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NONLINEAR EVOLUTION EQUATIONS

CHIN-YUAN LIN

In memory of my mother, Liu Gim

Abstract. Nonlinear evolution equations are studied under various condi-
tions. The methods used are based on the theory of difference equations. The

results presented here are illustrated with examples.

1. Introduction

In this section, we review some background material needed later. Let ω ∈ R and
M ≥ 1. Let X be a real Banach space with the norm ‖ · ‖. Let B : D(B) ⊂ X → X
be a linear operator satisfying the following two assumptions:

(i) B is closed and has domain D(B) dense in X.
(ii) The resolvent set ρ(B) of B contains (ω,∞), and

‖(I − λB)−n‖ ≤M(1− λω)−n

for λ > 0, λω < 1 and n = 1, 2, 3, . . ..
It is well-known [11, 28] that B generates a C0 semigroup T (t), t ≥ 0, that

‖T (t)‖ ≤Meωt, and that T (t)u0 for u0 ∈ D(B) is a unique classical solution to the
Cauchy problem

d

dt
u = Bu, t > 0, u(0) = u0. (1.1)

Here by a C0 semigroup T (t), it is meant that T (t), t ≥ 0 is a family of bounded
linear operators on X, such that T (0) = I, T (t + s) = T (t)T (s) for t, s ≥ 0, and
limt→0 T (t)x = x for x ∈ X hold.

The above result is proved in [11] and [28, Page 19] by applying the Hille-Yosida
theorem, combined with a renorming technique. This result is due (independently)
to Feller, Phillips and Miyadera (see [11] for references to the original works). This
result is also valid under the seemingly more general conditions:

(ii’) The range of (I − λB) contains D(B) for small enough λ > 0 with λω < 1.
(ii”) (I − λB)−1x is single-valued for x ∈ D(B), and ‖u‖ ≤ M(1 − λω)−n‖x‖

holds for all λ > 0 with λω < 1, x ∈ D(B), and u = (I − λB)−nx, n =
1, 2, 3, . . .
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For generating nonlinear operator semigroups, let A : D(A) ⊂ X → X be a nonlin-
ear multi-valued operator, which satisfies:

(iii) The range of (I −λA) contains D(A), for small enough λ > 0 with λω < 1.
(v) (Dissipativity): ‖u−v‖ ≤ ‖u−v−λ(x−y)‖ holds for all λ > 0, u, v ∈ D(A),

x ∈ (A− ω)u, and y ∈ (A− ω)v.

Crandall-Liggett [7] proved that A generates a nonlinear operator semigroup T (t),
t ≥ 0. When applied to u0 ∈ D(A), T (t)u0 gives a unique generalized solution to
the Cauchy problem

d

dt
u ∈ Au, t > 0, u(0) = u0, (1.2)

the notion of solution being due to Benilan [3]. The generalized solution is a strong
one if X is reflexive [7].

A different condition on A or A(t) with t dependence, for the existence of a strong
solution is given in [18, 19], where applications to parabolic partial differential
equations are given. This condition is called embeddedly quasi-demi-closed, which
is weaker than that of continuous or demi-closed [25].

Generalizing the Crandall-Liggett theorem, Kobayashi [15] (see Miyadera [25,
pp. 131-132, 141-142, 146], and Takahashi [31]) assumed (v) and the weaker (vi)
(actually, only (viii) was used.):

(vi) lim infλ→0

(
d(Ran(I − λA), x))/λ = 0 uniformly for all x ∈ D(A).

Here Ran(I − λA) denotes the range of (I − λA), and d(Ran(I − λA), x) denotes
the distance between the set Ran(I − λA) and the point x. That for a family of
functions {fλ}λ>0 : D(A) ⊂ X → R, lim infλ→0 fλ(x) = f0(x) holds uniformly for
all x ∈ D(A) means:

(vii) For every ε > 0, there is a λ1 = λ1(ε) > 0, which is independent of x such
that f0(x)− ε < fλ(x) for all 0 < λ ≤ λ1 and for all x ∈ D(A).

(viii) Given ε > 0 and given µ > 0, there is a 0 < λ2 = λ2(ε, µ) ≤ µ, which is
independent of x such that fλ2(x) < f0(x) + ε for all x ∈ D(A).

Note the following condition, (viii’), weaker than (viii) (see [21, Lemma 10]), is easy
to compare with (iii):

(viii’) For each x ∈ D(A) and each µ > 0, there are 0 < µ1 = µ1(µ) ≤ µ and
εµ,x ∈ X with ‖εµ,x‖ < µ for all x ∈ D(A), such that

(µ1ε
µ,x + x) ∈ Ran(I − µ1A)

holds. Here µ1 is independent of x.

Kobayashi [15] (see the book by Miyadera [25, pp.152-153], or the book by Laksh-
mikantham [17, pp. 112-113]) gave this example that his theory applies to but the
Crandall-Liggett theory does not:

Example 1.1. Define an operator A : D(A) ⊂ R2 → R2 by

A

(
x
y

)
≡
(
y
−x

)
for (

x
y

)
∈ D(A) ≡

{(x
y

)
∈ R2 : x2 + y2 = 1

}
.
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Here (R2, ‖.‖) is a real Hilbert space with the inner product (u, v) of u and v for
u, v ∈ R2 and with the norm ‖u‖ =

√
(u, v) of u for u ∈ R2. Then A satisfies (vi)

but not (iii), and the equation (1.2) has a unique classical solution. For

u0 =
(

cos(θ0)
sin(θ0)

)
∈ D(A),

the solution is

u(t) ≡ lim
λ→0

(
cos(θ0 − t arctan(λ)

λ )
sin(θ0 − t arctan(λ)

λ )

)
=
(

cos(t) sin(t)
− sin(t) cos(t)

)
u0.

With

AM ≡
(

0 1
−1 0

)
,

a matrix whose restriction to the unit circle is the matrix representation of A, the
solution also equals etAM ≡

∑∞
n=1(tAM )n/n!, applied to u0, which is(

cos(t) sin(t)
− sin(t) cos(t)

)
u0.

But this is a coincidence, since, for a general matrix S, etS , existing as an infinite
series of tS, does not leave unit circle invariant, in general.

Note that A is not a linear operator since D(A) is not a linear space. If A is
defined on the unit sphere in R3 with

Au =

 y
−x
0

 , for u =

xy
z

 ∈ D(A),

the unit sphere in R3, then for

u0 =

cos(θ0)
sin(θ0)
z

 ∈ D(A),

lim
λ→0

cos(θ0 − t arctan(λ)
λ )

sin(θ0 − t arctan(λ)
λ )

z

 =

 cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1

u0,

from Kobayashi theory, is the unique classical solution to the equation (1.2), and cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1


are the special rotation matrices about the z− axis, preserving the length.

For rotation matrices about a general axis n̂ =

n1

n2

n3

, a unit vector in R3, the

result also follows from the Kobayashi theory, in which the unique solution to (1.2)
is given by the limit, as λ→ 0 with fλ = arctan(λ)/λ, of cos tfλ + (1− cos tfλ)n2

1 n3 sin tfλ + n1n2(1− cos(tfλ)) −n2 sin tfλ + n1n3(1− cos tfλ)
−n3 sin tfλ + (1− cos tfλ)n1n2 cos tfλ + n2

2(1− cos tfλ) n1 sin tfλ + n2n3(1− cos tfλ)
n2 sin tfλ + (1− cos tfλ)n1n3 −n1 sin tfλ + n2n3(1− cos tfλ) cos tfλ + n2

3(1− cos tfλ)

 u0,
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which is equal to cos(t) + (1− cos(t))n2
1 n3 sin(t) + n1n2(1− cos(t)) −n2 sin(t) + n1n3(1− cos(t))

−n3 sin(t) + (1− cos(t))n1n2 cos(t) + n2
2(1− cos(t)) n1 sin(t) + n2n3(1− cos(t))

n2 sin(t) + (1− cos(t))n1n3 −n1 sin(t) + n2n3(1− cos(t)) cos(t) + n2
3(1− cos(t))

 u0,

where the associated matrices are rotations about the axis n̂. (see Section 7).
The general rotation matrices have important applications in Physics, Altmann

[1], especially Pages 73-75, and in Global Positioning System, GPS, in Civil Engi-
neering, Soler and Marshall [30], especially Pages 30-31. Compare how the physi-
cists [1] derived the formula to ours. See Section 7 for details and more examples, in-
cluding nonlinear, single-valued or multi-valued, finite or infinite dimensional ones,
and time-non-autonomous ones, which cannot be derived by the restriction as in
Example 1.1. Those examples are interpreted as non-liner non-autonomous rota-
tions, single-valued or multi-valued, of finite or infinite dimensions, evolving with
time by satisfying (1.2) or (1.3) and preserving the lenth in a nonlinear and time
nonautonomous way. This seems a complete approach to the rotation problems,
compared to the approach by the physicists, Altmann [1].

The time-nonautonomous examples requires a theory that we shall develop in
this paper. An introduction of the background of the time-nonautonomous theory
is presented below.

In time-nonautonomous theory, by an evolution operator U(t, s), 0 ≤ s < t < T
on C ⊂ X, it is meant that U(s, s) = I(the identity operator) and U(t, s)U(s, r) =
U(t, r) for 0 ≤ r ≤ s ≤ t ≤ T hold and that U(t, s)x for x ∈ C is continuous
in the pair (t, s) on the triangle 0 ≤ s ≤ t ≤ T [8]. The time-nonautonomous
operator A(t), associated with the evolution operator U(t, s), is defined as follows.
Let T > 0 and let A(t) : D(A(t)) ⊂ X → X be a time-dependent, nonlinear,
multi-valued operator that satisfies (ix), (x), and (xi) for each 0 < t < T [8, 25]:

(ix) ‖u− v‖ ≤ ‖(u− v)− λ(g − h)‖ for all u, v ∈ D(A(t)), g ∈ (A(t)− ω)u, h ∈
(A(t)− ω)v, all t ∈ [0, T ], and all λ > 0. Or equivalently, η(g − h) ≤ 0 for
some η ∈ G(u− v) ≡ {ξ ∈ X∗ : ‖u− v‖2 = ξ(u− v) = ‖ξ‖2

X∗}, the duality
map of (u− v). Here (X∗, ‖.‖X∗) is the dual space of X.

(x) The range condition. The range of (I−λA(t)) contains the closure D(A(t))
of D(A(t)) for small 0 < λ < λ0 with λ0ω < 1.

(xi) D(A(t)) = D, is independent of t.

Assume further that A(t) has the t-dependence (xii) or (xiii).

(xii) There are a continuous function f : [0, T ] → X and a monotone increasing
function L : [0,∞) → [0,∞), such that

‖Jλ(t)x− Jλ(τ)x‖ ≤ λ‖f(t)− f(τ)‖L(‖x‖)

for 0 < λ < λ0, 0 ≤ t, τ ≤ T, and x ∈ D, where Jλ(t)x ≡ (I − λA(t))−1

exists for x ∈ D by (ix) and (x).
(xiii) There is a continuous function f : [0, T ] → X, which is of bounded variation

on [0, T ], and a monotone increasing function L : [0,∞) → [0,∞), such that

‖Jλ(t)x− Jλ(τ)x‖ ≤ λ‖f(t)− f(τ)‖L(‖x‖)(1 + |A(τ)x|)

for 0 < λ < λ0, 0 ≤ t, τ ≤ T, and x ∈ D. |A(τ)x| ≡ limλ→0 ‖ (Jλ(τ)−I)x
λ ‖

exists by [9, 33, 8].

Note that either (xii) or (xiii) implies (xi); see Crandall-Pazy [8].
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Define D̂(A(t)) ≡ {x ∈ D(A(t)) : |A(t)x| < ∞}, a generalized domain for
D(A(t)), introduced by Crandall [9, 8] and Westphal [33].

Crandall and Pazy [8] showed that D̂ ≡ D̂(A(t)) is constant in t, that U(t, s)x ≡
limn→∞

∏n
i=1 J t−s

n
(s+ i t−s

n )x exists for x ∈ D and 0 ≤ s ≤ t ≤ T and is Lipschitz

continuous in t for x ∈ D̂, and that U(t, s) is an evolution operator on D =
D(A(t)) = D̂ satisfying

‖U(t, s)x− U(t, s)y‖ ≤ eω(t−s)‖x− y‖

for 0 ≤ s, t ≤ T and x, y ∈ D.
Further it is showed in [8] that U(t, s)x0 is a generalized solution to the time-

dependent nonlinear equation

du

dt
∈ A(t)u, 0 ≤ s < t < T

u(s) = x0

(1.3)

for x0 ∈ D, and that U(t, s)x0 for x0 ∈ D̂ is a strong solution if X is reflexive and
A(t) is closed.

The above result [8] generalizes many previous results, which assume either linear
or t-independent or single-valued A(t) or more restricted A(t) or X. See [8] for a
discussion of these. This result also applies to time-dependent nonlinear parabolic
boundary value problems with time-independent boundary conditions [8]. More
references on this subject can be found in [2, 3, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 25,
26, 27, 28, 31].

For problems with time-dependent boundary conditions, a theory was developed
in [19, 22]. [19] allows for time-dependent domain and strong solutions. This
applies to problems with time-dependent boundary conditions. [22] strengthened
[19] to prove that not just a subsequence but the original sequence converges and
that the applications in [19] with the space dimensions equal to 2 or 3 are solvable
numerically by the boundary element methods [4].

The condition introduced in [19] (see also [18]), under which a strong solution
exists, is called embeddedly quasi-demi-closedness and is weaker than continuity
or demi-continuity [25]. Its definition is this: Let (Y, ‖.‖Y ) be a real Banach space
with (X, ‖.‖) continuously embedded into it. That the operator A(t) is embeddedly
quasi-demi-closed is that if tn ∈ [0, T ] → t, xn ∈ D(A(tn)) → x and ‖yn‖ ≤ k for
some yn ∈ A(tn)xn, then x ∈ D(η ◦A(t))(that is, η(A(t)x) exists) and

|η(ynk
)− z| → 0

for some subsequence ynk
of yn, for some z ∈ η(A(t)x) and for each η ∈ Y ∗ ⊂ X∗,

the real dual space of Y .
The question arises: for nonlinear evolution equation problems, would it be

possible to develop a theory that uses as the basis, the generalized range condition
(vi) in Kobayashi [15] and the time-regulating conditions (xii) and (xiii) in Crandall-
Pazy [8]? This is what we intend to do in this paper. Examples are given in Section
7.

