
EVALUATING THE TRADEOFFS OF MOBILE CODE DESIGN

PARADIGMS IN ELECTRONIC COMMERCE

APPLICATIONS

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Naveen Koneru, B.E.

San Marcos, Texas

August 2005

To

My beloved Gurudev,

Sri Sri Ravi Shankar

ACKNOWLEDGEMENTS

It takes patience and willingness to guide a student. Dr. Hall, my advisor

and the chair of my thesis committee, has given both to me in abundance. I

would like to thank him for his insight, guidance and constant encouragement.

My thankfulness and gratitude extend to Professor Davis and Dr. Drissi,

members of my thesis committee. I thank Dr. Christine Julien, for her genuine

interest and encouragement in this project.

I would also like to thank Anil Enumulapally, Narasimhan Kaliyamoorthy,

Sriram Rajan, Dr. David Byrum and Dr. Don Shafer for their technical help;

Marisol Mendez and Roberto Renaud for proof reading the manuscript. This

research project would not have been complete without their help and kindness.

My deepest gratitude to my parents, K.B.S. Saibabu and K. Krishna

Kumari, and my brothers Shravanth, Rajeev, Sreenivas, Vishnu and Vikram, for

their constant support and encouragement. They have stood by me through thick

and thin, always encouraging me. My thanks to numerous friends and well

wishers, all of whose names cannot be mentioned here. They have given me

unwavering support and encouragement.

Above all, my deepest gratitude to my Gurudev, His Holiness Sri Sri Ravi

Shankar. He has taught me to trust, given me hope and rekindled my inspiration

to work. I thank Rajshree, Rikka, Chandu, Sudheer, Tej, Sathyan and Preethi for

their care.

This manuscript was submitted on July 29th 2005.

IV

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ·····••11••··· iv
LIST OF TABLES ... viii

LIST OF FIGURES .. ix

ABSTRACT !I ■ ••• xi

CHAPTER 1

INTRODUCTION .. 1

1.0 Explanation of the Problem .. ; 1

1.1 Mobile Code .. 1

1.2 Electronic Commerce .. 3

1.3 Mobile Code in Electronic Commerce ... 4

1.4 Research Objectives and Scope ... 5

1.5 Methodology ... 5

1.6 Organization of the Thesis ... ~ 6

CHAPTER2

MOBILE CODE DESIGN PARADIGMS ... 8

2.0 Overview ... 8

2.1 Motivations for using Mobile Code .. 8

2.2 Concepts of Mobile Code .. 9

2.3 Design Paradigms in Mobile Code .. 13

2.4 Tradeoffs of Mobile Code Implementations ... 17

2.5 Domains of Implementation .. 18

V

CHAPTER3

ELECTRONIC COMMERCE APPLICATIONS .. 20

3.0 Overview ... 20

3.1 Survey of Electronic Commerce .. 20

3.2 Business Scenarios in Electronic Commerce .. 22

3.3 Activities in Electronic Commerce ... 30

3.4 Issues in Electronic Commerce ... 33

3.5 Implemented Technologies in Electronic Commerce 34

3.6 Using Mobile Code in Electronic Commerce ... 35

CHAPTER4

METHODOLOGY OF APPL YING MOBILE CODE DESIGN PARADIGMS TO

ELECTRONIC COMMERCE APPLICATIONS .. 37

4.0 Overview ... 37

4.1 Literature Review on Simulation Frameworks ... 37

4.1.1 Simulation Framework of Electronic Commerce Applications 38

4.1.2 Simulation Framework for Implementing Various Mobile Code Design

Paradigms ... 38

4.1.3 Simulation Framework for Implementing a Recommender

E-commerce Application Using Various Mobile Code Paradigms 39

4.2 Simulation Framework Implemented ... 40

4.2.1 Vision of the Ideal Simulation Framework .. 40

4.2.2 Features of the Ideal Simulation Framework 41

4.2.3 Description of the Ideal Simulation Framework 42

4.2.4 Scope and Implementation of Simulation Framework 44

4.3 Chosen Scenarios and Activities in Electronic Commerce for

Implementation ... 47

4.4 Application of Mobile Code Paradigms ... 49

4.4.1 Remote Evaluation Design Paradigm ... 51

4.4.2 Code on Demand Design Paradigm ... 52

4.4.3 Mobile Agent Design Paradigm .. 54

vi

4.5 Limitations of the Implemented Framework .. 56

4.6 Tradeoffs Selected for Evaluation of Mobile Code Design Paradigms 57

4.6.1 Latency of Response to the Query ... 57

CHAPTERS

RES UL TS AND ANALYSIS ······························••s••·· 64

5.0 Overview ... 64

5.1 Quantitative Metrics .. 64

5.1.1 Data Sets of Input Parameters and Output Results 64

5.1.2 Latency of Response to the Query ... 67

5.1 .3 Code Metrics .. 80

5.2 Qualitative Analysis ... 81

5.3 Evaluation of Trade-offs of Mobile Code Design Paradigms for

Recommend Activity in the Experiment .. 85

5.4 Inference About Other E-commerce Scenarios from Information and

Statistics on the Current Scenario ... 88

5.5 Abstraction of all Mobile Code Design Paradigms 89

CHAPTER 6

CONCLUSIONS AND FUTURE WORK .. 91

6.0 Overview ... 91

6.1 Conclusions .. 91

6.2 Limitations ... 94

6.3 Directions for Future Research ... 95

APPENDIX A ···•·m••········· 98

APPENDIX B ········••111••··•a•• 100

REFE RE NC ES ■■■ II ■ ••••••••••••• ■■•■■•■■ •••••••••••••• ■■■•■■ •••••••••••••••••••••••••••••••••• ■ Ii ■■■•■■■ ••• 123

Vll

LIST OF TABLES

Table 2.1: Relocation strategies of Mobile Code design paradigms 15

Table 3.1: Industries in manufacturing and wholesale trade sectors 32

Table 3.2: Industries in selected services and retail sectors 32

Table 3.3: Miscellaneous areas of business where e-commerce is used 32

Table 5.1: Data sets of all implemented input parameters 66

Table 5.2 Data sets of implemented input parameters for B2C paradigm 67

Table 5.3: Data set 1 of implemented input parameters to measure latency

of query response ... 68

Table 5.4: Data sets of input parameters for measuring latency of query

response with increasing number of Businesses and 20 customers 70

Table 5.5: Author and design parameters for of computational components

for CS paradigm .. 82

Table 5.6 Author and design parameters for of computational components

for REV paradigm ... 83

Table 5. 7 Author and design parameters for of computational components

for COD paradigm .. 84

Table 5.8 Author and design parameters for of computational components for

MA paradigm ... ~ 85

Table 5.9: Comparison of tradeoffs of REV, COD and MA paradigm 87

viii

LIST OF FIGURES

Fig 2.1 Traditional Distributed System ... 10

Fig 2.2 Mobile Code System .. 11

Fig 2.3 The internal structure of an executing unit.. 12

Fig 3.1 828 e-commerce .. 23

Fig 3.2: 82C e-commerce ... 25

Fig 3.3: P2P or C2C e-commerce .. 27

Fig 3.4: m-commerce .. 29

Fig 3.5: Layered technology architecture of e-commerce applications 34

Figure 4.1 : Ideal Simulation Framework43

Figure 4.2: Software structure of the computer host44

Figure 4.3: System architecture of the Framework used for simulation46

Figure 4.4: Remote Evaluation Design Paradigm .. 51

Figure 4.5: Code on Demand Design Paradigm .. 53

Figure 4.6: Mobile Agent Design Paradigm .. 55

Fig 4. 7: Timestamp noted in the simulation framework for performing

a query using Mobile Code ... 59

Figure 5.1: Latency of query response with increasing number of Customers

and 1 Business per host .. 69

lX

Figure 5.2: Figure 5.2: Latency of query response with increasing

number of Businesses and 20 customers per host.. 72

Figure 5.3: Travel time of Mobile Code to the Business with increasing

number of Customers and 1 Business per host.. .. 7 4

Figure 5.4 Travel time of Mobile Code to the Business with increasing

number of Businesses and 20 Customers per host.. 75

Figure 5.5: Changes in average times by increase in number of hosts

in REV paradigm .. 78

Figure 5.6: Changes in average times by increase in number of hosts

in COD paradigm ... 78

Figure 5. 7: Changes in average times by increase in number of hosts

in MA paradigm .. 79

Figure 5.8: Comparison of executable lines of code 81

Figure A 1 : Interaction of classes in the simulation framework 99

X

ABSTRACT

EVALUATING THE TRADEOFFS OF MOBILE CODE DESIGN

PARADIGMS IN ELECTRONIC COMMERCE

APPLICATIONS

by

Naveen Koneru, B.E.

Texas State University- San Marcos

August2005

SUPERVISING PROFESSOR: GREGORY HALL

Mobile Code has the ability to relocate dynamically and change bindings

between computational environments and code fragments. The flexibility of

Mobile Code to relocate and execute code in different patterns has introduced

Mobile Code design paradigms. Mobile Code design paradigms can be applied

to a specific domain of application, independent of the implementation

technology. The results of applying Mobile Code design paradigms in e­

commerce applications yield tradeoffs depending on the conditions of the

application. The tradeoffs have been evaluated to study the behavior of the

paradigms under varying conditions of their implementation.

xi

CHAPTER 1

INTRODUCTION

1.0 Explanation of the Problem

The ability of code to dynamically relocate and change bindings between

code fragments and the location is known as Mobile Code [Fuggetta 1998]. The

concepts of Mobile Code introduce new possibilities for design paradigms

[Carzaniga1997]. Mobile Code has features and capabilities that can be

beneficial in implementing it in e-commerce applications. Research has indicated

that the Mobile Code design paradigms implemented in other domains of

applications have had tradeoffs depending on the conditions of the application of

the Mobile Code design paradigms [Baldi 1998). There has not been

considerable investigation in the tradeoffs of the Mobile Code design paradigms

when applied to e-commerce applications.

1. 1 Mobile Code

In conventional systems, code executed by a program at any location is

bound to the resources and the location where the code resides. Mobile Code

2

introduces the possibility for a programmer to control the dynamic relocation of

the code with its data from one computational environment to another.

Though the implementations of Mobile Code have existed for several

years, they have only recently been classified into a category known as Mobile

Code. There is a general misconception that Mobile Code means mobile agents.

While it is true that mobile agents are one kind of Mobile Code, there are other

forms of Mobile Code that are different from mobile agents.

The difference between Mobile Code and conventional distributed

computing is that the various hosts participating in the distributed computing

remain anonymous to the programmer. The programmer does not have to worry

about the implementation details concerning the identity of the host where the

program is executed. The distributed system makes a conglomeration of hosts

appear as only one layer and provides support for the layer. In the case of Mobile

Code, the programmer is aware of the identity of the host where the Mobile Code

program is executed. The programmer has control to relocate the Mobile Code to

a specific host along with the data state, and in some types of Mobile Code, the

execution state also.

