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ABSTRACT 

Graphics processing units (GPUs) are increasingly being used to accelerate 

general-purpose applications, including applications with data-dependent, irregular 

memory access patterns and control flow. However, relatively little is known about the 

behavior of irregular GPU codes, and there has been minimal effort to quantify the ways 

in which they differ from regular general-purpose GPU applications. 

I examine the behavior of a suite of optimized irregular GPU applications written 

in CUDA on a cycle-level GPU simulator. I characterize the performance bottlenecks in 

each program and connect source code to microarchitectural performance characteristics. 

I also assess the performance impact of modifying hardware parameters such as the cache 

and DRAM bandwidths and latencies, data cache sizes, coalescing behavior, and warp 

scheduling policy, and I discuss the implications for future GPU architecture design. 

I find that, while irregular graph codes exhibit significantly more underutilized 

execution cycles due to branch divergence, load imbalance, and synchronization 

overhead than regular programs, overall, code optimizations are often able to effectively 

address these performance hurdles. Insufficient bandwidth, long memory latency, and 

poor cache effectiveness are the biggest limiters of performance. Applications with 

irregular memory access patterns are more sensitive to changes in L2 latency and 

bandwidth than DRAM latency and bandwidth. Additionally, greedy-then-oldest 

scheduling is the best simple warp scheduler for irregular codes, and two-level 

scheduling does not significantly improve the performance of such codes. 

xiv 



 

1. INTRODUCTION 

Recent years have seen a surge of interest in the use of graphics processing units 

(GPUs) as general-purpose computation accelerators. For programs that map well to GPU 

hardware, GPUs offer a substantial advantage over multicore CPUs [1] in terms of 

performance, performance per dollar, and performance per transistor. GPUs also 

outperform CPUs in energy efficiency, demonstrating improved performance per watt on 

codes suitable for GPU execution [2]. Due in part to these advantages, general-purpose 

programmable GPUs have become ubiquitous in high-performance computing [3] and are 

increasingly appearing as accelerators in desktops and even mobile platforms [4]. 

Designed to perform complex computations on blocks of pixels at high speeds 

and with wide parallelism, GPU architectures differ significantly from traditional CPU 

hardware. For example, for best performance, GPUs require large sets of threads (called 

warps or wavefronts) to execute the same instruction in lockstep, resulting in 

performance loss when threads within a warp encounter divergent control flow. This 

behavior is called branch divergence. GPUs additionally require the threads within a 

warp to access memory locations within the same cache line for fast, coalesced memory 

access. However, GPUs also have many more processing units than CPUs, along with 

wider memory buses, special operations for fast mathematical computation, and hardware 

barriers that enable rapid synchronization between threads without the latency of a main 

memory or last-level cache access. 

These unique architectural features make GPUs particularly effective at 

accelerating programs that are highly regular, i.e., that operate on large vectors or 

matrices in statically predictable ways. Such codes often have high computational 
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demands, display extensive data parallelism, access memory in a streaming fashion, and 

require little synchronization [5]. Many important applications in scientific computing fit 

these criteria, including algorithms used in fields ranging from fluid dynamics [6] to 

computational finance [7]. There exists a broad base of knowledge on the efficient 

parallelization of these algorithms [8], and GPU implementations of these codes can be 

tens of times faster than optimized parallel CPU implementations [9]. 

However, many problem domains (e.g., n-body simulation [10], data mining [11], 

satisfiability problems [12], social networks [13], compilers [14], discrete-event 

simulation [15], and meshing [16]) employ algorithms that are irregular in nature: they 

build, traverse, and update pointer-based data structures such as trees and graphs and 

exhibit input-dependent control-flow and memory-access patterns. These programs are 

more difficult to parallelize in general and are particularly challenging to map to the 

unconventional architecture of GPUs. Nonetheless, the literature includes several GPU 

implementations of irregular algorithms that outperform their multicore CPU 

counterparts [17]-[20]. 

Due to the advantages they offer over multicore CPUs, GPUs and GPU-like 

architectures are likely to continue to grow in prevalence as accelerators for general-

purpose computation. Despite evidence that GPUs are capable of accelerating even 

irregular applications, relatively little is known about the specific behaviors of irregular 

GPU kernels or the manner in which they interact with the GPU architecture, and there 

has been minimal effort to quantify the ways in which these codes differ from regular 

GPU applications. Identifying the most significant architectural performance limitations 

of irregular GPU kernels will aid software developers in accelerating these codes and is a 
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critical first step in enabling hardware designers to broaden the acceleration capabilities 

of future GPUs. 

This work makes the following main contributions. 

• I present a detailed, cycle-level simulation-based workload characterization 

focusing on irregular GPU applications. 

• I develop an understanding of the impact of control-flow and memory-access 

irregularity on various architectural GPU performance characteristics, 

including memory coalescing, branch divergence, and cache effectiveness. 

• I analyze programs from the LonestarGPU [21] benchmark suite of irregular 

codes and identify relationships between source code and microarchitectural 

performance behavior. 

• I assess the sensitivity of these applications to hardware design parameters 

such as cache and DRAM latency and bandwidth, cache size, coalescing 

behavior, and warp scheduling policy. 

• I find that memory and especially L2 latency and bandwidth and low cache 

effectiveness are the most significant factors limiting the performance of 

irregular GPGPU codes. 

This thesis attempts to abstract a generalized understanding of the impact of 

irregular coding structures on hardware performance characteristics. It is not the goal of 

this work to determine the particular configuration of hardware parameters that yields the 

best average speedup for a particular set of codes or a particular GPU device. GPU 

architecture is still changing rapidly from generation to generation, and fine-tuning of 

microarchitectural parameters is unlikely to yield significant value at this premature 
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stage. Rather, this thesis identifies the major hardware bottlenecks for irregular kernels 

and establishes those sources of performance loss on which hardware architects should 

focus their efforts (versus those sources that software designers are capable of effectively 

addressing on their own). 

The rest of this thesis is organized as follows. Chapter 2 reviews the architecture 

of CUDA GPUs and their main architectural sources of performance limitation, defines 

code regularity vs. irregularity, and describes the cycle-level simulator I employ. Chapter 

3 summarizes the related literature. Chapter 4 discusses the benchmarks and inputs I 

study. Chapter 5 describes my simulator modifications and configurations. Chapter 6 

presents and analyzes the results. Chapter 7 summarizes and concludes. 
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2. BACKGROUND 

In this chapter, I describe the architecture of general-purpose programmable 

GPUs, their major sources of performance limitation, and important features of their 

microarchitectural design. I also review the differences between regular and irregular 

codes and describe the operation of the cycle-level simulator I employ. 

2.1. CUDA GPUs 

NVIDIA’s general-purpose programmable GPUs implement the CUDA parallel 

programming model [22]. CUDA GPUs have a two-level compute hierarchy composed 

of multiple streaming multiprocessors (SMs), or cores, each composed of multiple tightly 

coupled processing elements (PEs). CUDA programs specify the behavior of kernels, 

which are launched on the GPU. A kernel is composed of parallel threads. As shown in 

Figure 2.1 [22] below, these threads are grouped by the programmer into thread blocks 

and grids of thread blocks. The thread blocks (or blocks) are dynamically assigned to 

SMs as SMs become available, up to a limit imposed by the available hardware resources 

(e.g., registers, shared memory space, block and thread tracking state) on the SM.  

Each thread executes an instance of the kernel and has its own registers and local 

memory. The threads within a block share a software-controlled cache, called shared 

memory, as well as hardware to enable fast synchronization. Between blocks, 

synchronization and data exchange require accesses through slower, off-core global 

memory (DRAM). Figure 2.2 [22] below illustrates the CUDA memory hierarchy of per-

thread local memory, per-block shared memory, and per-application global memory 

spaces. 
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Figure 2.1: Relationship of threads, thread blocks, and kernel grids in CUDA 

 
Figure 2.2: CUDA memory hierarchy 
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The PEs execute warps, which are sets of adjacent threads (32 in current CUDA 

GPUs) that execute on a set of PEs (either on 32 PEs or on fewer PEs split over multiple 

cycles) as vector instructions conditionally operating on 32 data items. The PEs are fed 

with warps for execution in multithreading style, allowing interleaving between thread 

blocks. Figure 2.3 [23] illustrates the block-level microarchitecture of one of the SMs in a 

compute capability 2.x (Fermi architecture [23]) GPU: the ‘core’ blocks are the PEs, each 

of which contains an integer and a floating-point pipeline. There are also load/store 

(LDST) units for warp instructions that access memory, as well as special-function units 

(SFUs) responsible for executing transcendental functions (e.g., sine, logarithm, etc.). 

 
Figure 2.3: Fermi SM block-level microarchitecture 
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GPU pipeline microarchitectures are generally simple, without result forwarding, 

branch speculation, or out-of-order execution, and instead hide latency by arbitrarily 

interleaving warps. Good performance therefore requires a large number of warps in 

flight. In general, GPUs require large amounts of parallelism and minimal global 

synchronization. For best performance, they require threads in a warp to execute the same 

control-flow path and access nearby memory addresses. 

2.1.1. Branch Divergence 

To execute in parallel, the threads in a warp must share identical control flow. 

When they do not (i.e., when a conditional branch is encountered and a subset of threads 

in the warp evaluate the condition differently from the others), execution is automatically 

subdivided by the hardware into sets of threads such that all threads in the set execute the 

same instruction. These sets of threads are then executed serially until they re-converge. 

 
Figure 2.4: An illustration of branch divergence for a sample warp size of 10 threads 
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Figure 2.4 above illustrates an example of the utilization penalty associated with 

this serialization. In this example, the warp size is 10 threads. The threads execute in 

parallel until they reach a conditional branch and only 5 of the threads evaluate the 

condition as true. This results in 5 threads following one execution path and 5 threads 

following another. Until the execution paths reconverge, only half of the warp will be 

active in any cycle, lowering hardware utilization and increasing the number of cycles 

required to execute all threads. As such, good performance requires codes to have 

minimal branch divergence, i.e., for the threads in a warp to follow the same control-flow 

path most of the time. 

2.1.2. Memory Coalescing 

The GPU’s memory subsystem is optimized for warp-based processing. If the 

threads in a warp simultaneously access words in global memory that fall into the same 

aligned 128-byte segment, the hardware merges the 32 reads or writes into a single, 

coalesced memory access, as shown in Figure 2.5 [24]. In the figure, the threads access 

memory locations in order by thread ID; however, the hardware would still coalesce the 

accesses into a single transaction if the arrows in the figure crossed over one another, as 

long as they all fell within the highlighted memory segment from byte 128 to byte 255. 