However, we should remark that our new examples here do not include applica-
tions from partial differential equations. This is because we need uniform continuity
of A(t) for our examples but this will not be satisfied by partial differential opera-
tors.
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In this paper, we shall use the difference equations method in [20, 21] to show
that under various conditions related to (vi), (xii), and (xiii), a quantity V (t, s)x0

similar to

U(t, s)x0 ≡ lim
n→∞

n∏
i=1

J t−s
n

(s+ i
t− s

n
)x0

(in Crandall-Pazy [8] ) exists and is the so-called a limit solution to the equation
(1.3) for x0 in a generalized domain Ê, similar to D̂(A(t)). The limit solution is
a strong solution if A(t) is embeddedly quasi-demi-closed. Furthermore, V (t, s)x0

is Lipshitz continuous in t for x0 ∈ Ê and V (t, s) is an evolution operator on Ê.
Here [20, 21] proved the generation results in [7, 15, 8] by the method of difference
equations.

Two remarks follow. Under a condition similar to (vi), a quantity similar to

|A(t)x| ≡ lim
λ→0

‖ (Jλ(t)− I)x
λ

‖

in
D̂(A(t)) ≡ {x ∈ D(A(t)) : |A(t)x| <∞}

(in Crandall-Pazy [8]) does not necessarily exist, and so we generalize D̂(A(t))
to obtain Ê by weakening limλ→0 to lim supλ→0. A balance exists between the
range condition (x) and the time-regulating condition (xii) or (xiii); this means
that a range condition more generalized than (x), such as (R6), (R7), (R1), or (R2)
(in Section 2), should be coupled with a time-regulating condition less generalized
than (xiii), such as (T4), or (T1) (in Section 2), in developing the theory, unless an
additional condition is assumed such as (R3); and vice versa.

The rest of the paper is organized as follows. Sections 2 and 4 contain basic
assumptions and some preliminaries, respectively. Section 3 contains the main
results. Section 5 contains some intermediate results. Section 6 deals with the
proof of the main results in Section 3. Finally, Section 7 concerns applications,
which satisfy (R4), (R6), (T4), (R1), (R2), and (T1) (see Section 2) but do not
satisfy the (iii) in Crandall-Liggett [7] or (x) in Crandall-Pazy [8].

2. Basic assumptions

We make the following assumptions:
(A1) Dissipativity as stated above (ix): ‖u − v‖ ≤ ‖(u − v) − λ(g − h)‖ for all

u, v ∈ D(A(t)), g ∈ (A(t) − ω)u, h ∈ (A(t) − ω)v, all t ∈ [0, T ], and all
λ > 0. Or equivalently, η(g − h) ≤ 0 for some η ∈ G(u − v) ≡ {ξ ∈ X∗ :
‖u−v‖2 = ξ(u−v) = ‖ξ‖2

X∗}, the duality map of (u−v). Here (X∗, ‖.‖X∗)
is the dual space of X.

(A2) Constant domain as stated above (xi): D(A(t)) = D, is independent of t.

Generalized range conditions.

(R1) There is a closed subset E in X such that E ⊃ D(A(t)) holds for all t. For
all x ∈ E,

lim inf
µ→0

d(Ran(I − µA(t)), x)
µ

= 0

holds uniformly in x and t.
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(R2) There is a closed subset E in X such that E ⊃ D(A(t)) holds for all t. For
each x ∈ E and each µ > 0, there is a 0 < µ1 ≤ µ, which is independent of
x, t, such that

(µ1ε
µ,x,t + x) ∈ Ran(I − µ1A(t))

holds for some εµ,x,t ∈ X with ‖εµ,x,t‖ < µ for all x, t.
(R3) (Additional property) The same as the assumption above, with the addi-

tional property
n∑

i=1

‖εµ,xi,ti − εµ,yi,τi‖ ≤ k0nµ1

for some k0 > 0, and for all xi, yi ∈ E and all ti, τi < T , where i ≤ n ∈ N.
We use {x, µ, {µ1}, εµ,x,t} to denote the set of values satisfying (R2),

with µ ≤ λ0, so that µ1ω ≤ µω ≤ λ0ω < 1.
(R4) There is a closed subset E in X such that E ⊃ D(A(t)) = D for all

0 ≤ t ≤ T , and that

d(Ran(I − µA(t)), x)
µ

≤ g0(µ)

uniformly for all x ∈ E, 0 ≤ t ≤ T , for all 0 < µ ≤ µ0, for some µ0 > 0,
and for some function g0(µ), where g0(µ) = c0µ for some constant c0 > 0.

(R5) There is a closed subset E in X such that E ⊃ D(A(t)) for all 0 ≤ t ≤ T .
For each x ∈ E,

(µεµ,x,t + x) ∈ Ran(I − µA(t))

holds for some µ0 > 0, for all 0 < µ ≤ µ0, 0 ≤ t ≤ T, and for some
εµ,x,t ∈ X, where for all 0 < µ ≤ µ0, x ∈ E, and 0 ≤ t ≤ T ,

‖εµ,x,t‖ ≤ g1(µ)

holds with g1(µ) = g0(µ) = c0µ.
We use {x, µ0, µ, ε

µ,x,t} to denote the set of variables in (R5). Here we
take µ ≤ λ0 so that µω ≤ λ0ω < 1.

(R6) There is a closed subset E in X such that E ⊃ D(A(t)) holds for all
0 ≤ t ≤ T . And

lim
µ→0

d(Ran(I − µA(t)), x)
µ

= 0

holds uniformly for all x ∈ E and 0 ≤ t ≤ T .
Note (R6) is weaker than (R4).

(R7) There is a closed subset E in X such that E ⊃ D(A(t)) holds for all
0 ≤ t ≤ T . For each x ∈ E and each ν > 0, there is a 0 < µ0 ≤ ν, which is
independent of x, t, such that for all 0 < µ ≤ µ0 ≤ ν,

(µεν,x,t + x) ∈ Ran(I − µA(t))

holds for some εν,x,t ∈ X with ‖εν,x,t‖ ≤ ν for all x, t.
We use {x, ν, µ0, ε

ν,x,t} to denote the set of variables satisfying (R7).
Here we take ν ≤ λ0 so that µω ≤ λ0ω < 1.
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Time-regulating conditions.
(T1) If x, y ∈ X, 0 ≤ t, τ ≤ T , and 0 < µ1 ≤ µ < λ0 are such that Jµ1(t)x and

Jµ1(τ)y exist, then

‖Jµ1(t)x− Jµ1(τ)y‖ ≤ (1− µ1ω)−1[‖x− y‖+ µ1‖f(t)− f(τ)‖L(‖y‖)]
or

‖Jµ1(t)x− Jµ1(τ)y‖ ≤ (1− µ1ω)−1[‖x− y‖+ µ1‖f(t)− f(τ)‖L(‖Jµ1(τ)y‖)]
holds, where f and L are as in (T4) below.

(T2) If x, y ∈ X, 0 ≤ t, τ ≤ T , and 0 < µ1 ≤ µ < λ0 are such that Jµ1(t)x and
Jµ1(τ)y exist, then

‖Jµ1(t)x− Jµ1(τ)y‖

≤ (1− µ1ω)−1[‖x− y‖+ µ1‖f(t)− f(τ)‖L(‖y‖)(1 + ‖Jµ1(τ)y − y

µ1
‖)]

or

‖Jµ1(t)x− Jµ1(τ)y‖

≤ (1− µ1ω)−1[‖x− y‖+ µ1‖f(t)− f(τ)‖L(‖Jµ1(τ)y‖)(1 + ‖Jµ1(τ)y − y

µ1
‖)]

holds, where f and L are as in (T4) below.
(T3) If x, y ∈ X, 0 ≤ t, τ ≤ T , and 0 < µ1 ≤ µ < λ0 are such that Jµ1(t)x and

Jµ1(τ)y exist, then

‖Jµ1(t)x− Jµ1(τ)y‖ ≤ (1− µ1ω)−1
[
‖x− y‖+ µ1‖f(t)− f(τ)‖L(‖y‖)

× (1 + lim sup
µ→0

‖Jµ1(τ)y − y

µ1
‖)
]

or

‖Jµ1(t)x− Jµ1(τ)y‖ ≤ (1− µ1ω)−1
[
‖x− y‖+ µ1‖f(t)− f(τ)‖L(‖Jµ1(τ)y‖)

× (1 + lim sup
µ→0

‖Jµ1(τ)y − y

µ1
‖)
]

holds, where f and L are as in (T4) below.
Lemma 6.1 shows that (R1) implies (R2).

(T4) If x, y ∈ X, 0 ≤ t, τ ≤ T , and 0 < µ < λ0 are such that Jµ(t)x and Jµ(τ)y
exist, then

‖Jµ(t)x− Jµ(τ)y‖ ≤ (1− µω)−1[‖x− y‖+ µ‖f(t)− f(τ)‖L(‖y‖)]
or

‖Jµ(t)x− Jµ(τ)y‖ ≤ (1− µω)−1[‖x− y‖+ µ‖f(t)− f(τ)‖L(‖Jµ(τ)y‖)]
holds for some continuous function f : [0, T ] → X, and for some monotone
increasing function L : [0,∞) → [0,∞). (So L(a) is finite for finite a ≥ 0.)

(T5) If x, y ∈ E, 0 ≤ t, τ ≤ T , and 0 < µ < λ0 are such that Jµ(t)x and Jµ(τ)y
exist, then

‖Jµ(t)x− Jµ(τ)y‖

≤ (1− µω)−1[‖x− y‖+ µ‖f(t)− f(τ)‖L(‖y‖)(1 + ‖Jµ(τ)y − y

µ
‖)]
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or

‖Jµ(t)x− Jµ(τ)y‖

≤ (1− µω)−1[‖x− y‖+ µ‖f(t)− f(τ)‖L(‖Jµ(τ)y‖)(1 + ‖Jµ(τ)y − y

µ
‖)]

holds for the same L, f as in (T4) but with f of bounded variation also.
(T6) If x, y ∈ E, 0 ≤ t, τ ≤ T , and 0 < µ < λ0 are such that Jµ(t)x and Jµ(τ)y

exist, then

‖Jµ(t)x− Jµ(τ)y‖

≤ (1− µω)−1[‖x− y‖+ µ‖f(t)− f(τ)‖L(‖y‖)(1 + lim sup
µ→0

‖Jµ(τ)y − y

µ
‖)]

or

‖Jµ(t)x− Jµ(τ)y‖

≤ (1− µω)−1[‖x− y‖+ µ‖f(t)− f(τ)‖L(‖Jµ(τ)y‖)(1 + lim sup
µ→0

‖Jµ(τ)(y)− y

µ
‖)]

for the same L, f as in (T5).

Now, we state the following hypotheses:

(H1) The assumptions of the dissipativity (A1), the constant domain (A2), either
the generalized range condition (R4) or the generalized range condition
(R5), and either the time-regulating condition (T4) or the time-regulating
condition (T5) or the time-regulating condition (T6).

(H2) The assumptions of the dissipativity (A1), the constant domain (A2), the
time-regulating condition (T1), and either the generalized range condition
(R1), or the generalized range condition (R2).

(H3) The assumptions of the dissipativity (A1), the constant domain (A2), the
additional property (R3), and either the time-regulating condition (T2) or
the time-regulating condition (T3).

(H4) The assumptions of the dissipativity (A1), the constant domain (A2), the
time-regulating condition (T4), and either the generalized range condition
(R4) or the generalized range condition (R5).

Note that the union of the hypotheses (H2) and (H3) contains the special cases:
hypotheses (H1) and (H4).

Note that as (A2) is implied by either (xii) or (xiii) in Crandall-Pazy [8], (A2) in
(H1) is implied by other conditions in (H1)(see Lemmas 4.1, 4.2, and 4.3, Section
4); also (A2) in (H2) or (H3) or (H4) is implied by other conditions in (H2) or (H3)
or (H4) (see Lemmas 4.1, 4.2, and 4.3, Section 4). Assuming (A2) (as in Crandall-
Pazy [8]) is redundant but it helps see what the hypotheses (H1), (H2), (H3), and
(H4) are.

Note that (R4) and (R5) are motivated by (vi) and (viii’), respectively, and (T4)
and (T5) (or (T6)) by (xii) and (xiii), respectively. (R5) is weaker than (R4). For
D(A(t)) = D being constant, we can take E = D and εµ,x,t = 0, which is the case
(x) and (A2).
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3. Main results

For A(t) satisfying (ix) and (R5), let x ∈ E be such that for {x, µ0, µ, ε
µ,x,t},

[[A(t)x]] ≡ lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖ <∞ .

Define Ê(t) to be the set of all such x’s.
For A(t) satisfying (H2) without (T1) or for A(t) satisfying (H3) without both

(T2) and (T3), the Ê(t) is similarly defined; Ê(t) is defined to be the set of all
x ∈ E such that for {x, µ, {µ1}, εµ,x,t},

[[A(t)x]] ≡ lim sup
µ→0

‖Jµ1(t)(µ1ε
µ,x,t + x)− x

µ1
‖ <∞ .

For A(t) satisfying (H4) without (T4), a similar definition made for [[A(t)x]] is left
to the reader.

Here note that lim sup = lim under the case (x) in Crandall-Pazy [8]. It is proved
in Lemma 4.3 and the Remark (see Section 4) that Ê ≡ Ê(t) is constant in t and
that

Ê = D(A(t)) ≡ D .

Definition. For x ∈ Ê with A(t) satisfying (H1), let

M(x) ≡ sup
0≤t≤T

[[A(t)x]] ≡ sup
0≤t≤T

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖.

Similar definition is given for A(t) satisfying (H2) or (H3), for which

M(x) ≡ sup
0≤t≤T

[[A(t)x]] ≡ sup
0≤t≤T

lim sup
µ→0

‖Jµ1(t)(µ1ε
µ,x,t + x)− x

µ1
‖.

The case for A(t) satisfying (H4) is similarly treated and is left to the reader. M(x)
is uniformly finite for each x by Lemma 4.3.

Theorem 3.1. Under the hypothesis (H2) or (H3), limλ→0 uλ(t, s;x0) exists for
x0 ∈ Ê and is the so-called a limit solution to the equation (1.3). limλ→0 uλ(t, s;x0)
for x0 ∈ Ê is a strong solution if A(t) is embeddedly quasi-demi-closed. Further-
more, U(t, s) defined by

U(t, s)x0 ≡ lim
λ→0

uλ(t, s;x0)

is a nonlinear evolution operator on Ê. Here uλ(t, s;x0) ≡ x0 for t = s and

uλ(t, s;x0) ≡ xλ
m(s;x0)

for t ∈ (s+ tλm−1, s+ tλm] ∩ (s, T ], where m = 1, 2, 3, . . . , Nλ , and xλ
m(s;x0) = xλ

m

and Nλ comes from Lemma 6.3.

Corollary 3.2. If a multi-valued nonlinear operator A : D(A) ⊂ X → X is
dissipative and satisfies

lim
λ→0

d(Ran(I − λA), x)
λ

= 0

uniformly for x ∈ D(A), then A generates a nonlinear contraction semigroup.

In some sense, Corollary 3.2 is a result that lies between the Theorem of Crandall-
Liggett [7] and that of Kobayashi [15].
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4. Preliminaries

For the rest of this article, K denotes a generic constant, which can vary with
different occasions.