Mobile Code can relocate in 2 different ways depending on the degree of

binding that is retained after relocation. This results in 2 types of Mobile Code;

strong mobility and weak mobility. Strong mobility is the ability of the code to

relocate its execution state as well as the data state to another computational

environment and retain the execution and data states. Weak mobility is the ability

of the Mobile Code to relocate only the data state of the Mobile Code from one

3

computational environment to another. An example of strong mobility is Tel

Agents while Java is an example of weak mobility.

The ability to relocate code is the motivation for the use of Mobile Code. It

introduces possibilities of new patterns of interaction with resources. The

emerging patterns of interaction are known as Mobile Code design paradigms.

These include paradigms like remote evaluation, code on demand and mobile

agents. As aforementioned, some of these paradigms have existed prior to their

classification as Mobile Code.

In every design paradigm, the pattern of interaction among the

computational components has tradeoffs both quantitatively and qualitatively.

1.2 Electronic Commerce

Trade of goods and services conducted through the digital transaction of

information, money or any monetary worth is known as electronic commerce (e­

commerce). E-commerce has produced huge revenues in previous years during

its short span of existence.

At its advent, e-commerce was used only by business organizations.

However, e-commerce is now being widely used by business organizational

entities to become an implicitly integral part of the organization. The drop in the

price of computing power, and usability of the Internet has widely brought

accessibility of computers to the end-consumer. Hence, in the last decade, there

has been a huge rise in the e-commerce sectors involving the end-customers

also.

4

There are several scenarios of trade in e-commerce depending on the

participants. They are Business-to-Business (B2B), Business-to-Customer (B2C),

Peer-to-Peer (P2P) and Mobile commerce (m-commerce). The highest revenues

are in the B2B scenario followed by the B2C scenario. E-commerce is applied in

several fields of goods and services. The technologies introduced by e­

commerce have introduced new possibilities of trade.

There are several technologies that are utilized and implemented by e­

commerce. Among these are Hyper Text Markup Language (HTML), Hyper Text

Transfer Protocol (HTTP), Extensible Markup Language (XML), Java, etc. E­

commerce has developed so rapidly that large scale technologies are emerging

specifically for e-commerce. Mobile Code has also been deployed in the domain

of e-commerce applications to a minor extent.

1.3 Mobile Code in Electronic Commerce

The most implemented paradigms and technologies of Mobile Code in e­

commerce have been mobile agents and Java applets respectively. The Java

applets have been introduced by Sun Microsystems since the early days of Java.

They have gained popularity and usage with the advent of the Internet. Java,

which features weak mobility, has been used in the implementation of e­

commerce applications. Some of the other e-commerce implementation

technologies that use Mobile Code are Common Object Request Broker

Architecture (CORBA) and Java Remote Method Invocation (RMI).

5

Mobile Code has great potential for implementations in e-commerce

applications because of the flexibility in its ability to interact. More avenues for

the application of Mobile Code in e-commerce applications are yet to be

explored.

1.4 Research Objectives and Scope

The objective of the research is to evaluate the tradeoffs of various Mobile

Code design paradigms when they are applied to e-commerce applications. The

tradeoffs are measured quantitatively based on a metric which is the latency of

response to query.

The scope of the research is restricted to the B2C scenario in e-commerce

where the business and customer entities will be simulated in a framework in a

lab environment on a limited number of participating hosts in a network. The

Mobile Code paradigms that are implemented are Remote Evaluation (REV),

Code on Demand (COD) and Mobile Agents (MA).

1.5 Methodology

A framework is developed where the various Mobile Code design

paradigms can be implemented. The framework is built on another lightweight

mobile code system known are µCode. The proposed metric for measurement is

latency of response to query.

6

Data sets of combinations of a number of businesses and customers are

chosen that coincide with the characteristics of a B2C scenario. The data set

indicates the number of businesses, customers and number of hosts running at a

time using the simulation framework. The simulation framework allows the choice

of any one of REV, COD or MA paradigms to be implemented.

Upon execution, the metric gives the value of latency in the response to

the query. Other quantitative metrics can also be calculated for each design

paradigm. Upon analysis of the procured data on quantitative metrics and

qualitative analysis, it is concluded that there are tradeoffs for every Mobile Code

design paradigm under the given conditions of application.

1.6 Organization of the Thesis

A description of the problem is presented in the Introduction, Chapter 1. A

brief introduction to the concepts of Mobile Code and e-commerce are presented

in the Introduction Chapter followed by a description of the methodology of the

experiment.

Mobile Code and its design paradigms are dealt with in detail in Chapter 2.

The finer concepts of Mobile Code with a detailed explanation of the functionality

of Mobile Code are then presented.

Chapter 3 begins by introducing the basics of electronic commerce. Then,

the various activities and scenarios of the functioning are discussed. The issues

and implemented technologies in e-commerce are discussed followed by the use

of Mobile Code in e-commerce applications.

7

The Methodology, or Chapter 4, discusses the literature survey on the

different simulation frameworks. Chapter 4 then describes the ch9sen activities

and scenarios in e-commerce. The way the metric is measured is explained

along with the methodology of the experiment.

The results of the experiment are discussed and analyzed in chapter 5.

The tradeoffs are discussed followed by conclusions in Chapter 6. Chapter 6

concludes with directions for future research work in Mobile Code. Appendix A

contains the program classes with descriptions of their data members and

member functions.

CHAPTER 2

MOBILE CODE DESIGN PARADIGMS

2.0 Overview

This chapter gives an introduction to Mobile Code. Motivations for using

Mobile Code are discussed followed by fundamental concepts of Mobile Code

such as definitions, functional details and the types of Mobile Code. Concepts of

Mobile Code relevant for this research, such as design paradigms, are explained.

The tradeoffs of using Mobile Code are presented and followed by a few

examples in the domains of implementation.

2.1 Motivations for using Mobile Code

Distributed computing has grown such over the years that is has become

pervasive. The large extent of connectivity through the Internet has posed

problems such as wide distribution of resources. Therefore, such problems lead

to the inefficient utilization of resources: There is a constant search for distributed

solutions to scale up to the size of a large distribution of computing resources

8

9

[Carzaniga 1997]. Mobile Code is one of the approaches to a solution. Though

Mo~ile Code is not an entirely new concept, the different approaches that are

practiced have been brought together under this concept to lead to distributed

solutions that make more efficient utilization of these resources even though they

are widely distributed [Cugola 1997].

2.2 Concepts of Mobile Code

'Code Mobility' can be defined informally as the capability to

dynamically change the bindings between code fragments and the

location where they are executed [Fuggetta 1998.].

Code mobility can be used interchangeably with terms such as Mobile

Code and Program Mobility. In order to maintain consistency, we will use the

term 'Mobile Code' in this document.

In the distributed systems that use Mobile Code, as represented in Fig 2.1

[Fuggetta 1998], the host is identified as the hardware of a single unit of the

distributed system. The lowest layer in the software is the Core Operating

System (COS).

10

00 0 0
Component Component Component Component

True D1stnbuted System

Network Network Network
Operabng Operabng Operabng
System System System - - -

Core Operabng Core Operabng

11
Core Operabng I Svstem Svstem Svstem

11 Host 11 Host 11 Host 11-
Figure 2.1 Traditional Distributed System [Fuggetta 1998)

The COS is responsible for basic activities such as memory management,

file operations, input/output device management, etc. The COS is not responsible

for any network activities. The layer above the COS is the Network Operating

System (NOS). The NOS provides services to applications that have

communication addressed to specific hosts. An example of such a service would

be socket services.

In traditional distributed systems as represented in Fig 2.1 [Fuggetta

1998], there is a True Distributed System {TDS) layer above the NOS. The TDS

layer conceals the identity of the host and the lower details that are handled by

the NOS and the COS. The purpose of the TDS is to make the entire system look

like one system to the programmer.

11

0 0 0 0
Component Component Component Component

Computabonal Computational Computational
Environment Environment Environment

Network Network Network
Operabng Operabng Operabng
System System System

I Core Operabng

11
Core Operabng

11
Core Operabng I Svstem Svstem Svstem

11 Host 11 Host 11 Host 11,--

Fig 2.2 Mobile Code System [Fuggetta 1998]

In Mobile Code Systems (MCS) as represented in Fig 2.2 [Fuggetta 1998],

the Computational Environment (CE) replaces the TDS layer in traditional

distributed systems. In contrast to TDS in traditional distributed systems, CE in

Mobile Code Systems retains the identity of the host where it is located in the

network. The CE has access to the lower level services of the NOS and the

COS. By doing so, the CE provides the ability for the resident applications to

dynamically relocate components to a specific host. The components can be

classified into two categories, namely Computational Components (or Executing

Units) and resources. Computational components or Executing Units (EU) are a

combination of elements that represent a flow of computation. The resources are

the components that are used by the EUs like files, etc. EUs contain references

to the resources in their data spaces.

Typically, an EU is comprised of a code segment to be executed utilizing

the information about the execution state of the EU and the data space as

12

illustrated in Fig 2.3. The code segment is a static description of the EU. The

execution state consists of information related to the EU state such as the call

stack and the instruction pointer. This is data that is private to the EU and cannot

be shared. The data space is a set of references to resources that can be

accessed by the EU.

._ ________ co_m_p_uta-ti-on_a_l E_nv-ir-on_m_en_t _______ ___.l ~
Fig 2.3 Internal structure of an executing unit [Fuggetta 1998)

Execution
state

Data
space

In conventional systems, the binding between the EU and the CE is static.

In Mobile Code Systems, the components of the EU are not tightly bound to the

CE. The code segment, execution state and data space of an EU can be

relocated to another EU in another CE. The degree of mobility of the components

of EU to the CE is known as the degree of mobility in the Mobile Code systems.

Based on the binding between the Execution Units (EUs) and the Computational

Environments (CEs), there are two types of Mobile Code [Carzaniga 1997),

namely: Strong Mobility and Weak Mobility.

13

Strong Mobility is the ability of a Mobile Code Language to allow EUs

to move their code to a different CE by moving both the code and the

execution state completely. The executing units are suspended,

transmitted to the destination site, and resumed there.

Weak Mobility is the ability of a Mobile Code Language to allow an EU

in a site to be bound dynamically to code coming from a different site.

This encompasses two cases: either the EU dynamically links the code

downloaded from the network, or the EU receives its code from

another EU [Carzaniga 1997].

