
CHARACTERIZING THE PERFORMANCE BOTTLENECKS

OF IRREGULAR GPU KERNELS

by

Molly Anne O’Neil, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
May 2015

Committee Members:

 Martin Burtscher, Chair

 Apan Qasem

 Dan E. Tamir

COPYRIGHT

by

Molly Anne O’Neil

2015

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Molly Anne O’Neil, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

To William & Miles:

For allowing me to be absent for so many bedtime stories

and

To Ron & Mary Beth:

For giving me a university campus for a childhood playground

and

To Daniel:

For believing in me

and for carrying us all through

ACKNOWLEDGEMENTS

“My heart is in the work.”
– Andrew Carnegie

This work represents the dedication of many people beyond its author. First and

foremost are my husband, Daniel, and our sons, William and Miles. Without their

unwavering support and willing sacrifice my graduate career could never have happened.

My advisor, Dr. Martin Burtscher, has taught me by example what it means to

have one’s heart in the work. I hope that in my time here I have learned a tenth of his

commitment to his students and his delight in scientific discovery. I am grateful for the

immense freedom he allowed me in my research, for his advice and mentorship, for his

humor, and for his high expectations of me; most of all, for his patience.

I am also indebted to my committee, Dr. Apan Qasem and Dr. Dan Tamir, for

their time and technical insights; to Chris Shaltz, Saami Rahman, and to all of my

labmates in the Efficient Computing Laboratory over the years (especially Annie Yang)

for their friendship, camaraderie, and motivation, and for helping to keep me sane; to

Carnegie Mellon teaching professor Greg Kesden for inspiring me as an educator and

supporting me as a friend; and to Dr. Khosrow Kaikhah for getting me started.

Sreepathi Pai at The University of Texas and Joel Hestness at The University of

Wisconsin provided invaluable help with LonestarGPU and GPGPU-Sim. I am very

grateful to have had my work supported by the NSF Graduate Research Fellowship

Program under grant #1144466 and by grants and gifts from NVIDIA Corporation.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS .. xiii

ABSTRACT ... xiv

CHAPTER

1. INTRODUCTION ...1

2. BACKGROUND ...5

 2.1. CUDA GPUs ...5
 2.1.1. Branch Divergence ...8
 2.1.2. Memory Coalescing ...9
 2.1.3. Cache and Memory Hierarchy ...10
 2.1.4. Warp Scheduling ..11

 2.2. Regular vs. Irregular Codes ..13

 2.3. GPGPU-Sim ..13

3. RELATED LITERATURE ..16

 3.1. Simulator- and Emulator-Based Characterization16

 3.2. Hardware-Based Characterization ..18

 3.3. Hardware Modifications ...19
 3.3.1. Warp Schedulers ..19

vi

4. APPLICATIONS AND INPUTS ..21

 4.1. Applications ..21
 4.1.1. Irregular Applications (LonestarGPU)21
 4.1.2. Semi-Regular Applications ..24
 4.1.3. Regular Applications ...25

 4.2. Inputs...25

5. GPGPU-SIM CONFIGURATION ..28

 5.1. PTX vs. PTXPlus ..28

 5.2. CUDA 5.5 and CUB Support..28

 5.3. Bug Fixes and Additional Operations ...29

5.4. Additional Performance Counters...30

5.5. GTX 480 (Base Configuration) ..31

5.6. Additional Configurations ..32
 5.6.1. Cache and Memory Latency ..32
 5.6.2. Cache and Memory Bandwidth ...33
 5.6.3. Cache Size ..34
 5.6.4. Warp Scheduling Policy ..34
 5.6.5. No Coalescing Penalty ...35

5.7. Benchmark Compilation for GPGPU-Sim..36

6. RESULTS AND ANALYSIS ..38

 6.1. Sources of Performance Limitation ..38
 6.1.1. Branch Divergence ...39
 6.1.2. Memory Coalescing ...41
 6.1.3. Cache Behavior ..44

6.2. Individual Application Analysis ...46

6.3. Impact of Hardware Modifications ...54

 6.3.1. Cache and Memory Latency ..55

vii

 6.3.2. Cache and Memory Bandwidth ...56
 6.3.3. Cache Size ..56
 6.3.4. Warp Scheduling Policy ..58

6.4. Input Sensitivity ..61

 6.4.1. Input Type ..62

7. SUMMARY AND CONCLUSIONS ..65

 7.1. Recommendations for Future Work..66

LITERATURE CITED ..67

viii

LIST OF TABLES

Table Page

4.1. Application inputs ..26

5.1. ROP and DRAM latency configurations (in number of shader clock cycles)33

5.2. Interconnect (in bytes per flit) and DRAM (in bytes per DRAM chip)
 bandwidth configurations ..33

5.3. Data cache size configurations (in kilobytes) ..34

5.4. Warp scheduler configurations ..35

5.5. No coalesce penalty configurations ...36

ix

LIST OF FIGURES

Figure Page

2.1. Relationship of threads, thread blocks, and kernel grids in CUDA6

2.2. CUDA memory hierarchy ..6

2.3. Fermi SM block-level microarchitecture ...7

2.4. An illustration of branch divergence for a sample warp size of 10 threads8

2.5. A coalesced access, i.e. all 32 threads in the warp access the same aligned
 128-byte segment ...9

2.6. An uncoalesced access requiring two memory transactions10

2.7a. Fermi memory hierarchy..11

2.7b. Kepler memory hierarchy ..11

2.8. An illustration of warp multithreading in a Fermi GPU ..12

2.9. The architecture of a GPGPU-Sim streaming multiprocessor (i.e., SIMT core) ...14

2.10. The GPGPU-Sim memory subsystem architecture..15

5.1. Issue stage histogram bin definitions ...31

6.1. Measured instructions per cycle (IPC) of each benchmark38

6.2. Runtime in cycles of all BFS and SSSP variants ...39

6.3. Average warp occupancy of each application, both including and excluding
 idle/stall cycles ...40

6.4. Benchmark speedup with perfect warp formation ...41

6.5. Average memory access count per global or local warp load or store
 instruction ..42

x

6.6. Percentage of cycles marked as coalescing stalls ..43

6.7. Speedup over the default simulator configuration when removing the
 coalescing pipeline penalty and increasing the cache miss handling
 capacities ..44

6.8. Data cache miss ratios (L2 ratios are local, i.e., number of misses over
 number of L2 accesses) ..45

6.9. Cache misses per thousand warp instructions (MPKI) ..45

6.10. The proportion of underused vs. fully-occupied cycles in each application
 (deepest pipeline stage) ..48

6.11. The proportion of underused vs. fully-occupied cycles in each application
 (most impacted warps) ...48

6.12. Speedup over the default simulator configuration when scaling the minimum
 L2 hit latency and DRAM latency ...55

6.13. Speedup over the default simulator configuration when scaling the
 interconnect and DRAM bandwidths...56

6.14. Speedup over the default simulator configuration when scaling the data
 cache sizes ..57

6.15. Speedup of the RR scheduler over the default GTO scheduler58

6.16. Speedup of the GTLS scheduler over the default GTO scheduler59

6.17. Speedup of the 2-level scheduler with RR inner and outer policies over the
 default GTO scheduler ...60

6.18. Speedup of the 2-level scheduler with an RR outer and GTO inner policy
 over the default GTO scheduler ...60

6.19. Speedup of the 2-level scheduler with GTO inner and outer policies over the
 default GTO scheduler ...60

6.20. Instructions per cycle for each benchmark with several similar inputs61

xi

6.21. The proportion of underused vs. fully-occupied cycles (deepest pipeline
 stage) for all codes using several similar inputs ..62

6.22. Instructions per cycle for all graph codes with road-network and R-MAT
 inputs ..63

6.23. The proportion of underused vs. fully-occupied cycles (deepest pipeline
 stage) for all graph codes using road-network and R-MAT inputs63

6.24. The proportion of underused vs. fully-occupied cycles for BFS and SSSP
 with equally-sized inputs of different types ...64

xii

LIST OF ABBREVIATIONS

Abbreviation Description

API Application program interface
BFS Breadth-first search
BH Barnes-Hut
CCWS Cache-conscious wavefront scheduling
CDP CUDA Dynamic Parallelism
CUDA Compute Unified Device Architecture
DMR Delaunay mesh refinement
DRAM Dynamic random-access memory
FPC Floating-point compression
GPU Graphics processing unit
GTO Greedy-then-oldest
IPC Instructions per cycle
ISA Instruction set architecture
LDST Load/store
LRR Loose round robin
MC Monte Carlo
MPKI Misses per thousand warp instructions
MSHR Miss-status holding register
MST Minimum spanning tree
NB N-body
NCP No coalesce penalty
PE Processing element
R-MAT Recursive Matrix (graph format)
ROP Raster operations pipeline
RR Round-robin
SDK Software development kit
SFU Special-function unit
SIMT Single instruction multiple thread
SM Streaming multiprocessor
SP Survey propagation
SSSP Single-source shortest paths
TSP Traveling salesman problem

xiii

ABSTRACT

Graphics processing units (GPUs) are increasingly being used to accelerate

general-purpose applications, including applications with data-dependent, irregular

memory access patterns and control flow. However, relatively little is known about the

behavior of irregular GPU codes, and there has been minimal effort to quantify the ways

in which they differ from regular general-purpose GPU applications.

I examine the behavior of a suite of optimized irregular GPU applications written

in CUDA on a cycle-level GPU simulator. I characterize the performance bottlenecks in

each program and connect source code to microarchitectural performance characteristics.

I also assess the performance impact of modifying hardware parameters such as the cache

and DRAM bandwidths and latencies, data cache sizes, coalescing behavior, and warp

scheduling policy, and I discuss the implications for future GPU architecture design.

I find that, while irregular graph codes exhibit significantly more underutilized

execution cycles due to branch divergence, load imbalance, and synchronization

overhead than regular programs, overall, code optimizations are often able to effectively

address these performance hurdles. Insufficient bandwidth, long memory latency, and

poor cache effectiveness are the biggest limiters of performance. Applications with

irregular memory access patterns are more sensitive to changes in L2 latency and

bandwidth than DRAM latency and bandwidth. Additionally, greedy-then-oldest

scheduling is the best simple warp scheduler for irregular codes, and two-level

scheduling does not significantly improve the performance of such codes.

xiv

1. INTRODUCTION

Recent years have seen a surge of interest in the use of graphics processing units

(GPUs) as general-purpose computation accelerators. For programs that map well to GPU

hardware, GPUs offer a substantial advantage over multicore CPUs [1] in terms of

performance, performance per dollar, and performance per transistor. GPUs also

outperform CPUs in energy efficiency, demonstrating improved performance per watt on

codes suitable for GPU execution [2]. Due in part to these advantages, general-purpose

programmable GPUs have become ubiquitous in high-performance computing [3] and are

increasingly appearing as accelerators in desktops and even mobile platforms [4].

Designed to perform complex computations on blocks of pixels at high speeds

and with wide parallelism, GPU architectures differ significantly from traditional CPU

hardware. For example, for best performance, GPUs require large sets of threads (called

warps or wavefronts) to execute the same instruction in lockstep, resulting in

performance loss when threads within a warp encounter divergent control flow. This

behavior is called branch divergence. GPUs additionally require the threads within a

warp to access memory locations within the same cache line for fast, coalesced memory

access. However, GPUs also have many more processing units than CPUs, along with

wider memory buses, special operations for fast mathematical computation, and hardware

barriers that enable rapid synchronization between threads without the latency of a main

memory or last-level cache access.

These unique architectural features make GPUs particularly effective at

accelerating programs that are highly regular, i.e., that operate on large vectors or

matrices in statically predictable ways. Such codes often have high computational

1

demands, display extensive data parallelism, access memory in a streaming fashion, and

require little synchronization [5]. Many important applications in scientific computing fit

these criteria, including algorithms used in fields ranging from fluid dynamics [6] to

computational finance [7]. There exists a broad base of knowledge on the efficient

parallelization of these algorithms [8], and GPU implementations of these codes can be

tens of times faster than optimized parallel CPU implementations [9].

However, many problem domains (e.g., n-body simulation [10], data mining [11],

satisfiability problems [12], social networks [13], compilers [14], discrete-event

simulation [15], and meshing [16]) employ algorithms that are irregular in nature: they

build, traverse, and update pointer-based data structures such as trees and graphs and

exhibit input-dependent control-flow and memory-access patterns. These programs are

more difficult to parallelize in general and are particularly challenging to map to the

unconventional architecture of GPUs. Nonetheless, the literature includes several GPU

implementations of irregular algorithms that outperform their multicore CPU

counterparts [17]-[20].