The following proofs of Lemmas 4.1, 4.2, and 4.3 are given for A(t) satisfying
(A1) and (R5). For A(t) satisfying other hypotheses, the proofs are similar and left
to the reader.

Lemma 4.1. Ê(t) ⊂ D(A(t)) holds.

Proof. As in [9, Page 435], for x ∈ Ê(t), the definition of Ê(t) implies

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x‖

≤ (lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖) lim sup

µ→0
µ→ 0 .

Since Jµ(t)(µεµ,x,t + x) ∈ D(A(t)), we have x ∈ D(A(t)) and Ê(t) ⊂ D(A(t)). �

Lemma 4.2. For {x, µ0, µ, ε
µ,x,t} with x ∈ D(A(t)),

‖Jµ(t)(µεµ,x,t + x)− x‖ ≤ (1− µω)−1(µg1(µ) + µ inf
y∈A(t)x

‖y‖),

[[A(t)x]] ≤ infy∈A(t)x ‖y‖, and D(A(t)) ⊂ Ê(t).

Proof. For x ∈ D(A(t)), we have

‖Jµ(t)(µεµ,x,t + x)− x‖ = ‖Jµ(t)(µεµ,x,t + x)− Jµ(t)(I − µA(t))x‖
≤ (1− µω)−1(µg1(µ) + µ inf

y∈A(t)x
‖y‖),

which gives x ∈ Ê(t). The proof is complete. �

Remark. For {x, µ, {µ1}, εµ,x,t} with x ∈ D(A(t)),

‖Jµ1(t)(µ1ε
µ,x,t + x)− x‖ ≤ (1− µ1ω)−1(µ1µ+ µ1 inf

y∈A(t)x
‖y‖),

[[A(t)x]] ≤ infy∈A(t)x ‖y‖, and D(A(t)) ⊂ Ê(t). The case where {x, ν, µ0, µ, ε
ν,x,t}

is given is similarly treated.

Lemma 4.3. The set Ê ≡ Ê(t) is constant in t and Ê = D(A(t)) = D holds if
(T4) or (T5) or (T6) holds.

Proof. As in [8, Page 63], applying (R5) to (T4), dividing the inequality in (T4) by
µ, and letting µ→ 0, we have

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖

≤ lim sup
µ→0

‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖+ ‖f(t)− f(τ)‖ lim sup

µ→0
L(‖µεµ,x,τ + x‖)

or

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖ ≤ lim sup

µ→0
‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖

+ ‖f(t)− f(τ)‖ lim sup
µ→0

L(‖Jµ(τ)(µεµ,x,τ + x)‖);
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similarly, from (R5) and (T5) or (T6), we have

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖

≤ lim sup
µ→0

‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖+ ‖f(t)− f(τ)‖ lim sup

µ→0
L(‖µεµ,x,τ + x‖)

× (1 + lim sup
µ→0

‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖)

or

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖ ≤ lim sup

µ→0
‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖

+ ‖f(t)− f(τ)‖ lim sup
µ→0

L(‖Jµ(τ)(µεµ,x,τ + x)‖)

× (1 + lim sup
µ→0

‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖).

Each inequality above implies that Ê is constant in t. Finally, use Lemmas 4.1 and
4.2. Here note that if

lim sup
µ→0

‖Jµ(τ)(µεµ,x,τ + x)− x

µ
‖

is finite, then
lim sup

µ→0
‖Jµ(τ)(µεµ,x,τ + x)‖ = ‖x‖

is finite. �

Remark. To prove Lemma 4.3 in the case of A(t) satisfying (H2) or (H3) or (H4),
we employ (T1) or (T2) or (T3) or (T4), respectively.
Remark. We can take E = D and εµ,x,t = 0 in (R5) if (x) holds; this is the case
in Crandall-Pazy [8], where note lim sup = lim.

As in [20], we now use the theory of difference equations [24]. Let b : D(b) ⊂
R → R be a real-valued function defined on D(b) = N ∪ {0}. Let bn = b(n) for
n ∈ D(b) and call {bn} = {bn}∞n=0 a sequence of real numbers. Here bn ∈ R is
the n-th term or the general term of the sequence {bn}∞n=0. For such a sequence
{bn}, we define bn ≡ 0 for negative integers n for later use. Let S be the set of all
such sequences. (Thus, for {an} ∈ S, 0 = a−1 = a−2 = . . . ). Define a right shift
operator E : S → S by

E{bn} ≡ {dn}
for {bn} = {bn}∞n=0 ∈ S, where {dn} = {dn}∞n=0 ∈ S with dn = bn+1; thus

E{bn} = E{bn}∞n=0 = {dn} = {dn}∞n=0 = {bn+1} = {bn+1}∞n=0.

For c ∈ R and c 6= 0, define the operator (E − c)∗ : S → S by

(E − c)∗{bn}∞n=0 ≡ {an}∞n=0

for {bn}∞n=0 ∈ S, where a0 ≡ 0 and

an ≡ cn
n−1∑
i=0

bi
ci+1
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for n = 1, 2, 3, . . .. Here for convenience, the range of n, {0} ∪N will be suppressed
for the rest of the paper. Thus

(E − c)∗{bn} ≡ {an}.
It will be seen from below that (E − c)∗ acts approximately as the inverse of

(E − c). We also define the left shift operator E# by

E#{bn} ≡ {bn−1}
for {bn} = {bn}∞n=0 ∈ S. Here note 0 = b−1 = b−2 = b−3 = . . .. Similarly define

Ei#{bn} ≡ (E#)i{bn} = {bn−i}
for {bn} ∈ S. Note bn−i = 0 for n < i.

(E − c)i∗ ≡ ((E − c)∗)i

for i ∈ N is defined in an obvious way. For convenience, we also define

(E − c)0{bn} ≡ {bn}
for {bn} ∈ S.

For later use, we collect, from [20, 21], the following results, except for Proposi-
tion 4.10, which is new and will be proved below.

Lemma 4.4. Let {bn}∞n=0, {dn}∞n=0 be two sequences of real numbers, with the
general terms bn and dn, respectively. Then the following hold:

(E − c)∗(E − c){bn} = {bn − cnb0},
(E − c)(E − c)∗{bn} = {bn},
(E − c)∗{bn} ≤ (E − c1)∗{bn}

for 0 < c ≤ c1 and positive {bn}, and

(E − c)∗{bn} ≤ (E − c)∗{dn} for c > 0 and {bn} ≤ {dn}.

Remark. Here {bn} ≤ {dn} means bn ≤ dn for n = 0, 1, 2, . . ..

Proposition 4.5. Let ξ, c ∈ R, d = 1− c, c 6= 1, and c 6= 0. Let {n}∞n=0, {cn}∞n=0,
{ξ}∞n=0 be three sequences of real numbers, with the general terms n, cn, and ξ,
respectively. Then the following equalities hold

(E − c)∗{n} = {n
d
− 1
d2

+
cn

d2
},

(E − c)∗{ξ} = { ξ
d
− ξcn

d
},

(E − c)i∗{cn} = {
(
n

i

)
cn−i}.

Here i = 0, 1, 2, . . ., and
(
n
i

)
≡ 0 for n = 0 or n < i.

Proposition 4.6. Let ξ, c ∈ R, d = 1 − c, c 6= 1, and cξ 6= 0. Let {nξn}∞n=0,
{ξn}∞n=0, and {(cξ)n}∞n=0 be three sequences of real numbers, with the general terms
nξn, ξn, and (cξ)n, respectively. The following equalities hold

(E − cξ)∗{nξn} = {(nξ
n

d
− ξn

d2
+
cnξn

d2
)
1
ξ
},

(E − cξ)∗{ξn} = {(ξ
n

d
− cnξn

d
)
1
ξ
},
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(E − cξ)i∗{(cξ)n} = {
(
n

i

)
(cξ)n−i}.

Here i = 0, 1, 2, . . ., and
(
n
i

)
≡ 0 for n = 0 or n < i.

Remark. In [20], the last equality in Proposition 4.5 or 4.6 has the restriction
i ≤ n on its right side. But this restriction is unnecessary from the proof in [20] if
we use the convention

(
n
i

)
= 0 for n = 0 or n < i. Thus

{an} = {an}∞n=0 ≡ {
(
n

2

)
(cξ)n−2} = {

(
n

2

)
(cξ)n−2}∞n=0

is a sequence with 0 = a1 = a0 = a−1 = a−2 = . . ..

Lemma 4.7. For α, β > 0, α+ β = 1, and m ∈ N,

((E − βγ)∗)m{nγn} = {nγ
n

αm

1
γm

− mγn

αm+1

1
γm

+ (
m−1∑
i=0

(
n

i

)
βn−i

αm+1−i
(m− i)

1
γm

)γn}.

Lemma 4.8. With the notation in Proposition 4.6,

((E − cξ)∗)j{ξn} = { ξn

(dξ)j
−

j−1∑
i=0

(
n

i

)
(cξ)n−i 1

(dξ)j−i
}

= {( 1
dj
− 1
dj

j−1∑
i=0

(
n

i

)
cn−idi)ξn−j}

= {( 1
dj

n∑
i=j

cn−idi)ξn−j}

for j ∈ N, ξ, c ∈ R, d = 1− c, c 6= 1, cξ 6= 0.

Lemma 4.9. For α > 0, 0 < β = 1 − α, γ > 1, and {an} a sequence in S, The
following holds:

((E − γβ)∗E){an} = (E − γβ)∗((E − γβ) + γβ){an}
= {an} − {(γβ)na0}+ (γβ)(E − γβ)∗{an},

(E − γβ)∗{an} has the first term zero, corresponding to n = 0,

((E − γβ)∗E)m{nγn} =
m∑

i=0

(
m

i

)
((γβ)(E − γβ)∗)i{nγn},

((E − γβ)∗E)m{n2γn} =
m∑

i=0

(
m

i

)
((γβ)(E − γβ)∗)i{n2γn},

m−1∑
i=0

((γα)(E − γβ)∗E)i{(γβ)n} = {γn
m−1∑
i=0

γiβn

(
n+ i− 1

i

)
αi}

≤ {γnγm
m−1∑
i=0

αi

(
n+ i− 1

i

)
βn},

and

(γα)j−1((E − γβ)∗E)j{γn} = {α−1γj−1γn[1−
j∑

i=1

(
n+ i− 2
i− 1

)
αi−1βn]}
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= {α−1γj−1γn(
∞∑

i=j+1

(
n+ i− 2
i− 1

)
αi−1βn)}

≤ {α−1γj−1γn}
for m = 0, 1, 2, 3, . . ., and j = 1, 2, 3, . . ..

Remark. The fifth equality in the above lemma can be proved as the fourth
equality is although it is not proved in [21].

Proposition 4.10. The following holds, where β, γ > 0, α+ β = 1, m ∈ N:

(E − β)∗{n2} = {n
2

α
− 2n
α2

+
1
α2

− 1
α2
βn},

(E − βγ)∗{n2γn} = γn−1(E − β)∗{n2},

(E − β)m∗{n2} =
{ n2

αm
− (2m)n
αm+1

+ (
m(m− 1)
αm+2

+
m

αm+1
)

−
m−1∑
j=0

(
(m− j)(m− j − 1)

αm−j+2
+

(m− j)
αm−j+1

)
(
n

j

)
βn−j

}
,

and
(E − βγ)m∗{n2γn} = γn−m(E − β)m∗{n2}.

Proof. By definition and Proposition 4.5, we have

{βn(
1
β2

+
2
β3

+ · · ·+ n− 1
βn

)} = (E − β)∗{n} = {n
α
− 1
α2

+
1
α2
βn}.

Differentiation with respect to β of the above gives the first identity in the Propo-
sition.

The second identity follows easily from the definition. The first and second
identities gives

(E − βγ)∗{n2γn} = {(n
2γn

α
− 2nγn

α2
+

1
α2
γn − 1

α2
(βγ)n)

1
γ
}.

Applying (E − βγ)∗ to both sides and using Proposition 4.6, we have

(E − βγ)2∗{n2γn}

= {(n
2

α2
− 4n
α3

+ (
2
α4

+
2
α3

)− (
2
α4

+
2
α3

)βn − 1
α2

(
n

1

)
βn)γn 1

γ2
}.

Repeating this operation gives

(E − βγ)3∗{n2γn} = {(n
2

α3
− 6n
α4

+ (
6
α5

+
3
α4

)− (
6
α5

+
3
α4

)βn

− (
2
α4

+
2
α3

)
(
n

1

)
βn−1 − 1

α2

(
n

2

)
βn−2)γn 1

γ3
}.

Continuing this way, we are led to, for m ∈ N,

(E − βγ)m∗{n2γn} =
{
(
n2

αm
− (2m)n
αm+1

+ (
χm

αm+2
+

m

αm+1
)

−
m∑

i=1

(
χi

αi+2
+

i

αi+1
)
(

n

m− i

)
βn−(m−i))γn 1

γm

}
,
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where χm satisfies χ0 = 0, χ1 = 0, χ2 = 2, and

χm = χm−1 + 2(m− 1).

The theory of difference equation gives χm = m(m− 1), which , together with the
substitution j = m − i, plugged into the above long identity gives the last two
identities in the Proposition. �

5. Intermediate results under hypothesis (H1)

For the rest of the paper, we shall assume that the function L in (T4) or its
similar conditions (e.g. (T5), (T6) and so on) takes the form

L(‖y‖).
The proof for the other case where L(‖Jµ(τ)y‖) holds is similar.

Lemma 5.1. Under (A1) and (R5), for x0 ∈ E and 0 < µ ≤ µ0, there are
xµ

i = xµ
i (x0) ∈ D(A(ti)), depending on x0, and εµ,xµ

i−1,ti ∈ X, i = 0, 1, 2, . . . , such
that

xµ
i = Jµ(ti)(µεµ,xµ

i−1,ti + xµ
i−1)

holds for all 0 ≤ ti ≤ T with ‖εµ,xµ
i−1,ti‖ ≤ g1(µ). Here xµ

0 ≡ x0.

Proof. Start with x = x0 in (R5), we have

xµ
1 = Jµ(t1)(µεµ,x0,t1 + x0)

for all 0 ≤ t1 ≤ T, and for some xµ
1 ∈ D(A(t1)) and some εµ,x0,t1 ∈ X with

‖εµ,x0,t1‖ ≤ g1(µ). Next with x = xµ
1 in (R5), we have

xµ
2 = Jν(t2)(νεµ,xµ

1 ,t2 + xµ
1 )

for all 0 ≤ t2 ≤ T and for some xµ
2 ∈ D(A(t2)) and some εµ,xµ

1 ,t2 ∈ X with
‖εµ,xµ

1 ,t2‖ ≤ g1(µ). Continuing in this way we complete the proof. �

Definition. For x ∈ Ê with A(t) satisfying (H1), let

M(x) ≡ sup
0≤t≤T

[[A(t)x]] ≡ sup
0≤t≤T

lim sup
µ→0

‖Jµ(t)(µεµ,x,t + x)− x

µ
‖.