2.3 Design Paradigms in Mobile Code

The complexity that is introduced in Mobile Code due to the relocation of

computational components and resources has led to the development of Mobile

Code Languages (MCL) in recent years. [Cugola 1997]. A few examples of MCLs

are D'Agents [Gray 2002], Telescript [Thomas], IBMAglets [Lange 1999] and

Java [Sandakly]. Some MCLs are developed based on a specific design

paradigm. However, there exist design paradigms in Mobile Code which are

architectural abstractions that can be implemented irrespective of the MCLs

[Carzaniga 1997].

Architectural abstraction of the components, resources, and the

interactions between them is known as Software design. Design principles in

software engineering indicate that the design of software should be independent

of the implementation technologies. While it is true that the availability of good

14

languages and tools will be a positive aid in the development of software, it is not

imperative that the languages and tools enforce the implementation of good

design principles. For example, an object oriented language is ideal for

implementation when the software is designed using the object oriented

methodology. However, an object oriented language can also be used to

implement programs with sequential design. Similarly, though structured

programming languages are more suitable to implement sequential design in

programs, they can also be used to implement object oriented design.

Hence, developing design paradigms in Mobile Code that are independent

of the implementing programming language is significant. The design paradigms

will largely depend on the nature of Mobile Code, which arises out of a need to

relocate distributed resources efficiently.

In distributed systems, it is possible that the resources and the parts of the

computational components may be located at different computational

environments (CE). A computational process or an operation often involves the

presence of all these components in one CE. The process of relocation of the

components to a CE is known as the design paradigm. The objective in the

abstraction of the design paradigms in Mobile Code is the methodology of

relocation of computational components and resources to perform a computing

operation.

In Table 2.1, A and Bare computational components that are originally in

the computational sites SA and Ss. The computation is to be performed by A.

15

The code needed to complete the process or the resources that are required to

perform the computation are distributed in the sites SA and Ss.

Before After

Paradigm SA Ss SA Ss

Know-how Know-how
Resource Resource

A B A B
Client - Server

Remote Know-how Resource Know-how

A B A Resource
Evaluation B

Resource Know-how Know-how

Code on A B Resource

Demand A B

Know-how Resource Know-how

A
--- Resource

A
Mobile Agent

Table 2.1: Relocation strategies of Mobile Code design paradigms Ref[2.3]

Common design paradigms in Mobile Code are Remote Evaluation (REV),

Code on Demand (COD) and Mobile Agent (MA). A comparison of the functional

aspect of these design paradigms along with the Client-Server paradigm is

presented below:

1) Client Server

In this paradigm, A is the client and B is the server. Both the code and the

resources are resident at S8 along with B. When A, which is the client, has to

perform a computation, it sends a request to B along with the details of the

computation. B, which is the server, performs the computation since both the

16

code and resources are available locally at site Ss and sends the results back to

A at SA.

2) Remote Evaluation

In this paradigm, A has the required code that needs to perform the

computation in SA and Ss, but it lacks the availability of the resources. The

resources are available to B in Ss. A sends the code component to be computed

to Ss. Now, B has both the code and the resources available. Thus, it performs

the computation and returns the results to A in SA,

3) Code On Demand

In this paradigm, A has the required resources at SA but does not have the

required code to perform the computation. The code is at Ss where both the code

and B reside. A sends a request to Band the code is transferred to site SA. Since

the code and resources are available to A in SA, A can then complete the

computation.

4) Mobile Agent

i) In this paradigm, A is in SA and has the required code to perform the

computation but the resources are present in Ss. A migrates from SA to S8

transferring the code along with the code component. Now, A is in Ss along with

the code and the resources. Therefore, it completes the computation.

17

ii) A common phenomenon in this paradigm is to now migrate to other

sites like Ss where more computations are to be performed and then return to the

original site SA.

2.4 Tradeoffs of Mobile Code Implementations

Advantages of implementing Mobile Code are:

1) The code components and the resources are distributed over the network.

Due to the availability of the resources, the efficiency of usage of resources is

higher.

2) There is control for the programmer over the choice of a host to where the

code is migrated. In contrast, the distributed applications present a non­

transparency and spare the programmer with the details of the host from

where the information is being received or sent.

3) The resources and code are loosely coupled since they are distributed in

different locations. This gives more flexibility for the programmer to modify the

code and the resources without affecting each other while doing so.

4) The pattern of interaction of the computational components dictates the

architecture of Mobile Code paradigms. The computational components,

being very loosely coupled, present possibilities for more architectures than in

conventional software systems.

5) On complying with standards, Mobile Code provides a good possibility for

computational components that are developed independently to interact and

18

perform computations. This introduces the possibility for users to access code

and resources outside their site of computation.

6) Development time for the software system can also be affected with the use

of Mobile Code. The unique architectures of Mobile Code that are based on

the loose coupling amongst the computational components also affect the

maintenance phase in the software life cycle.

2.5 Domains of Implementation

Some of the domains where Mobile Code can be implemented is in

network management [Baldi 1998], electronic commerce [Merz 1996], defense

applications [Gray 2002], software maintenance [Binder 2002], maintenance of

power systems [Kezunovic 2001], adhoc networks[Qi 2001], distributed

information retrieval [Carzaniga 1997].

1) Network Management: Various Mobile Code paradigms have been

implemented to perform network management tasks like optimizing the

network traffic by collecting load level of network interfaces. Different Mobile

Code paradigms have been proven to be better than the others depending on

the nature of the management functionality and quantitative characterization

of the management protocol and the Mobile Code paradigm used [Baldi

1998].

2) Electronic Commerce: Electronic Market (EM) systems allow both buyers and

sellers of supplies and goods in the worldwide communication networks to

19

communicate based on a set of rules. The embedded agents, along with the

Petri Nets, provide value added services and make it extensible to an open

distributed platform [Merz 1996].

3) Defense Applications: D'Agents, which are an instance of the Mobile Agent

paradigm, have been used as operational support for military personnel in

providing efficient, application specific access to remote information

resources [Gray 2002].

4) Software Maintenance: An autonomous station which executes dynamically

uploaded applications has been developed. Mobile Agent technology is used

for distribution of applications to the station, remote maintenance and

configuration [Binder 2002].

5) Maintenance of power systems: Mobile Agents are applied in facility

maintenance scheduling in deregulation power systems. They are used as

the means of communication and coordination between two problem solving

entities [Kezunovic 2001].

CHAPTER 3

ELECTRONIC COMMERCE APPLICATIONS

3.0 Overview

Electronic commerce (e-commerce) is an extensive subject in itself.

Though the field of e-commerce is currently not of age, there have been

exponential developments because of its potential benefits to business and

society. The purpose of this chapter is to give an introduction to e-commerce and

its current practices. Therefore, the chapter begins with a brief survey of e­

commerce where definitions and the evolution of e-commerce are summarized.

The different scenarios of e-commerce to conduct business are explained

followed by the activities in e-commerce. The various issues in e-commerce are

discussed followed by the implemented technolo~ies in e-commerce and the role

of Mobile Code in e-commerce.

3.1 Survey of Electronic Commerce

Business is an integral component of society that emerged in the process

of civilization. We have gradually grown from trading in barter systems to the use

of currency, which is the common denomination paid for the exchange of goods.

20

21

Because currency is developed to the local standards, depending on the

economic situation of the country, an equality of various currencies had to be

found to facilitate trade when it occurred between two countries with different

currencies. In the evolution of business, the nature of business has extended

from selling goods or objects to selling services.

Technology has brought a consistent rise in the breakdown of barriers like

communication and transportation. This breakdown has gradually led to the large

shrinkage of geographical and communication limitations in business. This has

changed the conduct of business within organizations and with other business

organizations. The role of information technology has become inevitable in the

field of business. The use of digital technology to digitally enable transactions

within or amongst various organizations and individuals is known as e-commerce

[Laudon 2002]. It is estimated that trade in e-commerce (in B2B and B2C) will be

$12,837.3 billion by 2006 [United Nations 2002].

There is varied opinion on the definition and scope of e-commerce and e­

business [Davis 2003]. Some refer to a-business as a broader term that refers to

selling, buying, servicing customers and interacting with business partners over

the Internet. However, the term 'e-commerce' will be used throughout this

document to refer to any digitally enabled transactions conducted by customers

or between businesses purchasing goods and services.

Researchers have made an attempt to classify the applications in e­

commerce. The applications in e-commerce are driven by the requirements of

business, which change dynamically. It is also to be observed that breakthroughs

22

in technology redefine business processes thus introducing new requirements

and, in turn, producing new applications. The classification in e-commerce is

therefore currently bas~d on the business scenarios and the activities that occur

in the field.

3.2 Business Scenarios in Electronic Commerce

The purpose of e-commerce is to facilitate and aid business and

commerce in general [Davis 2003]. Therefore, it is imperative to understand the

structure of the businesses, functioning within the organization, and their

association with other business organizations. Breakthroughs in technology and

widespread networking have also enabled the introduction of new business

models. An example of a new business model is the Peer to Peer (P2P) business

scenario [White 2001].

The activities in business pertaining to an organization can be classified

under 2 major categories:

1) Intra-business activities, i.e. business activities within an organization

2) External business activities, i.e. business activities in collaboration with other

business organizations.

The distinction between these activities is gradually blurring due to the

changes brought forth by the use of e-commerce technologies. The following is

an explanation of the various business models that are currently available in e­

commerce:

23

1) Business to Business (B2B) E-commerce

This is the business model that accounts for the maximum revenue in

ecommerce. B2B has accounted for $8296 billion in 2003 [U.S. Dept. of

Commerce 2005]. B2B is the type of e-commerce that is used for digital

transaction of information, money or anything of value between two individual

organizational entities.

EDI Vendor

lnd1v1dual

Vendor

Vendor

Vendor

lnd1v1dual

Vendor

Vendor

Vendor

828 e-commerce: Exchange of value as
goods/services between different

organizational entities through
Electronic Data Interchange (EDI)

Fig 3.1 828 e-commerce

t Business entity
catering to

1111 ► customers

Customer

A product that reaches the consumers goes through numerous

organizational entities and individual processes. Numerous organizational

entities or individuals provide the basic raw materials required to begin the

24

manufacturing or production of a product. However, there is a need to acquire

several raw materials to begin the manufacturing process from organizations or

individuals known as vendors. Another possible scenario for vendors is to

manufacture or produce parts that are requisites for the intermediate stage of

manufacturing of a product. These materials or manufactured parts are then

purchased by the entity that manufactures or produces the final product. These

products are disbursed to distributors or organizational distribution centers who

supply it to the retail stores where it is eventually purchased by the-end

customer.

This entire process is known as the supply chain process. The objective of

e-commerce is to optimize the functioning of the supply chain by transacting

information during the exchange of value and money amongst entities at the

appropriate time and location.