 
Figure 2.5: A coalesced access, i.e., all 32 threads in the warp access the same aligned 128-byte 

segment 

When a warp instruction touches multiple 128-byte segments, the hardware must 

perform a memory transaction for each segment. This can occur even when the accesses 

have a single-word stride and fall within 128 consecutive bytes if the addresses cross a 
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128-byte boundary. Figure 2.6 [24] illustrates an uncoalesced access of this variety, 

requiring two separate memory transactions of 128 bytes each. 

 
Figure 2.6: An uncoalesced access requiring two memory transactions 

Since there are 32 threads in a warp, it is possible for a single warp instruction to 

touch addresses scattered across 32 separate 128-byte segments. Thirty-two separate 

memory transactions result, all of which may require data from global memory (DRAM). 

Even if all 32 accesses hit in a cache, the warp instruction will replay down the load/store 

pipeline 32 times, once for each transaction. Thus, coalesced accesses are crucial for 

good performance. 

2.1.3. Cache and Memory Hierarchy 

The GPU’s main memory (DRAM) is separate from the CPU’s, and explicit 

library calls are required to transfer blocks of data to or from GPU memory over the PCI-

Express bus. Figure 2.7 below illustrates the memory and cache hierarchy of CUDA 

GPUs. All SMs share the DRAM as well as a unified L2 cache. Each SM has a software-

managed scratch pad memory space called shared memory to allow fast data sharing 

within a block. In the Fermi architecture, shown in Figure 2.7(a) [23], each SM also has 

an on-chip, incoherent L1 data cache. This cache stores local data (including register 

spills) as well as global data. It is therefore necessary to declare global data that may be 

written and read by multiple blocks as volatile to prevent it from being cached in the L1. 

In compute capability 3.X (Kepler architecture [25]) devices, the memory 

hierarchy of which is illustrated in Figure 2.7(b) [25], the L1 cache is used for local 
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memory only. Global data may be read into a separate read-only data cache only by 

explicit programmer direction (via the __ldg() intrinsic or the const __restrict__ 

keywords). By default, global reads are non-cached and can therefore use smaller 

minimum bus transaction widths (because the full cache line is not required). 

      
(a)                                                                      (b) 

Figure 2.7: (a) Fermi memory hierarchy; (b) Kepler memory hierarchy 

The shared memory and L1 cache of each SM share 64KB of on-chip storage. 

The shared memory size can be software-configured to either 16KB or 48KB (or 32KB in 

Kepler devices); the L1 cache occupies the remainder of the 64KB. These sizes may be 

configured separately on a per-kernel basis. 

2.1.4. Warp Scheduling 

GPUs exploit thread-level parallelism in part by multi-threading many warps on a 

single core (SM). When a warp encounters a long-latency operation (e.g., a memory 

access) or stall (e.g., a branch, a register dependency, etc.), the core can rapidly switch to 

another in-flight warp, thus interleaving instructions from many warps on a cycle-by-
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cycle basis as shown in Figure 2.8 [23]. When a stall or long-latency operation is 

encountered and no other warp can issue its next instruction (either because there are 

insufficient warps in flight or because all other warps are also stalled), underutilization 

results. 

 
Figure 2.8: An illustration of warp multithreading in a Fermi GPU 

When multiple warps are available to issue an instruction in a given cycle, the 

scheduling policy used to select the next warp can significantly affect the GPU’s ability 

to hide latencies [26]. One simple scheduling policy, round robin, is illustrated in Figure 

2.8 above: warps are ordered arbitrarily and each cycle, the next warp in order is 

considered for issue. A loose round robin (LRR) scheduler allows warps that are not able 

to issue to be skipped in the round robin ordering. An alternative scheduler is greedy-

then-oldest (GTO) [27], which prioritizes issue from a selected warp until that warp 

reaches a long-latency operation, then prioritizes the oldest alternative in-flight warp. 

Round-robin schedulers give equal priority to each warp and tend to result in all warps 

arriving at long-latency operations in close time proximity (leaving no warp that can 

issue); however, schedulers (like GTO) that allow warps to become progressively out-of-

sync can destroy memory-access locality and lead to starvation [26]. 
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2.2. Regular vs. Irregular Codes 

Parallel algorithms are often discussed in terms of regular vs. irregular behavior. 

Regular code refers to programs displaying neither data-dependent control flow nor data-

dependent memory-access patterns. For example, the dynamic behavior (i.e., the 

conditional branch decisions and memory reference stream on an in-order processor) of a 

straightforward matrix multiply program can be statically determined knowing only the 

input size and the data-structure starting locations, but without knowing any of the matrix 

values. 

Irregular code, in contrast, refers to programs in which the runtime behavior is a 

function of the input values. Both control-flow and memory-access patterns may differ 

for different inputs. Irregular code usually arises from the use of dynamic data structures 

such as trees and graphs. For example, an application that builds a binary search tree 

from a set of input data will follow a different control-flow path, build a tree of different 

shape, and access a different sequence of memory addresses depending on the input 

values and the order in which they are processed. 

Compared to regular codes, irregular algorithms are more difficult to parallelize in 

general and more challenging to map to GPUs in particular. Their data-dependent 

dynamic behavior makes it difficult to assign work to threads in a manner that ensures 

identical control flow, coalesced memory accesses, or load balance. 

2.3. GPGPU-Sim 

In order to better understand the performance of irregular codes on GPU 

hardware, I study the behavior of a benchmark suite of irregular codes using GPGPU-

Sim, a cycle-level microarchitectural model of an NVIDIA-like GPU for general-purpose 
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computation [28]. GPGPU-Sim performs functional and timing simulation of PTX 

assembly instructions extracted from a CUDA executable. In PTXPlus mode (cf. Chapter 

5.1), it has been correlated against an NVIDIA GT 200 GPU with an IPC correlation of 

97.6% on a subset of the CUDA SDK and against Fermi hardware with an IPC 

correlation of 97.3% on the Rodinia benchmark suite with reduced problem sizes [29]. 

GPGPU-Sim models the SMs (or SIMT cores), L1 caches, shared memory, interconnect, 

memory partition (including the L2 cache), and off-chip DRAM of a GPU. 

Figure 2.9 [29] illustrates the block-level architecture of a GPGPU-Sim SIMT 

core. In addition to the caches and shared memory, each SIMT core models an instruction 

cache, fetch, decode, a warp scheduler, the SIMT stacks used to resolve branch 

divergence and reconvergence, a scoreboard and operand collector for register file access, 

as well as ALU, LDST, and SFU pipelines. The shared memory model simulates bank 

conflicts and associated stalls, and coalescing stalls are modeled based on the coalescing 

logic of compute capability 1.3 devices. The L1 data cache model includes miss-status 

holding registers (MSHRs) for tracking outstanding cache misses. 

 
Figure 2.9: The architecture of a GPGPU-Sim streaming multiprocessor (i.e., SIMT core) 

14 



 

The unified L2 cache is modeled in the memory partition, separated from the 

SIMT cores by an interconnect network model. As shown in Figure 2.10 [29] below, the 

memory partition model includes a unit to resolve atomic operations, the L2 cache, a 

DRAM scheduler, the bus to off-chip DRAM, and a configurable timing model for the 

DRAM. L2 hit latency is modeled via the raster operations pipeline (ROP) queue, which 

sits between the interconnect and the L2 cache. DRAM hit latency is modeled via a queue 

between the L2 and the DRAM scheduler. Both of these queues are of configurable 

length, and the interconnect bandwidth and DRAM bus width are also configurable. 

 
Figure 2.10: The GPGPU-Sim memory subsystem architecture 

At present, GPGPU-Sim models GPUs similar to NVIDIA’s compute capability 

1.x and 2.x (Fermi) devices. It does not provide configurations for Kepler devices, nor 

does it model the memory hierarchy changes implemented in the Kepler architecture. 
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3. RELATED LITERATURE 

This chapter summarizes existing literature related to understanding the behavior 

of GPU applications and/or irregular codes. It also describes the warp schedulers whose 

impact on irregular codes I examine in this thesis. 

3.1. Simulator- and Emulator-Based Characterization 

Previous simulator-based studies characterizing GPU applications focus on the 

mostly regular codes found in the CUDA SDK [30], Rodinia [31], and Parboil [32] 

benchmark suites. Bakhoda et al. [33] present GPGPU-Sim and study twelve (mostly 

regular) CUDA applications demonstrating various levels of GPU performance. They 

characterize the performance impact of several microarchitectural design choices 

including interconnect topology, memory controller design, and workload distribution 

and analyze the instruction mix, DRAM locality, and warp occupancy of each 

benchmark. Unlike this thesis, they do not investigate stall cycle distribution or warp 

scheduling policy. Goswami et al. [34] propose a set of microarchitecture-agnostic 

general-purpose GPU workload characterization metrics (e.g. instruction mix, DRAM 

row locality, branch divergence density) and use these metrics to study the benchmarks in 

the CUDA SDK, Rodinia, and Parboil suites using GPGPU-Sim. Their work focuses on 

identifying workload characteristics that are not sensitive to microarchitectural 

configuration, whereas this thesis quantifies benchmark sensitivity to various design 

tradeoffs. Blem et al. [35] propose a set of challenge benchmarks (selected from the 

GPGPU-Sim benchmarks, Rodinia, and a handful of naïve ports of Parsec applications) 

where the achieved instructions per cycle (IPC) is less than 40% of peak. They use 

GPGPU-Sim to present a characterization of the benchmarks’ key architectural 
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bottlenecks and apply an analytic model to predict the performance impact of mitigating 

each bottleneck, whereas this work measures the performance impact of various hardware 

modifications in simulation. Che et al. [36] evaluate the Rodinia benchmark suite on a 

GTX 480 and in GPGPU-Sim, including warp occupancy and the performance impact of 

scaling DRAM bus width. However, their primary focus is an assessment of the Rodinia 

benchmark suite in comparison to traditional multithreaded CPU workloads. Lee and Wu 

[37] use GPGPU-Sim to examine program behavior in terms of stall cycle distribution, 

which is also a component of my work. They focus on the Rodinia benchmark suite and 

do not attempt to delineate the impact of irregularity. Hestness et al. [38] compare the 

memory system behavior of the Rodinia suite on the CPU versus the GPU in a 

heterogeneous system simulated with gem5-gpu [39], which integrates the GPU core 

model from GPGPU-Sim. Their study focuses mostly on regular codes and is limited to 

memory behavior. 