Due to the advantages they offer over multicore CPUs, GPUs and GPU-like

architectures are likely to continue to grow in prevalence as accelerators for general-

purpose computation. Despite evidence that GPUs are capable of accelerating even

irregular applications, relatively little is known about the specific behaviors of irregular

GPU kernels or the manner in which they interact with the GPU architecture, and there

has been minimal effort to quantify the ways in which these codes differ from regular

GPU applications. Identifying the most significant architectural performance limitations

of irregular GPU kernels will aid software developers in accelerating these codes and is a

2

critical first step in enabling hardware designers to broaden the acceleration capabilities

of future GPUs.

This work makes the following main contributions.

• I present a detailed, cycle-level simulation-based workload characterization

focusing on irregular GPU applications.

• I develop an understanding of the impact of control-flow and memory-access

irregularity on various architectural GPU performance characteristics,

including memory coalescing, branch divergence, and cache effectiveness.

• I analyze programs from the LonestarGPU [21] benchmark suite of irregular

codes and identify relationships between source code and microarchitectural

performance behavior.

• I assess the sensitivity of these applications to hardware design parameters

such as cache and DRAM latency and bandwidth, cache size, coalescing

behavior, and warp scheduling policy.

• I find that memory and especially L2 latency and bandwidth and low cache

effectiveness are the most significant factors limiting the performance of

irregular GPGPU codes.

This thesis attempts to abstract a generalized understanding of the impact of

irregular coding structures on hardware performance characteristics. It is not the goal of

this work to determine the particular configuration of hardware parameters that yields the

best average speedup for a particular set of codes or a particular GPU device. GPU

architecture is still changing rapidly from generation to generation, and fine-tuning of

microarchitectural parameters is unlikely to yield significant value at this premature

3

stage. Rather, this thesis identifies the major hardware bottlenecks for irregular kernels

and establishes those sources of performance loss on which hardware architects should

focus their efforts (versus those sources that software designers are capable of effectively

addressing on their own).

The rest of this thesis is organized as follows. Chapter 2 reviews the architecture

of CUDA GPUs and their main architectural sources of performance limitation, defines

code regularity vs. irregularity, and describes the cycle-level simulator I employ. Chapter

3 summarizes the related literature. Chapter 4 discusses the benchmarks and inputs I

study. Chapter 5 describes my simulator modifications and configurations. Chapter 6

presents and analyzes the results. Chapter 7 summarizes and concludes.

4

2. BACKGROUND

In this chapter, I describe the architecture of general-purpose programmable

GPUs, their major sources of performance limitation, and important features of their

microarchitectural design. I also review the differences between regular and irregular

codes and describe the operation of the cycle-level simulator I employ.

2.1. CUDA GPUs

NVIDIA’s general-purpose programmable GPUs implement the CUDA parallel

programming model [22]. CUDA GPUs have a two-level compute hierarchy composed

of multiple streaming multiprocessors (SMs), or cores, each composed of multiple tightly

coupled processing elements (PEs). CUDA programs specify the behavior of kernels,

which are launched on the GPU. A kernel is composed of parallel threads. As shown in

Figure 2.1 [22] below, these threads are grouped by the programmer into thread blocks

and grids of thread blocks. The thread blocks (or blocks) are dynamically assigned to

SMs as SMs become available, up to a limit imposed by the available hardware resources

(e.g., registers, shared memory space, block and thread tracking state) on the SM.

Each thread executes an instance of the kernel and has its own registers and local

memory. The threads within a block share a software-controlled cache, called shared

memory, as well as hardware to enable fast synchronization. Between blocks,

synchronization and data exchange require accesses through slower, off-core global

memory (DRAM). Figure 2.2 [22] below illustrates the CUDA memory hierarchy of per-

thread local memory, per-block shared memory, and per-application global memory

spaces.

5

Figure 2.1: Relationship of threads, thread blocks, and kernel grids in CUDA

Figure 2.2: CUDA memory hierarchy

6

The PEs execute warps, which are sets of adjacent threads (32 in current CUDA

GPUs) that execute on a set of PEs (either on 32 PEs or on fewer PEs split over multiple

cycles) as vector instructions conditionally operating on 32 data items. The PEs are fed

with warps for execution in multithreading style, allowing interleaving between thread

blocks. Figure 2.3 [23] illustrates the block-level microarchitecture of one of the SMs in a

compute capability 2.x (Fermi architecture [23]) GPU: the ‘core’ blocks are the PEs, each

of which contains an integer and a floating-point pipeline. There are also load/store

(LDST) units for warp instructions that access memory, as well as special-function units

(SFUs) responsible for executing transcendental functions (e.g., sine, logarithm, etc.).

Figure 2.3: Fermi SM block-level microarchitecture

7

GPU pipeline microarchitectures are generally simple, without result forwarding,

branch speculation, or out-of-order execution, and instead hide latency by arbitrarily

interleaving warps. Good performance therefore requires a large number of warps in

flight. In general, GPUs require large amounts of parallelism and minimal global

synchronization. For best performance, they require threads in a warp to execute the same

control-flow path and access nearby memory addresses.

2.1.1. Branch Divergence

To execute in parallel, the threads in a warp must share identical control flow.

When they do not (i.e., when a conditional branch is encountered and a subset of threads

in the warp evaluate the condition differently from the others), execution is automatically

subdivided by the hardware into sets of threads such that all threads in the set execute the

same instruction. These sets of threads are then executed serially until they re-converge.

Figure 2.4: An illustration of branch divergence for a sample warp size of 10 threads

8

Figure 2.4 above illustrates an example of the utilization penalty associated with

this serialization. In this example, the warp size is 10 threads. The threads execute in

parallel until they reach a conditional branch and only 5 of the threads evaluate the

condition as true. This results in 5 threads following one execution path and 5 threads

following another. Until the execution paths reconverge, only half of the warp will be

active in any cycle, lowering hardware utilization and increasing the number of cycles

required to execute all threads. As such, good performance requires codes to have

minimal branch divergence, i.e., for the threads in a warp to follow the same control-flow

path most of the time.

2.1.2. Memory Coalescing

The GPU’s memory subsystem is optimized for warp-based processing. If the

threads in a warp simultaneously access words in global memory that fall into the same

aligned 128-byte segment, the hardware merges the 32 reads or writes into a single,

coalesced memory access, as shown in Figure 2.5 [24]. In the figure, the threads access

memory locations in order by thread ID; however, the hardware would still coalesce the

accesses into a single transaction if the arrows in the figure crossed over one another, as

long as they all fell within the highlighted memory segment from byte 128 to byte 255.

Figure 2.5: A coalesced access, i.e., all 32 threads in the warp access the same aligned 128-byte

segment

When a warp instruction touches multiple 128-byte segments, the hardware must

perform a memory transaction for each segment. This can occur even when the accesses

have a single-word stride and fall within 128 consecutive bytes if the addresses cross a

9

128-byte boundary. Figure 2.6 [24] illustrates an uncoalesced access of this variety,

requiring two separate memory transactions of 128 bytes each.

Figure 2.6: An uncoalesced access requiring two memory transactions

Since there are 32 threads in a warp, it is possible for a single warp instruction to

touch addresses scattered across 32 separate 128-byte segments. Thirty-two separate

memory transactions result, all of which may require data from global memory (DRAM).

Even if all 32 accesses hit in a cache, the warp instruction will replay down the load/store

pipeline 32 times, once for each transaction. Thus, coalesced accesses are crucial for

good performance.

2.1.3. Cache and Memory Hierarchy

The GPU’s main memory (DRAM) is separate from the CPU’s, and explicit

library calls are required to transfer blocks of data to or from GPU memory over the PCI-

Express bus. Figure 2.7 below illustrates the memory and cache hierarchy of CUDA

GPUs. All SMs share the DRAM as well as a unified L2 cache. Each SM has a software-

managed scratch pad memory space called shared memory to allow fast data sharing

within a block. In the Fermi architecture, shown in Figure 2.7(a) [23], each SM also has

an on-chip, incoherent L1 data cache. This cache stores local data (including register

spills) as well as global data. It is therefore necessary to declare global data that may be

written and read by multiple blocks as volatile to prevent it from being cached in the L1.

In compute capability 3.X (Kepler architecture [25]) devices, the memory

hierarchy of which is illustrated in Figure 2.7(b) [25], the L1 cache is used for local

10

memory only. Global data may be read into a separate read-only data cache only by

explicit programmer direction (via the __ldg() intrinsic or the const __restrict__

keywords). By default, global reads are non-cached and can therefore use smaller

minimum bus transaction widths (because the full cache line is not required).

(a) (b)

Figure 2.7: (a) Fermi memory hierarchy; (b) Kepler memory hierarchy

The shared memory and L1 cache of each SM share 64KB of on-chip storage.

The shared memory size can be software-configured to either 16KB or 48KB (or 32KB in

Kepler devices); the L1 cache occupies the remainder of the 64KB. These sizes may be

configured separately on a per-kernel basis.

2.1.4. Warp Scheduling

GPUs exploit thread-level parallelism in part by multi-threading many warps on a

single core (SM). When a warp encounters a long-latency operation (e.g., a memory

access) or stall (e.g., a branch, a register dependency, etc.), the core can rapidly switch to

another in-flight warp, thus interleaving instructions from many warps on a cycle-by-

11

cycle basis as shown in Figure 2.8 [23]. When a stall or long-latency operation is

encountered and no other warp can issue its next instruction (either because there are

insufficient warps in flight or because all other warps are also stalled), underutilization

results.

Figure 2.8: An illustration of warp multithreading in a Fermi GPU

When multiple warps are available to issue an instruction in a given cycle, the

scheduling policy used to select the next warp can significantly affect the GPU’s ability

to hide latencies [26]. One simple scheduling policy, round robin, is illustrated in Figure

2.8 above: warps are ordered arbitrarily and each cycle, the next warp in order is

considered for issue. A loose round robin (LRR) scheduler allows warps that are not able

to issue to be skipped in the round robin ordering. An alternative scheduler is greedy-

then-oldest (GTO) [27], which prioritizes issue from a selected warp until that warp

reaches a long-latency operation, then prioritizes the oldest alternative in-flight warp.

Round-robin schedulers give equal priority to each warp and tend to result in all warps

arriving at long-latency operations in close time proximity (leaving no warp that can

issue); however, schedulers (like GTO) that allow warps to become progressively out-of-

sync can destroy memory-access locality and lead to starvation [26].

12

2.2. Regular vs. Irregular Codes

Parallel algorithms are often discussed in terms of regular vs. irregular behavior.

Regular code refers to programs displaying neither data-dependent control flow nor data-

dependent memory-access patterns. For example, the dynamic behavior (i.e., the

conditional branch decisions and memory reference stream on an in-order processor) of a

straightforward matrix multiply program can be statically determined knowing only the

input size and the data-structure starting locations, but without knowing any of the matrix

values.

Irregular code, in contrast, refers to programs in which the runtime behavior is a

function of the input values. Both control-flow and memory-access patterns may differ

for different inputs. Irregular code usually arises from the use of dynamic data structures

such as trees and graphs. For example, an application that builds a binary search tree

from a set of input data will follow a different control-flow path, build a tree of different

shape, and access a different sequence of memory addresses depending on the input

values and the order in which they are processed.

Compared to regular codes, irregular algorithms are more difficult to parallelize in

general and more challenging to map to GPUs in particular. Their data-dependent

dynamic behavior makes it difficult to assign work to threads in a manner that ensures

identical control flow, coalesced memory accesses, or load balance.

2.3. GPGPU-Sim

In order to better understand the performance of irregular codes on GPU

hardware, I study the behavior of a benchmark suite of irregular codes using GPGPU-

Sim, a cycle-level microarchitectural model of an NVIDIA-like GPU for general-purpose

13

computation [28]. GPGPU-Sim performs functional and timing simulation of PTX

assembly instructions extracted from a CUDA executable. In PTXPlus mode (cf. Chapter

5.1), it has been correlated against an NVIDIA GT 200 GPU with an IPC correlation of

97.6% on a subset of the CUDA SDK and against Fermi hardware with an IPC

correlation of 97.3% on the Rodinia benchmark suite with reduced problem sizes [29].

GPGPU-Sim models the SMs (or SIMT cores), L1 caches, shared memory, interconnect,

memory partition (including the L2 cache), and off-chip DRAM of a GPU.

Figure 2.9 [29] illustrates the block-level architecture of a GPGPU-Sim SIMT

core. In addition to the caches and shared memory, each SIMT core models an instruction

cache, fetch, decode, a warp scheduler, the SIMT stacks used to resolve branch

divergence and reconvergence, a scoreboard and operand collector for register file access,

as well as ALU, LDST, and SFU pipelines. The shared memory model simulates bank

conflicts and associated stalls, and coalescing stalls are modeled based on the coalescing

logic of compute capability 1.3 devices. The L1 data cache model includes miss-status

holding registers (MSHRs) for tracking outstanding cache misses.

