so that
fw) < Au for u > Hy, where A > 0 satisfies

T+ B(T +1n)
(T'—an) =BT —n

Choose Hy = max{2Hs3, %} Let

= My|ful|

] /0 (T —s)a(s)Vs < 1.

Q= {u S Cld([O,T], R) : H’U,H < H4},
then u € K N 0Qy implies

min u(t) > y|ul| = vHs > Hy .

t€[0,7]
Therefore,
T+ BT +n) ' —s)a(s)f(u(s))Vs
Au(t) < Gt [ (1 = s)ats) f(u(a)) v
T
< Al [ = 9a(s) Vs < .

Thus [|Aul|| < ||ull, v € K N IQy.

By the second part of Theorem A has a fixed point u in K N (Q4\ Q3), such
that Hs < ||u|]| < Hy. This completes the sublinear part of the theorem. Therefore,
the problem — has at least one positive solution. It finishes the proof of
Theorem [B.11 O
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4. MULTIPLICITY OF POSITIVE SOLUTIONS

In this section, we discuss the multiplicity of positive solutions for the general
boundary-value problem

utV () + f(t,u(t)) =0, t€[0,T]CT, (4.1)
u(0) = Bu(n), u(T) = au(n),
where n € (0, p(T)) CT,0< a < %, 0<pg8< T{_‘;" are given constants.
To state the next theorem we assume
(A?’) f S Cld([OaT] X [Oa OO), [Oa OO))
Define constants
B T + B(T +n) ro -1
~(an s om f, T9%) #3)
. Bn T
0= mm{(T—an) — AT =) /n (T — s)Vs,

(4.4)

a T
(T — an) —nﬂ(T — ) /77 - SWS}

Note that § > 0 from 0 < n < p(T), 0 < a < %7 0<p< TT%‘W" Using The-
orem the Leggett-Williams fixed-point theorem), we established the following
existence theorem for the boundary-value problem (4.1})-(4.2]).

Theorem 4.1. Assume (A3) holds, and 0 < a < %, 0<p< TT;_O‘T]” Suppose there
exists constants 0 < a < b < b/vy < ¢ such that

(D1) f(t,u) < ma forte[0,T], u € [0,al];

(D2) f(t,u) =2 fortenT), uelb, %];

(D3) f(t,u) <me forte[0,T], u € [0,d,
where v, m,d are as defined in , and , respectively. Then the boundary-
value problem — has at least three positive solutions uy,us and ug satisfying

< a, i t) > b, < ith i t) < b.
|ull < a tg[gg}(m)() a < |lugl| wi té?é,%}(“?’)()

Proof. Tt is known that 0 < a < %, 0 < B < TT%J:?" Define the cone P C
C14([0,T], R) by

P = {u € C14([0,T],R) : u concave down and u(t) > 0 on [0,T]}. (4.5)
Let ¢ : P — [0, 00) be defined by
= mi t P. 4.
¥(u) tg[lgg]w ), uwe€ (4.6)

then ¢ is a nonnegative continuous concave functional and ¢ (u) < |ju||,u € P.
Define the operator A : P — Cy4([0,T],R) by

O N e O e e e W AURRLCC I
0t o ' —3)f(s,u(s))Vs
g s [ (= () v

(4.7)
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Then the fixed points of A just are the solutions of the boundary-value problem
(4.1)-(4.2) from Lemma Since (Au)2Y (t) = — f(t,u(t)) for t € (0,T), together
with (A3) and Lemma we see that Au(t) > 0, t € [0,T] and (Au)2V(t) <
0, t € (0,T). Thus A: P — P. Moreover, A is completely continuous.
We now verify that all of the conditions of Theorem are satisfied. Since
= mi t), eP.
¥(u) té?éf%]“( ), u

we have ¥(u) < ||u|. Now we show A : P. — P., where P, is given in (2.6). If
u € P, then 0 < u < ¢, together with (D3), we find V ¢ € [0, 7],

(B—a)t—pT RN
(1—B)t+ A T
(T—an)—ﬂ(T_n)/o (T —5)f(s,u(s))Vs
sk ' —s)f(s,u(s))Vs
7(T_0”7)—,6’(T—77)/0 (T = s)f(s,u(s)V

T+ 8(T +n) T Vs — e
<M= Jy TV

Thus, A: P, — P..

By (D1) and the argument above, we can get that A : P, — P,. So, ||Au|| < a
for |Ju|| < a, the condition (ii) of Theorem [2.8] holds.

Consider the condition (i) of Theorem now. Since ¥(b/y) = b/y > b, let
d = b/vy, then {u € P(¢,b,d) : ¥(u) > b} # 0. For u € P(1),b,d), we have
b<u(t) <b/vy, t €[0,T]. Combining with (D2), we get

flt,u) > % tenT.