Similar definition is given for A(t) satisfying (H2) or (H3), for which

M(x) ≡ sup
0≤t≤T

[[A(t)x]] ≡ sup
0≤t≤T

lim sup
µ→0

‖Jµ1(t)(µ1ε
µ,x,t + x)− x

µ1
‖.

M(x) is uniformly bounded for each x by Lemma 4.3. The case for A(t) satisfying
(H4) is similarly treated.

Lemma 5.2. For x0 ∈ Ê with A(t) satisfying (H1), the xµ
i in Lemma 5.1 satisfies

‖xµ
i − x0‖ ≤ iµ(1− µω)−i(M(x0) + 2g1(µ)).

Here M(x0) ≤ K, i ∈ N, and µω < 1.

Proof. After xµ
i is chosen, we have, for x0 ∈ Ê, (R5) implies Jµ(ti)(µεµ,x0,ti + x0)

exists for some εµ,x0,ti ∈ X with

‖εµ,x0,ti‖ ≤ g1(µ).

With that, we have

‖xµ
i − x0‖ ≤ ‖xµ

i − Jµ(ti)(µεµ,x0,ti + x0)‖+ ‖Jµ(ti)(µεµ,x0,ti + x0)− x0‖.
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Note the first and the second term on the right side of the above inequality is less
than or equal to

γ‖xµ
i−1 − x0‖+ 2γµg1(µ) and µM(x0),

respectively. Here γ ≡ (1− µω)−1 > 1. It follows that

‖xµ
i − x0‖ ≤ γ‖xµ

i−1 − x0‖+ µM(x0) + 2γµg1(µ) .

This recursive inequality completes the proof. �

Lemma 5.3. For {x0, µ0, µ, ε
µ,x0,t} and {x0, µ0, λ, ε

λ,x0,t}, where x0 ∈ E and λ ≥
µ,

(1− λω)‖Jλ(t)(λελ,x0,t + x0)− x0

λ
‖

≤ (1− µω)‖Jµ(t)(µεµ,x0,t + x0)− x0

µ
‖+ (1− µω)(g1(λ) + g1(µ)).

Furthermore, for x0 ∈ Ê(t),

‖Jλ(t)(λελ,x0,t + x0)− x0

λ
‖ ≤ (1− λω)−1(g1(λ) + [[A(t)x0]]) .

Proof. As in [8, Page 61],

‖Jλ(t)(λελ,x0,t + x0)− x0

λ
‖

≤ µ

λ
‖Jµ(t)(µεµ,x0,t + x0)− x0

µ
‖+

1
λ
‖Jµ(t)(µεµ,x0,t + x0)− Jλ(t)(λελ,x0,t + x0)‖,

where the second term of the right side is less than or equal to

(1− µω)−1[
λ− µ

λ
‖Jλ(t)(λελ,x0,t + x0)− x0

λ
‖+ µ(g1(µ) + g1(λ))]

by the nonlinear resolvent identity. Regrouping the terms and letting µ → 0 we
complete the proof. �

Remark. For {x0, µ, {µ1}, εµ,x0,t} and {x0, λ, {λ1}, ελ,x0,t} given, where x0 ∈ Ê(t),
and µ1 ≤ µ < λ1 ≤ λ, the above proof goes through and gives

(1− λ1ω)‖Jλ1(t)(λ1ε
λ,x0,t + x0)− x0

λ1
‖

≤ (1− µ1ω)‖Jµ1(t)(µ1ε
µ,x0,t + x0)− x0

µ1
‖+ (1− µ1ω)(µ+ λ).

Furthermore, for x0 ∈ Ê(t),

‖Jλ1(t)(λ1ε
λ,x0,t + x0)− x0

λ1
‖ ≤ (1− λ1ω)−1(λ+ [[A(t)x0]]) .

The case where {x0, ν, µ0, µ, ε
ν,x0,t} and {x0, ν

′, µ′0, µ
′, εν

′,x0,t} are similarly treated.

Lemma 5.4. For {xn, µ0, µ, ε
µ,xn,t} and {x0, µ0, µ, ε

µ,x0,t}, where xn ∈ Ê(t), x0 ∈
Ê(t), and ‖xn − x0‖ → 0, it holds

[[A(t)x0]] ≤ lim inf
n→∞

[[A(t)xn]] .
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Proof. As in [8, Page 61], by Lemma 5.3, we have

‖Jµ(t)(µεµ,x0,t + x0)− x0

µ
‖

≤ ‖Jµ(t)(µεµ,x0,t + x0)− x0

µ
− Jµ(t)(µεµ,xn,t + xn)− xn

µ
‖

+ ‖Jµ(t)(µεµ,xn,t + xn)− xn

µ
‖

≤ 1
µ

(1− µω)−1(µ(g1(µ) + g1(µ)) + ‖xn − x0‖) +
1
µ
‖xn − x0‖

+ (1− µω)−1(g1(µ) + [[A(t)xn]]).

Letting n→∞ and then µ→ 0 we complete the proof. �

Remark. In the case where {xn, µ, {µ1}, εµ,xn,t} and {x0, µ, {µ1}, εµ,x0,t} are given,
the above proof goes through and gives the same result. Also the case associated
with (R7) is similarly treated.

Lemma 5.5. For x0 ∈ Ê with A(t) satisfying (A1), (A2), and (R5), the functions
xµ

i = xµ
i (s;x0) in Lemma 5.1, depending on s, x0, for 0 ≤ s ≤ T and ti = s+iµ ≤ T ,

satisfy

‖xµ
i − xµ

i−1‖
µ

≤ K ,

M(xµ
i ) ≡ sup

0≤t≤T
[[A(t)xµ

i ]] ≤ K

if (T5) holds. Here µω < 1. Furthermore, M(xµ
i ) ≤ K if(T6) holds.

Proof. In the case of (T5), we have

‖xµ
i − xµ

i−1‖
µ

=
‖Jµ(ti)(µεµ,xµ

i−1,ti + xµ
i−1)− Jµ(ti−1)(µεµ,xµ

i−2,ti−1 + xµ
i−2)‖

µ

≤ (1− µω)−1[(2g1(µ) +
‖xµ

i−1 − xµ
i−2‖

µ
)

+ ‖f(ti)− f(ti−1)‖L(‖µεµ,xµ
i−2,ti−1 + xµ

i−2‖)(1 +
‖xµ

i−1 − xµ
i−2‖

µ
)].

It follows that by Lemma 5.2,

ai ≤ ciai−1 + bi ,

where ai =
‖xµ

i −xµ
i−1‖

µ ,

di = ‖f(ti)− f(ti−1)‖L(µg1(µ) +KT (M(x0) + 2g1(µ) + ‖x0‖)),
ci = (1−µω)−1(1+di) , and bi = (1−µω)−1[(2g1(µ)+di]. This recursive inequality
gives

‖
xµ

i − xµ
i−1

µ
‖ ≤ K .

Note that by [8, Page 65],

ai ≤ (
i∏

j=1

cj)a0 +
i∑

k=1

(
i∏

j=k+1

cj)bk,
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i∏
j=1

(1 + dj) ≤ exp(
i∑

j=1

dj)

and that f is of bounded variation over [0, T ].

Since
xµ

i −(µε
µ,x

µ
i−1,ti+xµ

i−1)

µ ∈ A(ti)x
µ
i , we have

[[A(ti)x
µ
i ]] ≤ ‖

xµ
i − (µεµ,xµ

i−1,ti + xµ
i−1)

µ
‖ ≤ g1(µ) + ‖

xµ
i − xµ

i−1

µ
‖ ≤ g1(µ) +K

by Lemma 4.2. As the proof of Lemma 4.3 about Ê(t) begin constant in t, we have

M(xµ
i ) ≡ sup

0≤t≤T
[[A(t)xµ

i ]] ≤ K.

In the case of (T6), we follow [8, Pages 65-66]. As above, by Lemma 4.2,

[[A(ti)x
µ
i ]] ≤ g1(µ) + ‖

xµ
i − xµ

i−1

µ
‖,

which by Lemma 5.3 is less than or equal to

g1(µ) + ([[A(ti)x
µ
i−1]] + g1(µ))(1− µω)−1,

where [[A(ti)x
µ
i−1]], in turn, by the proof of Lemma 4.3 about Ê(t) being constant

in t, this expression is less than or equal to,

[[A(ti−1)x
µ
i−1]] + ‖f(ti)− f(ti−1)‖L(‖µεµ,xµ

i−1,ti−1 + xµ
i−1‖)(1 + [[A(ti−1)x

µ
i−1]]).

The rest of the proof is the same as that for the case of (T5). �

6. The proof of the main results

We use the notion about difference equations introduced in Section 4. Let E1

be a right shift operator acting on the first index of a doubly indexed sequence of
real numbers; that is, let

E1{ρm,n} = {ρm,n}∞m,n=0 ≡ {ρm+1,n} = {ρm+1,n}∞m,n=0

for {ρm,n} = {ρm,n}∞m,n=0 ∈ S. Here S is the set of all doubly indexed sequences
of real numbers {ρm,n}∞m,n=0 with

ρm,n = 0

for negative integer m or n.
Similarly define E2 by

E2{ρm,n} ≡ {ρm,n+1}
for {ρm,n} ∈ S. Thus E2 acts on the second index. It is easy to see that for a
doubly indexed sequence {ρm,n} = {ρm,n}∞m,n=0 ∈ S, E1E2{ρm,n} = E2E1{ρm,n}
holds.

Lemma 6.1. (R1) implies (R2).

Proof. This basically follows from [25, Page 142.]. Let λ > 0. For x ∈ E, we have
by (R1) that there is a λ1 = λ1(λ) > 0 which is independent of x, t,with 0 < λ1 ≤ λ,
such that

d(Ran(I − λ1A), x) <
λ1λ

2
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holds for all x ∈ E and t ∈ [0, T ]. For this λ1λ
2 > 0, we have by the definition of

distance in (vi) that there are xλ,t = xλ1,λ,t ∈ D(A(t)) and yλ,t = yλ1,λ,t ∈ A(t)xλ,t,
such that

‖xλ,t − x− λ1y
λ,t‖ < λ1λ

2
+
λ1λ

2
= λ1λ .

By letting ελ,x,t = xλ,t−x−λ1yλ,t

λ1
, the proof is complete. �

Lemma 6.2. Let 0 ≤ s ≤ T , x0 ∈ E, and let (R2) hold. Then for each λ > 0,
there exists λ1 = λ1(λ) > 0, which is independent of x ∈ E, t, with 0 < λ1 ≤ λ,
and exist tλk = kλ1, x

λ
k = xλ1,λ,t

k , and yλ
k = yλ1,λ,t

k , k = 1, 2, . . ., such that xλ
k ∈

D(A(t)), yλ
k ∈ A(t)xλ

k , and

0 = tλ0 < tλ1 < · · · < tλk < tλk+1 < . . . , lim
k→∞

tλk = ∞,

tλk − tλk−1 = λ1 ≤ λ,

‖xλ
k − xλ

k−1 − (tλk − tλk−1)y
λ
k‖ < (tλk − tλk−1)λ.

Proof. Compare with [25, Page 142]. Now starting with x = x0, µ = λ > 0, and
µ1 = λ1 in (R2), we have xλ

1 ∈ D(A(t)), yλ
1 ∈ A(t)xλ

1 , such that

xλ − λ1y
λ = x0 + λ1ε

λ,x0,t

holds with ‖ελ,x0,t‖ < λ. Next with x = xλ
1 ∈ D(A(t)), µ = λ, and µ1 = λ1 in (R2),

we have xλ
2 ∈ D(A(t)), yλ

2 ∈ A(t)xλ
2 , such that

xλ
2 − λ1y

λ
2 = xλ

1 + λ1ε
λ,xλ

1 ,t

with ‖ελ,xλ
1 ,t‖ < λ. Continuing this way, we have xλ

k ∈ D(A(t)), yλ
k ∈ A(t)xλ

k ,
(k = 1, 2, 3, . . . ), satisfying

xλ
k − λ1y

λ
k = xλ

k−1 + λ1ε
λ,xλ

k−1,t

with ‖ελ,xλ
k−1,t‖ < λ. Define tλk = kλ1, and the proof is complete. �

Lemma 6.3. Let T > s ≥ 0, x0 ∈ E, 0 < λ < λ0. Under Lemma 6.2, there
exist 0 < λ1 = λ1(λ) ≤ λ, Nλ ∈ N, tλk = kλ1 ≥ 0, xλ

k = x
λ1,λ,s+tλ

k

k ∈ D(A(s +
tλk), ελ,xλ

k ,s+tλ
k ∈ E, k = 0, 1, 2, . . . , Nλ, such that

xλ
k − xλ

k−1

tλk − tλk−1

− ελ,xλ
k−1,s+tλ

k ∈ A(s+ tλk)xλ
k

holds with ‖ελ,xλ
k ,s+tλ

k‖ < λ, tλk − tλk−1 = λ1 ≤ λ, and

0 = tλ0 < tλ1 < tλ2 < · · · < tλNλ−1 < T ≤ tλNλ .

Proof. As in [25, Page 144], let t = s+tλk and ελ,xλ
k−1,s+tλ

k = xλ
k−xλ

k−1

tλ
k−tλ

k−1
−yλ

k in Lemma
6.2, and the proof is complete. �

For convenience, let {T, s, x0, λ, λ1, x
λ
k , t

λ
k , N

λ, ελ,xλ
k−1,s+tλ

k} denote the contents
in Lemma 6.3.



EJDE-2005/42 NONLINEAR EVOLUTION EQUATIONS 21

Lemma 6.4. Let 0 < λ, µ < λ0. For {T, s, x0, λ, λ1, x
λ
m, t

λ
m, N

λ, ελ,xλ
m−1,s+tλ

m} and
{T, s, x0, µ, µ1, x

µ
n, t

µ
n, N

µ, εµ,xµ
n−1,s+tµ

n} given under the conditions of Lemma 6.3,
and (A1), the inequality

am,n ≤ γαam−1,n + γβam,n−1 + bm,n

holds. Here am,n = ‖xλ
m − xµ

n‖, γ = (1 − λ1µ1
λ1+µ1

ω)−1, 0 < µ1 ≤ µ < λ0, α =
µ1

λ1+µ1
, β = 1− α = λ1

λ1+µ1
, and

bm,n ≤ γ
λ1µ1

λ1 + µ1
(‖ελ,xλ

m−1,s+tλ
m‖+ ‖εµ,xµ

n−1,s+tµ
n‖) + km,n

≤ γ
λ1µ1

λ1 + µ1
(λ+ µ) + km,n,

and 0 < λ0ω < 1, where

km,n ≤ γσ‖f(s+mλ1)− f(s+ nµ1)‖L(‖β(µ1ε
λ,xµ

n−1,s+tµ
n + xµ

n−1) + αxµ
n‖)(1

+ either 0 or
‖xµ

n − (µ1ε
µ,xµ

n−1,s+tµ
n + xµ

n−1)‖
µ1

or lim sup
µ→0

‖
xµ

n − (µ1ε
µ,xµ

n−1,s+tµ
n + xµ

n−1)
µ1

‖).