As an example, Hewlett-Packard Company (HP) has 200,000 product

offerings, customers, and global supply chain points involving more than 100,000

suppliers [HP 2004]. The basic components that are needed to manufacture a

complete product are supplied by several vendors. The vendors that supply the

components to HP may in turn have other vendors supply components to them.

After manufacturing a product, HP has retailers and resellers that sell their

products to customers. This is an example of a supply chain. E-commerce is

deployed for transaction of information to co-ordinate the business activities

amongst various business entities like vendors, retailers and HP.

25

2) Business to Consumer (B2C) E-commerce

Business to Consumer (B2C) e-commerce is a scenario where the

business organization sells its products directly to the customers through the use

of a website over the Internet.

Examples of similar business organizations are Amazon.com [Amazon

2005] and Half .com [Half 2005]. It is to be observed that companies like Dell also

conduct business online in the B2C scenario while the manufacturing process

involves a B2B scenario. It is very common for almost all large scale businesses

to sell their products online, if possible thus following the B2C scenario.

Business entity
catering to
customers

B2C e-commerce: Exchange of value as
goods/ services from a business entity to

customer through Internet

Fig 3.2: B2C e-commerce

t
Customer

Customer

26

As noted earlier, it is quite possible that organizations implement 82C

technology for the customers and implement 828 technology in the process of

manufacturing the product. And in recent times, both the scenarios have become

integrated to optimize the business processes leading to newer business

paradigms like just-in-time inventory [Laudon 2002].

82C was a hyped investment sector in the late 20th century. The revenue

that was generated through 82C was $8,352 billion in 2003 [U.S. Dept. of

Commerce 2005]. The highest revenue generating scenario of e-commerce is

828.

3) Customer to Customer (C2C) or Peer to Peer (P2P) E-commerce

Reduction in the cost for computers and accessibility of the Internet to the

common man has created possibilities for new business paradigms. One such

paradigm is Customer to Customer (C2C) which is inspired by the Peer to Peer

(P2P) technology that was originally deployed for information sharing. Often C2C

and P2P are used interchangeably.

The Peer to Peer (P2P) concept was initially started by websites such as

Napster [Napster 2005] to share information amongst users. This was achieved

by sharing information by all the Napster users [Datta 2003]. When a user

participated in retrieving information, the user also gave information to other

interested users.

This paradigm P2P is being introduced in business scenarios [Datta

2003]. It is especially useful in specific instances such as car part dealers, where

27

the dealers can share information about each other and trade their goods. C2C

or P2P is a business paradigm where both the buyers and sellers are the

customers. The organization involved in the business process is neither selling

products that it has manufactured nor acting as a selling agent for another

organization. The intervention of the organization is only to facilitate the trade of

items between the buyers and sellers. All the customers who want to sell or

purchase a product participate in the conduct of business and sell to each other.

The involvement of an organization is to facilitate this process rather than

participate in directly selling goods or services.

t
Seller~

Customer

t
/ Seller

Customer

Buyer
Customer

Business entity
fac1htatmg buying

and selling
between

customers

Internet

P2P or C2C e-commerce: Exchange of value
as goods/ services amongst customers
facilitated by a business entity through

Internet

Fig 3.3: P2P or C2C e-commerce

t
Buyer

Customer

28

A classic example of this paradigm is eBay [eBay 2005]. eBay has been

very successful in implementing this paradigm. It can be observed that there are

a range of products that are traded on eBay.

4) Mobile Commerce (m-commerce)

Distributed computing ~ncompasses the underlying concepts that deal

with the issues of location and location management. There are some products

that are dependent upon location and time. Examples of these are the location of

the nearest restaurant of a particular choice, the nearest drug store, etc., at a

particular instance of time and place of a customer. These types of services,

products or information have a potential to be sold to customers through mobile

devices like cell phones, PDA's, etc. [Samaras 2002] This type of commerce is

known as m-commerce.

Business entity
catering

Mobile
Service

customers -+-+ -+-+ Provider -+-+ -+-+

m-commerce: Exchange of value as goods/
services from a business entity to customer

through the customer's handheld mobile
device like cell phone, PDA, etc.

Fig 3.4: m-commerce

5) Enterprise Resource Planning (ERP)

Wireless
Transmitter

29

Mobile
Handheld

Device

Customer

An organization deploys several departments within itself to perform one

or more business processes. Examples of these departments are payroll, sales,

human resources, etc. The co-ordination amongst all of these departments is

essential for the business organization to function smoothly to achieve the

objectives of the business. ERP is a system of software that integrates the

functioning of internal business processes for the total functioning of the

organization [Vogt 2002].

SAP, PeopleSoft and Oracle are the major vendors of ERP software.

Initially, the ERP systems were developed to integrate activities within the

30

business organization. But due to the growing demands and the possibilities to

exchange information, a second generation of ERP software known as ERP 2,

integrates the processes within the organizations and also the ERP systems of

distinct organizations that are associated with the organization in conducting

business.

3.3 Activities in Electronic Commerce

The typical commercial activities of any value exchange between the_

customer/client and the provider are as follows: the customer receiving an offer

from the provider, requesting more information about the product, re-evaluating

the offer, negotiating terms, ordering the product/service, receiving the bill,

making payment, receiving the product and receiving after-sales service. E­

commerce can facilitate any or all of these activities for an organization. The

digitization of these activities is performed in conjunction with the business

strategies of the organization since the objective of digitization is to enhance the

operation of business.

A list of the activities of large business organizations is [COMERGENT

2004]

• product catalog

• order management

• portal

• customer service support

31

• invoicing

• reporting and analysis

• pricing

• parts catalog

• guided selling

• configuration

• replenishment/ Vendor Managed lnventory(VMI)

• quoting

• Product Information Management(PIM)

• distributing orders to channel partners

• returns

• product data synchronization with trading partners

• Partner Relationship Management (PRM)

• services and scheduling

• warranty management

The commercial sectors in which e-commerce is used are manufacturing,

merchant wholesale trade, selected service industries and retail trade. 828 e­

commerce depends critically on Electronic Data Interchange (EDI) [U.S. Dept. of

Commerce 2005]. Examples of the aforementioned commercial sectors that

implement e-commerce are:

32

• Manufacturing and wholesale trade sectors include the following

industries[U.S. Census Bureau 2005] as shown in Table 3.1 :

Food Beverage Tobacco Products

Textile Products Leather Apparel

Wood Paper Printing

Petroleum Chemicals Plastics And Rubber

Drugs Non-Metallic Minerals Metal

Computer Products Electronic Products Electrical Equipment

Transportation Equipment Furniture Groceries

Table 3.1: Industries in manufacturing and wholesale trade sectors

• Selected services and retails sectors include the following industries[U.S.

Census Bureau 2005] as shown in Table 3.2 :

Transportation Information Financial Services

Rental And Leasing Computer System Design Travel

Accommodation Food Health Care

Arts Entertainment Repair And Maintenance

Religious Grant Making Miscellaneous

Table 3.2: Industries in selected services and retail sectors

• Some more areas of business where e-commerce is used widely [Adam

1999] are shown in Table 3.3.

Banking Government Finance

Accounting Marketing Customer Service

Human Resources Research

Table 3.3: Miscellaneous areas of business where e-commerce is used

33

Some of the industries overlap due to the presence of the industry in more

than one sector.

3.4 Issues in Electronic Commerce

E-commerce has not only introduced new methods of organizing existing

businesses but also introduced new paradigms of conducting business with

customers. Consequently, there are several issues that have risen to the surface

in implementing e-commerce. Some of them are trust, technology, workforce

issues, public policy, taxation, business processes, costs and consumer

attitudes. Many implementers of e-commerce have expressed confidence about

developments to overcome the technical issues. They have come to a strong

consensus that user issues will play a major part in the development of e­

commerce [COMERGENT 2004].

Some of the technical issues in e-commerce are:

• Decision support systems for e-commerce, which include issues like data

warehousing, knowledge discovery in data mining and data warehouses

• Interoperability between applications and connecting multiple object systems

that reside in different machines in heterogeneous distributed environments

• Data storage and retrieval

• Workflow technology, mark up languages and their standardization for global

implementation

• Security, an issue of the highest concern

34

• Recent social changes that have raised the concern of trust and security on

the Internet

3.5 Implemented Technologies in Electronic Commerce

E-commerce is implemented in a multiple level layered architecture.

Though there are several technologies and platforms that are widely used in the

market, there is no standardized structure. As a matter of fact, the architecture of

an e-commerce application depends on the platform chosen to implement it and

the features of the application. The various platforms can be broadly classified as

Java with J2EE (Java 2 enterprise Edition and Web Services), ERP, which

includes SAP, PeopleSoft, Oracle, etc. and Microsoft with its .Net platform.

E-Business applications
E-insurance, E-bank1ng, E-shopp1ng,

E-Marketing, E-procurement, video-on-demand, etc

Organizational Computing Infrastructure
(ERP, CRM, m1ddleware platforms, e-commerce suites,

business 1ntelhgence, data mining, etc)

Common Business Service Infrastructure
(Security, a-payment, mobile/ intelligent agents, etc)

Messaging and information distribution
Infrastructure

(EDI, Email, HTTP, XML, etc)

Multimedia Content & Network Publishing
Infrastructure

(WWW, e-pubhsh1ng, MP3, d1g1tal video)

Information Superhighway Infrastructure
(Internet, Wireless, Telecom, Cable TV)

E-commerce architecture and the technology layers

Fig 3.5: Layered technology architecture of e-commerce applications

35

The bottom most layer in e-commerce is the Internet or the information

super highway illustrated below in Fig. 3.5. The multimedia content is published

in the content and network infrastructure layer above the Internet layer. The

communication is conducted in the messaging and information distribution

infrastructure layer, which is comprised of various infrastructure methods to

transact information. These include email, Electronic Data Interchange, HTTP,

XML, WSDL, etc. Common business services such as security, a-payment,

intelligent agents, etc., are present in the common business services

infrastructure layer. The organizational computing infrastructure hosts the e­

commerce frameworks and applications that are resident in the organization such

as ERP, CRM, EAi, middleware platforms, e-commerce suites, business

intelligence and data mining. The top most layer consists of the a-business

applications such as a-insurance, a-marketing, a-shopping, etc.

3.6 Using Mobile Code in Electronic Commerce

The most common ways to utilize the concept of Mobile Code is in its

application as applets, mobile agents and in Common Object Request Broker

Architecture (CORSA).

Applets were amongst the early applications during the advent of Java

and the Internet. An applet is a program designed to be executed from within

another application. While they can be invoked from different applications, they

cannot be directly controlled from the operating system. Their small size and

36

cross platform compatibility makes them ideal for small Internet applications

accessible from a browser.