Figure 2.9: The architecture of a GPGPU-Sim streaming multiprocessor (i.e., SIMT core)

14

The unified L2 cache is modeled in the memory partition, separated from the

SIMT cores by an interconnect network model. As shown in Figure 2.10 [29] below, the

memory partition model includes a unit to resolve atomic operations, the L2 cache, a

DRAM scheduler, the bus to off-chip DRAM, and a configurable timing model for the

DRAM. L2 hit latency is modeled via the raster operations pipeline (ROP) queue, which

sits between the interconnect and the L2 cache. DRAM hit latency is modeled via a queue

between the L2 and the DRAM scheduler. Both of these queues are of configurable

length, and the interconnect bandwidth and DRAM bus width are also configurable.

Figure 2.10: The GPGPU-Sim memory subsystem architecture

At present, GPGPU-Sim models GPUs similar to NVIDIA’s compute capability

1.x and 2.x (Fermi) devices. It does not provide configurations for Kepler devices, nor

does it model the memory hierarchy changes implemented in the Kepler architecture.

15

3. RELATED LITERATURE

This chapter summarizes existing literature related to understanding the behavior

of GPU applications and/or irregular codes. It also describes the warp schedulers whose

impact on irregular codes I examine in this thesis.

3.1. Simulator- and Emulator-Based Characterization

Previous simulator-based studies characterizing GPU applications focus on the

mostly regular codes found in the CUDA SDK [30], Rodinia [31], and Parboil [32]

benchmark suites. Bakhoda et al. [33] present GPGPU-Sim and study twelve (mostly

regular) CUDA applications demonstrating various levels of GPU performance. They

characterize the performance impact of several microarchitectural design choices

including interconnect topology, memory controller design, and workload distribution

and analyze the instruction mix, DRAM locality, and warp occupancy of each

benchmark. Unlike this thesis, they do not investigate stall cycle distribution or warp

scheduling policy. Goswami et al. [34] propose a set of microarchitecture-agnostic

general-purpose GPU workload characterization metrics (e.g. instruction mix, DRAM

row locality, branch divergence density) and use these metrics to study the benchmarks in

the CUDA SDK, Rodinia, and Parboil suites using GPGPU-Sim. Their work focuses on

identifying workload characteristics that are not sensitive to microarchitectural

configuration, whereas this thesis quantifies benchmark sensitivity to various design

tradeoffs. Blem et al. [35] propose a set of challenge benchmarks (selected from the

GPGPU-Sim benchmarks, Rodinia, and a handful of naïve ports of Parsec applications)

where the achieved instructions per cycle (IPC) is less than 40% of peak. They use

GPGPU-Sim to present a characterization of the benchmarks’ key architectural

16

bottlenecks and apply an analytic model to predict the performance impact of mitigating

each bottleneck, whereas this work measures the performance impact of various hardware

modifications in simulation. Che et al. [36] evaluate the Rodinia benchmark suite on a

GTX 480 and in GPGPU-Sim, including warp occupancy and the performance impact of

scaling DRAM bus width. However, their primary focus is an assessment of the Rodinia

benchmark suite in comparison to traditional multithreaded CPU workloads. Lee and Wu

[37] use GPGPU-Sim to examine program behavior in terms of stall cycle distribution,

which is also a component of my work. They focus on the Rodinia benchmark suite and

do not attempt to delineate the impact of irregularity. Hestness et al. [38] compare the

memory system behavior of the Rodinia suite on the CPU versus the GPU in a

heterogeneous system simulated with gem5-gpu [39], which integrates the GPU core

model from GPGPU-Sim. Their study focuses mostly on regular codes and is limited to

memory behavior.

General-purpose GPU application performance has also been studied using PTX

emulators that do not provide cycle-accurate simulation. Kerr et al. [40] propose a set of

metrics for GPU workloads and analyze these metrics on over fifty mostly regular

applications, including the SDK and Parboil, via the GPU Ocelot emulator [41]. They

investigate the impact of optimizations such as various branch re-convergence

mechanisms and memory read coalescing. Wu et al. [42] study several benchmarks

(including the SDK, Rodinia, and Parboil) using GPU Ocelot and identify sources of

control-flow irregularity.

Two publications from the same conference in late 2014 focus specifically on the

behavior of irregular applications in simulation. Xu et al. [43] study the behavior of a

17

collection of CUDA graph codes collected from multiple authors using hardware

performance counters and GPGPU-Sim. These codes include BFS, MST, SP, and SSSP;

BH and DMR are not represented, nor are the multiple implementations of BFS and

SSSP included in LonestarGPU. The authors examine pipe stall cause, cache

effectiveness, SIMD lane utilization, and thread block distribution. They also study the

performance impact of cache size scaling and a handful of different warp scheduling

schemes (LRR, GTO, and a single configuration of the two-level scheduling described in

Chapter 3.3.1 below), which they find to yield insignificant performance variation.

Unlike this thesis, they do not examine coalescing behavior or the impact of scaled cache

and memory latencies and bandwidths. O’Neil and Burtscher [44] detail an intermediate

selection of the work presented here.

3.2. Hardware-Based Characterization

Most of the existing studies that concentrate on irregular codes characterize

application performance via hardware counters and sensors. Burtscher et al. [45]

previously characterized the control-flow and memory-access irregularity in the

LonestarGPU 1.0 benchmark suite of irregular GPU codes. Their study relied on

hardware performance counters for issued and executed instructions, divergent branches,

and instructions replayed for coalescing or bank conflicts. Coplin and Burtscher [46]

characterized the power behavior of the LonestarGPU suite and the impact of program

irregularity on power consumption. Their study profiles power characteristics via the

built-in power sensor on NVIDIA K20 GPUs. Che et al. [47] also describe a hardware

performance counter-based characterization of a suite of irregular GPU graph

applications. Wang and Yalamanchili [48] implement eight irregular, data-intensive

18

applications using CUDA dynamic parallelism (CDP) and analyze the control-flow and

memory behavior of each implementation versus its non-CDP version using hardware

performance counters.

However, many of the event counts of interest in a study of irregular codes are not

available through hardware counters, and simulation is necessary to provide a more

complete picture of application behavior as well as to allow the evaluation of proposed

hardware improvements.

3.3. Hardware Modifications

Many previous publications (e.g., Brunie et al. [49], Singh et al. [50], Xiang et al.

[51]) have proposed GPU architecture modifications and several have used GPGPU-Sim

to reason about the likely performance impact of their proposed changes. Some of these

works include microarchitectural performance characterization similar to this thesis but

applied specifically to the proposed architectural enhancement. For example, Meng et al.

[52] propose a method of dynamic warp subdivision to hide branch and memory latency

divergence and characterize the performance impact of additional variations in cache

miss latency and other microarchitectural parameters.

3.3.1. Warp Schedulers

Several publications have proposed novel GPU warp schedulers. Narasiman et al.

[26] present a two-level warp scheduler that splits concurrently executing warps into

fetch groups and prioritizes issuing warps from a single fetch group until that group

stalls. Such prioritization between fetch groups attempts to mitigate the tendency with a

round-robin scheduler for all active warps to reach long latency operations together,

while still preserving DRAM row-buffer locality within a single fetch group. The authors

19

present experimental results for a fetch group size of eight with round-robin selection for

both the inner policy, i.e., within each fetch group, and the outer policy, i.e., when

switching to a new fetch group. However, other schedulers could be employed at either of

the two levels.

Rogers et al. (2012) [27] propose cache-conscious wavefront scheduling (CCWS),

which detects when intra-wavefront locality is lost because the working sets of inflight

warps oversubscribe the capacity of the L1 data cache. The scheduler then throttles back

the number of warps eligible to issue. On the authors’ selected highly cache-sensitive

benchmarks, CCWS yields a 63% performance improvement over previous schedulers.

Rogers et al. compare their CCWS scheduler to a two-level scheduler similar to that

described by Narasiman et al. but using greedy-then-optimal inner and outer scheduling

policies with a fetch group of size two, which proved the best two-level configuration for

their codes.

20

4. APPLICATIONS AND INPUTS

In this work, I present a workload characterization of several irregular GPGPU

applications and compare the codes’ microarchitectural performance behavior to that of

more regular applications. This chapter describes the applications and inputs I profile.

4.1. Applications

I focus primarily on irregular codes. However, I also characterize several more

regular programs in order to provide a basis of comparison for the irregular codes.

4.1.1. Irregular Applications (LonestarGPU)

My irregular programs are selected from version 2.0 of the LonestarGPU

benchmark suite [21]. LonestarGPU is a collection of hand-optimized CUDA

implementations of real-world irregular applications. It includes the following

algorithms, some of which have multiple implementations.

• Breadth-First Search (BFS)

This graph algorithm labels each node in an unweighted graph with the node’s

minimum level (i.e., number of edges) from a specified source node, which is defined to

be level zero [53]. It is a key kernel in many applications (e.g., mesh partitioning). The

GPU kernel considers each node in the graph and updates the level of any of its neighbor

nodes for which a new minimum edge count from the source has been found. The kernel

is invoked iteratively from the host until no minimum levels change. The LonestarGPU

benchmark suite includes several implementations of this algorithm:

BFS: This is a topology-driven implementation, meaning that it processes all

nodes in the graph in each iteration as long as at least one node is active. It assigns one

node per thread.

21

BFS-unroll: This is a topology-driven implementation that processes multiple

frontiers per iteration by maintaining a local (shared memory) worklist of changed

destinations. It assigns one node per thread.

BFS-wlw: This is a data-driven implementation, meaning that it processes work

items from a worklist of active nodes until the worklist is empty. Only nodes which

require work, i.e. which have become active, are added to the worklist. This

implementation assigns one node per thread.

BFS-wlc: This is a data-driven implementation that assigns one edge per thread

using the strategy described by Merrill et al. [19]. It cooperatively tracks edge and vertex

frontier lists in global memory in parallel.

• Barnes-Hut (BH)

This n-body algorithm simulates the effect of gravity on a star cluster [10]

through several time steps. In each step, it hierarchically decomposes the space around

the stars and records the structure in an octree. Special octree traversals allow for the

quick approximation of forces. This code includes several GPU-specific optimizations,

including sorting the bodies so that nearby threads perform similar work. Its force

calculation kernel, which dominates application runtime, has been implemented in an

explicitly warp-based manner by expanding octree prefixes so that all warp threads

perform the same prefix traversal.

• Delaunay Mesh Refinement (DMR)

This is a mesh refinement algorithm from the field of computational geometry

[54] that iteratively transforms those triangles in an input mesh that fail to conform to a

quality criterion, i.e., ‘bad’ triangles (containing angles less than 30 degrees), into ‘good’

22

triangles by retriangulating the cavity around each bad triangle. The GPU algorithm

distributes triangles to threads. At each iteration, the kernel checks if the triangle assigned

to it is bad, collects the triangles in the surrounding cavity, and re-triangulates the cavity.

The host repeatedly invokes the kernel until no bad triangles remain in the mesh. In order

to avoid expensive locks on the cavity surrounding a bad triangle, the code implements a

barrier-based race and resolve prioritization scheme to avoid conflicts.

• Minimum Spanning Tree (MST)

Borvuka’s MST algorithm [55] computes a minimal spanning tree of an

undirected, weighted graph through successive application of minimum weight edge

contractions. This process is repeated until the graph consists of just a single node, at

which point the contracted edges form the spanning tree. In order to avoid modifying the

graph, the GPU implementation performs edge contraction indirectly by tracking merged

edges, or components. The computation is split across several kernels, which find the

minimum weight edge out of each node, find the minimum weight edge out of each

component, identify the edge to contract (i.e., the two nodes or components to merge),

and perform the merge. These kernels are called repeatedly from the host until a single

component remains or the number of components stops changing.

• Survey Propagation (SP)

This benchmark is a heuristic SAT-solver based on Bayesian inference [12] which

represents a Boolean formula as a bipartite graph with variables on one side and clauses

on the other. The algorithm iteratively updates each variable with the likelihood that it

should be assigned a true or false value. Each iteration of the GPU code has two phases:

the first kernel updates the survey on each edge; the next kernel fixes highly biased

23

variables to a specific value and removes them from the graph. These kernels are called

repeatedly from the host until only trivial surveys exist or no progress has been made for

several iterations.

• Single-Source Shortest Paths (SSSP)

This classic graph problem computes the shortest (i.e., minimum weight) path to

each node in a directed, weighted graph from a designated source node using a

modification of the Bellman-Ford algorithm [53]. The GPU code is similar in operation

to BFS. In each iteration, the kernel considers each edge and updates the shortest distance

to each destination node to which a shorter path has been found. The kernel is invoked

repeatedly until it converges, i.e., until it reaches an iteration where no distances change.

The LonestarGPU benchmark suite includes several implementations of this algorithm:

SSSP: This is a topology-driven implementation that assigns one node per thread.