Here σ = λ1µ1/(λ1 + µ1).

Remark. The recursive inequality in Crandall-Liggett [7, Page 270] is different
from that in Lemma 6.4 and cannot be used here since we do not know whether λ1

or µ1 is bigger.

Proof. From Lemma 6.3, we have

xλ
m = Jλ1(s+mλ1)(λ1ε

λ,xλ
m−1,s+tλ

m + xλ
m−1) ,

xµ
n = Jµ1(s+ nµ1)(µ1ε

µ,xµ
n−1,s+tµ

n + xµ
n−1) .

Setting σ = λ1µ1
λ1+µ1

and using the nonlinear resolvent identity [7, Page 268], we have,
as in [17, Page 86],

xλ
m = Jσ(s+mλ1)(α(λ1ε

λ,xλ
m−1,s+tλ

m + xλ
m−1) + βxλ

m) ,

xµ
n = Jσ(s+ nµ1)(β(µ1ε

µ,xµ
n−1,s+tµ

n + xµ
n−1) + αxµ

n),

where α = µ1
λ1+µ1

and β = 1− α. It follows as in [17, Page 86], using (4.3) that

am,n ≡ ‖xλ
m − xµ

n‖ ≤ γ(αam−1,n + βam,n−1 + σ(λ+ µ)) + km,n,

where by (4.3),

km,n ≤ γσ‖f(s+mλ1)− f(s+ nµ1)‖L(β(‖µ1ε
µ,xµ

n−1,s+tµ
n + xµ

n−1) + αxµ
n‖)(1+

either 0 or
‖xµ

n − ((β(µ1ε
µ,xµ

n−1,s+tµ
n + xµ

n−1) + αxµ
n)‖

σ

or lim sup
µ→0

‖
xµ

n − (β(µ1ε
µ,xµ

n−1,s+tµ
n + xµ

n−1) + αxµ
n)

σ
‖).

Here γ = (1− σω)−1. This completes the proof. �
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Lemma 6.5. Under the the assumptions of Lemma 6.4,

{am,n} ≤ (γα(E2 − γβ)∗E2)m{a0,n}+
m−1∑
i=0

(γα(E2 − γβ)∗E2)i{(γβ)nam−i,0}

+
m∑

j=1

(γα)j−1((E2 − γβ)∗E2)j{bm+1−j,n}.

Note bm,n ≤ γ λ1µ1
λ1+µ1

(λ+ µ) + km,n.

The proof of the above lemma can be found in citeLin3.

Lemma 6.6. Under the assumption of Lemma 6.4 and (T1) or (T2) or (T3), the
foloowing inequality holds for x0 ∈ Ê:

am,0 = ‖xλ
m − x0‖ ≤ (1− λ1ω)−m(mλ1)(2λ+M(x0)),

where M(x0) ≤ K and xλ
0 = x0 = xµ

0 .

The proof of the above lemma follows from the proof of Lemma 5.2 and is left
to the reader.

Proposition 6.7. Under the assumption of Lemma 6.4 and (A2), for xλ
0 = x0 ∈ Ê,

we have
‖xλ

i − xλ
i−1‖

λ1
≤ K ,

M(xλ
i ) ≡ sup

0≤t≤T
[[A(t)xλ

i ]] ≤ K

for 0 ≤ s + iλ1 ≤ T if ((R3), (T2)) holds. Furtheremore, M(xλ
i ) ≤ K if ((R3),

(T3)) holds.

The proof of the above proposition uses Lemma 6.6, the Remarks in Section 5,
and ((R3), (T2)), or ((R3), (T3)), and follows the proof of Lemma 5.5. It is left to
the reader.

For convenience, denote the first, and second on the right side of the inequality in
Lemma 6.5 by {cm,n}, {dm,n}, respectively, and the third term by {sm,n}+{em,n}.

Proposition 6.8. For x0 ∈ Ê,

{cm,n} ≤ {γn
1 ((nµ1−mλ1)+

√
(nµ1 −mλ1)2 + (mλ1)µ1 + (nµ1)λ1)(2µ+M(x0)))},

where γ1 = (1− µ1ω)−1.

The proof of the above proposition can be found in [21], for which Lemma 6.6 is
used.

Proposition 6.9. For x0 ∈ Ê,

{dm,n} ≤ {γmγn((mλ1 − nµ1)2 + (nµ1)(λ1 + µ1))1/2)γm
2 (2λ+M(x0))},

where γ2 = (1− λ1ω)−1.

The proof of the above proposition can be found in [21], for which Lemma 6.6 is
used.

Proposition 6.10. For x0 ∈ Ê,

{sm,n} ≤ {γmγn(mλ1)(λ+ µ)}.
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The proof of the above proposition see [21].

Proposition 6.11. Let {T, s, x0, λ, λ1, x
λ
m, t

λ
m, N

λ, ελ,xλ
m−1,s+tλ

m} and

{T, s, y0, λ, λ1, y
λ
m, t

λ
m, N

λ, ελ,yλ
m−1,s+tλ

m}

be given, where x0 ∈ Ê = D, y0 ∈ Ê, and ‖ελ,xλ
m−1,s+tλ

m‖, ‖ελ,yλ
m−1,s+tλ

m‖ < λ. Then

‖xλ
m − yλ

m‖ ≤ γm
2 (‖x0 − y0‖+ (mλ1)(2λ)),

where γ2 = (1− λ1ω)−1.

Proof. Note xλ
m and yλ

m satisfy

xλ
m − xλ

m−1

λ1
− ελ,xλ

m−1,s+tλ
m ∈ A(s+ tλm)xλ

m,

yλ
m − yλ

m−1

λ1
− ελ,yλ

m−1,s+tλ
m ∈ A(s+ tλm)yλ

m,

respectively. ¿From the condition (A1) for A(t), we have

‖xλ
m − yλ

m‖ ≤ γ2(‖xλ
m−1 − yλ

m−1‖+ λ1(‖ελ,xλ
m−1,s+tλ

m‖+ ‖ελ,yλ
m−1,s+tλ

m‖)).

This recursive relation gives the result. Here note xλ
0 = x0, y

λ
0 = y0, γ

i
2 ≤ γm

2 for
i ≤ m, and ‖ελ,xλ

m−1,s+tλ
m‖, ‖ελ,yλ

m−1,s+tλ
m‖ < λ. �

We now estimate {em,n}. From Lemmas 6.4, 6.5, and 6.6, and Proposition 6.7,
and the assumption on f , we have

{em,n} ≤
m∑

j=1

(γα)j−1((E2 − γβ)∗E2)j{Kγσρ(|nµ1 − (m+ 1− j)λ1|)}

≤
m∑

j=1

(γα)j−1((E2 − γβ)∗E2)j{Kσγnρ(|nµ1 − (m+ 1− j)λ1|)},

where γ = (1− σω)−1.
As in Crandall-Pazy [8, Page 68], let δ > 0 be given and write the right side of

the above inequality as {I(1)
m,n}+ {I(2)

m,n}, where {I(1)
m,n} is the sum over indices with

|nµ1− (m+1− j)λ1| < δ, and {I(2)
m,n} is the sum over indices with |nµ1− (m+1−

j)λ1| ≥ δ. Using Lemma 4.9, we have

{I(1)
m,n} ≤ {Kσρ(δ)

m∑
j=1

α−1γj−1γn} ≤ {Kρ(δ)γmγnmλ1}.

On the other hand, using Lemmas 4.7 and 4.9 and Proposition 4.10, we have

{I(2)
m,n}

≤ Kσρ(T )
m∑

j=1

(γα)j−1((E2 − γβ)∗E2)j{γn}

≤ Kσρ(T )
m∑

j=1

(γα)j−1((E2 − γβ)∗E2)j{γn (nµ1 − (m+ 1− j)λ1)2

δ2
}

= Kσρ(T )δ−2
m∑

j=1

(γα)j−1((E2 − γβ)∗E2)j{γn(n2(µ1)2 − 2nµ1(m+ 1− j)λ1
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+ (m+ 1− j)2(λ1)2)}

= Kσρ(T )δ−2
m∑

j=1

(γα)j−1

j∑
i=0

(
j

i

)
(γβ(E2 − γβ)∗)i

×
{
n2γn(µ1)2 − 2nγnµ1(m+ 1− j)λ1

}
+ {Kσρ(T )δ−2

m∑
j=1

(1−
j∑

i=1

(
n+ i− 2
i− 1

)
αi−1βn)(α−1γj−1γn)

× (m+ 1− j)2(λ1)2}

= Kσρ(T )δ−2
m∑

j=1

(γα)j−1

j∑
i=0

(
j

i

)
(γβ)iγn−i[{(n

2

αi
− 2in
αi+1

+ (
i(i− 1)
αi+2

+
i

αi+1
)−

i−1∑
k=0

(
(i− k)(i− k − 1)

αi−k+2
+

i− k

αi−k+1
)
(
n

k

)
βn−k)(µ1)2}

+ {( n
αi

− i

αi+1
+

1
αi+1

i−1∑
k=0

(
n

k

)
(i− k)αkβn−k)(−2µ1(m+ 1− j)λ1)}]

+ {Kσρ(T )δ−2
m∑

j=1

(1−
j∑

i=1

(
n+ i− 2
i− 1

)
αi−1βn)(α−1γj−1γn)

× (m+ 1− j)2(λ1)2}

≤ {Kσρ(T )δ−2γmγnα−1
m∑

j=1

j−1∑
i=0

(
j

i

)
(n2 − 2in

α
+ (

i(i− 1)
α2

+
i

α
))βiαj−i(µ1)2}

+ {Kσρ(T )δ−2γmγnα−1
m∑

j=1

j∑
i=0

(
j

i

)
(n− i

α
)(−2µ1(m+ 1− j)λ1)}

+ {Kσρ(T )δ−2γmγnα−1
m∑

j=1

(m+ 1− j)2(λ1)2},

(Note that γ > 1 and that we dropped the negative terms, associated with
∑i−1

k=0

or
(
n+i−2

i−1

)
) The above expression equals

{Kσρ(T )δ−2γmγnα−1
m∑

j=1

(n2 − 2βjn
α

+
β2j(j − 1) + βj − βj

α2
+
βj

α
)(µ1)2}

+ {Kσρ(T )δ−2γmγnα−1
m∑

j=1

(n− βj

α
)(−2µ1(m+ 1)λ1 + j(2µ1λ1))}

+ {Kσρ(T )δ−2γmγnα−1
m∑

j=1

((m+ 1)2 − 2(m+ 1)j + j2)(λ1)2},

where the calculations in [7, Page 271] were used:

j∑
i=0

(
j

i

)
βiαj−i = 1,

j∑
i=0

(
j

i

)
iβiαj−i = βj,

j∑
i=0

(
j

i

)
i2βiαj−i = β2j(j − 1) + βj),
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in which we have σα−1 = λ1,
m∑

j=1

(n2(µ1)2 − 2nµ1(m+ 1)λ1 + (m+ 1)2(λ1)2) = m(nµ1 − (m+ 1)λ1)2,

m∑
j=1

(−2βjn
α

(µ1)2 +
2βjµ1(m+ 1)λ1

α
) +

m∑
j=1

(nj(2µ1λ1)− 2(m+ 1)j(λ1)2)

= −
m∑

j=1

2λ1(nµ1 − (m+ 1)λ1)j +
m∑

j=1

2λ1(nµ1 − (m+ 1)λ1)j = 0,

m∑
j=1

(
β2j2(µ1)2

α2
− 2βj2µ1λ1

α
+ j2(λ1)2) =

m∑
j=1

j2(
βµ1

α
− λ1) = 0,

m∑
j=1

(−β
2j

α2
+
βj

α
)(µ1)2 =

m∑
j=1

λ1(µ1 − λ1)j ≤ λ1(µ1 + λ1)
m(m+ 1)

2
.

Putting things together, we thus proved the following statement.

Proposition 6.12.

{em,n}
≤ {Kρ(δ)γmγn(mλ1)}

+ {Kρ(T )γmγnδ−2[(mλ1)(nµ1 − (m+ 1)λ1)2 + (
m(m+ 1)

2
(λ1)2)(µ1 + λ1)]}

Proof of Theorem 3.1. Let

{T, s, x0, λ, λ1, x
λ
m, t

λ
m, N

λ, ελ,xλ
m−1,s+tλ

m},

{T, s, yp, λ, λ1, y
λ
m, t

λ
m, N

λ, ελ,yλ
m−1,s+tλ

m}

{T, s, x0, µ, µ1, x
µ
n, t

µ
n, N

µ, εµ,xµ
n−1,s+tµ

n},

{T, s, yp, µ, µ1, y
µ
n, t

µ
n, N

µ, εµ,yµ
n−1,s+tµ

n}

be given, where x0 ∈ Ê = D, yp ∈ Ê, and limp→∞ yp = x0. We write xλ
m =

xλ
m(s;x0) to indicate the dependence of x0 and s.
As in [15] (see [25, Page 131]), let uλ(t, s;x0) = x0 for t = s and

uλ(t, s;x0) = xλ
m(s;x0)

for t ∈ (s+ tλm−1, s+ tλm] ∩ (s, T ], where m = 1, 2, 3, . . . , Nλ.
Let t, τ ∈ [s, T ]. Let uλ(t, s;x0) = x0 = xλ

0 for t = s and for t > s, choose
1 ≤ m ≤ Nλ such that t ∈ (s+ tλm−1, s+ tλm], for which uλ(t, s;x0) = xλ

m. Similarly,
let uµ(τ, s;x0) = x0 = xµ

0 for τ = s and for τ > s, choose 1 ≤ n ≤ Nµ such that
τ ∈ (s+ tµn−1, s+ tµn], for which uµ(τ, s;x0) = xµ

n(s;x0). Note

‖uλ(t, s;x0)− uµ(τ, s;x0)‖ = ‖xλ
m(s;x0)− xµ

n(s;x0)‖

≤ ‖xλ
m − yλ

m‖+ ‖yλ
m − yµ

n‖+ ‖yµ
n − xµ

n‖.

Also note mλ1 = tλm ≤ (t−s)+λ1 ≤ (t−s)+λ, nµ1 = tµn ≤ (τ−s)+µ1 ≤ (τ−s)+µ,

|mλ1 − nµ1| = |tλm − tµn| ≤ |tλm − (t− s)|+ |(t− s)− (τ − s)|+ |(τ − s)− tµn|
≤ λ1 + |t− τ |+ µ1 ≤ λ+ |t− τ |+ µ,
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and

(nµ1 − (m+ 1)λ1)2 ≤ (|nµ1 −mλ1|+ λ1)2 ≤ (2(µ1 + λ1) + |t− τ |)2.
Also note γ ≤ γ1, γ ≤ γ2.