General-purpose GPU application performance has also been studied using PTX 

emulators that do not provide cycle-accurate simulation. Kerr et al. [40] propose a set of 

metrics for GPU workloads and analyze these metrics on over fifty mostly regular 

applications, including the SDK and Parboil, via the GPU Ocelot emulator [41]. They 

investigate the impact of optimizations such as various branch re-convergence 

mechanisms and memory read coalescing. Wu et al. [42] study several benchmarks 

(including the SDK, Rodinia, and Parboil) using GPU Ocelot and identify sources of 

control-flow irregularity. 

Two publications from the same conference in late 2014 focus specifically on the 

behavior of irregular applications in simulation. Xu et al. [43] study the behavior of a 
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collection of CUDA graph codes collected from multiple authors using hardware 

performance counters and GPGPU-Sim. These codes include BFS, MST, SP, and SSSP; 

BH and DMR are not represented, nor are the multiple implementations of BFS and 

SSSP included in LonestarGPU. The authors examine pipe stall cause, cache 

effectiveness, SIMD lane utilization, and thread block distribution. They also study the 

performance impact of cache size scaling and a handful of different warp scheduling 

schemes (LRR, GTO, and a single configuration of the two-level scheduling described in 

Chapter 3.3.1 below), which they find to yield insignificant performance variation. 

Unlike this thesis, they do not examine coalescing behavior or the impact of scaled cache 

and memory latencies and bandwidths. O’Neil and Burtscher [44] detail an intermediate 

selection of the work presented here. 

3.2. Hardware-Based Characterization 

Most of the existing studies that concentrate on irregular codes characterize 

application performance via hardware counters and sensors. Burtscher et al. [45] 

previously characterized the control-flow and memory-access irregularity in the 

LonestarGPU 1.0 benchmark suite of irregular GPU codes. Their study relied on 

hardware performance counters for issued and executed instructions, divergent branches, 

and instructions replayed for coalescing or bank conflicts. Coplin and Burtscher [46] 

characterized the power behavior of the LonestarGPU suite and the impact of program 

irregularity on power consumption. Their study profiles power characteristics via the 

built-in power sensor on NVIDIA K20 GPUs. Che et al. [47] also describe a hardware 

performance counter-based characterization of a suite of irregular GPU graph 

applications. Wang and Yalamanchili [48] implement eight irregular, data-intensive 
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applications using CUDA dynamic parallelism (CDP) and analyze the control-flow and 

memory behavior of each implementation versus its non-CDP version using hardware 

performance counters. 

However, many of the event counts of interest in a study of irregular codes are not 

available through hardware counters, and simulation is necessary to provide a more 

complete picture of application behavior as well as to allow the evaluation of proposed 

hardware improvements. 

3.3. Hardware Modifications 

Many previous publications (e.g., Brunie et al. [49], Singh et al. [50], Xiang et al. 

[51]) have proposed GPU architecture modifications and several have used GPGPU-Sim 

to reason about the likely performance impact of their proposed changes. Some of these 

works include microarchitectural performance characterization similar to this thesis but 

applied specifically to the proposed architectural enhancement. For example, Meng et al. 

[52] propose a method of dynamic warp subdivision to hide branch and memory latency 

divergence and characterize the performance impact of additional variations in cache 

miss latency and other microarchitectural parameters. 

3.3.1. Warp Schedulers 

Several publications have proposed novel GPU warp schedulers. Narasiman et al. 

[26] present a two-level warp scheduler that splits concurrently executing warps into 

fetch groups and prioritizes issuing warps from a single fetch group until that group 

stalls. Such prioritization between fetch groups attempts to mitigate the tendency with a 

round-robin scheduler for all active warps to reach long latency operations together, 

while still preserving DRAM row-buffer locality within a single fetch group. The authors 
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present experimental results for a fetch group size of eight with round-robin selection for 

both the inner policy, i.e., within each fetch group, and the outer policy, i.e., when 

switching to a new fetch group. However, other schedulers could be employed at either of 

the two levels. 

Rogers et al. (2012) [27] propose cache-conscious wavefront scheduling (CCWS), 

which detects when intra-wavefront locality is lost because the working sets of inflight 

warps oversubscribe the capacity of the L1 data cache. The scheduler then throttles back 

the number of warps eligible to issue. On the authors’ selected highly cache-sensitive 

benchmarks, CCWS yields a 63% performance improvement over previous schedulers. 

Rogers et al. compare their CCWS scheduler to a two-level scheduler similar to that 

described by Narasiman et al. but using greedy-then-optimal inner and outer scheduling 

policies with a fetch group of size two, which proved the best two-level configuration for 

their codes. 
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4. APPLICATIONS AND INPUTS 

In this work, I present a workload characterization of several irregular GPGPU 

applications and compare the codes’ microarchitectural performance behavior to that of 

more regular applications. This chapter describes the applications and inputs I profile. 

4.1. Applications 

I focus primarily on irregular codes. However, I also characterize several more 

regular programs in order to provide a basis of comparison for the irregular codes. 

4.1.1. Irregular Applications (LonestarGPU) 

My irregular programs are selected from version 2.0 of the LonestarGPU 

benchmark suite [21]. LonestarGPU is a collection of hand-optimized CUDA 

implementations of real-world irregular applications. It includes the following 

algorithms, some of which have multiple implementations.  

• Breadth-First Search (BFS) 

This graph algorithm labels each node in an unweighted graph with the node’s 

minimum level (i.e., number of edges) from a specified source node, which is defined to 

be level zero [53]. It is a key kernel in many applications (e.g., mesh partitioning). The 

GPU kernel considers each node in the graph and updates the level of any of its neighbor 

nodes for which a new minimum edge count from the source has been found. The kernel 

is invoked iteratively from the host until no minimum levels change. The LonestarGPU 

benchmark suite includes several implementations of this algorithm: 

BFS: This is a topology-driven implementation, meaning that it processes all 

nodes in the graph in each iteration as long as at least one node is active. It assigns one 

node per thread. 
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BFS-unroll: This is a topology-driven implementation that processes multiple 

frontiers per iteration by maintaining a local (shared memory) worklist of changed 

destinations. It assigns one node per thread. 

BFS-wlw: This is a data-driven implementation, meaning that it processes work 

items from a worklist of active nodes until the worklist is empty. Only nodes which 

require work, i.e. which have become active, are added to the worklist. This 

implementation assigns one node per thread. 

BFS-wlc: This is a data-driven implementation that assigns one edge per thread 

using the strategy described by Merrill et al. [19]. It cooperatively tracks edge and vertex 

frontier lists in global memory in parallel. 

• Barnes-Hut (BH) 

This n-body algorithm simulates the effect of gravity on a star cluster [10] 

through several time steps. In each step, it hierarchically decomposes the space around 

the stars and records the structure in an octree. Special octree traversals allow for the 

quick approximation of forces. This code includes several GPU-specific optimizations, 

including sorting the bodies so that nearby threads perform similar work. Its force 

calculation kernel, which dominates application runtime, has been implemented in an 

explicitly warp-based manner by expanding octree prefixes so that all warp threads 

perform the same prefix traversal. 

• Delaunay Mesh Refinement (DMR) 

This is a mesh refinement algorithm from the field of computational geometry 

[54] that iteratively transforms those triangles in an input mesh that fail to conform to a 

quality criterion, i.e., ‘bad’ triangles (containing angles less than 30 degrees), into ‘good’ 
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triangles by retriangulating the cavity around each bad triangle. The GPU algorithm 

distributes triangles to threads. At each iteration, the kernel checks if the triangle assigned 

to it is bad, collects the triangles in the surrounding cavity, and re-triangulates the cavity. 

The host repeatedly invokes the kernel until no bad triangles remain in the mesh. In order 

to avoid expensive locks on the cavity surrounding a bad triangle, the code implements a 

barrier-based race and resolve prioritization scheme to avoid conflicts. 

• Minimum Spanning Tree (MST) 

Borvuka’s MST algorithm [55] computes a minimal spanning tree of an 

undirected, weighted graph through successive application of minimum weight edge 

contractions. This process is repeated until the graph consists of just a single node, at 

which point the contracted edges form the spanning tree. In order to avoid modifying the 

graph, the GPU implementation performs edge contraction indirectly by tracking merged 

edges, or components. The computation is split across several kernels, which find the 

minimum weight edge out of each node, find the minimum weight edge out of each 

component, identify the edge to contract (i.e., the two nodes or components to merge), 

and perform the merge. These kernels are called repeatedly from the host until a single 

component remains or the number of components stops changing. 

• Survey Propagation (SP) 

This benchmark is a heuristic SAT-solver based on Bayesian inference [12] which 

represents a Boolean formula as a bipartite graph with variables on one side and clauses 

on the other. The algorithm iteratively updates each variable with the likelihood that it 

should be assigned a true or false value. Each iteration of the GPU code has two phases: 

the first kernel updates the survey on each edge; the next kernel fixes highly biased 
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variables to a specific value and removes them from the graph. These kernels are called 

repeatedly from the host until only trivial surveys exist or no progress has been made for 

several iterations. 

• Single-Source Shortest Paths (SSSP) 

This classic graph problem computes the shortest (i.e., minimum weight) path to 

each node in a directed, weighted graph from a designated source node using a 

modification of the Bellman-Ford algorithm [53]. The GPU code is similar in operation 

to BFS. In each iteration, the kernel considers each edge and updates the shortest distance 

to each destination node to which a shorter path has been found. The kernel is invoked 

repeatedly until it converges, i.e., until it reaches an iteration where no distances change. 

The LonestarGPU benchmark suite includes several implementations of this algorithm: 

SSSP: This is a topology-driven implementation that assigns one node per thread. 

SSSP-wln: This is a data-driven implementation that assigns one node per thread. 

SSSP-wlc: This is a data-driven implementation that assigns one edge per thread 

using the strategy presented in Merrill et al. [19] adapted to SSSP. 

4.1.2. Semi-Regular Applications 

In addition to the LonestarGPU codes, I examine the behavior of two CUDA 

programs that display some regular and some irregular behavior. 

• Floating-Point Compression (FPC) 

This program implements a lossless data compression and decompression 

algorithm for double-precision floating-point values [56]. The code processes chunks of 

input in parallel. It displays streaming memory-access behavior but irregular control flow 

dependent on how well each word can be compressed. 
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• Traveling Salesman Problem (TSP) 

This is a classic combinatorial optimization problem involving finding the 

minimal Hamiltonian tour in a complete, undirected, weighted graph. The GPU code 

implements an iterative hill climbing approach with random restarts to find an 

approximate solution [57] and stores a distance matrix in software-controlled shared 

memory. It has largely regular control flow but a data-dependent memory-access pattern. 

