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BLOW-UP SOLUTIONS FOR N COUPLED SCHRODINGER
EQUATIONS

JIANQING CHEN, BOLING GUO

ABSTRACT. It is proved that blow-up solutions to N coupled Schrédinger equa-
tions
N

W0t + Piaz + iles P20+ D BrjlenlPElesP 20 =0
kg, k=1

exist only under the condition that the initial data have strictly negative en-
ergy.

1. INTRODUCTION

In this paper, we consider the existence of blow-up solutions of the N coupled
Schrédinger equations

N

W05t + Pjaw + 1105 1P 205+ > BrslenlPE Lo e =0,
ket k=1 (1.1)

@iz, )],y = ¥i(x), z€R,

where i = /=1, p; = pj(z,t) : Rx Ry — C, jok € {1,...,N} and p;, B € R.
System of this kind appears in several branches of physics, such as in the study
of interactions of waves with different polarizations [3] or in the description of
nonlinear modulations of two monochromatic waves [9].

When p = 4, p; = 2, and p, = 2, the solution ¢; of denotes the jth
component of the beam in Kerr-like photo refractive media [I]. The constants Gy;
is the interaction between the kth and the jth component of the beam. As §i; > 0,
the interaction is attractive while the interaction is repulsive if 8;; < 0. Moreover,
the system is integrable and there are various analytical and numerical results
on solitary wave solutions of the general N coupled Schrédinger equations [6, [§].

When 2 < p <6, 2 < pp+p; <6and N = 2, the existence and stability
of standing wave, which is a trivial global solution, of have been studied
by Cipolatti et al [5]. Also when 2 < p < 6 and 2 < pi +p; < 6, for any
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j,ke{l,...,N}, we know from [4] that for any
— e 1 N
¢ (2,0) = (901(‘%0)’ ) (pN(l‘70)) =4 = (wl(x)’ cee 7¢N(x)) € (H (R>) )
Equation (I.1)) admits a unique global solution @ € C(Ry, (H'(R))V).
The main purpose here is to prove the existence of blow-up solutions of (|1.1))
only under the condition of the initial data with strictly negative energy. The main
result is the following theorem.

Theorem 1.1. Let p = 6, pr +p; = 6 and p; > 0, By; > 0 with Oy = % =
% =0k, pe,pj > 2. If E(E)) < O(for the definition of E, see Proposition ,

then the solution of (1.1) with initial data E must blow up in finite time.

We emphasize that when N = 1, i.e. no coupling terms, the blow up problem
has been studied extensively, see e.g. [10, [7, 4]. But as far as we know, there is
no blow-up result to the N coupled Schrédinger equations. The main contribution
here is to overcome the additional difficulties created by the coupling terms and
then prove Theorem |1.1

This paper is organized as follows. In Section 2, we give some preliminaries and
derive a variant of virial identity which generalizes some previous works for the
single equation. Section 3 is devoted to the proof of Theorem

Notation. As above and henceforth, the integral fR ...dx is simply denoted by
[ .... For any t, the function x — ¢,(z,t) is simply denoted by ¢;(t). f denotes
the complex conjugate of f. f, and f; denote the derivative of f with respect to
x and t, respectively. By f(") we denote the mth order derivatives of f. || - ||z
denotes the norm in L4(R) or (L(R))" which will be understood from the context.
Re denotes the real part and Im the imaginary part.

2. PRELIMINARIES

Throughout this paper, we always assume that the conditions of Theorem
hold. The following proposition is useful in what follows.

Proposition 2.1. For any E) = (Y1(z),...,¥n(z)) € (HY(R))N, there is T > 0
and a unique solution p € C([0,T), (H'(R))N) satisfying (1.1). Moreover, there
holds the following conservation laws:

J1esor = [, (21)
BEO) =Y [ (esal = 2usleilr) =235 [ loulesl> = BCD). (22
j=1 k<j

Proof. The existence of the local solution @ follows from [4]. We only sketch
the proof on the conservative laws. Firstly, multiplying by ;, integrating
over R and taking imaginary part, we obtain . Secondly, it is deduced from
multiplying by ©,;, integrating over R and taking real part that

1 Hj Brj )
[ (=30l + 2iosp) + 2 [l oy =0 @23)
2 P Yok P



EJDE-2007/61 BLOW-UP SOLUTIONS 3

Similarly, for (1.1)) with k instead of j, we have
1 i Bik .
[ (=3l + Biap) + 28 oo =0 @4)
p t 2 Pk
J7#k
From ([2.3) and ([2.4) it follows that
1
Z/ - ghenl + Eloi) + S0 [ (lenrlol), =0, (29

k<j

Then (2.2)) holds. [
Next we derive a variant of virial identity.