Letting δ2 =
√
µ1 + λ1 and applying Lemma 6.5, Propositions 6.12, 6.11, 6.8,

6.9, and 6.10, we have

lim sup
λ,µ→0

[ sup
s≤t≤T

‖uλ(t, s;x0)− uµ(t, s;x0)‖] ≤ 2eTω‖x0 − yp‖.

Let p→∞ and we have

U(t, s)x0 ≡ lim
λ→0

uλ(t, s;x0)

exists uniformly for t ∈ [0, T ] and then, the (∗∗) holds by Proposition 6.11:

‖U(t, s)x0 − U(t, s)y0‖ ≤ K‖x0 − y0‖ (6.1)

for x0, y0 ∈ Ê. U(t, s)x0 ≡ limλ→0 uλ(t) ≡ limλ→0 uλ(t, s;x0) is the so-called a
limit solution to the equation (1.3).

Next show that U(t, s)x0 ≡ u(t, s;x0) ≡ limλ→0 uλ(t) ≡ limλ→0 uλ(t, s;x0) for
x0 ∈ Ê is a strong solution to (1.3) if A(t) is embeddedly quasi-demi-closed. From
Lemma 6.3, we have

xλ
k − λ1A(s+ tλk)xλ

k 3 λ1ε
λ,xλ

k−1,s+tλ
k + xλ

k−1.

For 0 ≤ s ≤ t ≤ T , construct the Rothe functions [12, 29]. Let Cλ(s) = A(s) and
Cλ(t) = A(s+ tλk) for t ∈ (s+ tλk−1, s+ tλk ], and let χλ(s) = χλ(s, s;x0) = x0 and

χλ(t) = χλ(t, s;x0) = xλ
k−1 + (xλ

k − xλ
k−1)

t− (s+ tλk−1)
λ1

for t ∈ (s+ tλk−1, s+ tλk ] ⊂ [s, T ]. Note ‖xµ
n−xµ

n−1
µ ‖ ≤ K for x0 ∈ Ê by Proposition

6.7.
From [20, Pages 261-263] and [22, Pages 8-9], we have the following: for x0 ∈ Ê,

k = [ t−s
λ1

] or [ t−s
λ1

] + 1, ( without loss of generality, assume the former is the case)

lim
λ→0

sup
t∈[s,T ]

‖χλ(t)− uλ(t)‖ = 0,

‖χλ(t)− χλ(τ)‖ ≤ K|t− τ | (6.2)
for t, τ ∈ (s+ tλk−1, s+ tλk ], and

dχλ(t)
dt

∈ Cλ(t)uλ(t) + ελ,xλ
k−1,s+tλ

k , χλ(s) = x0 (6.3)

for t ∈ (s+ tλk−1, s+ tλk), where the last equation has values in B([s, T ];X), the real
Banach space of all bounded functions from [s, T ] to X, and

U(t, s)x0 = u(t, s;x0) ≡ lim
λ→0

uλ(t) = lim
λ→0

χλ(t)

= lim
λ→0

xλ
[ t−s

λ1
]
(s;x0) = lim

k→∞
x

t−s
k

k (s;x0)

uniformly for finite 0 ≤ s ≤ t ≤ T and for x0 ∈ Ê; for x0 ∈ Ê and for vλ(t) ∈
Cλ(t)uλ(t) for which (6.3) gives

d

dt
χλ(t) = vλ(t) + ελ,xλ

k−1,s+tλ
k ,
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this holds by integration: for each η ∈ Y ∗ ⊂ X∗ ,

η(χλ(t)− x0) =
∫
η(vλ(τ) + ελ,xλ

k−1,s+tλ
k ) dτ,

where ‖vλ(t)‖ ≤ K and ‖ελ,xλ
k−1,s+tλ

k‖ ≤ λ; as k = [ t−s
λ1

] →∞ or λ→ 0, this holds:

η(vλ(t)) → η(v(t, s;x0))

for some v(t, s;x0) ∈ A(t)u(t, s;x0),

η(u(t, s;x0)− x0) =
∫ t

s

η(v(τ, s;x0)) dτ = η(
∫ t

s

v(τ, s;x0)) dτ,

u(t, s;x0)− x0 =
∫ t

s

v(τ, s;x0) dτ

in Y ,
d

dt
u(t, s;x0) = v(t, s;x0)

in Y for almost every t ∈ (s, T ), and

d

dt
u(t, s;x0) ∈ A(t)u(t, s;x0)

in Y for almost every t ∈ (s, T ), u(s, s;x0) = x0. Thus U(t, s)x0 = u(t) = u(t, s;x0)
is a strong solution to (1.3).

Now, we show that U(t, s) is an evolution operator.
Step 1. Letting λ, µ → 0, applying Lemma 6.5, Propositions 6.12, 6.11, 6.8, 6.9,
and 6.10, and then letting δ =

√
|t− τ |, we have

lim
λ,µ→0

‖uλ(t, s;x0)− uµ(τ, s;x0)‖

= ‖U(t, s)x0 − U(τ, s)x0‖

≤ e3Tω(2‖x0 − yp‖+ 3|t− τ |M(x0)) +K(ρ(
√
|t− τ |) + |t− τ |)

≤ K(|t− τ |+ ρ(
√
|t− τ |)

for x0 = yp ∈ Ê and 0 ≤ s < t, τ ≤ T . That continues to hold for x0 ∈ Ê by (6.1),
which shows that U(t, s)x0 is continuous in t uniformly for s.
Step 2. As in [8, Page 71], the Remark after Lemma 5.4 and Proposition 6.7 imply

U(t, s) : Ê → Ê

holds for 0 ≤ s ≤ t ≤ T under (T2) or (T3). Since

lim
p→∞

‖U(t, s)xp − U(t, s)x0‖ → 0

by the estimate (∗∗) for x0 ∈ Ê, xp ∈ Ê with ‖xp−x0‖ → 0, we have U(t, s)x0 ∈ Ê
for x0 ∈ Ê under (T2) or (T3). This is also true under (T1) since

uλ(t, s;x0) = xλ
m(t, s;x0)

= Jλ1(s+mλ1)(λ1ε
λ,xλ

m−1(t,s;x0),s+mλ1 + xλ
m−1(t, s;x0))

which is in D(A(s+mλ1)) for t ∈ (s+ (m− 1)λ1, s+mλ1] and x0 ∈ Ê and since
D(A(s+mλ1)) = D = Ê by the Remarks after Lemma 4.2 and 4.3.
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Step 3. Let x0 ∈ Ê and 0 ≤ s, r < t ≤ T . We have t ∈ (s+ (m− 1)λ1, s+mλ1] for
some m ∈ N and

uλ(t, s;x0) = xλ
m(s;x0)

which is equal to xλ
[ t−s

λ1
]
(s;x0) or to xλ

[ t−s
λ1

]+1
(s;x0), where the former case is assumed

without loss of generality. In this case,

lim
λ→0

xλ
[ t−s

λ1
]
(s;x0) = U(t, s)x0.

Here [x] is the greatest integer that is less than or equal to x.
Let 0 < τ < T be such that t = s + τ . Let k = [ t−s

λ1
] = [ τ

λ1
]. Using Lemma 6.6

and Proposition 6.7 and (T1) or (T2) or (T3), we have

Ck ≡ ‖xλ
[ τ

λ1
](s;x0)− xλ

[ τ
λ1

](r;x0)‖

= ‖xλ
k(s;x0)− xλ

k(r;x0)‖

≤ ‖Jλ1(s+ kλ1)(λ1ε
λ,xλ

k−1(s;x0),s+kλ1 + xλ
k−1(s;x0))

− Jλ1(r + kλ1)(λ1ε
λ,xλ

k−1(r;x0),r+kλ1 + xλ
k−1(r;x0))‖

≤ (1− λω)−1[λ1(4λ) + Ck−1 + λ1ρ(|s− r|)K].

This recursive inequality, using C0 = 0, gives

Ck ≤ (1− λ1ω)kk[λ1(4λ) + λ1ρ(|s− r|)K].

As kλ1 = [ τ
λ1

]λ1 → τ and λ→ 0, the above expression converges to

‖U(s+ τ, s)x0 − U(r + τ, r)x0‖ ≤ eτωKτρ(|s− r|).

This continues to hold for x0 ∈ Ê by the estimate (6.1).
Step 4. Let x0 ∈ Ê, and s < t < τ ≤ T . We have τ ∈ (s+ (m− 1)λ1, s+mλ1] for
some m ∈ N and

uλ(τ, s;x0) = xλ
m(s;x0)

which is equal to xλ
[ τ−s

λ1
]
(s;x0) or xλ

[ τ−s
λ1

]+1
(s;x0), where the former case is assumed

without loss of generality. Here [x] for x ∈ R is the greatest integer that is less than
or equal to x.

We also have

xλ
[ τ−t

λ1
]+[ t−s

λ1
]
(s;x0) = xλ

[ τ−t
λ1

]
(s+ [

t− s

λ1
]λ1;xλ

[ t−s
λ1

]
(s;x0)).

By Step 2, U(τ, t)U(t, s)x0 and xλ
[ τ−t

λ1
]
(s+ [ t−s

λ1
]λ1;U(t, s)x0) exist. It follows that

‖xλ
[ τ−t

λ1
]
(s+ [

t− s

λ1
]λ1;xλ

[ t−s
λ1

]
(s;x0))− U(τ, t)U(t, s)x0‖

≤ ‖xλ
[ τ−t

λ1
]
(s+ [

t− s

λ1
]λ1;xλ

[ t−s
λ1

]
(s;x0))− xλ

[ τ−t
λ1

]
(s+ [

t− s

λ1
]λ1;U(t, s)x0)‖

+ ‖xλ
[ τ−t

λ1
]
(s+ [

t− s

λ1
]λ1;U(t, s)x0)− xλ

[ τ−t
λ1

]
(t;U(t, s)x0)‖

+ ‖xλ
[ τ−t

λ1
]
(t;U(t, s)x0)− U(τ, t)U(t, s)x0‖,

which converges to 0 by the proof for Step 3 and by the part before Step 1 about
proving

U(t, s)x0 = lim
λ→0

uλ(t, s;x0) = lim
λ→0

xλ
[ t−s

λ1
]
(s;x0),
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which used Lemma 6.5 and Propositions 6.8, 6.9, 6.10, 6.11, and 6.12.
On the other hand, as λ→ 0,

‖xλ
[ τ−s

λ1
]
(s;x0)− xλ

[ τ−t
λ1

]+[ t−s
λ1

]
(s;x0)‖

converges to 0 by the part before Step 1 again, which used Lemma 6.5 and Propo-
sitions 6.8, 6.9, 6.10, 6.11 and 6.12. Thus we have, as λ→ 0,

U(τ, s)x0 = U(τ, t)U(t, s)x0.

Compare [25, Page 146]. Note that Steps 1 and 3 show that U(t, s)x0 is continuous
in the pair (t, s) on the triangle 0 ≤ s ≤ t ≤ T . �

Proposition 6.13. Under (T2) or (T3),

‖U(t, s)x0 − U(τ, s)x0‖ ≤ K|t− τ |

holds for 0 ≤ s ≤ t, τ ≤ T and x0 ∈ Ê.

Proof. As in [8, Page 71], Lemma 6.6 implies

xλ
[ t−s

λ1
]
(s;x0)− xλ

[ τ−s
λ1

]
(s;x0)‖

= ‖xλ
[ t−s

λ1
]−[ τ−s

λ1
]
(s+ [

τ − s

λ1
]λ1;xλ

[ τ−s
λ1

]
(s;x0))− xλ

[ τ−s
λ1

]
(s;x0)‖

≤ ([
t− s

λ1
]− [

τ − s

λ1
])λ1K(M(xλ

[ τ−s
λ1

]
(s;x0)) + 2λ)

for t > τ and 0 < λ1 ≤ λ < λ0. Using Proposition 6.7 and letting λ→ 0 completes
the proof. �

7. Applications

In this section, we state some examples first and preset their proofs next. We
include linear or nonlinear, single-valued or multi-valued, finite or infinite dimen-
sional, and time-nonautonomous examples.

Example 7.3 below deals with linear rotations about a general axis n̂. These
general rotations have important applications in Physics [1, Pages 73-75], and in
Global Positioning System, GPS, in Civil Engineering, Soler and Marshall [30,
Pages 30-31.]. Compare how the physicists, Altmann [1], derived the formula to
ours.

As are stated in Section 1, these examples here are interpreted as linear or
nonlianer, time autonomous or non-autonomous rotations, single-valued or multi-
valued, of finite or infinite dimensions, evolving with time by satisfying (1.2) or
(1.3) and preserving the length in a, linear or nonlinear, and, time autonomous or
non-autonomous, way. This seems a complete approach to the rotation problems,
compared to the approach by the physicists, Altmann [1].

However, we should remark that our new examples here do not include applica-
tions from partial differential equations. This is because we need uniform continuity
of A(t) for our examples but this will not be satisfied by partial differential opera-
tors.

Example 7.1 (Kobayashi [25, Pages 152-153]). Define an operator A : D(A) ⊂
R2 → R2 by

A

(
x
y

)
≡
(
y
−x

)
for

(
x
y

)
∈ D(A) ≡ {

(
x
y

)
∈ R2 : x2 + y2 = 1}.
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Here (R2, ‖.‖) is a real Hilbert space with the inner product (u, v) of u and v in R2

and with the norm ‖u‖ =
√

(u, u).
Note that A is not linear, since D(A) is not a linear space. Note also that A

is uniformly continuous, dissipative, and satisfies (R4), (R6), (R1), and (R2), (for
which uniform continuity of A is not as necessarily needed as in Kobayashi (see
Miyadera [25, Pages 152-153]) but does not satisfy (iii). The equation (1.2) has a
strong (in fact, a classical) solution,

u(t) ≡ lim
λ→0

(
cos(θ0 − t arctan(λ)

λ )
sin(θ0 − t arctan(λ)

λ )

)
=
(

cos(t) sin(t)
− sin(t) cos(t)

)
u0

for u0 =
(

cos(θ0)
sin(θ0)

)
∈ D(A). With AM ≡

(
0 1
−1 0

)
, a matrix whose restriction to

the unit sphere is the matrix representation of A, the solution also equals etAM ≡∑∞
n=1

(tAM )n

n! , applied to u0, which is(
cos(t) sin(t)
− sin(t) cos(t)

)
u0.

But this is a coincidence, since, for a general matrix S, etS , existing as an infinite
series of tS, does not leave unit sphere invariant, in general. The Examples below,
nonlinear or nonautonomous or multivalued or of infinite dimensions, cannot be
derived by the restriction as in this example.

Example 7.2. In Example 7.1, replace R2 by Rn, where n ∈ N, n ≥ 2, and replace
the operator A by by

A


x1

x2

...
xn

 =


y1
y2
...
yn

 for


x1

x2

...
xn

 ∈ D(A),

the unit sphere in Rn, where
∑n

i=1 yixi = 0, yi ∈ R and yi are linear functions of
x1, x2 . . . , xn ; or define A(·) as an element from ,or two elements from, . . . , or all
elements from the set

P ≡ {


y1
y2
...
yn

 ∈ Rn :
n∑

i=1

yixi = 0, where yi are linear functions of x1, x2, . . . , xn}.