4.1.3. Regular Applications 

Lastly, I also characterize the behavior of two fully regular GPGPU programs. 

• N-Body (NB) 

Similarly to BH, this is an n-body application that simulates the motion of stars. 

Unlike BH, it performs precise all-to-all force calculations, making both its control flow 

and memory-access pattern regular. It is an in-house implementation from Texas State 

University’s Efficient Computing Laboratory and outperforms the corresponding CUDA 

SDK code. 

• Monte Carlo (MC) 

This program evaluates the fair call price for a set of European options using the 

Monte Carlo method. It is a highly regular, array-based floating-point code from the 

CUDA SDK version 4.2 [30]. 

4.2. Inputs 

For each application, I examine performance behavior using realistic inputs large 

enough to keep the simulated hardware busy but small enough to result in reasonable 

simulator runtimes (less than 48 hours where possible, but up to several weeks for some 
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applications). Table 4.1 lists the inputs I use with the primary input listed first for each 

benchmark. 

Table 4.1: Application inputs 

Application 

Input 

Name Description 
Working 
Set Size 

L2 Size 
Multiplier 

BFS, SSSP USA_road_d.NY NY roads (264K nodes, 734K edges) 3899 kB 5.08 
USA_road_d.BAY SF Bay Area roads (321K nodes, 

800K edges) 
4380 kB 5.70 

rmat200k-1600k R-MAT (200K nodes, 1600K edges) 7031 kB 9.16 
rmat264k-734k R-MAT (264K nodes, 734K edges) 3898 kB 5.08 

BH 494,000 1 (seed=7) 494K bodies, 1 timestep 7718 kB 10.05 
494,000 1 (seed=1) 494K bodies, 1 timestep 7718 kB 10.05 

DMR massive.2 100.3K triangles, maxfactor=10 7840 kB 10.21 
30k 60K triangles, maxfactor=10 4688 kB 6.10 
25k 50K triangles, maxfactor=10 3906 kB 5.09 

MST USA_road_d.NY NY roads (264K nodes, 734K edges) 3898 kB 5.08 
USA_road_d.BAY SF Bay Area roads (321K nodes, 

800K edges) 
4380 kB 5.70 

rmat30k-250k R-MAT (30K nodes, 250K edges) 1093 kB 1.42 
SP random-4200-1000-3-

seed23.cnf 
4.2K clauses, 1K literals, 3 

literals/clause 
414 kB 0.54 

random-4200-1000-3-
seed27.cnf 

4.2K clauses, 1K literals, 3 
literals/clause 

414 kB 0.54 

random-4200-1000-3-
seed71.cnf 

4.2K clauses, 1K literals, 3 
literals/clause 

414 kB 0.54 

FPC obs_error 60 MB dataset, 30 blocks, 24 
warps/block, dimensionality=24 

60 MB 78.12 

num_plasma 34 MB dataset, 30 blocks, 24 
warps/block, dimensionality=2 

34 MB 44.27 

msg_lu X MB dataset, 30 blocks, 24 
warps/block, dimensionality=5 

186 MB 242.19 

TSP att48.tsp 15,000 48 cities, 15K restarts 9 kB 0.01 
eil51.tsp 15,000 51 cities, 15K restarts 10 kB 0.01 
pr76.tsp 20,000 76 cities, 20K restarts 23 kB 0.03 

NB 23,040 1 (seed=7) 23,040 bodies, 1 timestep 360 kB 0.47 
23,040 1 (seed=19) 23,040 bodies, 1 timestep 360 kB 0.47 
23,040 1 (seed=43) 23,040 bodies, 1 timestep 360 kB 0.47 

MC (default) SDK input w/ 262,144 paths 1024 kB 1.33 
 
By definition, irregular codes display input-dependent behavior. I profile each 

application using a primary input across all simulator configurations; additional inputs 
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are examined on the default configuration in order to quantify the input sensitivity of the 

results. The graph codes are studied using both road network inputs from the 9th 

DIMACS Implementation Challenge [58] as well as R-MAT [59] graphs, which are 

denser and have higher and more varied out-degree per node. 

For each code, Table 4.1 also includes the size of the data structures read by the 

dominant kernel’s inner loop (i.e., the kernel’s working set) compared to the simulated 

GPU’s L2 cache size. In order to characterize realistic cache behavior, benchmarks are 

tested with a working set at least five times the size of the default L2 cache configuration 

where possible, limited by practical simulation runtime and input availability. (Note that 

several of the more regular applications are streaming or limited by shared memory size 

and therefore do not have meaningful working sets). 
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5. GPGPU-SIM CONFIGURATION 

I study each benchmark’s cycle-level behavior using a modified version of 

GPGPU-Sim release 3.2.1 [28]. I modified the simulator to support CUDA 5.5 binaries, 

to implement a handful of additional operations, and to resolve some known bugs. I also 

added simulator configurations and instrumentation for additional performance counters. 

This chapter describes my simulator modifications and configurations as well as the 

benchmark changes required to support execution on GPGPU-Sim. 

5.1. PTX vs. PTXPlus 

GPGPU-Sim performs functional and timing simulation of PTX assembly 

instructions extracted from a CUDA executable. Because PTX is a virtual ISA and not 

the actual code that runs on the hardware, GPGPU-Sim also supports PTXPlus, an 

extended version of PTX that adds addressing modes, condition codes, and instructions 

similar to those in SASS, NVIDIA’s native hardware instruction set. PTXPlus simulation 

is likely to result in more accurate correlation to real hardware; however, GPGPU-Sim 

does not fully support it for all programs supported in PTX. Most of my studied 

benchmarks do not run in PTXPlus mode, and I do not present PTXPlus results. 

PTX assumes an infinite register set and therefore simulation results do not 

capture the impact of register spill code. Of my studied codes, DMR, SP, and NB cause a 

handful of register spills in their dominant kernels. 

5.2. CUDA 5.5 and CUB Support 

The LonestarGPU 2.0 benchmark suite must be compiled with the CUDA 5.0+ 

tool suite, because the benchmark codes rely on functionality from the CUB library [60] 

28 



 

version 1.1.1. CUB provides various PTX intrinsics, device management functions, and 

reduction primitives for CUDA and requires a modern C++ compiler, which has been 

incorporated into CUDA 5.0+. GPGPU-Sim 3.2.1 natively supports CUDA versions up 

to only CUDA 4.2. Therefore, I had to modify the simulator using patches provided by 

the LonestarGPU suite authors [61]. These patches shim the cuobjdump and ptxas 

utilities so the simulator’s parsers are able to parse binaries compiled with CUDA 5.5, 

update the naming of some texture lookup functions, and add functionality to the 

simulator’s implementation of the CUDA library functions cudaGetDeviceProperties and 

cudaFuncGetAttributes. 

5.3. Bug Fixes and Additional Operations 

Several modifications to the simulator were required to support my selected 

benchmarks. 

GPGPU-Sim incorrectly implements the REM instruction, which is used to 

perform a modulo operation. The correct hardware behavior is to mask the operation to 

the size specified by the <type> field; however, the simulator always performs the 

modulo operation with 64-bit operands and stores a 64-bit result. I modified the 

functional simulator to make the REM instruction size aware. 

GPGPU-Sim’s functional simulator does not sign-extend integer literals when 

used as operands for 64-bit instructions. I modified the implementation of the MOV.u64 

and MOV.s64 instructions to sign-extend a source operand literal to 64 bits. 

The timing simulator includes performance counters for various stall causes. In 

GPGPU-Sim 3.2.1, an L1 data cache reservation fail incorrectly increments the 
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coalescing stall performance counter. I modified the simulator’s shader core 

implementation to prevent the incorrect increment. 

The CUB library reads the laneID register, which returns the position of a thread 

within its warp. GPGPU-Sim does not implement this register. I modified the functional 

simulator to return the correct data for reads of the laneID register. 

The SP benchmark (via the CUB library) also uses the BFE instruction, which 

extracts a bit field of specified starting position and length from a source operand. 

GPGPU-Sim does not implement this PTX instruction. I modified the functional 

simulator to correctly implement the bit-field extract operation. 

5.4. Additional Performance Counters 

By default, GPGPU-Sim includes performance counters in the warp issue stage. 

In each cycle, every SM increments a counter with the active instruction count of the 

warp issued in that cycle. In cycles where no issue can be made, a counter is incremented 

for the cause of the issue stall instead. I supplemented these counters to create a 

histogram of fully occupied issue cycles as well as cycles where the active instruction 

count is less than the full warp size (i.e., divergence cycles), and to differentiate several 

causes of a stall or idle (i.e., no issue) cycle. In the case of issue stalls due to a full 

functional pipe, I added instrumentation to collect additional information on the 

functional unit responsible for the stall. 

To ensure that only one bin is updated per scheduler per cycle, it is necessary to 

define a priority between the idle and stall conditions, since warps ineligible for issue in 

that cycle may be stalled for multiple reasons. Figure 5.1 illustrates the priority 

definitions of the histogram bins. The deeper in the pipeline a stall cause is determined, 
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the higher the priority of that stall. For example, if there are 32 warps available on the 

SM, 31 of them are invalid due to control hazards, and one warp has a valid instruction 

but cannot issue because it requires a functional unit that is already full, the cycle will be 

marked as a pipeline stall (because functional unit backup is determined later in the 

pipeline than control-flow hazards). 

 
Figure 5.1: Issue stage histogram bin definitions 

I also instrumented the simulator with an additional histogram that increments the 

cause per no-issue cycle that is responsible for stalling the most warps eligible for issue 

that cycle. 

5.5. GTX 480 (Base Configuration) 

GPGPU-Sim 3.2.1 includes a configuration for the GTX 480, an NVIDIA Fermi 

GPU. The GTX 480 has 15 SMs. Each SM includes two warp schedulers and two 

dispatch units, allowing warps to dual-issue. The 32 threads in a warp are issued over two 
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cycles, 16 threads at a time. The SMs can support a maximum of 1536 threads and 8 

thread blocks. Each SM has 32,768 registers. The SMs have two ALU pipelines, one 

LDST pipeline, and one SFU pipeline each. Each SM has 64kB of data cache space, 

which can be configured to 16 kB of software-controlled shared memory and 48 kB of 

hardware-controlled L1 cache or vice versa. A cache line is 128 bytes. The L2 cache is 

768 kB. 