Since u € P(%,b,d), then there are two cases that either ¥(Au)(¢t) = Au(0), or
¥(Au)(t) = Au(T). As the former holds, we have

VA0 = o [ 9 (s u() 9
i , (7 s
i el AUCRIOI
T Ty e

> e [ T

P g
_ T an) — BT ) /n sf(s,u(s))Vs
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bBn r
2 5T —am) - BT 1) / T =s)Vezh

As the later holds, we have
Y(Au)(t)
T
= —/ (T —s)f(s,u(s))Vs+
0

1 B)T+ﬁ77
(Tfom) B(T

T
(T an) /0 (T — ,u(s))Vs

n

) <T—an> S, (1 s

(T ) /77 Tf(s Vs

arn
T T —an) — BT ) / sf(s,uls))Vs

oT K
+ (T—an)—ﬂ(T—n)/o sf(s,u(s))Vs

an T
T T —an) =BT —n) /, Tisu(s))Vs

n T
(T —an) —ﬁ(T—n)/n sf(s,uls))Vs

ban T
> S ST ), v

So, Y (Au) > b, u € P(¢,b,b/7), as required.
For the condition (iii) of the Theorem we can verify it easily under our
assumptions using Lemma [2.5] Here

(B—a)T — BT
(T —an) =BT —n

T
/ (T —9)f(s,u(s))Vs

| / (n— 5)£(s,u(s))Vs

P(Au) = min Au(t) > v||Au|| > ’yg =0
t€[0,7T] v

as long as u € P(¢, b, c) with ||Au| > b/~.
Since all conditions of Theorem [2.8| are satisfied. We say the problem (4.1)-(4.2)
has at least three positive solutions uy, us, uz with

luill < a, (ug) >b, a<lus|| with ¢(uz) <b.

5. EXAMPLES

Example 5.1. Let T = [0,1] U [2,3]. Considering the boundary-value problem on
T
utV(t) +tuP =0, te[0,3]CT, (5.1)
1

u(0) = §u(2), u(3) = u(2), (5.2)
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where p # 1. When takingT =3, n=2, a =1, = %, and
a(t)=t, t€[0,3]CT; f(u)=u", ue€l0,00),

we prove the solvability of problem (5.1)-(5.2) by means of Theorem . It is clear
that a(-) and f(-) satisfy (A1) and (A2). We can also show that

1
0<an=2<3=T, 0<6(T—77)=§<T—0”7=1~

Now we consider the existence of positive solutions of the problem (5.1)-(5.2)) in two
cases.

Case 1: p > 1. In this case,

f(w)

“1=0, lim —% = lim v’ ! = o0,
u—0t U u—0+ u—oo U U— 00

and (C1) of Theorem|[3.1] holds. So the problem (5.1)-(5.2) has at least one positive
solution by Theorem [3.1]
Case 2. p < 1. In this case,

lim M = lim L lim 1) !

= o0, 22— lim —— =0
u—0t U u—0t+ u]-*p u—o0 U U—00 ’u,]-*p

and (C2) of Theorem holds. So the problem (5.1))-(5.2)) has at least one positive
solution by Theorem|3.1l. Therefore, the boundary-value problem (5.1)-(5.2)) has at

least one positive solution when p # 1.

)

Example 5.2. Let T = {0} U {1/2" : n € No}. Considering the boundary-value
problem on T

2005u3
UAV( ) u

—_ = t 1]cT .
+u3+5000 0, tel0,1]CT, (5.3)
(0)*1 (i) (=38 (i) (5.4)
W= 3", W T o) '
When taking T =1, n=1/16, « =8, 3 =1/3, and
2005u3
tou) = et >
fltw) = ) = 200wz,

we prove the solvability of the problem (5.1)-(5.2) by means of Theorem . It is
clear that f(-) is continuous and increasing on [0,00). We can also seen that

1 5 1
O<04777§<17T, 0<5(T777)fﬁ<T—om7§.
Now we check that (D1), (D2) and (D3) of Theorem [{.1] are satisfied. By (2.F)),
(4.3) and (4.4), we get v =1/48, m = 27/65, 6 = 35/1152. Let ¢ = 5000, we have
flw) <2005 < me ~ 2076.92, wu € |0,

from lim, oo f(u) = 2005, so that (D3) is met. Note that f(10) = 334.17, when
we set b =10,

flu) > g ~329.14, u € [b,48b]

holds. It means that (D2) are satisfied. To verify (D1), as f() ~ 0.0032, we take
a =1/5, then
f(u) < ma=0.083, wuc€l0,q],
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and (D1) holds. Summing up, there exists constants a = 1/5, b = 10, ¢ = 5000
satisfying

b
O<a<b< —<c

Y
such that (D1), (D2) and (D3) of Theorem[{.1] hold. So the boundary-value problem
(5.3)-(5.4) has at least three positive solutions ui,us and ug satisfying

1
[Jus]l <

1
- i t)>10, - ith i t) < 10.
5 t?ﬂ&%](W)( )>10, & <|lus|| wi tg[lolr;](u:a)( ) <

s
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