Then the results in Example 7.1 hold, as in the proof of Example 7.1. The details
of the proof are left to the reader. Here note that P 6= ∅, e.g.y1y2

y3

 ≡

 n3x2 − n2x3

−n3x1 + n1x3

n2x1 − n1x2

 .

As in Example 7.3 below, where n1, n2, n3 are constants, lies in P , and that each
element in P determines uniquely an axis n̂, a vector in Rn, about which the

associated matrices rotate. The axis n̂ in Example 7.3 is

n1

n2

n3

 .
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Remark The unit sphere, centered at the origin, can be replaced by the general
sphere of radius r, some r > 0, centered at the origin, or by the set

{u ∈ Rn : 0 < r0 ≤ ‖u‖ ≤ r1}

for some r1 > r0 > 0. This also applies to the other examples.
The next example is a special case of Example 7.2, and its solution will be

computed explicitly.

Example 7.3. In Example 7.2, let n = 3, n̂ =

n1

n2

n3

 , a unit vector in R3, and

y1y2
y3

 =

 n3x2 − n2x3

−n3x1 + n1x3

n2x1 − n1x2

 .

The results in Example 7.2 hold, and the solution to (1.2) is given by the limit, as
λ→ 0 with fλ = arctan(λ)/λ, of cos tfλ + (1− cos tfλ)n2

1 −n3 sin tfλ + n1n2(1− cos(tfλ)) n2 sin tfλ + n1n3(1− cos tfλ)
n3 sin tfλ + (1− cos tfλ)n1n2 cos tfλ + n2

2(1− cos tfλ) −n1 sin tfλ + n2n3(1− cos tfλ)
−n2 sin tfλ + (1− cos tfλ)n1n3 n1 sin tfλ + n2n3(1− cos tfλ) cos tfλ + n2

3(1− cos tfλ)

 u0,

which is cos(t) + (1− cos(t))n2
1 −n3 sin(t) + n1n2(1− cos(t)) n2 sin(t) + n1n3(1− cos(t))

n3 sin(t) + (1− cos(t))n1n2 cos(t) + n2
2(1− cos(t)) −n1 sin(t) + n2n3(1− cos(t))

−n2 sin(t) + (1− cos(t))n1n3 n1 sin(t) + n2n3(1− cos(t)) cos(t) + n2
3(1− cos(t))

 u0,

where the associated matrices are rotations about the axis n̂. These general ro-
tations have applications to Physics, Altmann [1], especially Pages 73-75, and to
Global Positioning System, GPS, in Civil Engineering, Soler and Marshall [30,
Pages 30-31]. Compare how the physicists, [1], derived the formula to ours.

Example 7.4. Replace the operator A in Example 7.1 by the time dependent
operator

A(t)
(
x
y

)
= a(t)

(
y
−x

)
.

where a(t) is a continuous function on [0, T ] with a(t) ≥ δ0 > 0 for some δ0. Using
the proof of Example 7.1, we readily show that A(t) is uniformly continuous and
dissipative, uniformly for all t ∈ [0, T ], and satisfies (R4), (R6), (T4), (R1), (R2),
and (T1) (for which uniform continuity of A(t) is not as necessarily needed as in
Kobayashi (see Miyadera [25, Pages 152-153]) but does not satisfy (iii) or (x). Here
note E = Ê = D(A(0)) = D(A(0)). So the equation (1.3) has a strong (in fact, a
classical) solution. The details of the proof are left to the reader.

Remark Extensions of Example 7.4 to the n dimensions with multi-valued A(t),
are performed as in Examples 7.2, 7.3. The details are left to the reader.
Remark In infinite dimensions, uniform continuity of A is as needed for (R4), (R6),
(R1), and (R2), as in Kobayashi (see Miyadera [25], Pages 152-153); the following
examples indicate how it is needed. Uniform continuity of A is defined as: for an
ε > 0, there is a δ > 0, such that for x, y ∈ D(A) with ‖x− y‖ < δ, it is true that

‖u− v‖ < ε

holds for some u ∈ Ax and some v ∈ Ay, where δ does not depend on x, y.
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Example 7.5. Let H be a real Hilber space with the inner product (u, v) and
norm ‖u‖ =

√
(u, u).

Define a t-dependent nonlinear operator A′(t) : D(A′(t)) = H → H by A′(t)u =
a(t)Bu for u ∈ H, where

B : D(B) = H → H

is a nonlinear operator, such that ‖Bu‖ = 1 (or both ‖Bu‖ ≥ δ00 > 0 and ‖Bu‖ ≤
δ000 for some δ00, δ000 > 0, as the following proof shows) for u ∈ H with ‖u‖ = 1,
(or ‖v‖ = 1 or both ‖v‖ ≥ δ00 > 0 and ‖v‖ ≤ δ000 > 0 for all v ∈ Bu and for each
u ∈ H with ‖u‖ = 1) and that either of the following three conditions holds:

• If B is single-valued, then (Bu, v) + (u,Bv) = 0 for u, v ∈ H and B is
uniformly continuous.

• If B is single-valued, then (Bu, u) = 0, (B − ω0) is dissipative for some
ω0 ∈ R, and B is uniformly continuous.

• If B is multi-valed, then (v, u) = 0 for all v ∈ Bu, (B − ω0) is dissipative
for some ω0 ∈ R, and B is uniformly continuous (defined in the Remark
above this example.

The first condition in Example 7.5 is equivalent to (Bu, u) = 0 for u ∈ H and
(Bu−Bv, u− v) = 0 for u, v ∈ H; in which case,

(A′(t)u, v) + (u,A′(t)v) = 0, (A′(t)u, u) = 0, A′(t)0 = 0 .

Here a(t) is as in Example 7.4.
Let A(t) be the restriction of A′(t) to

D(A(t)) ≡ {u ∈ H : ‖u‖ = 1}.

Then the conclusions in Example 7.4 hold for A(t).

Example 7.6. This example follows from Example 7.5 and 7.3. Let X = R4, a
real Hilbert space. Let

B =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


or

B =


0 1 0 −1
−1 0 1 0
0 −1 0 −1
1 0 1 0

 .

Let A′(t) = a(t)B and let A(t) be the restriction of A′(t) to the unit circle in R4.
Here a(t) is as in Example 7.4. Then the conclusions in Example 7.5 hold for A(t).

In general, for H = R2n, n ∈ N, a real Hilbert space, and for A′(t) = a(t)B,
where a(t) is as in Example 7.4 and B = (bij) is a real anti-symmetric matrix of
2n× 2n(that is B+BT = 0 or bii = 0, bij + bji = 0, i, j = 1, 2, . . . , 2n), we have the
conclusions in Example 7.5 hold for A(t) after suitably choosing bij . Here A(t) is
the restriction of A′(t) to the unit circle in R2n. The details are left to the reader.

Remark. Example 7.6 extends to the case of infinite dimensions (see below, Ex-
ample 7.8, by using the abstract results in Example 7.5.
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Example 7.7. Let X = (L2(−π, π), be a real Hilbert space with the inner product
(u, v) =

∫ π

−π
u(x)v(x) dx and norm ‖u‖ =

√
(u, u). Let S ≡ {φ0, φ1, φ2, . . . } be an

orthornormal system in L2(−π, π), where

φ0(x) =
1√
2π
, φ2n−1(x) =

cos(nx)√
π

, φ2n(x) =
sin(nx)√

π
, . . .

For f ∈ L2(−π, π), by Coddington and Levinson [5, Page 199], we have f =∑∞
n=0 αnφn; this holds in L2(−π, π) with ‖f −

∑n
i=0 αiφi‖ → 0 as n → ∞, where

αn =
∫ π

−π
f(x)φn(x) dx holds uniquely.

Define a linear operator B : D(B) = H → H by

Bf =
∞∑

n=0

βnφn,

where β2n = α2n+1, β2n+1 = −α2n, n = 0, 1, 2, . . . . For convenience, the operator
B can be thought as the infinite matrix

BM =


0 1
−1 0

0 1
−1 0

· ·
· ·

 ,

for which β0

β1

...

 = BM

α0

α1

...

 .

Note that the 2×2 matrix B0 =
(

0 1
−1 0

)
in the upper left corner is repeated down

along the diagonal in the infinite matrix BM , and the sequences {αi}, {βi} are in
l2, which is defined to consist of all sequences ξ = {ξi} such that

∑∞
i=0 |ξi|2 < ∞.

The norm in l2 is

‖ξ‖ = (
∞∑

i=0

|ξi|2)1/2.

Let A′(t) = a(t)B and let A(t) be the restriction of A′(t) to the unit circle in H.
Here a(t) is as in Example 7.4. Then the conclusions in Example 7.5 holds for A(t).
The convenience by this symbolic representation will be seen in the next example.

Example 7.8. The operator B in Example 7.7 can be replaced by an operator
B, whose symbolic matrix representation BM = (bij) is real anti-symmetric in an
obvious sense, Kato [14, Pages 143, 269-270], Taylor and Lay, [32, Pages 57, 215]:

BM +BT
M = 0 or bij + bji = 0, i, j ∈ {0} ∪ N.

Here it is assumed that for each {αi} ∈ l2, defined in Example 7.7,

βi =
∞∑

j=0

bijαj
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is convergent for each i, and the sequence {βi} lies in l2. Under this assumption,
it follows, Taylor and Lay [32], Pages 215-216, that BM : l2 → l2 is a continuous
mapping.

But we need uniform continuity of BM , and so further restrictions on (bij) are
required. For this purpose, BM can be, e.g.

BM =



0 2 0 −3 · · ·
−2 0 4 0 · · ·
0 −4 0 −5 · · ·
3 0 5 0
·
·
·


,

Here the 4×4 real anti-symmetric matrix B0 in the upper left corner of the infinite
matrix BM is repeated down along the diagonal in the matrix BM .

Note that the upper left corner matrix B0 is real anti-symmetric but it can be
of any finite size. Thus, this example provides a large class of examples in infinite
dimensions, which might be of interest. This large class of examples can be used
in the set P in Example 7.9 below.

The proof of the above example follows that for Example 7.7, which used the
abstract results in Example 7.5. The details are left to the reader.

Example 7.9. In Example 7.7, replace Bf =
∑∞

n=0 βnφn, where β2n = α2n+1,
β2n+1 = −α2n, by Bf which is one element, or two elements, or . . . , or all elements
from P , where

P ≡
{
g =

∞∑
n=0

βnφn ∈ L2(−π, π) : 0 = (g, f) =
∞∑

n=0

βnαn,

with βn linear functions of α0, α1, . . . , αm, for some m
}
,

as in Example 7.3. Then the results proved in Example 7.7 hold. The details of the
proof are left to the reader. Here note that P 6= ∅, e.g. Example 7.7, and that each
element in P determines uniquely an axis n̂, a vector in L2(−π, π), about which
the associated semigroup of operators rotates. For example, the axis

n̂ =
2∑

i=0

niφi,

where
∑2

i=0 n
2
i = 1, if, for f =

∑2
i=0 αiφi ∈ D(B) with

∑2
i=0 α

2
i = 1,

Bf ≡ (n2α1 − n1α2)φ0 + (−n2α0 + n0α2)φ1 + (n1α0 − n0α1)φ2.

Example 7.10. Replace the operator A(·) in Example 7.4 by

A(t)
(
x
y

)
= a(t)B

(
x
y

)
≡ a(t)

√
1 + y2

(
y
−x

)
.

Then the conclusions in Example 7.4 holds for A(t).
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Remark. The nonlinear operator A(t) in Example 7.10 can be obtained by ad-

justing A(t)
(
x
y

)
to e.g.

a(t)
√

1 + x2

(
y
−x

)
, a(t)

√
1 + y4

(
y
−x

)
, . . . , or a(t)h(x, y)

(
y
−x

)
,

where h(x, y) are differentiable functions of x, y. Extensions to n dimensions with
multi-valued A(t), are performed as in Example 7.3. The details are left to the
reader.

Example 7.11. Replace Bf =
∑∞

i=0 βiφi in Example 7.7 by

Bf =
√
α2

1 + 1
∞∑

i=0

βiφi.

Then the conclusions in Example 7.7 hold for A(t).

Remark The nonlinear operator A(t) in Example 7.11 can be obtained by adjusting
Bf to√

1 + α2
2

∞∑
i=0

βiφi,
√

1 + α2
3

∞∑
i=0

βiφi, . . . , or h(α0, α1, . . . , αn)
∞∑

i=0

βiφi,

where h(α0, α1, . . . , αn) are differentiable functions of α0, α1, . . . , αn for each n =
0, 1, 2, . . .. These nonlinearities also apply to Example 7.8 and Example 7.9. The
details are left to the reader.

Proof of Example 7.1. The proof given here, with parts different from Miyadera
[25, Pages 152-153], is intended to indicate how uniform continuity of A is not as
necessary.
Step 1. It is easy to see that A is uniformly continuous and dissipative.
Step 2. Let u ∈ D(A) and w = (u− λAu), where λ > 0. Simple calculations show
that

‖w‖2 = 1 + λ2.

Note (Au, u) = 0 and (Au,Au) = 1. So

Ran(I − λA) ∩D(A) = ∅
and

Ran(I − λA) ⊂ S ≡ {u ∈ R2 : ‖u‖ =
√

1 + λ2}.
Step 3. Claim: Ran(I − λA) = S. Let h =

√
1 + λ2v, where

v =
(

cos(θ)
sin(θ)

)
is an element in the unit circle in R2. Here 0 ≤ θ ≤ 2π. Suppose

u =
(
cos(φ) sin(φ)

)
∈ D(A)

is such that u− λAu = h, where 0 ≤ φ ≤ 2π. Then√
1 + λ2 cos(φ+ ψ) = cos(φ)− λ sin(φ) =

√
1 + λ2 cos(θ) ,√

1 + λ2 sin(φ+ ψ) = sin(φ) + λ cos(φ) =
√

1 + λ2 sin(θ),

where λ = tan(ψ). So such a u exists.
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Step 4. Since D(A) = D(A) is a unit circle and S is a concentric circle of D(A)
with the radius

√
1 + λ2, it follows that

d(Ran(I − λA), u) =
√

1 + λ2 − 1

holds for u ∈ D(A) = D(A). So

d(Ran(I − λA), u)
λ

=
√

1 + λ2 − 1
λ

→ 0

as λ→ 0, uniformly for all u ∈ D(A) = D(A).
Step 5. SinceA is uniformly continuous (and soA is embeddedly quasi-demi-closed),
equation (1.3) (or (1.2)) has a strong solution u(t, 0;x0). In fact, the strong solution
is a classical solution as the following shows: let 0 < λ < λ0, small enough, and

u =
(
u1

u2

)
∈ D(A), v = u− λAu =

(
u1 − λu2

u2 + λu1

)
;

‖v‖ =
√

1 + λ2 ,

w ≡ v

‖v‖
=

1√
1 + λ2

(
1 −λ
λ 1

)
u ∈ D(A),

and tan(θ) = λ, where θ is the angle between the vector v and the vector u;

u =
1√

1 + λ2

(
1 λ
−λ 1

)
w =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
w;

from the proof of Theorem 3.1,

xλ
1 =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
x0, . . . , x

λ
n =

(
cos(nθ) sin(nθ)
− sin(nθ) cos(nθ)

)
x0;

u(t, 0;x0) ≡ lim
λ→0

xλ
[ t

λ ] = lim
n→∞

x
t
n
n

= lim
θ→0

(
cos(t θ

tan(θ) ) sin(t θ
tan(θ) )

− sin(t θ
tan(θ) ) cos(t θ

tan(θ) )

)
x0

=
(

cos(t) sin(t)
− sin(t) cos(t)

)
x0 ∈ D(A) .