In addition to the specifications above, the simulator’s GTX 480 configuration 

specifies the cache and memory topology, latencies, and bandwidths based on the results 

of a microbenchmarking study of the GT200 [62]. The GTX 480 configuration uses a 16-

way L2 cache in each of its 6 memory partitions. When the L1 is configured to 16 kB, it 

is 4-way set associative; it becomes 6-way set associative when configured to 48 kB. 

Because register allocation is not done in PTX, the simulator determines the register and 

shared memory usage of each kernel and uses that information and the applied 

configuration to determine the maximum number of thread blocks that can run 

concurrently on an SM. 

I use the GTX 480 configuration as the default configuration in my study. 

5.6. Additional Configurations 

In order to assess the performance impact of various microarchitectural 

parameters and design decisions, I modify the default GTX 480 simulator configuration. 

This subchapter details these additional configurations. 

5.6.1. Cache and Memory Latency 

GPGPU-Sim models the minimum L2 hit latency via the raster operations 

pipeline (ROP) latency, which determines the minimum latency between when a memory 
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request arrives at the memory partition and when it accesses the L2 cache. Additionally, 

the simulator allows configuration of the DRAM latency, the minimum latency between 

when a memory request accesses the L2 cache and when it is pushed to the DRAM 

scheduler. Table 5.1 displays the ROP and DRAM latency configurations I examine. 

Table 5.1: ROP and DRAM latency configurations (in number of shader clock cycles) 
Configuration Name ROP Latency DRAM Latency 

Default 240 200 
1/2x ROP Latency 120 200 
2x ROP Latency 480 200 

1/2x DRAM Latency 240 100 
2x DRAM Latency 240 400 

No Latency 0 0 
 

GPGPU-Sim models the minimum L1 hit latency as a single cycle, and I did not 

modify this behavior. However, a recent study [63] suggests a significantly longer hit 

latency, and this is an area for future investigation. 

5.6.2. Cache and Memory Bandwidth 

GPGPU-Sim enables configuration of the interconnect bus width between the 

memory partitions (which include the L2 cache) and the core, as well as the DRAM bus 

width. Scaling these bus widths is equivalent to scaling the L2 and memory bandwidths. 

Table 5.2 displays the interconnect and DRAM bandwidth configurations I study. 

Table 5.2: Interconnect (in bytes per flit) and DRAM (in bytes per DRAM chip) 
bandwidth configurations 

Configuration Name 
Interconnect 

Flit Size 
DRAM 

Bus Width 
Default 32 4 

1/2x Interconnect B/W 16 4 
2x Interconnect B/W 64 4 

1/2x DRAM B/W 32 2 
2x DRAM B/W 32 8 

1/2x Interconnect + 1/2x DRAM B/W 16 2 
2x Interconnect + 2x DRAM B/W 64 8 
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5.6.3. Cache Size 

Table 5.3 details the data cache size configurations I employ. Note that regardless 

of the configuration selected from this table, the size of the L1 data cache always depends 

on the cache configuration being simulated: at the default configuration, 48 kB of shared 

memory and 16 kB of L1 data cache (termed PreferShared), or 16 kB of shared memory 

and 48 kB of L1 data cache (termed PreferL1). 

All cache size configurations scale the data cache size by modifying the number 

of sets; the block size and associativity remain at their default values. 

Table 5.3: Data cache size configurations (in kilobytes) 

Configuration Name 
L1 Data Cache Size 

L2 Cache Size PreferShared PreferL1 
Default 16 48 768 

1/2x L1D 8 24 768 
2x L1D 32 96 768 

1/2x L2 Cache 16 48 384 
2x L2 Cache 16 48 1536 

 

5.6.4. Warp Scheduling Policy 

I simulate my benchmarks using four warp-scheduling policies, some of which 

have several configuration options. The first is the simulator default, a greedy-then-oldest 

(GTO) warp scheduler intended to prevent available warps from reaching long-latency 

operations in close time proximity. GPGPU-Sim also includes a loose round-robin (RR) 

warp scheduler, which exploits inter-warp locality by keeping warp execution roughly 

synchronized, and an implementation of the two-level scheduler described in Chapter 

3.3.1. By default, the two-level scheduler uses RR selection for both the inner and outer 

policies. In addition to this configuration, I implemented GTO scheduling policies for 

both inner and outer warp selection. Lastly, I implemented a greedy-then-least-stalled 

(GTLS) warp scheduler that tracks the number of times warps eligible for issue have been 
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non-issued for a long operation (i.e., a synchronization barrier, memory fence, atomic, or 

RAW hazard on load data) and, when a warp stalls, prioritizes issue from the warp that 

has been stalled for the fewest number of cycles. The tracking of stall counts is cleared 

every clear_count cycles (where clear_count is a configuration-defined parameter). Table 

5.4 lists the warp scheduler configurations I assess. 

Table 5.4: Warp scheduler configurations 
Configuration Name Clear Count Outer Policy Inner Policy Fetch Group Size 

GTO (Default) N/A N/A N/A N/A 
LRR N/A N/A N/A N/A 

GTLS_50 50 N/A N/A N/A 
GTLS_100 100 N/A N/A N/A 
GTLS_500 500 N/A N/A N/A 

2 Level: RR_RR_2 N/A RR RR 2 
2 Level: RR_RR_4 N/A RR RR 4 
2 Level: RR_RR_8 N/A RR RR 8 
2 Level: RR_RR_16 N/A RR RR 16 
2 Level: RR_GTO_2 N/A RR GTO 2 
2 Level: RR_GTO_4 N/A RR GTO 4 
2 Level: RR_GTO_8 N/A RR GTO 8 
2 Level: RR_GTO_16 N/A RR GTO 16 
2 Level: GTO_GTO_2 N/A GTO GTO 2 
2 Level: GTO_GTO_4 N/A GTO GTO 4 
2 Level: GTO_GTO_8 N/A GTO GTO 8 
2 Level: GTO_GTO_16 N/A GTO GTO 16 

 

5.6.5. No Coalescing Penalty 

In order to study the relationship between coalescing behavior and performance, I 

added a configuration option to GPGPU-Sim that removes the pipeline stall penalty 

associated with non-coalesced accesses. This configuration allows an SM to issue a warp 

instruction requiring multiple accesses in a single cycle. However, it does not further 

improve the memory pipeline to handle the increased memory traffic. 

This configuration is not intended to model a realistic hardware improvement. 

Rather, it provides an understanding of the portion of the coalescing-related performance 

penalty that results from the ensuing pipeline stalls or replays versus the additional 
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memory accesses. I apply the no-coalesce-penalty configuration both by itself and in 

combination with increased-capacity cache miss queues and MSHRs. Table 5.5 details 

these configurations. 

Table 5.5: No coalesce penalty configurations 

Configuration Name 

Coalesce 
Penalty 

? 

L1 Data Cache L2 Cache 
Miss 

Queue 
Entries 

MSHR 
Entries 

Max. 
MSHR 
Merges 

Miss 
Queue 
Entries 

MSHR 
Entries 

Max. 
MSHR 
Merges 

Default Y 8 32 8 4 32 4 
No Coalesce Penalty 

(NCP) 
N 8 32 8 4 32 4 

NCP + Improved L1 Miss 
Handling 

N 16 64 16 4 32 4 

NCP + Improved L1+L2 
Miss Handling 

N 16 64 16 8 64 8 

 

5.7. Benchmark Compilation for GPGPU-Sim 

Several of the studied benchmarks utilize the CUDA API routine 

cudaFuncSetCacheConfig, which sets (on a kernel basis) the L1 cache configuration to 

either 48 kB software-controlled shared memory and 16 kB hardware-managed cache or 

vice-versa. GPGPU-Sim 3.2.1 does not support this API call. Hence, I modified the 

benchmark codes to remove these calls and simulated each benchmark with the shared 

memory and L1 data cache sizes set according to the cache configuration used by the 

program’s dominant kernels. In each case, I confirmed on real hardware that these 

changes result in negligible runtime impact. 

The BFS benchmark includes a call to cudaSetDeviceFlags to enable pinned 

memory allocation by the host. This CUDA library function is not supported in GPGPU-

Sim, and the benchmark does not actually allocate pinned memory. Therefore, I removed 

this library call from the BFS code. 
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The DMR benchmark calls the CUDA 5.5 library cosine function, which includes 

an inlined PTX multiply-accumulate instruction format that the simulator’s parser does 

not support. I modified DMR to revert to the CUDA 4.2 implementation of cosine. 

The CUB library’s DeviceRadixSort implementation (which is used by the SP 

benchmark) calls the CUDA runtime API functions cudaDeviceGetAttribute and 

cudaDeviceGetSharedMemConfig in order to allow a change in the shared memory vs. 

L1 data cache configuration during the radix sort. GPGPU-Sim 3.2.1 does not support 

these API calls, nor does it support changing the L1 cache configuration mid-simulation. 

I modified DeviceRadixSort to remove its dependence on the unsupported API calls. 

Two of the data-driven graph implementations in LonestarGPU, BFS-wlc and 

SSSP-wlc, rely on texture memory. These codes cause GPGPU-Sim to print a warning 

message that the implementation of cudaRegisterTexture() is incomplete. It is unknown 

how the simulator’s current texture implementation affects the results for these 

benchmarks. 

All benchmarks except BH were compiled using nvcc from CUDA 5.5 with the ‘-

cudart shared -O3 -arch=sm_20’ flags. BH was compiled using nvcc from CUDA 4.2 

with the ‘-O3 -arch=sm_20’ flags and simulated on a version of GPGPU-Sim omitting 

the changes for CUDA 5.5 described in Chapter 5.2 above. 
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6. RESULTS AND ANALYSIS 

This chapter studies the impact on the selected benchmark codes of several 

common sources of GPU performance limitation. Next, I examine each application 

individually and assess the dominant performance bottlenecks of each. I then evaluate the 

performance impact of several hardware modifications. Lastly, I discuss how input 

selection and type impact the results. 

6.1. Sources of Performance Limitation 

The LonestarGPU suite includes applications across a wide range of performance 

points. Figure 6.1 illustrates the instructions per cycle (IPC) of each studied application. 

The theoretical peak performance of the GTX 480 is 480 IPC. 