Mobile agents are used for information gathering, facilitating service when

acting as a third party entity and for information gathering [Merz 1996]. Mobile

Code design paradigms such as remote evaluation and code on demand are

also used in the frameworks such as CORBA, Java Remote Method Invocation

(RMI), etc.

CHAPTER4

METHODOLOGY OF APPL YING MOBILE CODE DESIGN

PARADIGMS TO ELECTRONIC COMMERCE

APPLICATIONS

4.0 Overview

This chapter explains the process and the methodology that has been

implemented during the research in applying the concepts of Mobile Code design

paradigms in electronic commerce applications. The process began with

developing a framework to simulate the e-commerce applications. A specific

activity in e-commerce applications was chosen to implement for a specific

scenario. The chosen activity was implemented in various Mobile Code

paradigms to measure specific tradeoffs.

4.1 Literature Review on Simulation Frameworks

An extensive literature search has been done to discover frameworks that

have been developed so that they-could be aptly used for this research. The

search also considered the methodologies that were used in developing the

37

38
researched frameworks. The most relevant results in their respective categories

of search are discussed below:

4.1. 1 Simulation Framework of . Electronic Commerce

Applications

Some of the frameworks that were brought to light by the literature review

were an e-commerce business simulation called Web-TRECS[Parker 2000],

simulation of behavioral models in an event-based modeling language called

Rapide [Luckham 2003], a dynamic a-services interaction framework

specification called e-speak [Balakrishnan 2000]. According to the researched

literature that discussed the frameworks, either the features of the framework did

not satisfy the requirements of this research or they exceeded the limitations of

the available resources.

4.1.2 Simulation Framework for Implementing Various Mobile

Code Design Paradigms

Though there have been several frameworks that were developed for

implementing various paradigms of code mobility [Agent List], most of them have

focused on implementing the mobile agent paradigm [Picco 1998]. The literature

review of several frameworks has led to two viable frameworks for

implementation in this research within the limitation of available resources. They

are D'Agents [Gray 2002] and µCode [Picco 1998]. Of the two frameworks

39

considered, µCode was found to be the most compatible framework because of

the following reasons [Picco 1998]:

1) µCode provides a uniform platform to implement various Mobile Code design

paradigms

2) µCode is lightweight to transfer the code with respect to the overhead

introduced due to code transfer

3) µCode satisfies the requirements of the methodology of this research and fits

within the limitations of the available resources

4) It is possible to conveniently develop the specific e-commerce application and

measure tradeoffs

4.1.3 Simulation Framework for Implementing a Recommender

E-commerce Application Using Various Mobile Code Paradigms

Researchers have tried to implement Mobile Code in e-commerce.

Examples include the use of open mobile agent systems in electronic markets as

buying and selling agents [Bredin 1999] and integration of mobile agents in

electronic markets [Merz 1996]. As aforementioned, the literature has been

mostly confined to the implementation of the Mobile Code paradigm using mobile

agents. Therefore, it was imperative to develop a framework that could simulate

e-commerce applications using various Mobile Code paradigms to measure their

tradeoffs.

40

4.2 Simulation Framework Implemented

The vision of an ideal framework for simulation of the Mobile Code design

paradigms is presented. The features and the description of the ideal framework

follow the vision. The scope and implementation of the ideal framework in the

research is discussed.

4.2.1 Vision of the Ideal Simulation Framework

An electronic market includes several activities in various scenarios, as

explained in Chapter 3, and mobile code design paradigms can be applied to all

of them. The objective of doing so will be to understand the best suited design

paradigm for a specific activity by evaluating a set of tradeoffs. The vision for an

ideal framework would be to simulate several activities in a business cycle like

product advertisement, recommend systems, purchase, feedback, etc. in any of

the various e-commerce business scenarios like 82C, 828, P2P, etc. Since an

electronic market usually involves more than 2 scenarios simultaneously, it would

be ideal to incorporate the simulation of all activities in all the scenarios

simultaneously. By having control points to measure the desired metrics, they

can be optimized by using the suitable paradigms. Such a framework can help

recognize the most suitable paradigm under the given circumstances yielding an

overall optimization of the electronic market.

41

4.2.2 Features of the Ideal Simulation Framework

Some of the features of a framework mentioned in the vision for an ideal

framework in section 4.2.1 would be:

1. Independence from the implementation technology. This could also be

called lower level independence.

2. Support for various activities in different scenarios in parallel.

3. Control to choose the paradigms and metric points for each activity in each

scenario. This feature could help in trying different combinations of

paradigms for activities in different scenarios, and thus help to optimize the

required metrics for any or all phases of the business cycle.

4. Controlling the metric points within the activity, between the activities, and

in the activities as a whole. It should be observed that there could be

considerable overhead introduced by the nature and the number of metric

points.

5. A comparative basis of cost to define activities. An example is the

difference between a 'payment' activity in a 82C scenario and a 828

scenario. Though the purpose of the transaction is similar in both

scenarios, the nature of the activity is different because of the difference in

the procedures. A 828 transaction typically involves a more intricate

procedure ensuring the appropriateness of the transaction because larger

amounts are involved

6. Independence of the framework from the business activity that it simulates

7. Independence and openness to incorporate a Graphical User Interface.

This can be called high level independence.

42

4.2.3 Description of the Ideal Simulation Framework

A simple version of the electronic market in the 82C, 828 and the P2P

scenarios involving the customers and the businesses is presented in Figure 4.1.

Each of the participants (customer or business) represents a computer host on

the network. The framework presented here is an instance of the P2P paradigm

being present within the 828 scenario.

The software structure of the simulation framework on each computer host

is described in Fig 4.2. The ideal framework for simulation on each host can be

described as being made up of several tiers, as shown in Fig 4.2. As explained in

the features of the framework in section 4.2.2, the simulation framework tier has

upper level and lower level independence. The framework is also independent

from any or all of the business activities and the scenarios that are being

simulated.

Customer

e-commerce

Business entity
catering

customers

B2C
e-commerce

Figure 4.1: Ideal Simulation Framework

43

B2B

Customer

Tier Structure of the Ideal
Simulation Framework

Graphical User Interface

Ideal Simulation Framework

Language/ Toolkit

Operating System

Hardware

Figure 4.2: Software structure of the computer host

4.2.4 Scope and Implementation of Simulation Framework

44

Since the vision of a framework that is described in the previous section

exceeded the resources available for implementation during research, there were

compromises in the incorporation of some features. The scope of the framework

that was implemented was restricted to implementation of one activity, namely

'Recommend,' in one e-commerce scenario, namely Business to Customer

(B2C).

The concept of the simulation framework that is implemented during this

research is an abstract type. More specifically, there is no software or a set of

packages that are explicitly written for this framework. Rather, packages from

existing toolkits that satisfy the requirements of the research have been used.

The framework that is implemented is an idea that is manifested through the

programs that have been written and implemented to procure the required

45

metrics. However, it is a part of the vision to develop packages that could be

utilized specifically for this framework.

The resources that were utilized during the experiment are a total of 4

computers with the following configurations:

3 Computers used as Hosts in the Simulation Framework:

Processor information

Processor vendor

Model

CPU MHz

Cache size

Model

Memory Information

Memory

Swap Memory

Storage disk information

Hard disk 1

Hard drive 2

Operating System

Intel

Pentium Ill (Coppermine)

598.077

256 KB

8

253,996 bytes

522, 104 bytes

101089 KB

14088992 KB

(98.72MB)

(13.43 GB)

Linux Kernel 2.4.20-8

1 Computer used as a Database Server for Storing the Result Data Sets:

Processor information

Processor vendor

Model

CPU MHz

Intel

Celeron (Mobile)

2.40 GHz

Memory Information

Memory

Storage disk information

Hard disk 1

46

496 MB

24GB

Operating System Microsoft Windows XP, Home Edition,

Version 2002, Service Pack 2

SILMULATION FRAMEWORK
Java programs that utilize µCode package and shell

scripts are used to perform sImulat1ons

µCODE
µCode 1.03

JAVA
Java 1.3 1_12

Java 2 Runtime Environment, Standard Ed1t1on

OPERATING SYSTEM
Red Hat Linux 9.0 with Linux Kernel 2.4.20-8

HARDWARE
4 PCs with conf1gurat1on of 500MHz, 512MB, 10GB

Fig 4.3: System architecture of the

Framework used for simulation

Fig 4.3 is a representation of the structure of the computer host that was

used for the purpose of the research. The operating system that is installed upon

all 3 computer hosts is Red Hat Linux 9.0 with Linux kernel 2.4.20-8. Java

1.3.1_12 is installed on Red Hat Linux 9.0. µCode 1.03, which is essentially a

set of packages in Java, is installed and configured on Red Hat Linux 9.0. The

framework was implemented on the mentioned software platform through

programs that were written in Java 1.3.1_ 12 utilizing the µCode 1.03 package.

47

µCode is a set of 3 packages, namely mucode, mucode.util and

mucode.abstractions [Picco 2000]. The package mucode contains a minimum set

of primitives that are essential to build higher levels of code mobile operations.

The package mucode.util contains utilities such as MuServer, which are used on

every computer host involved in the experiment. These utilities are run time

support systems for code mobility that support the transfer of code. The

mucode.abstractions package contains abstractions for Mobile Code that are

built on top of the runtime support systems. Mobile Agent is an abstraction to

relocate code and state [Picco 2000].

The metrics measured by the framework which are the results for the

experiment are stored in a MySQL database server. The configuration of the

MySQL database server is MySQL Server version 4.1.12a-nt via TCP/IP. The

operating system on which MySQL Server is installed is Microsoft Windows XP

2002 Home Edition.

4.3 Chosen Scenarios and Activities in Electronic Commerce for

Implementation

The scenario that is chosen for implementation is the 8usiness-to­

Consumer (82C) scenario in an electronic market. Some of the reasons for

considering it among the other scenarios such as 828, P2P, M2C are as follows:

1. It is the most common scenario in the electronic market. Hence, choosing this

scenario for the initial stages of implementation would be reasonable.

48

2. There is less complexity involved in 82C when compared to other scenarios

like 828.

3. It involves both the business and the customer who are the fundamental

actors in most businesses. Therefore, there is a possibility to study the

qualitative tradeoffs of both the parties in such a setting.

The chosen activity for implementation during the -research is the

'Recommend' activity. In the electronic market, several products of the same

genre are sold by numerous businesses to customers. The amount of information

that is available to the customer is enormous. When a variety of products are

available, it is important for the customer to identify a product that satisfies their

criteria. One of the common ways of recommending certain products to a

customer is by using recommender systems on websites [Schafer 1999]. Another

way for customers to find recommendations is through third party websites like

http://www.epinions.com.