SSSP-wln: This is a data-driven implementation that assigns one node per thread.

SSSP-wlc: This is a data-driven implementation that assigns one edge per thread

using the strategy presented in Merrill et al. [19] adapted to SSSP.

4.1.2. Semi-Regular Applications

In addition to the LonestarGPU codes, I examine the behavior of two CUDA

programs that display some regular and some irregular behavior.

• Floating-Point Compression (FPC)

This program implements a lossless data compression and decompression

algorithm for double-precision floating-point values [56]. The code processes chunks of

input in parallel. It displays streaming memory-access behavior but irregular control flow

dependent on how well each word can be compressed.

24

• Traveling Salesman Problem (TSP)

This is a classic combinatorial optimization problem involving finding the

minimal Hamiltonian tour in a complete, undirected, weighted graph. The GPU code

implements an iterative hill climbing approach with random restarts to find an

approximate solution [57] and stores a distance matrix in software-controlled shared

memory. It has largely regular control flow but a data-dependent memory-access pattern.

4.1.3. Regular Applications

Lastly, I also characterize the behavior of two fully regular GPGPU programs.

• N-Body (NB)

Similarly to BH, this is an n-body application that simulates the motion of stars.

Unlike BH, it performs precise all-to-all force calculations, making both its control flow

and memory-access pattern regular. It is an in-house implementation from Texas State

University’s Efficient Computing Laboratory and outperforms the corresponding CUDA

SDK code.

• Monte Carlo (MC)

This program evaluates the fair call price for a set of European options using the

Monte Carlo method. It is a highly regular, array-based floating-point code from the

CUDA SDK version 4.2 [30].

4.2. Inputs

For each application, I examine performance behavior using realistic inputs large

enough to keep the simulated hardware busy but small enough to result in reasonable

simulator runtimes (less than 48 hours where possible, but up to several weeks for some

25

applications). Table 4.1 lists the inputs I use with the primary input listed first for each

benchmark.

Table 4.1: Application inputs

Application

Input

Name Description
Working
Set Size

L2 Size
Multiplier

BFS, SSSP USA_road_d.NY NY roads (264K nodes, 734K edges) 3899 kB 5.08
USA_road_d.BAY SF Bay Area roads (321K nodes,

800K edges)
4380 kB 5.70

rmat200k-1600k R-MAT (200K nodes, 1600K edges) 7031 kB 9.16
rmat264k-734k R-MAT (264K nodes, 734K edges) 3898 kB 5.08

BH 494,000 1 (seed=7) 494K bodies, 1 timestep 7718 kB 10.05
494,000 1 (seed=1) 494K bodies, 1 timestep 7718 kB 10.05

DMR massive.2 100.3K triangles, maxfactor=10 7840 kB 10.21
30k 60K triangles, maxfactor=10 4688 kB 6.10
25k 50K triangles, maxfactor=10 3906 kB 5.09

MST USA_road_d.NY NY roads (264K nodes, 734K edges) 3898 kB 5.08
USA_road_d.BAY SF Bay Area roads (321K nodes,

800K edges)
4380 kB 5.70

rmat30k-250k R-MAT (30K nodes, 250K edges) 1093 kB 1.42
SP random-4200-1000-3-

seed23.cnf
4.2K clauses, 1K literals, 3

literals/clause
414 kB 0.54

random-4200-1000-3-
seed27.cnf

4.2K clauses, 1K literals, 3
literals/clause

414 kB 0.54

random-4200-1000-3-
seed71.cnf

4.2K clauses, 1K literals, 3
literals/clause

414 kB 0.54

FPC obs_error 60 MB dataset, 30 blocks, 24
warps/block, dimensionality=24

60 MB 78.12

num_plasma 34 MB dataset, 30 blocks, 24
warps/block, dimensionality=2

34 MB 44.27

msg_lu X MB dataset, 30 blocks, 24
warps/block, dimensionality=5

186 MB 242.19

TSP att48.tsp 15,000 48 cities, 15K restarts 9 kB 0.01
eil51.tsp 15,000 51 cities, 15K restarts 10 kB 0.01
pr76.tsp 20,000 76 cities, 20K restarts 23 kB 0.03

NB 23,040 1 (seed=7) 23,040 bodies, 1 timestep 360 kB 0.47
23,040 1 (seed=19) 23,040 bodies, 1 timestep 360 kB 0.47
23,040 1 (seed=43) 23,040 bodies, 1 timestep 360 kB 0.47

MC (default) SDK input w/ 262,144 paths 1024 kB 1.33

By definition, irregular codes display input-dependent behavior. I profile each

application using a primary input across all simulator configurations; additional inputs

26

are examined on the default configuration in order to quantify the input sensitivity of the

results. The graph codes are studied using both road network inputs from the 9th

DIMACS Implementation Challenge [58] as well as R-MAT [59] graphs, which are

denser and have higher and more varied out-degree per node.

For each code, Table 4.1 also includes the size of the data structures read by the

dominant kernel’s inner loop (i.e., the kernel’s working set) compared to the simulated

GPU’s L2 cache size. In order to characterize realistic cache behavior, benchmarks are

tested with a working set at least five times the size of the default L2 cache configuration

where possible, limited by practical simulation runtime and input availability. (Note that

several of the more regular applications are streaming or limited by shared memory size

and therefore do not have meaningful working sets).

27

5. GPGPU-SIM CONFIGURATION

I study each benchmark’s cycle-level behavior using a modified version of

GPGPU-Sim release 3.2.1 [28]. I modified the simulator to support CUDA 5.5 binaries,

to implement a handful of additional operations, and to resolve some known bugs. I also

added simulator configurations and instrumentation for additional performance counters.

This chapter describes my simulator modifications and configurations as well as the

benchmark changes required to support execution on GPGPU-Sim.

5.1. PTX vs. PTXPlus

GPGPU-Sim performs functional and timing simulation of PTX assembly

instructions extracted from a CUDA executable. Because PTX is a virtual ISA and not

the actual code that runs on the hardware, GPGPU-Sim also supports PTXPlus, an

extended version of PTX that adds addressing modes, condition codes, and instructions

similar to those in SASS, NVIDIA’s native hardware instruction set. PTXPlus simulation

is likely to result in more accurate correlation to real hardware; however, GPGPU-Sim

does not fully support it for all programs supported in PTX. Most of my studied

benchmarks do not run in PTXPlus mode, and I do not present PTXPlus results.

PTX assumes an infinite register set and therefore simulation results do not

capture the impact of register spill code. Of my studied codes, DMR, SP, and NB cause a

handful of register spills in their dominant kernels.

5.2. CUDA 5.5 and CUB Support

The LonestarGPU 2.0 benchmark suite must be compiled with the CUDA 5.0+

tool suite, because the benchmark codes rely on functionality from the CUB library [60]

28

version 1.1.1. CUB provides various PTX intrinsics, device management functions, and

reduction primitives for CUDA and requires a modern C++ compiler, which has been

incorporated into CUDA 5.0+. GPGPU-Sim 3.2.1 natively supports CUDA versions up

to only CUDA 4.2. Therefore, I had to modify the simulator using patches provided by

the LonestarGPU suite authors [61]. These patches shim the cuobjdump and ptxas

utilities so the simulator’s parsers are able to parse binaries compiled with CUDA 5.5,

update the naming of some texture lookup functions, and add functionality to the

simulator’s implementation of the CUDA library functions cudaGetDeviceProperties and

cudaFuncGetAttributes.

5.3. Bug Fixes and Additional Operations

Several modifications to the simulator were required to support my selected

benchmarks.

GPGPU-Sim incorrectly implements the REM instruction, which is used to

perform a modulo operation. The correct hardware behavior is to mask the operation to

the size specified by the <type> field; however, the simulator always performs the

modulo operation with 64-bit operands and stores a 64-bit result. I modified the

functional simulator to make the REM instruction size aware.

GPGPU-Sim’s functional simulator does not sign-extend integer literals when

used as operands for 64-bit instructions. I modified the implementation of the MOV.u64

and MOV.s64 instructions to sign-extend a source operand literal to 64 bits.

The timing simulator includes performance counters for various stall causes. In

GPGPU-Sim 3.2.1, an L1 data cache reservation fail incorrectly increments the

29

coalescing stall performance counter. I modified the simulator’s shader core

implementation to prevent the incorrect increment.

The CUB library reads the laneID register, which returns the position of a thread

within its warp. GPGPU-Sim does not implement this register. I modified the functional

simulator to return the correct data for reads of the laneID register.

The SP benchmark (via the CUB library) also uses the BFE instruction, which

extracts a bit field of specified starting position and length from a source operand.

GPGPU-Sim does not implement this PTX instruction. I modified the functional

simulator to correctly implement the bit-field extract operation.

5.4. Additional Performance Counters

By default, GPGPU-Sim includes performance counters in the warp issue stage.

In each cycle, every SM increments a counter with the active instruction count of the

warp issued in that cycle. In cycles where no issue can be made, a counter is incremented

for the cause of the issue stall instead. I supplemented these counters to create a

histogram of fully occupied issue cycles as well as cycles where the active instruction

count is less than the full warp size (i.e., divergence cycles), and to differentiate several

causes of a stall or idle (i.e., no issue) cycle. In the case of issue stalls due to a full

functional pipe, I added instrumentation to collect additional information on the

functional unit responsible for the stall.

To ensure that only one bin is updated per scheduler per cycle, it is necessary to

define a priority between the idle and stall conditions, since warps ineligible for issue in

that cycle may be stalled for multiple reasons. Figure 5.1 illustrates the priority

definitions of the histogram bins. The deeper in the pipeline a stall cause is determined,

30

the higher the priority of that stall. For example, if there are 32 warps available on the

SM, 31 of them are invalid due to control hazards, and one warp has a valid instruction

but cannot issue because it requires a functional unit that is already full, the cycle will be

marked as a pipeline stall (because functional unit backup is determined later in the

pipeline than control-flow hazards).

Figure 5.1: Issue stage histogram bin definitions

I also instrumented the simulator with an additional histogram that increments the

cause per no-issue cycle that is responsible for stalling the most warps eligible for issue

that cycle.

5.5. GTX 480 (Base Configuration)

GPGPU-Sim 3.2.1 includes a configuration for the GTX 480, an NVIDIA Fermi

GPU. The GTX 480 has 15 SMs. Each SM includes two warp schedulers and two

dispatch units, allowing warps to dual-issue. The 32 threads in a warp are issued over two

31

cycles, 16 threads at a time. The SMs can support a maximum of 1536 threads and 8

thread blocks. Each SM has 32,768 registers. The SMs have two ALU pipelines, one

LDST pipeline, and one SFU pipeline each. Each SM has 64kB of data cache space,

which can be configured to 16 kB of software-controlled shared memory and 48 kB of

hardware-controlled L1 cache or vice versa. A cache line is 128 bytes. The L2 cache is

768 kB.

In addition to the specifications above, the simulator’s GTX 480 configuration

specifies the cache and memory topology, latencies, and bandwidths based on the results

of a microbenchmarking study of the GT200 [62]. The GTX 480 configuration uses a 16-

way L2 cache in each of its 6 memory partitions. When the L1 is configured to 16 kB, it

is 4-way set associative; it becomes 6-way set associative when configured to 48 kB.

Because register allocation is not done in PTX, the simulator determines the register and

shared memory usage of each kernel and uses that information and the applied

configuration to determine the maximum number of thread blocks that can run

concurrently on an SM.

I use the GTX 480 configuration as the default configuration in my study.

5.6. Additional Configurations

In order to assess the performance impact of various microarchitectural

parameters and design decisions, I modify the default GTX 480 simulator configuration.

This subchapter details these additional configurations.

5.6.1. Cache and Memory Latency

GPGPU-Sim models the minimum L2 hit latency via the raster operations

pipeline (ROP) latency, which determines the minimum latency between when a memory

32

request arrives at the memory partition and when it accesses the L2 cache. Additionally,

the simulator allows configuration of the DRAM latency, the minimum latency between

when a memory request accesses the L2 cache and when it is pushed to the DRAM

scheduler. Table 5.1 displays the ROP and DRAM latency configurations I examine.

Table 5.1: ROP and DRAM latency configurations (in number of shader clock cycles)
Configuration Name ROP Latency DRAM Latency

Default 240 200
1/2x ROP Latency 120 200
2x ROP Latency 480 200

1/2x DRAM Latency 240 100
2x DRAM Latency 240 400

No Latency 0 0

GPGPU-Sim models the minimum L1 hit latency as a single cycle, and I did not

modify this behavior. However, a recent study [63] suggests a significantly longer hit

latency, and this is an area for future investigation.