 
Figure 6.1: Measured instructions per cycle (IPC) of each benchmark 

As expected, the regular programs NB and MC perform very well. More 

surprisingly, the irregular code BH also reaches a high IPC, though not in all of its 

kernels. The remaining irregular codes match or underperform FPC, the worst of the 

(semi-)regular codes. Overall, there is a clear tendency towards much lower IPCs for 

irregular codes and none of them come close to achieving peak performance. However, it 
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is also clear that there is no simple or fixed delineation between the performance of codes 

operating on irregular data structures and more regular codes. 

It should be noted that IPC provides a useful picture of an application’s utilization 

of the hardware but cannot be used to directly compare the runtime performance of 

different applications and implementations. Figure 6.2 displays the runtime in number of 

cycles of the several different implementations of BFS and SSSP included in the 

LonestarGPU suite. For both applications and across all tested inputs, the ‘wlc’ variant is 

significantly faster in reaching a solution than the default topological variant, even 

though the default implementation reaches higher IPC. 

 
Figure 6.2: Runtime in cycles of all BFS and SSSP variants 

GPU performance is heavily impacted by the presence of branch divergence 

within a warp and memory accesses that cannot be coalesced and/or miss in the cache. In 

this subchapter, I study the effect of these factors on each code. 

6.1.1. Branch Divergence 

Figure 6.3 plots the average warp occupancy based on the active mask of 

instructions with a warp at the issue stage in each scheduler. The first bar for each 

benchmark represents the average warp occupancy in only those cycles where a warp 

instruction was issued to the core pipeline. The second bar represents the average warp 
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occupancy across all cycles of the simulation, including cycles in which a scheduler did 

not issue any warp due to a stall or idle condition. 

 
Figure 6.3: Average warp occupancy of each application, both including and excluding idle/stall 

cycles 

The left bar for each application provides a graphical representation of the amount 

of branch divergence. A program with no branch divergence would reach an average 

warp occupancy (not including idle and stall cycles) of 32. Indeed, the two highly regular 

codes I study have average warp occupancies very close to 32, implying they do not 

suffer from branch divergence. As expected from codes operating on an irregular data 

structure, the irregular codes tend to display lower warp occupancies. However, only 

DMR and SSSP-wln fall below around half-occupied. Of the irregular codes, only BH 

has very little branch divergence because its force calculation kernel, which accounts for 

95% of its runtime, has been implemented in a warp-based manner to improve 

performance. In contrast, the tree-building kernel, denoted in Figure 6.3 as ‘BH(tree)’, 

exhibits significantly more control irregularity. 
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Figure 6.4: Benchmark speedup with perfect warp formation 

Figure 6.4 illustrates the speedup that each benchmark would achieve given 

perfect warp formation, i.e., if each cycle in which an issue could be made issued 32 

instructions per scheduler. Overall, with the exception of BFS-unroll, DMR, and SSSP-

wln, branch divergence is somewhat less severe a penalty than expected from irregular 

codes. DMR displays severe load imbalance between threads as the refinement process 

runs out of work, leading to the high divergence. SSSP-wln includes control flow around 

a section of code that executes only if a thread finds a new shortest path to a node. It is 

unlikely that more than a handful of threads in any warp will do so in an iteration. 

The right bar of each application in Figure 6.3 illustrates the impact on warp 

occupancy of issue stalls, particularly due to uncoalesced accesses and memory latency. 

The next subchapters investigate these factors in more detail. 

6.1.2. Memory Coalescing 

Figure 6.5 plots the average number of memory accesses performed by each 

global or local load or store instruction. A bar height above one illustrates the presence of 

uncoalesced memory accesses. 
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Figure 6.5: Average memory access count per global or local warp load or store instruction 

The highly regular applications NB and MC have average access counts of 1, 

meaning that essentially all loads and stores are fully coalesced, i.e., each access by a 

warp results in a single memory transaction. BH and TSP perform very few but highly 

uncoalesced stores. On average, BH’s loads are almost all coalesced, but this is again due 

to the dominant regularized force calculation kernel. The BH tree-building kernel, in 

contrast, exhibits one of the highest load access counts of the studied codes. TSP 

possesses a data-dependent and byte-granular memory-access pattern and thus exhibits 

highly uncoalesced accesses. FPC suffers from a high average access count resulting 

from its data-dependent byte-granular memory accesses, since stores to two bytes in the 

same word are serialized by the hardware. SP and SSSP-wln both have very high average 

load-access counts. SP makes many scattered accesses around a randomly-connected 

graph, leading to the high uncoalescing. SSSP-wln operates on nodes popped from a 

worklist of those nodes whose values changed in the last iteration and then reads 

destination node data. It is unlikely that nearby nodes on the worklist (and therefore 

nearby threads) will traverse similar segments of the graph, leading to many scattered and 

uncoalesced reads. 
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BFS, BFS-unroll, and the SSSP variants have fully coalesced stores, and the 

topological BFS and SSSP implementations display only slightly increased load access 

counts. However, their high load instruction counts result in significant slowdown from 

coalescing, as seen in Figure 6.6, which displays the percentage of simulation cycles in 

each benchmark that the simulator marks as stalls due to coalescing. 

 
Figure 6.6: Percentage of cycles marked as coalescing stalls 

This figure provides a visualization of the theoretical speedup that would result 

from somehow entirely removing the coalescing requirements. To further study the 

relationship between coalescing and performance in these benchmarks, I added a 

configuration to GPGPU-Sim that removes the pipeline stall penalty associated with non-

coalesced accesses. This configuration allows an SM to issue a warp instruction requiring 

multiple accesses in a single cycle. However, it does not further improve the memory 

pipeline to handle the increased memory traffic. It is not intended to model a realistic 

hardware improvement, but it provides some visualization of the amount of coalescing 

performance penalty that comes from increased memory traffic versus pipeline stalls. 
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I studied each code with the no-coalesce-penalty (NCP) configuration applied by 

itself and in combination with increased-capacity cache miss queues and MSHRs. Figure 

6.7 plots the speedups over the default setting for each of the NCP configurations. 

 
(Note: Does not include data for BFS-wlc and SSSP-wlc due to assertions in texture memory simulator code) 

Figure 6.7: Speedup over the default simulator configuration when removing the coalescing 
pipeline penalty and increasing the cache miss handling capacities 

As intuitively expected, simply removing the pipeline penalty associated with 

coalescing stalls has little impact on performance (and is in some cases harmful) due to a 

corresponding increase in cache reservation stalls and interconnect backup. More 

surprisingly, for most of the benchmarks, improving the miss-handling capability of the 

caches does little to improve the performance impact of removing the coalescing stall 

penalty. (FPC is an outlier due to its many serialized byte-granular stores, which are 

counted as coalescing stalls). This suggests that hardware improvements aimed at 

reducing the coalescing pipeline penalty are likely to be ineffective on irregular codes 

unless they are combined with increased memory bandwidth. 

6.1.3. Cache Behavior 

Lastly, I observe the data cache miss ratio (in Figure 6.8) and miss rate (in Figure 

6.9) in misses per thousand warp instructions (MPKI) for each program. Most of the 
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applications, including the highly regular codes, have L1 cache miss ratios above 50%, 

which would be considered extremely high for CPU applications. Note that CPU and 

GPU architectures have L1 data caches for different reasons: in GPUs, they mostly 

provide coalescing support rather than exploit temporal locality, because there cannot be 

an expectation of the cache holding data for a significant period of time due to the high 

number of active threads. 

 
Figure 6.8: Data cache miss ratios (L2 ratios are local, i.e., number of misses over number of L2 

accesses) 

 
Figure 6.9: Cache misses per thousand warp instructions (MPKI) 
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However, most of the irregular codes have markedly higher MPKI rates than the 

regular codes. NB, which tiles its data into shared memory and is compute-bound, has 

MPKI rates near zero for both data caches. TSP is composed mostly of shared memory 

accesses and many of its local memory accesses are strided, which is why this program 

has one of the lowest observed miss rates. FPC is a streaming code and therefore also 

exhibits a relatively low miss rate. SSSP-wln’s high average load access count results in a 

high MPKI and contributes to the longer runtime of this data-driven SSSP variant 

compared to the topological implementation. BFS-wlc’s miss rate is low, presumably 

because much of the worklist fits within the L1 cache. SP (whose L1 miss rate exceeds 

the Figure 6.9 axis by more than a multiple of three) has the highest average access count 

of the studied codes (i.e., it is the most poorly coalesced), leading to an extremely high 

miss rate even at my relatively small input size. The small SP input size (limited by 

simulation time) results in an L2 miss rate near zero. In general, the irregular codes 

perform a significant number of pointer-chasing operations and are not able to exploit 

much spatial locality. 

6.2. Individual Application Analysis 

As described in Chapter 5.4, I supplemented GPGPU-Sim’s warp issue metrics 

with additional stall type counters. Based on the resulting warp occupancy histogram and 

stall distributions, I calculated (on a per-application basis) the number of issue cycles 

with underused thread occupancy due to branch divergence, control flow, memory and 

synchronization barriers, atomics, scoreboard hazards, functional unit stalls, and work 

imbalance between blocks, as well as cycles in which the GPU issued at full occupancy 

(busy cycles). Scoreboard hazards include both read-after-write (RAW) and write-after-
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write (WAW) hazards but are dominated by RAW hazards in all of the codes. Because 

outstanding loads cause the majority of these RAW hazards, the scoreboard hazards 

metric provides a rough estimate of the impact of memory latency. In addition, load/store 

unit (LSU) pipeline stalls reflect both coalescing penalty and cache reservation fails; the 

latter is also an indication of memory-latency-associated slowdown. 

Figure 6.10 below displays the breakdown of underused and busy cycles based on 

the prioritized-stall-cause tracking illustrated in Figure 5.1, which in each cycle 

increments a counter for the stall cause associated with the warp whose no-issue decision 

was resolved in the deepest pipeline stage. Figure 6.11 below displays the breakdown of 

underused and busy cycles based on a histogram formed by, in each cycle, incrementing 

the bin associated with the cause responsible for the greatest number of available warps 

that could not issue. 

I discuss each code in detail below and then draw some general conclusions. 

• Breadth-First Search—Topological (BFS) 

This code suffers from a high number of LSU stalls (full LSU pipeline) and RAW 

hazards (operations waiting on load data), both of which are indicative of memory-

latency-related slowdown resulting from the data-dependent nature of BFS’s memory 

accesses (based on the connectivity of the input graph). The BFS implementation further 

displays some control-flow irregularity due to graph nodes having different numbers of 

edges, which results in branch divergence. 