The 'Recommend' activity itself, when performed by businesses, could be

of 3 types: rule based filtering, content based filtering and collaborative filtering

[Tuzhilin 1999 and Schafer 1999]. Since the focus of the research is not on the

recommender systems per se, a basic system is presented based on the rule

based approach. It is to be observed that the algorithm and the methodology

used in the Recommend system is not of significance in the methodology of this

research. The same Recommend system is deployed in all the Mobile Code

design paradigms as a standard for comparison. The focus of the research is on

evaluating the tradeoffs of different paradigms in utilizing this Recommend

system.

49

4.4 Application of Mobile Code Paradigms

The objective in the implementation of the 'Recommend' activity in

different Mobile Code design paradigms in the B2C scenario is to measure the

proposed metrics. An analysis of the metrics will be performed to evaluate the

tradeoffs of the various design paradigms.

In all paradigms, typically, there are two sites of computation - the

Customer and the Business. The Recommend activity involves a customer

receiving the Recommendation from a business about a specific product that

satisfies the customer's requirements. The customer's requirements are

mentioned in 'Customer Requirements' {CR). The CR includes the details of the

product in search, their priority, the desired value of each detail and the range of

the desired value if the exact value is not available. The product information of all

the products that are promoted by the business is stored in the 'Business

Information' {Bl). The Recommend activity is essentially a 'process' that takes the

CR and the Bl as inputs and generates the recommendations, the output, for the

customer. The CR, Bl and the Recommend (R) process put together are known

as the 'resources.' It is to be noted that the subject of 'design' and 'author' will be

mentioned in the forthcoming sections. 'Design of CR' refers to the participant

{customer or business) who designed the CR document while 'Author of CR'

refers to the participant {customer or business) who filled in the requirements in

the CR. A typical example is a Client-Server paradigm where the business

designed the CR, but the customer authored it. A few of the variables that play a

role in the implementation of the mobile code design paradigms are the initial

50

location of the resources, the site of computation, the transfer of resources and

the interactions involved. The design paradigms will also be extended from the

participation of one customer and one business to several customers and several

businesses running on more than one machine. The reason for including this in

the experiment is that, from a customer's perspective, there are several

businesses from whom a customer seeks recommendations and it is possible to

include several businesses for a customer in this experiment. From the business

perspective, a given business site may have several thousands of customers,

which is not possible to simulate in this experiment with the available resources.

The following sections explain in detail the computational components, the

site of computation and the nature of interaction between the components for the

remote evaluation, code on"demand and mobile agent paradigms when applied

to the Recommend activity in the B2C scenario in the research with the

mentioned available resources. The notations used in the following sections for

application of Mobile Code only are:

• business: An entity acting as a supplier in trade

• Business: Site of location of the business entity and its host

• customer: An entity acting as a purchaser in trade

• Customer: Site of location of the customer entity and its host

• CR: Customer Requirements

• Bl: Business Information

• Recommend: The recommend process

51

4.4.1 Remote Evaluation Design Paradigm

In Remote Evaluation, the CR and the Recommend process are both

designed and authored by the customer and initially reside on the Customer

while the Bl is designed and authored by the business and initially resides on the

Business as shown in Fig 4.4.

REMOTE EVALUATION DESIGN PARADIGM

2 Create
process

CR R

3 Feed CR
into R

R

1Create ~

[§] !.+ ~ ~ CR uac:=:::>

Customer
~

~

R
Recommend process
Author. Customer
Designer Customer

Business Information
Author· Business
Designer· Business

4 Send request along with CR
and R to perform query

8 Send results of query

Customer Requirements
Author Customer
Designer Customer

~

~

Business

7 Compute the query using CR, R
and Bl

Business I Site of computation

Fig 4.4: Remote Evaluation Design Paradigm

To initiate the process, the customer will input the authored CR into the

Recommend process. A request is initiated by the Customer to the Business to

begin the Recommend activity and thus sends the Recommend process loaded

52

with the CR from the Customer site to the Business site. The Recommend

process searches the Bl and computes the recommendations which are then

sent back from the Business site to the Customer site. One of the advantages of

using this paradigm is that the customer can use the same Recommend process

loaded with CR when he/she desires to perform the activity with several business

entities in search of the same product.

4.4.2 Code on Demand Design -Paradigm

The CR are designed, authored by the customer and initially reside on the

Customer while the Bl and the Recommend process are both designed, authored

by the business and initially reside on the Business.

To initiate a Recommend activity, the customer authors the CR and sends

an 'initiate' request to the Business as shown in Fig 4.5. The Business then

inputs the Bl into the Recommend process and sends the Bl loaded Recommend

process to the Customer site from the Business site. The Recommend process

then inputs the CR and computes the recommendations.

CODE ON DEMAND DESIGN PARADIGM

R

1 Create ~
CR

EJ~ Bl

2 Initiate Recommend process ~

Customer
4 Send R with Bl

~ -
5 Compute for
recommendations

R
Recommend process
Author: Business
Designer: Business

Business Information (resource)
Author Business
Designer. Business

- Business

3 Feed Bl into R

Customer Requirements
r;:;;7 Author· Customer
L.:::.:.J Designer: Customer/ Business

Customer I Site of computation

Fig 4.5: Code on Demand Design Paradigm

53

In a more realistic situation, since the Bl will be too large to be loaded into

the Recommend process, only the Recommend process is migrated to the

Customer site. Then, upon input of the CR to the Recommend process and

processing it, a request is sent to the Bl database to send the required Bl to the

Customer site for further computations of the Recommend process. An

advantage of this paradigm is that the customer can reuse the authored CR for

other businesses when searching for the same product.

54

4.4.3 Mobile Agent Design Paradigm

In the Mobile Agent design paradigm, the CR and Recommend process

are designed, authored and initially reside on the Customer site. The Bl is

authored, designed by the business and initially resides on the Business site.

When the customer desires to initiate a Recommend activity, they author

the CR and input it into the Recommend process along with the address(es) of

the Business(es) that the customer intends to receive recommendations from.

The Customer sends a request to initiate the Recommend process along with the

loaded Recommend process (CR and R) to one of the Businesses. The

Recommend process then searches the Bl, processes the recommendations and

stores the results in the agent. The agent transfers to the other Businesses and

continues the process until all the Businesses enlisted are completed. During the

process, the agent either stores all the results or only a few of the best results

based on the design. Then, the agent moves to the customer and presents the

results that it has stored. An advantage of this paradigm is that the customer

does not have to perform the initiation of the Recommen~ process repeatedly on

every business that they intend to investigate.

In the implementation of this paradigm in the research experiment, the

results from every Business have been appended to the existing results in the

Mobile Agent. The motivation for this was to measure the latency of the query

response when the Mobile Agent is carrying increasing amounts of data as it

travels from one business to the other.

55

MOBILE AGENT DESIGN PARADIGM

1 Create
CR With

business'

2 Create
process

3 Feed CR
intoR

R

addresses R ~ ~__:.~ tj

R

Customer

R

8 Collect the best
results and return

~ 5,6 r;;;-i 0.-.~
Business

~
Recommend process
Author. Customer
Designer. Customer

Business Information
Author: Business
Designer: Business

4 Initiate and send R and CR

7 Jump to
next business

7 Jump to next business

R

~ 5,6 r;;;-7 0.-.~

..... I __ B_u_s_i_ne_s_s _ ____,

5 Compute the query using CR, R
and Bl

6 Compare the results and put in
proper order while ehminating the
previous ones 1f required

7 Jump to the next business in
the given hst of addresses

R

~ 5,6 r;;;-7 0.-.~
Business

Customer Requirements
Author Customer
Designer· Customer

__ B_u_s_in_es_s __ l Site of computation

Fig 4.6: Mobile Agent Design Paradigm

56

4.5 Limitations of the Implemented Framework

The limitations of the simulation framework that is developed and

implemented in this research experiment in comparison to the features of the

Ideal Framework for Simulation are as follows:

1. The framework is restricted to only one activity (Recommend)

2. The framework implements only B2C e-commerce trading scenario. It can be

modified to simulate other specific scenario in e-commerce, namely 828,

P2P, etc., by incorporating their relative parameters like ratio of customers to

businesses, network load, etc.

3. Currently, there is only one metric that can be measured, namely latency of

query response.

4. There is no Graphical User Interface (GUI) developed for this framework in

this experiment.

5. In most e-commerce scenarios, typically, the computational capacity of the

business hosts (Business) is higher than the computational capacity of the

customer host (Customer). This is due to the high volume of requests that

Businesses receive from the Customers. This factor is not incorporated in the

current simulation with the available resources.

57

4.6 Tradeoffs Selected for Evaluation of Mobile Code Design

Paradigms

4.6.1 Latency of Response to the Query

Definition of the Metric

The time delay between the instance when a customer sends a request to

the business and the instance when the results are received by the customer is

known as latency of query response. After the customer sends a query request to

the business, there is an appropriate transfer of Mobile Code as per the design

paradigm. The calculation of the query cannot be executed unless all the 3

entities of code, namely Customer Request (CR), Recommend process (R) and

Business Information (Bl), are available at one host. Therefore, it is postulated

that there is a definite delay in the query response time which becomes an

important factor to be measurable for this research.

Methodology of Measurement

The MobileCodeGroup class carrying the object and the class objects

from a Customer to the Business in the experiment. During the execution of the

program, timestamps have been noted using the currentTimeMillis() function.

The desired values for the metrics can be calculated with the difference in the

values of the corresponding timestamps. Description of the java.lang

System.currentTimeMillis() function from Sun Microsystems is as follows:

java.Iang
Class System

currentTimeMillis

public static long currentTimeMillis()

Returns the current time in milliseconds. Note that while the unit of time of the
return value is a millisecond, the granularity of the value depends on the
underlying operating system and may be larger. For example, many operating
systems measure time in units of tens of milliseconds.

58

See the description of the class Date for a discussion of slight discrepancies that
may arise between "computer time" and coordinated universal time (UTC).

Returns:
the difference, measured in milliseconds, between the current time and midnight,
January 1, 1970 UTC. [Sun 2004]

Figure 4. 7 shows the location and transfer of Mobile Code and the

instances of timestamps in the REV and COD paradigms. In the case of the

Mobile Agent (MA) paradigm, the agent visits all the Businesses before it comes

to the Customer.