5.6.2. Cache and Memory Bandwidth

GPGPU-Sim enables configuration of the interconnect bus width between the

memory partitions (which include the L2 cache) and the core, as well as the DRAM bus

width. Scaling these bus widths is equivalent to scaling the L2 and memory bandwidths.

Table 5.2 displays the interconnect and DRAM bandwidth configurations I study.

Table 5.2: Interconnect (in bytes per flit) and DRAM (in bytes per DRAM chip)
bandwidth configurations

Configuration Name
Interconnect

Flit Size
DRAM

Bus Width
Default 32 4

1/2x Interconnect B/W 16 4
2x Interconnect B/W 64 4

1/2x DRAM B/W 32 2
2x DRAM B/W 32 8

1/2x Interconnect + 1/2x DRAM B/W 16 2
2x Interconnect + 2x DRAM B/W 64 8

33

5.6.3. Cache Size

Table 5.3 details the data cache size configurations I employ. Note that regardless

of the configuration selected from this table, the size of the L1 data cache always depends

on the cache configuration being simulated: at the default configuration, 48 kB of shared

memory and 16 kB of L1 data cache (termed PreferShared), or 16 kB of shared memory

and 48 kB of L1 data cache (termed PreferL1).

All cache size configurations scale the data cache size by modifying the number

of sets; the block size and associativity remain at their default values.

Table 5.3: Data cache size configurations (in kilobytes)

Configuration Name
L1 Data Cache Size

L2 Cache Size PreferShared PreferL1
Default 16 48 768

1/2x L1D 8 24 768
2x L1D 32 96 768

1/2x L2 Cache 16 48 384
2x L2 Cache 16 48 1536

5.6.4. Warp Scheduling Policy

I simulate my benchmarks using four warp-scheduling policies, some of which

have several configuration options. The first is the simulator default, a greedy-then-oldest

(GTO) warp scheduler intended to prevent available warps from reaching long-latency

operations in close time proximity. GPGPU-Sim also includes a loose round-robin (RR)

warp scheduler, which exploits inter-warp locality by keeping warp execution roughly

synchronized, and an implementation of the two-level scheduler described in Chapter

3.3.1. By default, the two-level scheduler uses RR selection for both the inner and outer

policies. In addition to this configuration, I implemented GTO scheduling policies for

both inner and outer warp selection. Lastly, I implemented a greedy-then-least-stalled

(GTLS) warp scheduler that tracks the number of times warps eligible for issue have been

34

non-issued for a long operation (i.e., a synchronization barrier, memory fence, atomic, or

RAW hazard on load data) and, when a warp stalls, prioritizes issue from the warp that

has been stalled for the fewest number of cycles. The tracking of stall counts is cleared

every clear_count cycles (where clear_count is a configuration-defined parameter). Table

5.4 lists the warp scheduler configurations I assess.

Table 5.4: Warp scheduler configurations
Configuration Name Clear Count Outer Policy Inner Policy Fetch Group Size

GTO (Default) N/A N/A N/A N/A
LRR N/A N/A N/A N/A

GTLS_50 50 N/A N/A N/A
GTLS_100 100 N/A N/A N/A
GTLS_500 500 N/A N/A N/A

2 Level: RR_RR_2 N/A RR RR 2
2 Level: RR_RR_4 N/A RR RR 4
2 Level: RR_RR_8 N/A RR RR 8
2 Level: RR_RR_16 N/A RR RR 16
2 Level: RR_GTO_2 N/A RR GTO 2
2 Level: RR_GTO_4 N/A RR GTO 4
2 Level: RR_GTO_8 N/A RR GTO 8
2 Level: RR_GTO_16 N/A RR GTO 16
2 Level: GTO_GTO_2 N/A GTO GTO 2
2 Level: GTO_GTO_4 N/A GTO GTO 4
2 Level: GTO_GTO_8 N/A GTO GTO 8
2 Level: GTO_GTO_16 N/A GTO GTO 16

5.6.5. No Coalescing Penalty

In order to study the relationship between coalescing behavior and performance, I

added a configuration option to GPGPU-Sim that removes the pipeline stall penalty

associated with non-coalesced accesses. This configuration allows an SM to issue a warp

instruction requiring multiple accesses in a single cycle. However, it does not further

improve the memory pipeline to handle the increased memory traffic.

This configuration is not intended to model a realistic hardware improvement.

Rather, it provides an understanding of the portion of the coalescing-related performance

penalty that results from the ensuing pipeline stalls or replays versus the additional

35

memory accesses. I apply the no-coalesce-penalty configuration both by itself and in

combination with increased-capacity cache miss queues and MSHRs. Table 5.5 details

these configurations.

Table 5.5: No coalesce penalty configurations

Configuration Name

Coalesce
Penalty

?

L1 Data Cache L2 Cache
Miss

Queue
Entries

MSHR
Entries

Max.
MSHR
Merges

Miss
Queue
Entries

MSHR
Entries

Max.
MSHR
Merges

Default Y 8 32 8 4 32 4
No Coalesce Penalty

(NCP)
N 8 32 8 4 32 4

NCP + Improved L1 Miss
Handling

N 16 64 16 4 32 4

NCP + Improved L1+L2
Miss Handling

N 16 64 16 8 64 8

5.7. Benchmark Compilation for GPGPU-Sim

Several of the studied benchmarks utilize the CUDA API routine

cudaFuncSetCacheConfig, which sets (on a kernel basis) the L1 cache configuration to

either 48 kB software-controlled shared memory and 16 kB hardware-managed cache or

vice-versa. GPGPU-Sim 3.2.1 does not support this API call. Hence, I modified the

benchmark codes to remove these calls and simulated each benchmark with the shared

memory and L1 data cache sizes set according to the cache configuration used by the

program’s dominant kernels. In each case, I confirmed on real hardware that these

changes result in negligible runtime impact.

The BFS benchmark includes a call to cudaSetDeviceFlags to enable pinned

memory allocation by the host. This CUDA library function is not supported in GPGPU-

Sim, and the benchmark does not actually allocate pinned memory. Therefore, I removed

this library call from the BFS code.

36

The DMR benchmark calls the CUDA 5.5 library cosine function, which includes

an inlined PTX multiply-accumulate instruction format that the simulator’s parser does

not support. I modified DMR to revert to the CUDA 4.2 implementation of cosine.

The CUB library’s DeviceRadixSort implementation (which is used by the SP

benchmark) calls the CUDA runtime API functions cudaDeviceGetAttribute and

cudaDeviceGetSharedMemConfig in order to allow a change in the shared memory vs.

L1 data cache configuration during the radix sort. GPGPU-Sim 3.2.1 does not support

these API calls, nor does it support changing the L1 cache configuration mid-simulation.

I modified DeviceRadixSort to remove its dependence on the unsupported API calls.

Two of the data-driven graph implementations in LonestarGPU, BFS-wlc and

SSSP-wlc, rely on texture memory. These codes cause GPGPU-Sim to print a warning

message that the implementation of cudaRegisterTexture() is incomplete. It is unknown

how the simulator’s current texture implementation affects the results for these

benchmarks.

All benchmarks except BH were compiled using nvcc from CUDA 5.5 with the ‘-

cudart shared -O3 -arch=sm_20’ flags. BH was compiled using nvcc from CUDA 4.2

with the ‘-O3 -arch=sm_20’ flags and simulated on a version of GPGPU-Sim omitting

the changes for CUDA 5.5 described in Chapter 5.2 above.

37

6. RESULTS AND ANALYSIS

This chapter studies the impact on the selected benchmark codes of several

common sources of GPU performance limitation. Next, I examine each application

individually and assess the dominant performance bottlenecks of each. I then evaluate the

performance impact of several hardware modifications. Lastly, I discuss how input

selection and type impact the results.

6.1. Sources of Performance Limitation

The LonestarGPU suite includes applications across a wide range of performance

points. Figure 6.1 illustrates the instructions per cycle (IPC) of each studied application.

The theoretical peak performance of the GTX 480 is 480 IPC.

Figure 6.1: Measured instructions per cycle (IPC) of each benchmark

As expected, the regular programs NB and MC perform very well. More

surprisingly, the irregular code BH also reaches a high IPC, though not in all of its

kernels. The remaining irregular codes match or underperform FPC, the worst of the

(semi-)regular codes. Overall, there is a clear tendency towards much lower IPCs for

irregular codes and none of them come close to achieving peak performance. However, it

38

is also clear that there is no simple or fixed delineation between the performance of codes

operating on irregular data structures and more regular codes.

It should be noted that IPC provides a useful picture of an application’s utilization

of the hardware but cannot be used to directly compare the runtime performance of

different applications and implementations. Figure 6.2 displays the runtime in number of

cycles of the several different implementations of BFS and SSSP included in the

LonestarGPU suite. For both applications and across all tested inputs, the ‘wlc’ variant is

significantly faster in reaching a solution than the default topological variant, even

though the default implementation reaches higher IPC.

Figure 6.2: Runtime in cycles of all BFS and SSSP variants

GPU performance is heavily impacted by the presence of branch divergence

within a warp and memory accesses that cannot be coalesced and/or miss in the cache. In

this subchapter, I study the effect of these factors on each code.

6.1.1. Branch Divergence

Figure 6.3 plots the average warp occupancy based on the active mask of

instructions with a warp at the issue stage in each scheduler. The first bar for each

benchmark represents the average warp occupancy in only those cycles where a warp

instruction was issued to the core pipeline. The second bar represents the average warp

39

occupancy across all cycles of the simulation, including cycles in which a scheduler did

not issue any warp due to a stall or idle condition.

Figure 6.3: Average warp occupancy of each application, both including and excluding idle/stall

cycles

The left bar for each application provides a graphical representation of the amount

of branch divergence. A program with no branch divergence would reach an average

warp occupancy (not including idle and stall cycles) of 32. Indeed, the two highly regular

codes I study have average warp occupancies very close to 32, implying they do not

suffer from branch divergence. As expected from codes operating on an irregular data

structure, the irregular codes tend to display lower warp occupancies. However, only

DMR and SSSP-wln fall below around half-occupied. Of the irregular codes, only BH

has very little branch divergence because its force calculation kernel, which accounts for

95% of its runtime, has been implemented in a warp-based manner to improve

performance. In contrast, the tree-building kernel, denoted in Figure 6.3 as ‘BH(tree)’,

exhibits significantly more control irregularity.

40

Figure 6.4: Benchmark speedup with perfect warp formation

Figure 6.4 illustrates the speedup that each benchmark would achieve given

perfect warp formation, i.e., if each cycle in which an issue could be made issued 32

instructions per scheduler. Overall, with the exception of BFS-unroll, DMR, and SSSP-

wln, branch divergence is somewhat less severe a penalty than expected from irregular

codes. DMR displays severe load imbalance between threads as the refinement process

runs out of work, leading to the high divergence. SSSP-wln includes control flow around

a section of code that executes only if a thread finds a new shortest path to a node. It is

unlikely that more than a handful of threads in any warp will do so in an iteration.

The right bar of each application in Figure 6.3 illustrates the impact on warp

occupancy of issue stalls, particularly due to uncoalesced accesses and memory latency.

The next subchapters investigate these factors in more detail.

6.1.2. Memory Coalescing

Figure 6.5 plots the average number of memory accesses performed by each

global or local load or store instruction. A bar height above one illustrates the presence of

uncoalesced memory accesses.

41

Figure 6.5: Average memory access count per global or local warp load or store instruction

The highly regular applications NB and MC have average access counts of 1,

meaning that essentially all loads and stores are fully coalesced, i.e., each access by a

warp results in a single memory transaction. BH and TSP perform very few but highly

uncoalesced stores. On average, BH’s loads are almost all coalesced, but this is again due

to the dominant regularized force calculation kernel. The BH tree-building kernel, in

contrast, exhibits one of the highest load access counts of the studied codes. TSP

possesses a data-dependent and byte-granular memory-access pattern and thus exhibits

highly uncoalesced accesses. FPC suffers from a high average access count resulting

from its data-dependent byte-granular memory accesses, since stores to two bytes in the

same word are serialized by the hardware. SP and SSSP-wln both have very high average

load-access counts. SP makes many scattered accesses around a randomly-connected

graph, leading to the high uncoalescing. SSSP-wln operates on nodes popped from a

worklist of those nodes whose values changed in the last iteration and then reads

destination node data. It is unlikely that nearby nodes on the worklist (and therefore

nearby threads) will traverse similar segments of the graph, leading to many scattered and

uncoalesced reads.

42

BFS, BFS-unroll, and the SSSP variants have fully coalesced stores, and the

topological BFS and SSSP implementations display only slightly increased load access

counts. However, their high load instruction counts result in significant slowdown from

coalescing, as seen in Figure 6.6, which displays the percentage of simulation cycles in

each benchmark that the simulator marks as stalls due to coalescing.