Lemma 2.2. Let ¢, be a local smooth solution of with @;(z,0) = ¢;(z). For
real function ¢ € W (R), define ®(x fo dy Then

N o N
>t [ 60,7, = 3 1m [ 007,00
Jj=1 j=1
t N 1 N , 9_ N
:/o (23 1ot -3 10 [ 1ol + 22250 flaibo @9
-2 Y0 [ lenleilm ox par,

k<j

[t = [ows =2 [ [moep,,drir (27)

Proof. Let ¢; be a smooth solution of (1.1)). Firstly, multiplying (1.1) by ¢%,,,
integrating over R and taking the real part, we obtain

~tn [ i+ [ (5oUesaP)a+ Eolles)a + 3 buslinl (s1)es) = 0.

and

k#j
(2.8)
From
_ d _ _
—Im [ 9910, = —%Im PpiPi, +1Im [ G900,
Im/fbw@xt = *Im/%@t% +Im/¢@jt¢jm
we obtain
_ 1 _
7Im/¢<ﬂjt¢jx = idt /dwj%z - §Im/¢z¢jts&j- (2.9)
It is deduced from and ([2.9) that
_ 1
- §£Im/¢%%z - *Im/@c%@jt@j +/ (§¢(|¢jx|2)z
(2.10)

u
Loleil)e + 3 buslon™ o5l )e0) =0.
k#j
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For ([L.1)) with k instead of j, we obtain by a similar argument that

— iaIm/@Pk@km Im/¢m¢kt‘ﬁk+/(%¢(|(pkm|2)z

+ L5 6(kl)a + D Oiales P (ol )a) = 0.
j#k

(2.11)

Secondly, multiplying the complex conjugate of (1.1)) by ¢;¢,, integrating by parts
and taking the real part, we get that

_ 1 .
~tmn [ 67505 = [ (~0ulenl+510P60 Husbaleilr+ Y BuslenloslP 6x).
k#j
(2.12)

Similarly,

1 .
—Im/%@ts@k =/(—¢x\<ﬂkx\2+§|<Pk|2¢(3)+uk¢x\<ﬂk|p+zﬂjk|90j|p]|<Pk|p"'¢x>-

s
(2.13)
We now obtain from - ) that
Im/wg%w /aﬁxl@nl +z /Iso Pe® 4 L M]/%I%I”
26y (2.14)
+ZmJVWWW%+Z [ lenl s )a0 =
k#j k#j
and
Im/@ﬂk%x —2/¢m|<ﬂkx| +5 /|50 26 +P Mk/¢x|%0k|p
(2.15)
205k
+Z@wamm¢+z 2 oy ul ) = o
J#k
It follows that
d N N 1 N
a3t [ —2Y [oulenP+ 53 [leiPe®
=t =t =t (2.16)

N

p—2

P25 [odeilr + -2 Y 00 [lerlosto. =
i=1

k<j

Hence (2.6) holds. Finally, multiplying the complex conjugate of (L.1)) by ®¢p;,
integrating by parts and taking the imaginary part, we obtain

which implies
d _
G [l =—2m [ 02, (217)

So ([2.7)) easily follows. The proof is complete. O
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3. PROOF OF THEOREM [I.1]

In this section, we will borrow an idea from [7, [10] to prove Theorem Firstly
we introduce two lemmas from [I0].

Lemma 3.1 ([10, Lemma 2.1]). Let u € H'(R) and p be a real valued function in
W1(R). Then for any r > 0, we have

1/2 1/2
ol atsry < NullE2 ) (210%uall 2orn + lu(oP)elzagaisn ) - (3:1)

Lemma 3.2 ([I0, Lemma 2.3]). Let v(x) be in L?. We define R(z) such that
R(x) = |z| for |x| < 1 and R(z) = 1 for |z| > 1. Put v.(x) = e~ 2v(zx/e) for
e > 0. Then for any 6 > 0, there exists an g9 > 0 such that ||[Rve||z < ¢ for
0<e<eg.