From the proof of Theorem 3.1 about a strong solution, we have

u(t, 0;x0)− x0 =
∫ t

0

Au(τ, 0;x0) dτ,

which is differentiable, since Au(τ, 0;x0) is continuous in τ ; so u(t, 0;x0) is a classical
solution; uniqueness follows from dissipativity, as is standard. �

Proof of Example 7.3. Let 0 < λ < λ0, small enough, and let

u =

u1

u2

u3

 ∈ D(A), v =

v1v2
v3

 ≡ u− λAu =

u1 − λn3u2 + λn2u3

u2 + λn3u1 − λn1u3

u3 − λn2u1 + λn1u2

 ,

where
∑3

i=1 u
2
i = 1 and

n̂ =

n1

n2

n3


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with
∑3

i=1 n
2
i = 1. Then the terminal point of u and that of v are on the same

plane, which is perpendicular to the axis, n̂, since u‖ = v‖, where u‖, the component
of u on the axis n̂, is given by

u‖ = n̂(u, n̂) = n̂
3∑

i=1

uini,

and the component v‖, the component of v on the axis n̂, is given by

v‖ = n̂(v, n̂) = n̂
3∑

i=1

vini = n̂
3∑

i=1

uini = u‖.

Here (u, n̂) =
∑3

i=1 uini is the inner product n̂[n1u1 + λn1n3u2 − λn1n2u3n2u2 −
λn2n3u1 + λn1n2u3n3u3 + λn2n3u1 − λn1n3u2].

The component v⊥ of v, that is perpendicular to the axis n̂, is given by

v⊥ = v − v‖ = v − u‖

=

 (1− n2
1)u1 (−λn3 − n1n2)u2 (−n1n3 + λn2)u3

(−n1n2 + λn3)u1 (1− n2
2)u2 (−n2n3 − λn1)u3

(−n1n3 − λn2)u1 (−n2n3 + λn1)u2 (1− n2
3)u3

 .

The component u⊥ of u, that is perpendicular to the axis n̂, is given by

u⊥ = u− u‖ = u− n̂(u, n̂) =

u1 − n1(u, n̂)
u2 − n2(u, n̂)
u3 − n3(u, n̂)

 .

Note the following calculations:

‖u⊥‖2 = ‖u‖2 − ‖u‖‖2 = 1− (u, n̂)2;

‖v‖2 = u2
1 + (λn3u2)2 + (λn2u3)2 + 2(−λn3u1u2 + λn2u1u3 − λ2n2n3u2u3)

+ u2
2 + (λn3u1)2 + (λn1u3)2 + 2(λn3u1u2 − λn1u2u3 − λ2n1n3u1u3

+ u2
3 + (λn2u1)2 + (λn1u2)2 + 2(−λn2u1u3 + λn1u2u3 − λ2n1n2u1u3)

= 1 + λ2n2
1(1− u2

1) + λ2n2
2(1− u2

2) + λ2n2
3(1− u2

3)

− 2λ2(n2n3u2u3 + n1n3u1u3 + n1n2u1u2);

‖v‖‖2 = ‖u‖‖2 = (u, n̂)2

= (n1u1)2 + (n2u2)2 + (n3u3)2 + 2(n1n2u1u2 + n1n3u1u3 + n2n3u2u3);

‖v⊥‖2 = ‖v‖2 − ‖v‖‖2

= 1 + λ2 − (1 + λ2)[(n1u1)2 + (n2u2)2 + (n3u3)2]

− 2(1 + λ2)(n1n2u1u2 + n1n3u1u3 + n2n3u2u3)

= (1 + λ2)− (1 + λ2)(u, n̂)2

= (1 + λ2)[1− (u, n̂)2];

(v, u) = u2
1 − λn3u2u1 + λn2u3u1 + u2

2 + λn3u1u2 − λn1u3u2

+ u2
3 − λn2u1u3 + λn1u2u3 = 1;

(v, n̂)(u, n̂) = (u, n̂)2;
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(v⊥, u⊥) = (v, u)− (v, n̂)(u, n̂)− (u, n̂)(u, n̂) + (u, n̂)2 = 1− (u, n̂)2;

cos(θ) =
(v⊥, u⊥)
‖v⊥‖‖u⊥‖

=
1− (u, n̂)2√

(1 + λ2)(1− (u, n̂)2)
√

1− (u, n̂)2
=

1√
1 + λ2

,

for which tan(θ) = λ; here θ is the angle between v⊥ and u⊥.
Let w⊥ ≡ v⊥

‖v⊥‖‖u⊥‖ = 1√
1+λ2 v⊥ and w‖ ≡ v‖ = u‖. Then

w = Mθu ≡


1−n2

1√
1+λ2 + n2

1
−λn3−n1n2√

1+λ2 + n1n2
λn2−n1n3√

1+λ2 + n1n3

λn3−n1n2√
1+λ2 + n1n2

1−n2
2√

1+λ2 + n2
2

−λn1−n2n3√
1+λ2 + n2n3

−λn2−n1n3√
1+λ2 + n1n3

λn1−n2n3√
1+λ2 + n2n3

1−n2
3√

1+λ2 + n2
3

u

which is equal to cos(θ) + (1− cos(θ))n2
1 −n3 sin(θ) + n1n2(1− cos(θ)) n2 sin(θ) + n1n3(1− cos(θ))

n3 sin(θ) + (1− cos(θ))n1n2 cos(θ) + n2
2(1− cos(θ)) −n1 sin(θ) + n2n3(1− cos(θ))

−n2 sin(θ) + (1− cos(θ))n1n3 n1 sin(θ) + n2n3(1− cos(θ)) cos(θ) + n2
3(1− cos(θ))

 u

and this is in D(A). Tedious calculations, left to the reader, show that MθMφ =
Mθ+φ. Since M0 = I, the identity matrix, we have the inverse of Mθ equal to M−θ,
and

u = M−θw ∈ D(A),
where M−θ is the rotation about the axis n̂, rotating w to u through an angle
−θ, since u⊥ and w⊥ are on the same plane, perpendicular to the axis n̂, ‖u⊥‖ =
‖w⊥‖, ‖u‖‖ = ‖w‖‖, and w⊥ is θ ahead of u⊥ in counterclockwise sense.

From the proof of Theorem 3.1, it follows that

xλ
1 = M−θx0, x

λ
2 = M−2θx0, . . . , x

λ
n = M−nθx0.

From from the proof of Theorem 3.1) it follows that

u(t, 0;x0) ≡ lim
λ→0

xλ
[ t

λ ] = lim
n→∞

x
t
n
n = lim

θ→0
M−t θ

tan(θ)
x0 = M−tx0

which is equal to cos(t) + (1− cos(t))n2
1 n3 sin(t) + n1n2(1− cos(t)) −n2 sin(t) + n1n3(1− cos(t))

−n3 sin(t) + (1− cos(t))n1n2 cos(t) + n2
2(1− cos(t)) n1 sin(t) + n2n3(1− cos(t))

n2 sin(t) + (1− cos(t))n1n3 −n1 sin(t) + n2n3(1− cos(t)) cos(t) + n2
3(1− cos(t))

 x0

in D(A). From the proof of Theorem 3.1 about a strong solution, we have

u(t, 0;x0)− x0 =
∫ t

0

Au(τ, 0;x0) dτ,

which is differentiable, since Au(τ, 0;x0) is continuous in τ ; so u(t, 0;x0) is a classical
solution; uniqueness follows from dissipativity, as is standard. The rest of the proof
is left to the reader. �

Proof of Example 7.5. The following proof assumes single-valued B. The proof for
multi-valued B is similar and is left to the reader.
Step 1. Claim that A′(t) (and then A(t) ) is dissipative, uniformly for all t ∈ [0, T ].
It suffices to consider the first condition in Example 7.5. Let u, v ∈ D(A′(t)) =
D(A′(t)). Then

(u− v,A′(t)u−A′(t)v) = (u,A′(t)u)− (u,A′(t)v)− (v,A′(t)u) + (v,A′(t)v) = 0.

So A′(t) is dissipative, uniformly for all t ∈ [0, T ]. Here note (w,A′(t)w) = 0 for
w ∈ H.
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Note that A′(t) is weakly continuous under the condition

(Bu, v) + (u,Bv) = 0

for u, v ∈ H satisfying the first condition in Example 7.5. Let un ∈ D(A′(t)) → u
as n→∞. Then

(A′(t)un, v) = −(un, A
′(t)v) → −(u,A′(t)v) = (A′(t)u, v)

holds for v ∈ H, uniformly for all t ∈ [0, T ]. So A′(t) is weakly continuous, uniformly
for all t ∈ [0, T ].
Step 2. Let u ∈ D(A(t)). For λ > 0,

‖u− λA(t)u‖2 = (I − λA(t)u, u− λA(t)u) = ‖u‖2 − 2(u, λA(t)u) + λ2‖A(t)u‖2

= 1 + λ2a(t)2 ≥ 1 + λ2δ20 (or ≥ 1 + λ2δ20δ
2
00) .

So Ran(I − λA(t)) ∩D(A(t)) = ∅, and

Ran(I − λA(t)) ⊂ S ≡ {u ∈ H : ‖u‖ =
√

1 + λ2a(t)2 ≥
√

1 + λ2δ20}

if ‖Bu‖ = 1.
Step 3. Let u ∈ D(A(t)) and λ > 0. Let v = (u + λA(t)u). As in Step 2,
‖v‖ =

√
1 + λ2a(t)2. Let

w =
v√

1 + λ2a(t)2
.

It follows that ‖w‖ = 1, w ∈ D(A(t)), and ‖w − v‖ =
√

1 + λ2a(t)2 − 1. So

d(D(A(t)), u+ λA(t)u) ≤ (
√

1 + λ2a(t)2 − 1)

or
d(D(A(t)), u+ λA(t)u) ≤ (

√
1 + λ2 max

t∈[0,T ]
|a(t)|δ2000 − 1))

and

lim
λ→0

d(D(A(t)), u+ λA(t)u)
λ

= 0

uniformly for all 0 ≤ t ≤ T and u ∈ D(A(t)).

Step 4. Following [25, Page 151], let u ∈ D(A(t)) = D(A(t)). For ε > 0, there is a
λ′ = λ′(ε) > 0, independent of u, such that for all 0 < λ ≤ λ′ ≤ ε,

d(D(A(t)), u+ λA(t)u)
λ

< ε .

It follows from the definition of distance that there is uε ∈ D(A(t)) such that

‖uε − (u+ λA(t)u)‖ < λε+ d(D(A(t)), u+ λA(t)u) ≤ 2λε .

So, as ε→ 0, we have λ→ 0 and

‖uε − u‖ ≤ λ‖A(t)u‖+ 2λε→ 0.

Let ν > 0. Since A(t) is uniformly continuous, there is a δ = δ(ν) < ν such that

‖A(t)u′ −A(t)u′′‖ < ν

if ‖u′ − u′′‖ < δ for u′, u′′ ∈ D(A(t)). Here δ is independent of u′, u′′.
Since ‖uε − u‖ → 0 as ε→ 0, there is an 0 < ε0 = ε0(δ) < δ < ν such that

‖uε − u‖ < δ < ν
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and then
‖A(t)uε −A(t)u‖ < ν

holds for all 0 < λ ≤ λ′ ≤ ε ≤ ε0 < δ < ν, uniformly for all t ∈ [0, T ]. Here
λ′ = λ′(ν) and ε0 = ε0(ν) are independent of u. It follows that

d(Ran(I − λA(t)), u)
λ

≤ λ−1[‖uε − λA(t)uε − u‖]

≤ λ−1[‖uε − (u+ λA(t)u)‖+ λ‖A(t)uε −A(t)u‖]
≤ 2ε+ ν < 2ν + ν

for all 0 < λ ≤ λ′ ≤ ε ≤ ε0 < δ < ν, uniformly for t ∈ [0, T ]. So

lim
λ→0

d(Ran(I − λA(t)), u)
λ

= 0

uniformly for all u ∈ D(A(t)) = D(A(t)) and t ∈ [0, T ].

Step 5. Suppose u = (I − λA(t))−1f and v = (I − λA(t))−1g exist, where f, g ∈ H
and λ > 0. We have u − λA(t)u = f and v − λA(τ)v = g. It follows from the
dissipativity of A(t) that

‖u− v‖ ≤ λ|a(t)− a(τ)|‖v‖+ ‖f − g‖ .

So A(t) satisfies (T4) and (T1). �

Proof of Example 7.7. Step 1. Note that for f =
∑∞

i=0 αiφi and g =
∑∞

i=0 α
′
iφi,

(f, g) = lim
m→∞

m∑
i=0

αiα
′
i =

∞∑
i=0

αiα
′
i .

Step 2. It is easy to see that A(t) is uniformly continuous, uniformly for all t ∈ [0, T ].
Step 3. Proving dissipativity of A(t) is left to the reader. Here note that for f =∑∞

i=0 αiφi ∈ L2(−π, π), limi→∞ αi = 0 by the Parseval’s formula
∑∞

i=0 α
2
i = ‖f‖2.

The rest follows from the proof of Example 7.5. �

Proof of Example 7.10. Note that for
(
x
y

)
∈ D(A(t)),

‖B
(
x
y

)
‖ =

√
x2 + 2y2 =

√
1 + y2 ≥ 1 and ‖B

(
x
y

)
‖ ≤

√
2.

Also note that (A(t)u, u) = 0 for u ∈ D(A(t)), and

‖A(t)u‖ = ‖a(t)Bu‖ ≤ max
t∈[0,T ]

|a(t)|
√

2

for u ∈ D(A(t)). The rest is left to the reader. �

Proof of Example 7.11. Step 1. To prove that A(t) is uniformly continuous, uni-
formly for all t ∈ [0, T , use the mean value theorem and that for all a, b ∈ R,

(a+ b)2 ≤ 2(a2 + b2) .

Step 2. Use the proof of Example 7.7 to prove the dissipativity condition. The rest
follows from Example 7.5. The details are left to the reader. �
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