Figure 6.6: Percentage of cycles marked as coalescing stalls

This figure provides a visualization of the theoretical speedup that would result

from somehow entirely removing the coalescing requirements. To further study the

relationship between coalescing and performance in these benchmarks, I added a

configuration to GPGPU-Sim that removes the pipeline stall penalty associated with non-

coalesced accesses. This configuration allows an SM to issue a warp instruction requiring

multiple accesses in a single cycle. However, it does not further improve the memory

pipeline to handle the increased memory traffic. It is not intended to model a realistic

hardware improvement, but it provides some visualization of the amount of coalescing

performance penalty that comes from increased memory traffic versus pipeline stalls.

43

I studied each code with the no-coalesce-penalty (NCP) configuration applied by

itself and in combination with increased-capacity cache miss queues and MSHRs. Figure

6.7 plots the speedups over the default setting for each of the NCP configurations.

(Note: Does not include data for BFS-wlc and SSSP-wlc due to assertions in texture memory simulator code)

Figure 6.7: Speedup over the default simulator configuration when removing the coalescing
pipeline penalty and increasing the cache miss handling capacities

As intuitively expected, simply removing the pipeline penalty associated with

coalescing stalls has little impact on performance (and is in some cases harmful) due to a

corresponding increase in cache reservation stalls and interconnect backup. More

surprisingly, for most of the benchmarks, improving the miss-handling capability of the

caches does little to improve the performance impact of removing the coalescing stall

penalty. (FPC is an outlier due to its many serialized byte-granular stores, which are

counted as coalescing stalls). This suggests that hardware improvements aimed at

reducing the coalescing pipeline penalty are likely to be ineffective on irregular codes

unless they are combined with increased memory bandwidth.

6.1.3. Cache Behavior

Lastly, I observe the data cache miss ratio (in Figure 6.8) and miss rate (in Figure

6.9) in misses per thousand warp instructions (MPKI) for each program. Most of the

44

applications, including the highly regular codes, have L1 cache miss ratios above 50%,

which would be considered extremely high for CPU applications. Note that CPU and

GPU architectures have L1 data caches for different reasons: in GPUs, they mostly

provide coalescing support rather than exploit temporal locality, because there cannot be

an expectation of the cache holding data for a significant period of time due to the high

number of active threads.

Figure 6.8: Data cache miss ratios (L2 ratios are local, i.e., number of misses over number of L2

accesses)

Figure 6.9: Cache misses per thousand warp instructions (MPKI)

45

However, most of the irregular codes have markedly higher MPKI rates than the

regular codes. NB, which tiles its data into shared memory and is compute-bound, has

MPKI rates near zero for both data caches. TSP is composed mostly of shared memory

accesses and many of its local memory accesses are strided, which is why this program

has one of the lowest observed miss rates. FPC is a streaming code and therefore also

exhibits a relatively low miss rate. SSSP-wln’s high average load access count results in a

high MPKI and contributes to the longer runtime of this data-driven SSSP variant

compared to the topological implementation. BFS-wlc’s miss rate is low, presumably

because much of the worklist fits within the L1 cache. SP (whose L1 miss rate exceeds

the Figure 6.9 axis by more than a multiple of three) has the highest average access count

of the studied codes (i.e., it is the most poorly coalesced), leading to an extremely high

miss rate even at my relatively small input size. The small SP input size (limited by

simulation time) results in an L2 miss rate near zero. In general, the irregular codes

perform a significant number of pointer-chasing operations and are not able to exploit

much spatial locality.

6.2. Individual Application Analysis

As described in Chapter 5.4, I supplemented GPGPU-Sim’s warp issue metrics

with additional stall type counters. Based on the resulting warp occupancy histogram and

stall distributions, I calculated (on a per-application basis) the number of issue cycles

with underused thread occupancy due to branch divergence, control flow, memory and

synchronization barriers, atomics, scoreboard hazards, functional unit stalls, and work

imbalance between blocks, as well as cycles in which the GPU issued at full occupancy

(busy cycles). Scoreboard hazards include both read-after-write (RAW) and write-after-

46

write (WAW) hazards but are dominated by RAW hazards in all of the codes. Because

outstanding loads cause the majority of these RAW hazards, the scoreboard hazards

metric provides a rough estimate of the impact of memory latency. In addition, load/store

unit (LSU) pipeline stalls reflect both coalescing penalty and cache reservation fails; the

latter is also an indication of memory-latency-associated slowdown.

Figure 6.10 below displays the breakdown of underused and busy cycles based on

the prioritized-stall-cause tracking illustrated in Figure 5.1, which in each cycle

increments a counter for the stall cause associated with the warp whose no-issue decision

was resolved in the deepest pipeline stage. Figure 6.11 below displays the breakdown of

underused and busy cycles based on a histogram formed by, in each cycle, incrementing

the bin associated with the cause responsible for the greatest number of available warps

that could not issue.

I discuss each code in detail below and then draw some general conclusions.

• Breadth-First Search—Topological (BFS)

This code suffers from a high number of LSU stalls (full LSU pipeline) and RAW

hazards (operations waiting on load data), both of which are indicative of memory-

latency-related slowdown resulting from the data-dependent nature of BFS’s memory

accesses (based on the connectivity of the input graph). The BFS implementation further

displays some control-flow irregularity due to graph nodes having different numbers of

edges, which results in branch divergence.

• Breadth-First Search—Unroll (BFS-unroll)

The BFS-unroll code processes multiple frontiers per iteration by maintaining a

worklist of changed destination nodes in shared memory. Its runtime is significantly

47

Figure 6.10: The proportion of underused vs. fully-occupied cycles in each application (deepest

pipeline stage)

(Note: BH is omitted because this histogram instrumentation was not included in my CUDA 4.2 simulator version)
Figure 6.11: The proportion of underused vs. fully-occupied cycles in each application (most

impacted warps)

48

lower on the same inputs as the default BFS implementation. Compared to the default

implementation, it displays less memory penalty because of the data-driven nature of the

unrolled segments of frontier processing, exposing more of the atomics required to

update node levels. The reduction in memory-related slowdown also exposes cycles that

suffer from divergence and control-flow hazards due to the relatively small loop trip

count over outgoing edges.

• Breadth-First Search—Data-driven (BFS-wlw)

This code implements BFS in a data-driven manner, processing nodes from a

worklist of active nodes and assigning one node per thread. It suffers from severe

interblock imbalance because of the low parallelism in frontier nodes available during

much of its execution.

• Breadth-First Search—Merrill’s strategy (BFS-wlc)

The BFS-wlc code operates on edge and vertex frontiers stored in global memory

and therefore relies on global barriers (implemented by having blocks check in and then

spin-wait for all check-ins via global memory and requiring several synchronization

barriers). It also uses the CUB library’s block scan primitive, which relies on intra-block

synchronization. Of my studied codes, this implementation displays by far the largest

penalty from synchronization, with stalls caused by a majority of warps available for

issue stuck at a barrier in around 75% of its cycles. This benchmark also results in the

most significant difference between the two methods of counting stall causes illustrated

in Figures 6.10 and 6.11. In many of the stall/idle cycles of the simulation, there were

available warps that made it past the barrier stage and still could not issue because of

RAW hazards on load data.

49

• Barnes-Hut (BH)

The BH code, while tree-based and irregular in nature, is dominated by its force

calculation kernel, which has been optimized to eliminate almost all divergence and to

ensure that most of its main memory accesses are coalesced. As a result, BH spends a

larger percentage of execution time at full occupancy than the other irregular codes. It

should be noted that BH’s warp threads perform some unnecessary computation to

minimize branch divergence, and these unnecessary cycles are denoted as busy cycles

rather than divergence. However, the unnecessary work improves both the performance

and the accuracy of the algorithm. Figure 6.10 above also includes metrics for the BH

tree-building kernel. This kernel exhibits significantly more irregularity, suffering from

both memory-access stalls and branch divergence. It also exhibits a noticeable

performance penalty due to the synchronization barriers necessary to build the tree in

parallel. There is a small amount of work imbalance as it is a priori unknown how deep

the various branches of the octree will be.

• Delaunay Mesh Refinement (DMR)

DMR has the lowest IPC of all the codes I examine and is one of the most

irregular as well. It suffers from a large amount of memory-access stalls, divergence, and

one of the larger fractions of synchronization stalls of the studied codes. For each bad

triangle, DMR’s refinement kernel builds a cavity whose size and shape are data

dependent, checks whether there is overlap with another cavity, employs a priority-based

back-off mechanism in case of overlap, and finally refines the cavity if the thread has the

highest priority of all the triangles in the cavity. The synchronization stalls stem from

global barriers separating these phases, the divergence is the result of load imbalance

50

between threads, and the memory stalls are likely unavoidable when processing an

irregular graph whose shape changes at runtime.

• Minimum Spanning Tree (MST)

MST spends the majority of its cycles waiting for uncoalesced load data due to

the irregular nature of its accesses to the merged graph nodes, or components. The

innermost loop contains a set of nested if statements to unify the minimum-weight

components, resulting in both significant divergence and control-flow penalties. MST

displays one of the higher fractions of slowdown associated with atomics of the codes I

study due to the atomic operations necessary to merge components; however, it is still a

minor source of performance loss compared to memory-related stalls.

• Survey Propagation (SP)

SP traverses and operates on a random 3-SAT input graph, resulting in randomly

scattered memory accesses and a large number of coalescing stalls (visible in my metrics

as a large amount of LSU pipeline stalls). It suffers from control hazard idle cycles due to

the very short loop body and tiny loop count (over the number of literals per clause) of its

innermost loop. The code exhibits imbalance due to its statically unknown amount of

work that depends on how fast the algorithm converges as well as divergence due to

separate code paths for positive and negative edges. Overall, this application exhibits

very few fully occupied execution cycles.

• Single-Source Shortest Paths—Topological (SSSP)

This algorithm is similar to the topological BFS implementation except that SSSP

processes a directed, weighted graph. Similarly to BFS, its performance is limited by

LSU and RAW hazard stalls resulting from uncoalesced memory accesses and

51

insufficient memory bandwidth as well as branch divergence due to control-flow

irregularity when processing the input graph.

• Single-Source Shortest Paths—Data-driven (SSSP-wln)

The SSSP-wln code is a data-driven implementation where threads process nodes

from a worklist similarly to the BFS-wlw code. There is a small amount of slowdown due

to the atomic operations necessary to update the newly-found shortest distances within

destination nodes as well as significant interblock imbalance as threads run out of work

and divergence due to both imbalance and differing control flow for adjacent threads

processing nodes in worklist order. The worklist variant of SSSP displays a much larger

memory-related penalty than the similar BFS code due to RAW hazards from the

additional load for the atomic compare operation, whose return value is immediately used

to resolve a branch condition. The scattered and uncoalesced nature of these accesses,

based on the order of nodes in the worklist, make SSSP-wln’s slower than the topological

SSSP variant.

• Single-Source Shortest Paths—Merrill’s strategy (SSSP-wlc)

This code is similar to the BFS-wlc implementation, and it likewise suffers from a

very high synchronization penalty. Like SSSP-wln, however, SSSP-wlc suffers from both

atomics penalty and additional RAW hazards due to the atomic operations that update

new shortest paths. BFS-wlc also suffers from some interblock imbalance as threads run

out of work.

• Floating-Point Compression (FPC)

This application spends most of its time stalled due to a full load/store unit

pipeline. These stalls stem from the coalescing behavior of its double-precision memory

52

accesses as well as warp threads reading and writing data-dependent byte locations in

global memory. FPC also exhibits a large percentage of control-flow-hazard stalls due to

the short (maximum iteration count of 8) data-dependent loops that read and write the

compressed bytes corresponding to an uncompressed double. FPC further suffers from

some branch divergence due to imbalance in the number of bytes processed by each warp

thread, as well as a code section in which only every other thread has work.

• Traveling Salesman Problem (TSP)

The TSP code is semi-regular, possessing relatively regular control flow but data-

dependent memory accesses, and it spends the majority of its execution time on

computation. Its memory accesses are mostly to shared memory, but it does access main

memory when performing the 2-opt city ordering swaps, resulting in uncoalesced

accesses and LSU stalls. TSP also exhibits a large fraction of idle time associated with

synchronization barriers. These barrier idle cycles occur as threads in a block finish

computing their locally best solution but have to wait for the slowest thread in the block

before the global solution can be updated. The branch divergence stems from an instance

of control-flow irregularity where some threads have reached a local minimum and want

to move on to a new tour while other threads are still searching for a minimum.

• N-Body (NB)

This code is highly regular and computation-bound. Additionally, I chose an input

size to exactly fill the resident blocks to provide a basis of comparison for the irregular

benchmarks. NB demonstrates the highest busy ratio of the studied programs. Its lost

cycles are due mostly to RAW hazards on the small amount of data not accessed via

53

shared memory as well as full computation pipelines and the synchronization barriers

necessary between transferring data to shared memory and the computation phase.