• Breadth-First Search—Unroll (BFS-unroll) 

The BFS-unroll code processes multiple frontiers per iteration by maintaining a 

worklist of changed destination nodes in shared memory. Its runtime is significantly 
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Figure 6.10: The proportion of underused vs. fully-occupied cycles in each application (deepest 

pipeline stage) 

 
(Note: BH is omitted because this histogram instrumentation was not included in my CUDA 4.2 simulator version) 
Figure 6.11: The proportion of underused vs. fully-occupied cycles in each application (most 

impacted warps) 
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lower on the same inputs as the default BFS implementation. Compared to the default 

implementation, it displays less memory penalty because of the data-driven nature of the 

unrolled segments of frontier processing, exposing more of the atomics required to 

update node levels. The reduction in memory-related slowdown also exposes cycles that 

suffer from divergence and control-flow hazards due to the relatively small loop trip 

count over outgoing edges. 

• Breadth-First Search—Data-driven (BFS-wlw) 

This code implements BFS in a data-driven manner, processing nodes from a 

worklist of active nodes and assigning one node per thread. It suffers from severe 

interblock imbalance because of the low parallelism in frontier nodes available during 

much of its execution. 

• Breadth-First Search—Merrill’s strategy (BFS-wlc) 

The BFS-wlc code operates on edge and vertex frontiers stored in global memory 

and therefore relies on global barriers (implemented by having blocks check in and then 

spin-wait for all check-ins via global memory and requiring several synchronization 

barriers). It also uses the CUB library’s block scan primitive, which relies on intra-block 

synchronization. Of my studied codes, this implementation displays by far the largest 

penalty from synchronization, with stalls caused by a majority of warps available for 

issue stuck at a barrier in around 75% of its cycles. This benchmark also results in the 

most significant difference between the two methods of counting stall causes illustrated 

in Figures 6.10 and 6.11. In many of the stall/idle cycles of the simulation, there were 

available warps that made it past the barrier stage and still could not issue because of 

RAW hazards on load data. 
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• Barnes-Hut (BH) 

The BH code, while tree-based and irregular in nature, is dominated by its force 

calculation kernel, which has been optimized to eliminate almost all divergence and to 

ensure that most of its main memory accesses are coalesced. As a result, BH spends a 

larger percentage of execution time at full occupancy than the other irregular codes. It 

should be noted that BH’s warp threads perform some unnecessary computation to 

minimize branch divergence, and these unnecessary cycles are denoted as busy cycles 

rather than divergence. However, the unnecessary work improves both the performance 

and the accuracy of the algorithm. Figure 6.10 above also includes metrics for the BH 

tree-building kernel. This kernel exhibits significantly more irregularity, suffering from 

both memory-access stalls and branch divergence. It also exhibits a noticeable 

performance penalty due to the synchronization barriers necessary to build the tree in 

parallel. There is a small amount of work imbalance as it is a priori unknown how deep 

the various branches of the octree will be. 

• Delaunay Mesh Refinement (DMR) 

DMR has the lowest IPC of all the codes I examine and is one of the most 

irregular as well. It suffers from a large amount of memory-access stalls, divergence, and 

one of the larger fractions of synchronization stalls of the studied codes. For each bad 

triangle, DMR’s refinement kernel builds a cavity whose size and shape are data 

dependent, checks whether there is overlap with another cavity, employs a priority-based 

back-off mechanism in case of overlap, and finally refines the cavity if the thread has the 

highest priority of all the triangles in the cavity. The synchronization stalls stem from 

global barriers separating these phases, the divergence is the result of load imbalance 
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between threads, and the memory stalls are likely unavoidable when processing an 

irregular graph whose shape changes at runtime. 

• Minimum Spanning Tree (MST) 

MST spends the majority of its cycles waiting for uncoalesced load data due to 

the irregular nature of its accesses to the merged graph nodes, or components. The 

innermost loop contains a set of nested if statements to unify the minimum-weight 

components, resulting in both significant divergence and control-flow penalties. MST 

displays one of the higher fractions of slowdown associated with atomics of the codes I 

study due to the atomic operations necessary to merge components; however, it is still a 

minor source of performance loss compared to memory-related stalls. 

• Survey Propagation (SP) 

SP traverses and operates on a random 3-SAT input graph, resulting in randomly 

scattered memory accesses and a large number of coalescing stalls (visible in my metrics 

as a large amount of LSU pipeline stalls). It suffers from control hazard idle cycles due to 

the very short loop body and tiny loop count (over the number of literals per clause) of its 

innermost loop. The code exhibits imbalance due to its statically unknown amount of 

work that depends on how fast the algorithm converges as well as divergence due to 

separate code paths for positive and negative edges. Overall, this application exhibits 

very few fully occupied execution cycles. 

• Single-Source Shortest Paths—Topological (SSSP) 

This algorithm is similar to the topological BFS implementation except that SSSP 

processes a directed, weighted graph. Similarly to BFS, its performance is limited by 

LSU and RAW hazard stalls resulting from uncoalesced memory accesses and 
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insufficient memory bandwidth as well as branch divergence due to control-flow 

irregularity when processing the input graph. 

• Single-Source Shortest Paths—Data-driven (SSSP-wln) 

The SSSP-wln code is a data-driven implementation where threads process nodes 

from a worklist similarly to the BFS-wlw code. There is a small amount of slowdown due 

to the atomic operations necessary to update the newly-found shortest distances within 

destination nodes as well as significant interblock imbalance as threads run out of work 

and divergence due to both imbalance and differing control flow for adjacent threads 

processing nodes in worklist order. The worklist variant of SSSP displays a much larger 

memory-related penalty than the similar BFS code due to RAW hazards from the 

additional load for the atomic compare operation, whose return value is immediately used 

to resolve a branch condition. The scattered and uncoalesced nature of these accesses, 

based on the order of nodes in the worklist, make SSSP-wln’s slower than the topological 

SSSP variant. 

• Single-Source Shortest Paths—Merrill’s strategy (SSSP-wlc) 

This code is similar to the BFS-wlc implementation, and it likewise suffers from a 

very high synchronization penalty. Like SSSP-wln, however, SSSP-wlc suffers from both 

atomics penalty and additional RAW hazards due to the atomic operations that update 

new shortest paths. BFS-wlc also suffers from some interblock imbalance as threads run 

out of work. 

• Floating-Point Compression (FPC) 

This application spends most of its time stalled due to a full load/store unit 

pipeline. These stalls stem from the coalescing behavior of its double-precision memory 
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accesses as well as warp threads reading and writing data-dependent byte locations in 

global memory. FPC also exhibits a large percentage of control-flow-hazard stalls due to 

the short (maximum iteration count of 8) data-dependent loops that read and write the 

compressed bytes corresponding to an uncompressed double. FPC further suffers from 

some branch divergence due to imbalance in the number of bytes processed by each warp 

thread, as well as a code section in which only every other thread has work. 

• Traveling Salesman Problem (TSP) 

The TSP code is semi-regular, possessing relatively regular control flow but data-

dependent memory accesses, and it spends the majority of its execution time on 

computation. Its memory accesses are mostly to shared memory, but it does access main 

memory when performing the 2-opt city ordering swaps, resulting in uncoalesced 

accesses and LSU stalls. TSP also exhibits a large fraction of idle time associated with 

synchronization barriers. These barrier idle cycles occur as threads in a block finish 

computing their locally best solution but have to wait for the slowest thread in the block 

before the global solution can be updated. The branch divergence stems from an instance 

of control-flow irregularity where some threads have reached a local minimum and want 

to move on to a new tour while other threads are still searching for a minimum. 

• N-Body (NB) 

This code is highly regular and computation-bound. Additionally, I chose an input 

size to exactly fill the resident blocks to provide a basis of comparison for the irregular 

benchmarks. NB demonstrates the highest busy ratio of the studied programs. Its lost 

cycles are due mostly to RAW hazards on the small amount of data not accessed via 
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shared memory as well as full computation pipelines and the synchronization barriers 

necessary between transferring data to shared memory and the computation phase. 

• Monte Carlo (MC) 

The MC application is embarrassingly parallel, highly regular, and dominated by 

computation. Its largest source of slowdown is scoreboard hazards, both due to cache 

misses and long computation operations. It also displays some imbalance between blocks 

as well as pipeline stalls in the special function unit (SFU) pipeline due to its extensive 

use of square root operations in the quasi-random sequence generation kernel. 

Many irregular codes rely on synchronization and memory barriers and atomic 

operations. With the exception of the synchronization penalty in BFS-wlc and SSSP-wlc 

codes, however, these primitives contribute a smaller fraction of program slowdown than 

expected. Memory fences appear to contribute very little to program slowdown for these 

codes. The performance loss associated with imbalance and branch divergence was also 

somewhat less severe than expected of codes operating on irregular data structures. This 

suggests that these benchmark codes have been successfully optimized to minimize the 

performance impact of these aspects [64][65]. In line with expectation, memory 

bandwidth appears to be the most significant performance bottleneck for highly 

optimized irregular GPU applications, suggesting this bottleneck is more difficult to 

address with source-code optimizations. 

6.3. Impact of Hardware Modifications 

Next I examine the performance impact of several hardware modifications in 

order to better understand the behavior of irregular codes and their sensitivity to various 

hardware parameters. The hardware configurations discussed in this subchapter are 
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described in Chapter 5.6. All speedups in this chapter are calculated using IPC. Several of 

these codes iterate until convergence is reached, making direct cycle count (i.e., runtime) 

comparisons meaningless because even minor changes in microarchitectural timing can 

alter the number of iterations and therefore the number of instructions executed. IPC 

comparisons normalize for these fluctuations. 

6.3.1. Cache and Memory Latency 

I begin by scaling the L2 hit latency (ROP latency) and the DRAM access 

latency. I examine the runtime (in cycles) of each benchmark with both latencies 

configured to zero as well as with the latencies doubled and halved. Figure 6.12 plots the 

speedup relative to the default setting for each latency configuration. 

 
(Note: TSP does not include data for the No Latency configuration due to a simulator deadlock) 

Figure 6.12: Speedup over the default simulator configuration when scaling the minimum L2 hit 
latency and DRAM latency 

Interestingly, nearly all of the studied benchmarks are more sensitive to the L2 

latency than the DRAM latency, even in the presence of working set sizes several times 

larger than the L2 capacity. The exception is FPC, which accesses data in a streaming 

manner and displays high spatial locality. The regular NB code uses tiling to read all its 

data into shared memory and is largely compute bound; it is thus insensitive to memory 
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latencies. At least for these inputs, L2 latency appears to be more important than DRAM 

latency for the performance of GPGPU codes, especially irregular ones. 