We are now in a position to prove the theorem. Observe that p =6, p; +pr = 6
for j,k € {1,...,N} and the solution ¢;(x,t) of (1.1) has the following scaling
invariance. More precisely, if we put

pej(@,t) =7 Ppi(w/e,t)?),  parla,t) = Pop(afe,t/e?)  (32)

for € > 0, then ¢.; and ., also satisfy and with k instead of j and with
initial data ¢g;(z,0) = ¥.; = e /29 (x/e) and pop(2,0) = Yep = e~ 2y (x/e),
respectively. The proof is divided into two steps. In the first step, we show that if
—E(E)) is large and HE)||L2(|I|>1) is small (but ||$HL2(|1\<1) may be large), then
G ()| £2(jz|>1) is small for all ¢ > 0.

In the second step, for any initial data E} with negative energy, we use the scaling

— —

transform to choose € > 0 so small that —FE(¢.) (Y = (Ye1,...,%en)) 18
sufficiently large and ||$6||L2(‘z|>1) is small enough. Then the proof of the second
step is reduced to the first step and we complete the proof.

Let ¢ : [0,00) — Ry be a function with bounded third order derivatives and be
such that

S, 0<]sl <1,

s—(s—1)3, l<s<1+¥3
P(s)=4s—(s+1)3, —(1+%L)<s<-1,

smooth, ¢’ < 0, 1+§ <|s] <2,

0, 2 < |s].

Putting ®(z) = foz o(y)dy and Ey = E(J), we have the following proposition.

Proposition 3.3. Let p;(t) be a solution of (L.1)) in C([0,T), H*(R)) with ¢;(0) =
Y. Put ag =3/(16M). If ©;(t) satisfies

N

Z ;O T2(ej>1) < 200, 0<t<T, (3.3)
j=1
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then we have

N N .
~3 / 605 (07,0 + 3 Tm / o050,
Jj=1 j=1

(3.4)
N u&
< (2Bo+4M(1+ MY wslse + 5 D sl ),
j=1 j=1

where M = Bz + 6P + T,y By + T il -
Proof. From the energy conserved identity

—z I z N

|z|<1 |z|>1
52 / 230 [l
k<j
we obtain by (2.6]) that
N N
—Eﬁm/¢%®ﬁﬁﬂ+§)m/¢%%z
:/O 2E02/| — ¢2)lpjal* + 3 Zug/ — ¢a) |51
lz|>1
“’EZU/'¢' 09+ 430 [ (1= 0n)lon s .
k<j
By Lemma 3.1 with p(z) = (1 — ¢,)"/* and Holder inequality, we obtain
/I ‘ 1(1 — 02)le51° < @il Z2(a1> 1) 109510 (251
x|>
(3.5)

2
< N63ll4aps (2102 sall 22ty + 30D 2ol )
<810illz2 o>y 10°Pia 172 (1o1) + 212512 12151 107 oo (151 -

On the other hand, we have from the definition of ¢ and p that |(p?),| < /3 for
1 < |z| < 1+1/V3. For |z] > 1+ 1/V/3, we also have |(p?),] < 3|¢uellp~. It
follows that |(p?)s| < V3(1 + 3| /¢zallr). So

/ (1— da)lipy°
|z|>1

1 (3.6)
<8lleil 72 a1y 197 Pial B2 (a5 1y + 6(1 + 5||¢w:v||L°°)2||(pj||([312(\1|>1)'

It is deduced from

Ja-olerionr <2 [ (- olal +2 [ 1= 6.)losr
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that
N g N
2B -3 [ 2(1-a)lenl+ 2 Yo [ (- o)l
j=1 |z|>1 =1
~Z/| o3P0+ 430 [ (1= 62)lenl s
k<j
N 9 | N
§2EO—Z/ 12(1_¢x)‘¢jx‘2+§z:uj/(1_¢x)|@j|6_52/|@j|2¢(3)
j=1"lz > j= j=1
2 .
+25 8 [ - olol+ 2 X6 [ (1= o2)lsl.
i<k k<J
(3.7)
Using (3.6 and the choice of M, we obtain that
N N B
=3t [ 00,090 + 3ot [ 0,3,
j=1 j=1
t N M N
= / (2Eo +4M(1+ M)? Z ||90j||%2(\:r\>1) T Z |\90j||%2(|m|>1)>d7
’ . = (3.8)
t M N ’
< [ (2Bo+ v+ 1) 23S lsls + o D leslize)dr
0 j=1 j=1
u
= (2B0 +4M(1+ M)? S sl + 5 2ol ).
j=1 j=1
The proof is complete. O

Proof of Theorem[I.1, We assume the solution ¢;(t) of (L.I)) exists for all ¢ > 0
and then derive a contradlctlon The proof is d1v1ded into two steps.