• Monte Carlo (MC)

The MC application is embarrassingly parallel, highly regular, and dominated by

computation. Its largest source of slowdown is scoreboard hazards, both due to cache

misses and long computation operations. It also displays some imbalance between blocks

as well as pipeline stalls in the special function unit (SFU) pipeline due to its extensive

use of square root operations in the quasi-random sequence generation kernel.

Many irregular codes rely on synchronization and memory barriers and atomic

operations. With the exception of the synchronization penalty in BFS-wlc and SSSP-wlc

codes, however, these primitives contribute a smaller fraction of program slowdown than

expected. Memory fences appear to contribute very little to program slowdown for these

codes. The performance loss associated with imbalance and branch divergence was also

somewhat less severe than expected of codes operating on irregular data structures. This

suggests that these benchmark codes have been successfully optimized to minimize the

performance impact of these aspects [64][65]. In line with expectation, memory

bandwidth appears to be the most significant performance bottleneck for highly

optimized irregular GPU applications, suggesting this bottleneck is more difficult to

address with source-code optimizations.

6.3. Impact of Hardware Modifications

Next I examine the performance impact of several hardware modifications in

order to better understand the behavior of irregular codes and their sensitivity to various

hardware parameters. The hardware configurations discussed in this subchapter are

54

described in Chapter 5.6. All speedups in this chapter are calculated using IPC. Several of

these codes iterate until convergence is reached, making direct cycle count (i.e., runtime)

comparisons meaningless because even minor changes in microarchitectural timing can

alter the number of iterations and therefore the number of instructions executed. IPC

comparisons normalize for these fluctuations.

6.3.1. Cache and Memory Latency

I begin by scaling the L2 hit latency (ROP latency) and the DRAM access

latency. I examine the runtime (in cycles) of each benchmark with both latencies

configured to zero as well as with the latencies doubled and halved. Figure 6.12 plots the

speedup relative to the default setting for each latency configuration.

(Note: TSP does not include data for the No Latency configuration due to a simulator deadlock)

Figure 6.12: Speedup over the default simulator configuration when scaling the minimum L2 hit
latency and DRAM latency

Interestingly, nearly all of the studied benchmarks are more sensitive to the L2

latency than the DRAM latency, even in the presence of working set sizes several times

larger than the L2 capacity. The exception is FPC, which accesses data in a streaming

manner and displays high spatial locality. The regular NB code uses tiling to read all its

data into shared memory and is largely compute bound; it is thus insensitive to memory

55

latencies. At least for these inputs, L2 latency appears to be more important than DRAM

latency for the performance of GPGPU codes, especially irregular ones.

6.3.2. Cache and Memory Bandwidth

Next I scale the interconnect bandwidth between the memory partitions (including

the L2 cache) and the core, as well as the DRAM bandwidth. Figure 6.13 illustrates the

performance impact on each benchmark of halving and doubling the interconnect and

DRAM bandwidths, both individually and in combination with one another.

Figure 6.13: Speedup over the default simulator configuration when scaling the interconnect and

DRAM bandwidths

Similarly to the L2 and DRAM latency behavior, most of the studied applications

are significantly more sensitive to interconnect bandwidth than to DRAM bandwidth. It

seems that for these applications and input sizes, the L2 is large enough that sufficient L2

bandwidth keeps enough warps able to execute. The regular codes are helped very little

by additional memory bandwidth.

6.3.3. Cache Size

Figure 6.14 plots the performance impact on each benchmark of halving and

doubling the L1D and L2 cache sizes over the default configuration.

56

In general, those benchmarks that are significantly sensitive to interconnect

bandwidth also benefit most from increased L1 data cache size. One exception is the

irregular BH tree-construction kernel. This kernel traverses tree prefixes beginning with

the root of the tree. The top of the tree is therefore likely to hit in the L1, but after the top

portion of the tree there is insufficient locality to leverage even a larger L1. Increased

bandwidth to the L2, however, improves performance because the L2 allows for

significant exploitation of locality in the traversals.

Figure 6.14: Speedup over the default simulator configuration when scaling the data cache sizes

Most of the irregular codes are hurt more by decreased L1 capacity than by

decreased L2 capacity. The regular codes, on the other hand, are impacted more by

decreased L2 capacity, but the impact is relatively minor in comparison to the impact of

the L1 cache size on irregular codes. For these inputs, BFS, SP, and SSSP all display an

unexpected speedup with a reduced L2 size. These applications iterate until they

converge, and microarchitectural changes can alter the timing behavior, which in turn can

affect the number of iterations and the order in which tasks are processed, potentially

altering the code’s memory locality and other performance factors and leading to

counterintuitive performance changes.

57

6.3.4. Warp Scheduling Policy

By default, GPGPU-Sim implements a greedy-then-oldest (GTO) warp scheduler,

which prioritizes a particular warp until that warp stalls, then prioritizes the oldest other

warp eligible for issue. Figure 6.15 shows the performance impact of using a round-robin

(RR) scheduler instead.

Figure 6.15: Speedup of the RR scheduler over the default GTO scheduler

With the exception of SP, the RR scheduler degrades the performance of the

irregular codes. RR scheduling preserves locality between warps by keeping warps

roughly synchronized. This has a significantly positive performance impact on the more

regular codes, whose data-independent access patterns tend to assign nearby data

locations to nearby warp instructions. RR scheduling improves the performance of FPC,

for example, by nearly 25% because of a reduction in RAW hazards on load data.

While good for preserving inter-warp locality, the downside to RR scheduling is

that warps tend to encounter long operations (i.e., stalls) at the same time. GTO

scheduling, on the other hand, sacrifices inter-warp locality in order to address the stall

issue. It appears that GTO warp scheduling is superior for irregular codes, which often

possess little inter-warp locality.

58

Figure 6.16 displays the performance impact of my greedy-then-least-stalled

(GTLS) warp scheduler with several configurations of clear_count (cf. Chapter 5.6.4).

This scheduler trivially helps a handful of the irregular applications and in general hurts

the irregular codes less than the RR scheduler while preserving some of the benefit to the

highly regular codes. However, because the GTLS scheduler is greedy in nature, it still

sacrifices some inter-warp synchronization and therefore locality, and its benefit to the

regular codes cannot match the RR scheduler.

Figure 6.16: Speedup of the GTLS scheduler over the default GTO scheduler

Lastly I examine the performance impact on irregular codes of the two-level

scheduler proposed by Narasiman et al. [26], using several configurations of inner and

outer scheduling policies and fetch group size. Figures 6.17 – 6.19 below show the

impact on the performance of each benchmark.

Overall, two-level warp scheduling appears detrimental to irregular codes. Small

fetch group sizes are always harmful. Two-level scheduling benefits the more regular

codes when employed with a round-robin selection policy; however, only two codes

(FPC and MC) perform better with some configuration of the two-level scheduler than

they did with the concrete RR scheduler.

59

Figure 6.17: Speedup of the 2-level scheduler with RR inner and outer policies over the default

GTO scheduler

Figure 6.18: Speedup of the 2-level scheduler with an RR outer and GTO inner policy over the

default GTO scheduler

Figure 6.19: Speedup of the 2-level scheduler with GTO inner and outer policies over the default

GTO scheduler

60

Of the simple warp schedulers proposed in the literature, GTO appears to be the

best choice for supporting GPGPU execution of irregular codes. For these applications,

further performance improvements from scheduling will likely require more complicated

schemes for identifying and responding to sources of slowdown (e.g., cache contention).

6.4. Input Sensitivity

By definition, irregular codes display behavior that varies depending on the input

data. In order to understand the impact of input variation on my results, I simulated each

benchmark with several inputs (cf. Chapter 4.2) and compared the results.

Despite the input-sensitive nature of the codes, different inputs of similar size

result in similar microarchitectural performance behavior. Figure 6.20 displays the IPC of

each benchmark across multiple inputs of similar size and type (road networks in the case

of all graph codes). As expected, the fully regular code, NB, maintains the same IPC

regardless of input data. The irregular codes do display some IPC variation; however, the

difference is minimal across all benchmarks.

Figure 6.20: Instructions per cycle for each benchmark with several similar inputs

61

Figure 6.21: The proportion of underused vs. fully-occupied cycles (deepest pipeline stage) for

all codes using several similar inputs

Figure 6.21 illustrates the breakdown of underused cycles in each benchmark

using the same inputs as in Figure 6.20 above, based on the deepest-pipeline-stage-

prioritized version of the histogram detailed in Chapter 5.4. Despite the input-dependent

behavior of the code, the microarchitectural performance behavior of a given application

remains largely consistent across inputs of similar size and structure.

6.4.1. Input Type

In order to observe their sensitivity to input type, I compared each graph

benchmark (i.e., BFS, MST, and SSSP) with both its primary road-network input and an

R-MAT input. Figure 6.22 plots the IPC of each graph code using the primary input of

each type. Figure 6.23 displays the breakdown of underused cycles for each code and

input, once again based on the deepest-pipeline-stage-prioritized histogram.

62

Figure 6.22: Instructions per cycle for all graph codes with road-network and R-MAT inputs

Figure 6.23: The proportion of underused vs. fully-occupied cycles (deepest pipeline stage) for

all graph codes using road-network and R-MAT inputs

Variance in input type results in greater variation in performance characteristics.

All of the graph codes perform at lower IPCs on R-MAT inputs. R-MAT graphs are

denser and have higher and more varied out-degree per node than road networks, and this

leads to a higher divergence penalty in most of the benchmarks. For the BFS and SSSP

63

implementations, the tested R-MAT graph is larger than the New York City road map

input, which reduces inter-block imbalance in BFS-wlw and results in higher memory

latency penalty in several of the codes. Due to the limitations of simulation time, the R-

MAT input for MST is significantly smaller than the road network. However, MST’s

performance still degrades on the R-MAT graph due to the different graph structure.

Figure 6.24 shows the underutilized and busy cycles of the BFS and SSSP

variants on a road network input and an R-MAT input of equal size. In general, even

equally sized R-MAT graphs result in more divergence and more memory penalty than

road networks.

Figure 6.24: The proportion of underused vs. fully-occupied cycles for BFS and SSSP with

equally-sized inputs of different types

64

7. SUMMARY AND CONCLUSIONS

This thesis presents a microarchitectural workload characterization focusing on

irregular GPU codes. I study the impact of control-flow and memory-access irregularity

on several performance aspects, analyze how this behavior differs from that of regular

GPGPU programs, and characterize the sensitivity of irregular codes to changes in cache

and DRAM latency and bandwidth, cache size, coalescing behavior, and warp scheduling

policy. Additionally, I connect source code to particular microarchitectural performance

characteristics.

As expected, even extensively hand-optimized graph and tree codes running on

GPUs tend to achieve lower IPCs than regular codes. In general, they exhibit greater

performance loss due to load imbalance, branch divergence, and uncoalesced memory

accesses resulting from the unpredictable nature of their control-flow and memory-access

patterns. This general trend is not always true, however. BH, for example, builds and

operates on an irregular data structure (an octree) but, due to targeted code optimizations,

displays less memory irregularity than FPC, which does not operate on a dynamic data

structure.

Interestingly, for the most part, load imbalance and branch divergence limited the

performance of these (presumably comprehensively hand optimized) irregular codes less

than expected. For many of the studied benchmarks, this was also true of the performance

limitation of synchronization and atomic operations. Memory-related slowdown appears

to be the single biggest factor limiting the performance of irregular applications, even

those that have been demonstrated to possess ample parallelism [66], because irregular

memory-access patterns appear to be difficult to regularize and coalesce.

65

I find that, for my sizeable tested inputs, improving the L2 latency and bandwidth

is more important than improving the DRAM latency and bandwidth to boost the

performance of programs with irregular memory accesses. Hardware strategies designed

to reduce the penalty associated with uncoalesced memory accesses, including in-core

miss-handling resources, are unlikely to have a significant performance effect without

corresponding improvements in memory bandwidth and latency. Two-level warp

scheduling appears to have minimal or negative impact on irregular codes, which perform

better with a greedy-then-oldest scheduler than with other simple policies.

7.1. Recommendations for Future Work

Based on these results, future work aimed at improving the suitability of GPGPUs

for irregular codes should focus on enhancing cache effectiveness and/or improving

memory and especially last-level-cache and memory latencies and bandwidths. Simple

warp schedulers proposed in the literature for enhancing the performance of regular

codes, e.g., two-level active scheduling, seem ineffective for irregular codes. For these

applications, addressing sources of slowdown via warp scheduling will likely require

more complicated schemes aimed at increasing cache effectiveness and maximizing

memory bandwidth.

66

LITERATURE CITED

[1] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, and
T.J. Purcell, “A Survey of General-Purpose Computation on Graphics Hardware,”
Computer Graphics Forum, vol. 26, pp. 80-113, Mar. 2007.