59

Timestamp noted in the simulation framework for
performing a query using Mobile Code

! Start program

Timestamp 0

! Create a new instance of
Mobile Code

Timestamp 1

! Input new data by user

Timestamp 2

! Load data to class MobileCodeGroup

Timestamp 3

performQuery{):
Transports the
MobileCodeGroup class

Timestamp 6

SB.unpack{)
SB reports timestamps and
calculations to database

Customer

Unpack
MobileCodeGroup
class with data
objects

Timestamp 4

! sleep(3000)
process the query

Timestamp 5

Send the results in
class SendBack
back to Customer

Business

MCG: class MobileCodeGroup
SB : class SendBack

Fig 4.7: Timestamp noted in the simulation framework for performing

a query using Mobile Code

60

The MA paradigm is incorporated into MCG by programming MCG to

travel to all the Businesses before returning to the Customer. In the Figure 4.7, it

is to be noted that the MobileCodeGroup class, after unpacking, is put to sleep

for 3000 milliseconds. Hence 3000 is subtracted from the timing calculations of

TimeCalcs[0], TimeCalcs[1] and TimeCalcs[4]. The calculations that are

performed and stored in the database are as follows:

TimeCalcs [O]: Time taken to perform query. This is also the latency in response

to the query when a request is sent by the Customer to the Business and the

results are received by Customer. This is the primary metric that is measured

during this research experiment. It is to be noted that 3000 is the time that the

Mobile Code Thread sleeps at the Business before traveling back to Customer.

TimeCalcs[0] = Timestamp6 - Timestamp3 - 3000

TimeCalcs[1] : Overall time taken by the experiment from creating a new

instance of the Mobile Code until the Customer receives the results of the query.

It is to be noted that 3000 is the time that the Mobile Code Thread sleeps at the

Business before traveling back to Customer.

TimeCalcs[1] = Timestamp6 - Timestamp0 - 3000

61

TimeCalcs[2] : Input new data by the user into class MobileCodeGroup (MCG)

in some paradigms like REV and MA. The data objects and class objects are

stored in MCG and transported from Customer to Business.

TimeCalcs[2] = Timestamp2 - Timestamp1

TimeCalcs[3] : Load data objects and classes required to perform the query in

Mobile Code.

TimeCalcs[3] = Timestamp3 - Timestamp2

TimeCalcs[4] :

REV and COD paradigms: Time taken by MCG to travel from Business to

Customer and unpack the data and class objects in MCG.

TimeCalcs[4] = Timestamp4-Timestamp3

MA paradigm: Time taken by the MCG to travel from the Customer to the current

Business after visiting other Businesses. It is to be noted that 3000 is the time

that the Mobile Code Thread sleeps at the Business before traveling back to

Customer.

TimeCalcs[4] = Timestamp4- Timestamp3-((no. of hops-1) * 3000)

62

no. of hops: The number of Businesses visited prior to visiting the current

business.

TimeCalcs[5] :

REV and COD paradigm: Time taken by MCG to travel from Business to

Customer, unpack the data and class objects in Send Back (SB}, unpack the

data and class objects. The functionality of SB is similar to MCG. SB transports

the results in a data object from Business to Customer.

TimeCalcs[5] = Timestamps - Timestamps

MA paradigm: Time taken by MCG to travel to the current business from the

previous business.

If current business destination is the first business destination

TimeCalcs[5] = Timestamp4 - Timestamp3

Else

TimeCalcs[S] = Timestamp4 - Timestamps

The metric will be measured based on the 3 classes of measurements

during implementation. There are 3 hosts that are used in the experiment

1) 1 Customer- 1 Business per host

2) n Customer - 1 Business per 3 hosts

3) n Customer - m Business per 3 hosts

63

Range of values:

n e { 3, 5, 10, 15, 20}

m e { 3, 5, 1 0, 15, 20}

For each of these classes, a query response is performed between the

Client(s) and the Business(es) for every Mobile Code design paradigm. The

results obtained from this experiment are presented in Chapter 5: Results and

Analysis.

5.0 Overview

CHAPTERS

RESULTS AND ANALYSIS

The results of the experiment conducted during the research and the

relevant analysis are presented in this chapter. The quantitative metrics are

discussed followed by the qualitative analysis of the experiment. The trade-offs of

the various Mobile Code design paradigms implemented in the experiment are

discussed. Inferences about e-commerce scenarios that are not implemented in

this experiment are also presented. An abstraction of all the design paradigms

concludes the chapter.

5.1 Quantitative Metrics

5.1.1 Data Sets of Input Parameters and Output Results

The framework implemented in the experiment is explained in

section 4.2.4. The variable parameters that could potentially produce a variation

in the values of the metrics in the implemented framework have been recognized

and they are:

1) Mobile Code design paradigm

64

65

2) Number of Businesses

3) Number of Customers

4) No of hosts participating in the simulation framework

Various combinations of these parameters produced data sets of values

for input variables for every Mobile Code design paradigm in the experiment. The L

relevant data sets of the parameters that are most suitable for the simulation of

B2C e-commerce scenario have been isolated. This motivated choosing data

sets so that the number of customers is always less than the number of

businesses. The implemented data sets for each Remote Evaluation (REV),

Code on Demand (COD) and Mobile Agent (MA) are presented in Table 5.1.

Data sets with the number of hosts equal to 3 have the number of business or

customers equal to 3 when the corresponding value in the data sets with number

of hosts equal to 1 is equal to 1. Data sets have been designed to accommodate

at least 1 Business or Customer per host. A total of 96 data sets have been

implemented in the experiment.

66

data sets with hosts = 1 data sets with hosts = 3

no. of no. of
no. of

no. of no. of
no. of

business customers hosts business customers hosts

1 1 1 3 3 3

5 5 1 5 5 3

1 5 1 3 5 3

5 1 1 5 3 3

10 10 1 10 10 3

1 10 1 3 10 3

10 1 1 10 3 3

15 15 1 15 15 3

1 15 1 3 15 3

15 1 1 15 3 3

20 20 1 20 20 3

1 20 1 3 20 3

20 1 1 20 3 3

5 20 1 5 20 3

10 20 1 10 20 3

15 20 1 15 20 3

Table 5.1: Data sets of all implemented input parameters

The data that is collected in the process of the experiment lead to

inferences about

1) Latency in the query response

2) Time taken to load data into Mobile Code

3) Overall time taken for the experiment

67

4) Reliability or the percentage of the response for the query

5) Travel time To or From the Customer to the Business

5.1.2 Latency of Response to the Query

Latency of response to the query has been the primary metric of

measurement for this research experiment as explained in Section 4.6.1.2. The

Recommend process that is sent or received by the Customer to or from the

Business is considered to be the query with the Business Information (Bl) of 25

records residing in the Business. The results obtained for the B2C paradigm for

this metric are from the data sets presented in Table 5.2.

data sets with hosts = 1 data sets with hosts = 3

no. of no. of no. of no. of
business customers hosts business customers hosts

1 1 1 3 3 3

1 5 1 3 5 3

1 10 1 3 10 3

1 15 1 3 15 3

1 20 1 3 20 3

5 20 1 5 20 3

10 20 1 10 20 3

15 20 1 15 20 3

20 20 1 20 20 3

Table 5.2 Data sets of implemented input parameters for B2C paradigm

In most cases, the Mobile Agent takes the highest amount of latent time in

query response. The reason for this phenomenon is that the Mobile Agent travels

68

to all the Businesses to gather the data before it returns to the Customer with the

query results.

The latency of query response metric has been calculated for 4 data sets.

They are presented in the following sections:

1. Latency of Query Response with Increasing Number of Customers and 1

Business per Host

The results produced from this data set are with 1 Business and an

increase in the number of Customers from 1 to 20 as indicated in Table 5.3.

data sets with hosts = 1 data sets with hosts = 3

no. of no. of no. of no. of
business customers hosts business customers hosts

1 1 1 3 3 3

1 5 1 3 5 3

1 10 1 3 10 3

1 15 1 3 15 3

1 20 1 3 20 3

Table 5.3: Data set 1 of implemented input parameters to measure latency

of query response

The graph in Figure 5.1 consists of the averages of the delay in the query

response in milliseconds on the y-axis to the number of Customers within the

range of {1, 5, 10, 15, 20} on the x-axis with 2 sets involving 1 host and 3 hosts.

69

It can be observed from the graph in Figure 5.1 that the most time taken is

by the Mobile Agent paradigm for 3 hosts, 150216.83 milliseconds. Though there

is an increase in the computational capacity when using 3 hosts in the network of

the simulation framework, the time taken by the Mobile Agent paradigm

performed on 1 host is 96486.1 milliseconds, 35. 76% less than the time taken by

the same paradigm for I host.

160000

Ill 100000 +-----------------#------------ ~---~

"g - COD -1 host
0
~ - COD - 3 hosts
~ - REV -1 host
~ BOOOO - REV - 3 hosts

·= - MA -1 host
Q)

E - MA - 3 hosts
i= 60000 -+---------------------------------

2 3 4 5

No of Customers

Figure 5.1: Latency of query response with increasing number of Customers

and 1 Business per host

It can be inferred that the increase in the amount of time taken by the

Mobile Agent for 3 hosts is due to the delay caused by the transportation of data

70

through the network by the Mobile Agent. However, in the COD paradigm, the

increase in the number of hosts in the network causes a significant drop of

75.40% in the delay in the response time from 15340.80 milliseconds for 1 host

to 3773.26 milliseconds for 3 hosts. This is due to an increase in the net

computational power of the framework. The REV does have the same effect to

reduce by 73.17% when there is an increase in the computational capacity by an

increase in the number of hosts in the network. The effect of network load is

accompanied by the increase in the computational capacity of the simulation

framework.

2. Latency of Query Response with Increasing Number of Businesses and

20 Customers per Host

The data set of experiment parameters that was used in this set of

experiments is presented in Table 5.4. The number of Customers in this scenario

is kept constant at 20 while the number of Businesses is ascending in number.

data sets with host = 1 data sets :with hosts = 3

no. of no. of no. of no. of
business customers hosts business customers hosts

1 20 1 3 20 3

5 20 1 5 20 3

10 20 1 10 20 3

15 20 1 15 20 3

20 20 1 20 20 3

Table 5.4: Data sets of input parameters for measuring latency of query response with

increasing number of Businesses and 20 customers per host

71

A comparison of the results obtained is presented in Fig 5.2 with the

averages of the delay in the query response in milliseconds on the y-axis to the

number of businesses within the range of {1, 5, 10, 15, 20} with 1 host and 3

hosts on the x-axis.

There is not a significant difference in the delay in response time for the

Mobile Agent paradigm between 1 host and 3 hosts, though it is higher for 3

hosts for lower number of Customers and equal at the point for 5 Businesses.

There is a marginal decrease in the delay in response to the query from 1 host to

3 hosts beyond the point of 5 Businesses. A noticeable change in the REV

paradigm is that the delay time drops for 20 Businesses from 217424.77

milliseconds for 1 host to 20263.07 milliseconds for 3 hosts by 90.68%. The

delay time also surges from the point of 15 Businesses to 20 Businesses by

227%. A higher decrease is observed in the COD paradigm with an increase in

the number of Businesses from 5 Businesses to 15 Businesses.