6.3.2. Cache and Memory Bandwidth 

Next I scale the interconnect bandwidth between the memory partitions (including 

the L2 cache) and the core, as well as the DRAM bandwidth. Figure 6.13 illustrates the 

performance impact on each benchmark of halving and doubling the interconnect and 

DRAM bandwidths, both individually and in combination with one another. 

 
Figure 6.13: Speedup over the default simulator configuration when scaling the interconnect and 

DRAM bandwidths 

Similarly to the L2 and DRAM latency behavior, most of the studied applications 

are significantly more sensitive to interconnect bandwidth than to DRAM bandwidth. It 

seems that for these applications and input sizes, the L2 is large enough that sufficient L2 

bandwidth keeps enough warps able to execute. The regular codes are helped very little 

by additional memory bandwidth. 

6.3.3. Cache Size 

Figure 6.14 plots the performance impact on each benchmark of halving and 

doubling the L1D and L2 cache sizes over the default configuration. 
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In general, those benchmarks that are significantly sensitive to interconnect 

bandwidth also benefit most from increased L1 data cache size. One exception is the 

irregular BH tree-construction kernel. This kernel traverses tree prefixes beginning with 

the root of the tree. The top of the tree is therefore likely to hit in the L1, but after the top 

portion of the tree there is insufficient locality to leverage even a larger L1. Increased 

bandwidth to the L2, however, improves performance because the L2 allows for 

significant exploitation of locality in the traversals. 

 
Figure 6.14: Speedup over the default simulator configuration when scaling the data cache sizes 

Most of the irregular codes are hurt more by decreased L1 capacity than by 

decreased L2 capacity. The regular codes, on the other hand, are impacted more by 

decreased L2 capacity, but the impact is relatively minor in comparison to the impact of 

the L1 cache size on irregular codes. For these inputs, BFS, SP, and SSSP all display an 

unexpected speedup with a reduced L2 size. These applications iterate until they 

converge, and microarchitectural changes can alter the timing behavior, which in turn can 

affect the number of iterations and the order in which tasks are processed, potentially 

altering the code’s memory locality and other performance factors and leading to 

counterintuitive performance changes. 
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6.3.4. Warp Scheduling Policy 

By default, GPGPU-Sim implements a greedy-then-oldest (GTO) warp scheduler, 

which prioritizes a particular warp until that warp stalls, then prioritizes the oldest other 

warp eligible for issue. Figure 6.15 shows the performance impact of using a round-robin 

(RR) scheduler instead. 

 
Figure 6.15: Speedup of the RR scheduler over the default GTO scheduler 

With the exception of SP, the RR scheduler degrades the performance of the 

irregular codes. RR scheduling preserves locality between warps by keeping warps 

roughly synchronized. This has a significantly positive performance impact on the more 

regular codes, whose data-independent access patterns tend to assign nearby data 

locations to nearby warp instructions. RR scheduling improves the performance of FPC, 

for example, by nearly 25% because of a reduction in RAW hazards on load data. 

While good for preserving inter-warp locality, the downside to RR scheduling is 

that warps tend to encounter long operations (i.e., stalls) at the same time. GTO 

scheduling, on the other hand, sacrifices inter-warp locality in order to address the stall 

issue. It appears that GTO warp scheduling is superior for irregular codes, which often 

possess little inter-warp locality. 
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Figure 6.16 displays the performance impact of my greedy-then-least-stalled 

(GTLS) warp scheduler with several configurations of clear_count (cf. Chapter 5.6.4). 

This scheduler trivially helps a handful of the irregular applications and in general hurts 

the irregular codes less than the RR scheduler while preserving some of the benefit to the 

highly regular codes. However, because the GTLS scheduler is greedy in nature, it still 

sacrifices some inter-warp synchronization and therefore locality, and its benefit to the 

regular codes cannot match the RR scheduler. 

 
Figure 6.16: Speedup of the GTLS scheduler over the default GTO scheduler 

Lastly I examine the performance impact on irregular codes of the two-level 

scheduler proposed by Narasiman et al. [26], using several configurations of inner and 

outer scheduling policies and fetch group size. Figures 6.17 – 6.19 below show the 

impact on the performance of each benchmark. 

Overall, two-level warp scheduling appears detrimental to irregular codes. Small 

fetch group sizes are always harmful. Two-level scheduling benefits the more regular 

codes when employed with a round-robin selection policy; however, only two codes 

(FPC and MC) perform better with some configuration of the two-level scheduler than 

they did with the concrete RR scheduler. 
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Figure 6.17: Speedup of the 2-level scheduler with RR inner and outer policies over the default 

GTO scheduler 

 
Figure 6.18: Speedup of the 2-level scheduler with an RR outer and GTO inner policy over the 

default GTO scheduler 

 
Figure 6.19: Speedup of the 2-level scheduler with GTO inner and outer policies over the default 

GTO scheduler 
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Of the simple warp schedulers proposed in the literature, GTO appears to be the 

best choice for supporting GPGPU execution of irregular codes. For these applications, 

further performance improvements from scheduling will likely require more complicated 

schemes for identifying and responding to sources of slowdown (e.g., cache contention). 

6.4. Input Sensitivity 

By definition, irregular codes display behavior that varies depending on the input 

data. In order to understand the impact of input variation on my results, I simulated each 

benchmark with several inputs (cf. Chapter 4.2) and compared the results. 

Despite the input-sensitive nature of the codes, different inputs of similar size 

result in similar microarchitectural performance behavior. Figure 6.20 displays the IPC of 

each benchmark across multiple inputs of similar size and type (road networks in the case 

of all graph codes). As expected, the fully regular code, NB, maintains the same IPC 

regardless of input data. The irregular codes do display some IPC variation; however, the 

difference is minimal across all benchmarks. 

 
Figure 6.20: Instructions per cycle for each benchmark with several similar inputs 
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Figure 6.21: The proportion of underused vs. fully-occupied cycles (deepest pipeline stage) for 

all codes using several similar inputs 

Figure 6.21 illustrates the breakdown of underused cycles in each benchmark 

using the same inputs as in Figure 6.20 above, based on the deepest-pipeline-stage-

prioritized version of the histogram detailed in Chapter 5.4. Despite the input-dependent 

behavior of the code, the microarchitectural performance behavior of a given application 

remains largely consistent across inputs of similar size and structure. 

6.4.1. Input Type 

In order to observe their sensitivity to input type, I compared each graph 

benchmark (i.e., BFS, MST, and SSSP) with both its primary road-network input and an 

R-MAT input. Figure 6.22 plots the IPC of each graph code using the primary input of 

each type. Figure 6.23 displays the breakdown of underused cycles for each code and 

input, once again based on the deepest-pipeline-stage-prioritized histogram. 
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Figure 6.22: Instructions per cycle for all graph codes with road-network and R-MAT inputs 

 
Figure 6.23: The proportion of underused vs. fully-occupied cycles (deepest pipeline stage) for 

all graph codes using road-network and R-MAT inputs 

Variance in input type results in greater variation in performance characteristics. 

All of the graph codes perform at lower IPCs on R-MAT inputs. R-MAT graphs are 

denser and have higher and more varied out-degree per node than road networks, and this 

leads to a higher divergence penalty in most of the benchmarks. For the BFS and SSSP 
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implementations, the tested R-MAT graph is larger than the New York City road map 

input, which reduces inter-block imbalance in BFS-wlw and results in higher memory 

latency penalty in several of the codes. Due to the limitations of simulation time, the R-

MAT input for MST is significantly smaller than the road network. However, MST’s 

performance still degrades on the R-MAT graph due to the different graph structure. 

Figure 6.24 shows the underutilized and busy cycles of the BFS and SSSP 

variants on a road network input and an R-MAT input of equal size. In general, even 

equally sized R-MAT graphs result in more divergence and more memory penalty than 

road networks. 

 
Figure 6.24: The proportion of underused vs. fully-occupied cycles for BFS and SSSP with 

equally-sized inputs of different types  
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7. SUMMARY AND CONCLUSIONS 

This thesis presents a microarchitectural workload characterization focusing on 

irregular GPU codes. I study the impact of control-flow and memory-access irregularity 

on several performance aspects, analyze how this behavior differs from that of regular 

GPGPU programs, and characterize the sensitivity of irregular codes to changes in cache 

and DRAM latency and bandwidth, cache size, coalescing behavior, and warp scheduling 

policy. Additionally, I connect source code to particular microarchitectural performance 

characteristics. 

As expected, even extensively hand-optimized graph and tree codes running on 

GPUs tend to achieve lower IPCs than regular codes. In general, they exhibit greater 

performance loss due to load imbalance, branch divergence, and uncoalesced memory 

accesses resulting from the unpredictable nature of their control-flow and memory-access 

patterns. This general trend is not always true, however. BH, for example, builds and 

operates on an irregular data structure (an octree) but, due to targeted code optimizations, 

displays less memory irregularity than FPC, which does not operate on a dynamic data 

structure. 

Interestingly, for the most part, load imbalance and branch divergence limited the 

performance of these (presumably comprehensively hand optimized) irregular codes less 

than expected. For many of the studied benchmarks, this was also true of the performance 

limitation of synchronization and atomic operations. Memory-related slowdown appears 

to be the single biggest factor limiting the performance of irregular applications, even 

those that have been demonstrated to possess ample parallelism [66], because irregular 

memory-access patterns appear to be difficult to regularize and coalesce. 
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I find that, for my sizeable tested inputs, improving the L2 latency and bandwidth 

is more important than improving the DRAM latency and bandwidth to boost the 

performance of programs with irregular memory accesses. Hardware strategies designed 

to reduce the penalty associated with uncoalesced memory accesses, including in-core 

miss-handling resources, are unlikely to have a significant performance effect without 

corresponding improvements in memory bandwidth and latency. Two-level warp 

scheduling appears to have minimal or negative impact on irregular codes, which perform 

better with a greedy-then-oldest scheduler than with other simple policies. 

7.1. Recommendations for Future Work 

Based on these results, future work aimed at improving the suitability of GPGPUs 

for irregular codes should focus on enhancing cache effectiveness and/or improving 

memory and especially last-level-cache and memory latencies and bandwidths. Simple 

warp schedulers proposed in the literature for enhancing the performance of regular 

codes, e.g., two-level active scheduling, seem ineffective for irregular codes. For these 

applications, addressing sources of slowdown via warp scheduling will likely require 

more complicated schemes aimed at increasing cache effectiveness and maximizing 

memory bandwidth.
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