[2] S. Huang, S. Xiao, and W. Feng, “On the Energy Efficiency of Graphics Processing
Units for Scientific Computing,” in Proc. 23rd IEEE Int. Symp. Parallel and
Distributed Processing (IPDPS), Rome, 2009, pp. 1-8.

[3] (2014). The Green 500 List [Online]. Available:
http://www.green500.org/news/green500-list-june-2014

[4] P. McGuinness. (2014). What’s Next for Mobile? Heterogeneous Processing
Evolves. Embedded Computing Design [Online]. Available: http://embedded-
computing.com/articles/whats-next-for-mobile-heterogeneous-processing-evolves/

[5] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia Tesla: A Unified
Graphics and Computing Architecture,” IEEE Micro, vol. 28, no. 2, pp. 39-55,
Mar.-Apr. 2008.

[6] M.J. Harris, “Fast Fluid Dynamics Simulation on the GPU,” in GPU Gems, R.
Fernando, Ed. Boston: Addison-Wesley, 2004, pp. 637-665.

[7] C. Kolb and M. Pharr, “Options Pricing on the GPU,” in GPU Gems 2, M. Pharr,
Ed. Boston: Addison-Wesley, 2005, pp. 719-731.

[8] G.H. Golub and C.F. Van Loan, Matrix Computations. Baltimore: Johns Hopkins
Press, 1996.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, and K. Skadron, “A
Performance Study of General-Purpose Applications on Graphics Processors Using
CUDA,” J. Parallel Distributed Computing, vol. 68, no. 10, pp. 1370-1380, Oct.
2008.

[10] J. Barnes and P. Hut, “A Hierarchical O(n log n) Force-Calculation Algorithm,”
Nature, vol. 324, pp. 446-449, Dec. 1986.

[11] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston:
Addison-Wesley, 2005.

[12] A. Braunstein, M. Mézard, and R. Zecchina, “Survey Propagation: An Algorithm
for Satisfiability,” Random Structures and Algorithms, vol. 27, no. 2, pp. 201-226,
Sept. 2005.

[13] K. Hildrum and P.S. Yu, “Focused Community Discovery,” in Proc. 5th Int. Conf.
Data Mining, 2005, pp. 27-30.

67

[14] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and
Tools. Boston: Addison-Wesley, 1986.

[15] J. Misra, “Distributed Discrete-Event Simulation,” ACM Computing Survey, vol.
18, no. 1, pp. 39-65, Mar. 1986.

[16] L.P. Chew, “Guaranteed-Quality Mesh Generation for Curved Surfaces,” in Proc.
9th ACM Symp. Computational Geometry (SOGC), San Diego, CA, 1993, pp. 274-
280.

[17] M. Burtscher and K. Pingali, “An Efficient CUDA Implementation of the Tree-
based Barnes Hut n-Body Algorithm,” in GPU Computing Gems Emerald Edition,
W.-M.W. Hwu, Ed. Burlington: Morgan Kaufman, 2011, pp. 75-92.

[18] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU Implementation of
Inclusion-Based Points-To-Analysis,” in Proc. 17th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming (PPOPP), New Orleans, LA,
2012, pp. 107-116.

[19] D.G. Merrill, M. Garland, and A.S. Grimshaw, “Scalable GPU Graph Traversal,”
Proc. 17th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPOPP), New Orleans, LA, 2012, pp. 117-128.

[20] A. McLaughlin and D.A. Bader, “Scalable and High Performance Betweenness
Centrality on the GPU,” in Proc. Int. Conf. High Performance Computing,
Networking, Storage and Analysis (SC), New Orleans, LA, 2014, pp. 572-583.

[21] LonestarGPU v. 2.0 [Online]. Available:
http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

[22] CUDA C Programming Guide v. 6.5 [Online]. NVIDIA. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide

[23] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, white paper,
NVIDIA, 2009.

[24] CUDA C Best Practice Guide v. 6.5 [Online]. NVIDIA. Available:
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide

[25] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110, white
paper, NVIDIA, 2012.

[26] V. Narasiman, M. Shebanow, C.J. Lee, R. Miftakhutdinov, O. Mutlu, and Y.N. Patt,
“Improving GPU Performance via Large Warps and Two-Level Warp Scheduling,”
in Proc. 44th Ann. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Porto
Alegre, Brazil, 2011, pp. 308-317.

68

[27] T.G. Rogers, M. O’Connor, T.M. Aamodt, “Cache-Conscious Wavefront
Scheduling,” in Proc. 45th Ann. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Vancouver, Canada, 2012, pp. 72-83.

[28] GPGPU-Sim [Online]. Available: http://www.gpgpu-sim.org

[29] T.M. Aamodt and W.W.L. Fung, Eds., GPGPU-Sim 3.x Manual rev. 1.2 [Online].
Available: http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual

[30] CUDA Samples [Online]. Available: http://docs.nvidia.com/cuda/cuda-
samples/index.html

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in Proc. IEEE Int.
Symp. Workload Characterization (IISWC), Austin, TX, 2009, pp. 44-54.

[32] J.A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G.D.
Liu, and W.-M.W. Hwu, Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing, technical report IMPACT-12-01, University
of Illinois at Urbana-Champaign, 2012.

[33] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in Proc. 2009 IEEE Int.
Symp. Performance Analysis of Systems and Software (ISPASS), Boston, MA, 2009,
pp. 163-174.

[34] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU Workloads:
Characterization Methodology, Analysis and Microarchitecture Evaluation
Implications,” in Proc. 2010 IEEE Int. Symp. Workload Characterization (IISWC),
Atlanta, GA, 2010, pp. 1-10.

[35] E. Blem, M. Sinclair, K. Sankaralingam, “Challenge Benchmarks That Must Be
Conquered to Sustain the GPU Revolution,” in Proc. 4th Ann. Workshop Emerging
Applications and Many-Core Architecture (EAMA), San Jose, CA, 2011.

[36] S. Che, J.W. Sheaffer, M. Boyer, L.G. Szafaryn, L. Wang, and K. Skadron, “A
Characterization of the Rodinia Benchmark Suite with Comparison to
Contemporary CMP Workloads,” in Proc. 2010 IEEE Int. Symp. Workload
Characterization (IISWC), Atlanta, GA, 2010, pp. 1-11.

[37] S.-Y. Lee and C.-J. Wu, “Characterizing the Latency Hiding Ability of GPUs,” in
Proc. 2014 IEEE Int. Symp. Performance Analysis of Systems and Software
(ISPASS), Monterey, CA, 2014, pp. 145-146.

[38] J. Hestness, S.W. Keckler, and D.A. Wood, “A Comparative Analysis of
Microarchitecture Effects on CPU and GPU Memory System Behavior,” in Proc.
2014 IEEE Int. Symp. Workload Characterization (IISWC), Raleigh, NC, 2014, pp.
150-160.

69

[39] Gem5-GPU [Online]. Available: https://gem5-gpu.cs.wisc.edu/wiki/

[40] A. Kerr, G. Diamos, and S. Yalamanchili, “A Characterization and Analysis of PTX
Kernels,” in Proc. 2009 IEEE Int. Symp. Workload Characterization (IISWC),
Austin, TX, 2009, pp. 3-12.

[41] GPUOcelot: A Dynamic Compilation Framework for GPU Computing [Online].
Available: http://gpuocelot.gatech.edu

[42] H. Wu, G. Diamos, S. Li, and S. Yalamanchili, “Characterization and
Transformation of Unstructured Control Flow in GPU Applications,” in Proc. 1st
Int. Workshop Characterizing Applications for Heterogeneous Exascale Systems
(CACHES), Tucson, AZ, 2011.

[43] Q. Xu, H. Jeon, and M. Annavaram, “Graph Processing on GPUs: Where are the
Bottlenecks?” in Proc. 2014 IEEE Int. Symp. Workload Characterization (IISWC),
Raleigh, NC, 2014, pp. 140-149.

[44] M.A. O’Neil and M. Burtscher, “Microarchitectural Performance Characterization
of Irregular GPU Kernels,” in Proc. 2014 IEEE Int. Symp. Workload
Characterization (IISWC), Raleigh, NC, 2014, pp. 130-139.

[45] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of Irregular
Programs on GPUs,” in Proc. 2012 IEEE Int. Symp. Workload Characterization
(IISWC), San Diego, CA, 2012, pp. 141-151.

[46] J. Coplin and M. Burtscher, “Power Characteristics of Irregular GPGPU Programs,”
in Proc. 2014 Int. Workshop Green Programming, Computing, and Data
Processing (GPCDP), Dallas, TX, 2014.

[47] S. Che, B.M. Beckmann, S.K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in Proc. 2013 IEEE Int.
Symp. Workload Characterization (IISWC), Portland, OR, 2013, pp. 185-195.

[48] J. Wang and S. Yalamanchili, “Characterization and Analysis of Dynamic
Parallelism in Unstructured GPU Applications,” in Proc. 2014 IEEE Int. Symp.
Workload Characterization (IISWC), Raleigh, NC, 2014, pp. 51-60.

[49] N. Brunie, S. Collange, and G. Diamos, “Simultaneous Branch and Warp
Interleaving for Sustained GPU Performance,” in Proc. 39th Int. Symp. Computer
Architecture (ISCA), Portland, OR, 2012, pp. 49-60.

[50] I. Singh, A. Shriraman, W.W.L. Fung, M. O’Connor, T.M. Aamodt, “Cache
Coherence for GPU Architectures,” in Proc. 19th IEEE Int. Symp. High-
Performance Computer Architecture (HPCA), Shenzhen, China, 2013, pp. 578-590.

70

[51] P. Xiang, Y. Yang, and H. Zhou, “Warp-Level Divergence in GPUs:
Characterization, Impact, and Mitigation,” in Proc. 20th Int. Symp. High-
Performance Computer Architecture (HPCA), Orlando, FL, 2014.

[52] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision for Integrated
Branch and Memory Divergence Tolerance,” in Proc. 37th Int. Symp. Computer
Architecture (ISCA), Saint-Malo, France, 2010, pp. 235-246.

[53] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, New
York: McGraw Hill, 2001.

[54] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L.P. Chew,
“Optimistic Parallelism Requires Abstractions,” in Proc. ACM Conf. Programming
Languages Design and Implementation (PLDI), San Diego, CA, 2007, pp. 211-222.

[55] J. Nešetřil, E. Milková, H. Nešetřilová, “Otakar Borůvka on Minimum Spanning
Tree Problem: Translation of Both the 1926 Papers, Comments, and History,”
Discrete Mathematics, vol. 233, pp. 3-36, April 2001.

[56] M.A. O’Neil and M. Burtscher, “Floating-Point Data Compression at 75 Gb/s on a
GPU,” in Proc. 4th Workshop General-Purpose Processing on Graphics Processing
Units (GPGPU), Newport Beach, CA, 2011, no. 7.

[57] M.A. O’Neil, D. Tamir, and M. Burtscher, “A Parallel GPU Version of the
Traveling Salesman Problem,” in Proc. 2011 Int. Conf. Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las Vegas, NV, 2011.

[58] 9th DIMACS Implementation Challenge – Shortest Paths [Online]. Available:
http://www.dis.uniroma1.it/challenge9/download.shtml

[59] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive Model for Graph
Mining,” in Proc. 4th SIAM Int. Conf. Data Mining, Lake Buena Vista, FL, 2004,
pp. 442-446.

[60] CUB [Online]. Available: http://nvlabs.github.io/cub/

[61] Running LonestarGPU 2.0 on GPGPU-Sim 3.2.1 [Online]. Available:
http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu/gpgpusim

[62] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU Microarchitecture through Microbenchmarking,” in Proc.
2010 IEEE Int. Symp. Performance Analysis of Systems and Software (ISPASS),
White Plains, NY, 2010, pp. 235-246.

[63] R. Meltzer, C. Zeng, and C. Cecka, “Micro-benchmarking the C2070,” at GPU
Technology Conference [poster], San Jose, CA, 2013.

71

[64] R. Nasre, M. Burtscher, and K. Pingali, “Morph Algorithms on GPUs,” in Proc.
18th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPOPP), Shenzhen, China, 2013, pp. 147-156.

[65] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-free Irregular Computations on
GPUs,” in Proc. 6th Workshop General Purpose Processing on Graphics
Processing Units (GPGPU), Houston, TX, 2013, pp. 96-107.

[66] M. Kulkarni, M. Burtscher, R. Inkulu, and K. Pingali, “How Much Parallelism is
There in Irregular Applications?” in Proc. 14th ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, Raleigh, NC, 2009, pp. 3-14.

72

	CHARACTERIZING THE PERFORMANCE BOTTLENECKS
	OF IRREGULAR GPU KERNELS