Step 1. In this step, we assume the initial data @ (0) = E) satisfies

N N
M
0= —2B —AM(1+M)* Y |lujl3e = = Zj 1117 >0, (3.9)

jfl
Z [ o) Z 5212 +1)° < o B.10)

where M and ag are defined as in Proposition

We first prove that if the initial data ¢;(0) = wj satisfies and (3.10), then
©;(t) satisfies . ) for all ¢ > 0. We prove this by contradlctlon Since > 0 and
1 <2®(z) for |z| > 1, we have from ) that

N
D 172 ey < ao- (3.11)
=1
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Define Ty as
N

Ty = sup{t > 0; > [l0;(9)l|72(1a151) < 20,0 < 5 < ¢},
j=1

By (3.11) we know that Ty > 0. If Ty = 400, then we are done. Assuming now
that Ty < +o0, the continuity in L? of ¢;(t) implies

N
Z ||<Pj(T0)Hi2(|w\>1) = 2ay. (3.12)

j=1
As ¢;(t) satisfies all the assumptions in Proposition on [0,7p), we get from
(2.7), (3.9) and Proposition that for 0 <t < Ty,

al N t N
. 2 92 _
;/m(m s;/m«m 2/0 Im;l/w]%dm
N N B
= Z/‘I’|¢j|2—2tlm2/¢¢j¢jm _ gt
j:1 j:l

(3.13)

This inequality yields

- N
;/%j(t)Q <ol ;Im;/%%f
1 N s N

+77(Imj;/¢ijjz) +;/q)|wj|2.

Noticing that
N 9 N
b . 2 2
(Im; [oviv.) <23 e (3.14)

and the fact of $? < 2®, we deduce that

N N N
4
> [olesF < (5 Xl +1) 3 [ @i, 0<t<Ti (319)
j=1 N j=1 j=1
Since 1 < 2®(x) for |z| > 1, (3.10) and (3.15]) imply
N 2 N 2
(X leiOgesn) < (23 [ #lestoP)
j=1 j=1

Y 2 24 a 2 2
<a(Y [ o) (5 3 lwslie +1)
i=1 ni
J J
<ap, 0<t<Tp.

This and the continuity in L? of ¢;(t) yield

N

Z H%(T0)||%2(|x|>1) < ap, (3.16)
j=1
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which contradicts to 1] So if the initial data @ (0) = E) satisfies 1) and
(3.10)), then ¢;(t) satisfies (3.3)) for all ¢ > 0.

Therefore, since all the assumptions in Proposition hold with T' = oo, ¢;(t)
satisfies l) with To = oo, which implies that Zjvzl J ®|p;(t)]* goes to negative

=
in finite time. This is a contradiction. Hence if the initial data 5 (0) = 1 satisfies

(3.9) and (3.10)), then & (t) must blow up in finite time.

Step 2. In this step, we prove the theorem for all the initial data with negative en-
ergy. The main idea is to use the scaling invariance of the (1.1)). In the first place, for

e >0, let po;(x,t) = eV 2p(x/e,t/e?). Put ¢ i(x,0) = () = e~/ (x/e).
Then ¢.; is also a solution of (1.1} with initial data t.; in C([0,4oc), H*(R)).
Moreover, . ;(t) satisfies
lpei W)llz2 = llvbejliz = I¥llL2, ¢ =05 (3.17)
— [
E(g:(t) =e"E(y), t=0. (3.18)

In the second place, we show that there exists an € > 0 such that

N N
— M
ne=—2B(¢ ) =AM+ M) Y |lvellze — 5 D lvesliz > 0 (3.19)
j=1

j=1

4(231 [ o) (23 Il 1) < (3.20)

j=1

Using (3.18)), (3.19) follows by choosing & > 0 such that
N u & .
e < 2B (4MA+ MY [wsllfe + 5 Yo llwsla) - (321)
j=1 j=1
Now we have from (3.17) and (3.18) that for some ¢; > 0 and 0 < € < &1,

4 N
= Ileallzz < Colen),
Ut

Co(e1) denotes positive constant Cy depending on €. On the other hand, Lemma
[3:2 implies that there exists an g5 > 0 with e5 < £1 and

N N

1 1
> [olal <23 1RUs s < {(Coler) + 1) ad (3.22)
i=1 i=1

for 0 < & < €9, where R is defined as in Lemma [3.2]

Thus if 0 < & < &9 and satisfying , then 5.(0) = E) satisfies
and . Therefore the proof of the theorem in the general case is reduced to
Step 1 when we consider ¢.;(z,t) instead of ¢;(x,t). The proof of Theorem is
complete. ([l
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