Ill
"C
C
0
CJ
Q)

~
:E
.!:
Q)

E
i=

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

0
5 10 15 20

No of Businesses

Figure 5.2: Latency of query response with increasing number of Businesses

and 20 customers per host

72

- REV - 1 host

- COD - 1 host

- MA - 1 host

- REV - 3 hosts

- COD - 3 hosts

- MA - 3hosts

This indicates that an increase in the net computational capacity of the

REV and COD paradigms decreases the delay in the query response time and

remains little affected by the increase in the number of the participating entities

within the range of the experiment.

73

3. Travel time of Mobile Code to the Business with Increasing Number of

Customers and 1 Business per Host

The data for this experiment is located in Table. 5.3. Since one instance of

Mobile Code in MA has to visit all the businesses while an instance of Mobile

Code in REV and COD paradigms travels only to one business, the travel time

for the Mobile Code in MA has been averaged with the number of Businesses

that it visits.

The graph in Figure 5.3 indicates that on average the MA paradigm takes

more time to travel to the Businesses. However, it varies only by 27.7% for 3

hosts and 38.06% for 1 host due to the increase in the no. of customers. On

average, it increases approximately by 48.34% when there is an increase in the

net computational power while the other paradigms show a significant decrease.

This is possible because of an increase in the network traffic that is introduced

when the mobile agents in MA paradigm have to travel to different hosts due to

their distribution with an increase in the number of hosts. The travel time is also

high in MA paradigm for 1 host when there are less number of Businesses and

Customers. This is because the time taken by the Mobile Code across the

network with the accompanying data is less.

The REV paradigm increases by an average of 1050 milliseconds for

every new Customer after 1 O Customers. However, it reduces by 80% from 1

host to 3 hosts for 20 Customers. This is the observed highest decrease among

all the paradigms in this case. The COD paradigm appears to be the lowest when

18000

16000

14000

12000

Ill
-0
C g 10000

~
:§

-= 8000
4)

E
j::

6000

4000

2000

0

74

- MA - 3hosts
-----------------~----- ~-- --< --COD - 3 hosts

- REV - 3 hosts

- MA - 1 host

- COD - 1 host

- REV - 1 host

3 5 10 15 20

No of Customers

Figure 5.3: Travel time of Mobile Code to the Business with increasing number

of Customers and 1 Business per host

there is an increase in the number of hosts in the network thereby increasing the

computational potential. COD also has the lowest travel time up to 10 Customers

after which it increases constantly with increase in the number of Customer

hosts. It is inferred that the travel time is the least for COD in most cases unless

the computation power is less and there are more participating entities in the

network.

75

4. Travel time of Mobile Code to the Business with Increasing Number of

Businesses and 20 Customers per Host

The data set used for this set of experiments is in Table 5.4. Since the

Mobile Code in MA has to visit all the businesses while the Mobile Code in REV

and COD paradigms travel only to one business, the travel time for the Mobile

Code in MA has been averaged with the number of Businesses that it visits.

An analysis of the graph in Figure 5.4 indicates that with the least

computational power and fewest number of customers, the MA paradigm

180000

160000

140000

120000

II)

"'C
C: - MA - 3hosts

g 100000 +--------------+--------1-----------l --COD - 3 hosts

~
~

·= Cl)

E
j::

80000

60000

40000

20000

0
3 5 10 15 20

No Of Business

Figure 5.4: Travel time of Mobile Code to the Business with increasing number

of Businesses and 20 Customers per host

- REV - 3 hosts

- MA -1 host

- COD - 1 host

- REV -1 host

76

takes the most time takes the most time to travel. But with the same

computational power, i.e. 1 host, the travel time decreases from 95407.15

milliseconds for 3 customers to 45621.98 milliseconds for 20 customers by

52.18%. However, the REV and the COD paradigms continue to rise as expected

under the same circumstances they exhibited in previous cases. The REV and

COD paradigms are consistent and low in the time they take to travel when the

source of computation is 3 hosts. In comparison to their travel time to 20

Businesses with only 1 host as their source of computation, there is a huge

decrease when the number of Businesses to be visited is 20 with 1 host. It has

decreased by 92% in the case of REV and 93% in COD.

5. Effect of Changes in Computational Power on Total Average Times in the

Mobile Code Paradigms

The data about the values of timestamps collected during the experiments

is used to perform various timing calculations. The definitions of the timing

calculations are presented below:

(1) Latency in query response: Delay in response to the query

(2) Total time for Customer: Overall time taken for the Mobile Code to travel from

the Customer to the Business and back

(3) Input New Data: Time taken to input new data by the user at Customer host.

(4) Load Data to Mobile Code: Time taken to load data to Mobile Code

77

(5) Travel Time To Business: Time taken to travel to Business from Customer. In

the case of MA paradigm, it is the sum total of the time taken to travel by the

agent from the Customer to all the Businesses and back to the Customer.

(6) Travel Time From Business: Time taken to travel back from Business to

Customer. In the case of MA paradigm, it is the time taken to travel by the

mobile agent from one Business to the other.

The average of all the timing calculations for 1 host and 3 hosts for REV,

COD and MA paradigms using the data sets presented in Table 5.1 is calculated

and presented in the following graphs. Upon comparison of the graphs in Figure

5.4, Figure 5.5 and Figure 5.6, it is observed that the COD paradigm has the

lowest values for all average time measurements when there are 3 hosts. And

MA paradigm has the lowest time delay values when there is 1 host.

II)

"C
C
0
(.)
Cl)

~
~

·= Cl)

E
i=

II)

"C
C
0
(.)
Cl)

~
~

·= Cl)

E
i=

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

Latency in Total time taken Input new data
QueryResponse by customer

Load data to
Mobile Code

Averages of all time measurements

78

Travel time to Travel time from
Business Business

Figure 5.5: Changes in average times by increase in number of hosts in the REV paradigm

18000

16000

14000

12000

10000

8000

6000

4000

Latency in Total time taken Input new data
respnose to query by customer

Load data to
Mobi le Code

Averages of all time measurements

□ COD - 3 hosts

■ COD - 1 host

Travel time to Travel time from
Business Business

Figure 5.6: Changes in average times by increase in number of hosts in the COD paradigm

160000 ~--------------------------~

140000

120000

UI 100000
"C
C
0 u
GI

~ :E 80000

=
GI
E
i= 60000

40000

20000

0

Latency in Total time taken Input new data Load data to Travel time to Travel time from
QueryResponse by customer Mobile Code Business Business

Averages of all time measurements

79

□ MA - 3 hosts

■ MA - 1 host

Figure 5.7: Changes in average times by increase in number of hosts in the MA paradigm

There is only a slight difference in the average values between the REV

and COD paradigm in the graphs presented in Figure 5.5 and Figure 5.6.

However, when there are 3 hosts, there is a large increase in the delay time. This

is primarily because of the nature of the Mobile Agent which visits all the

Businesses before returning to the Customer.

5.1.3 Code Metrics

5.1.3.1 Number of Executable Lines of code

Definition of the Metric

80

The number of executable lines of code measured in this experiment is

considered to be lines of code in the program that that do not include empty lines

in between lines of code, code to output data for debugging and comments used

in code documentation.

Results

Amongst the classes that were used in the implementation of the Mobile

Code in simulation framework, MobileCodeGroup.java and SendBack.java

contain class MobileCodeGroup and class SendBack. The latter two classes are

the core classes in which the design paradigms of Mobile Code are implemented.

A comparison of the executable number of lines of code per paradigm is shown

in the Figure 5.8. It can be inferred from the graph in Figure 5.8 that the COD

paradigm has the least number of executable lines of code in contrast to REV

paradigm, which has the highest. The reason for MA paradigm to contain fewer

lines of code than REV is because it implements only one class, namely class

MobileCodeGroup, unlike REV and COD paradigms that implement 2 classes.

It is to be noted that this metric gives information only about the classes

that implement the Mobile Code paradigms but not about the other classes that

are used in the framework.

G)
"0
0 u

170

165

160

o 155
Ill
G)

:§
G)

:0
~ 150
u
G)
>< w

145

140

135

"

'

REV COD MA

Mobile Code Paradigms

Figure 5.8: Comparison of executable lines of code

5.2 Qualitative Analysis

81

I □ Executable Lines of Code I

The qualitative metrics that can be reflected upon are the effects of Mobile

Code design paradigms on the business processes and paradigms.

A considerable change brought by the Mobile Code design paradigms

concerning the business paradigms of Mobile Code is the shift in ownership and

control of the application. Such a shift in control and ownership by the users will

also affect the developing technologies relevant to the Mobile Code paradigms.

In conventional Client-Server systems, since the business entity is the sponsor of

the e-commerce activity, a major part of the control over the processes,

information and application features are with the business entity. With the use of

Mobile Code, the users or consumers have the potential and freedom to design

82

and implement a few of the computational components by themselves. Still, the

business entity will need to embrace openness and standards to honor the

implementation of the customer-developed applications. Lack of standards would

foster an environment with potential confusion while adapting to the openness of

executing customer-developed Mobile Code on the business sites.

A review of the 'author' and 'design' parameters of entities that are

subjects of computation, namely Customer Requirements (CR), Recommend

process (R) and Business Information (Bl}, in the research experiment, reports

the hypothesis. The Client - Server paradigm is also presented to draw

comparisons to the Mobile Code paradigms:

Client-Server (CS):

Recommend process Author: Business

R
Design: Business

Customer Requirements Author: Customer

CR
Design: Business

Business Information Author: Business

Bl
Design: Business

Site of computation Business

Table 5.5: Author and design parameters for of computational

components for CS paradigm

83

Since the Business, which is the site of computation of the business entity,

is the major sponsor of the e-commerce activity in this paradigm, most of the

control is vested in the Business.

Remote Evaluation (REV):

Recommend process Author: Customer

R
Design: Customer

Customer Requirements Author: Customer

CR
Design: Customer

or Business

Business Information Author: Business

Bl
Design: Business

Site of computation Business

Table 5.6 Author and design parameters for of computational

components for REV paradigm

The advantages of this paradigm are the reusability of the subjects of

computation by the customers. A customer can use the same code and

requirements for a series of Businesses. Also the customer can utilize the

resources of the Business.

Code on Demand (COD):

Recommend process Author: Business

R Design: Business

Customer Requirements Author: Customer

CR
Design: Customer

or Business

Business Information Author: Business

Bl
Design: Business

Site of computation Business

Table 5.7 Author and design parameters for of computational

components for COD paradigm

84

One advantage of this paradigm for customers is that the Bl is brought to

the site of computation of the Customer. Hence, the customer can utilize the

information several times without the need to retrieve it.

An advantage to the business in this paradigm is that the business could

send information to the customer. This provides the business a good opportunity

to promote their products and services better.

Mobile Agent (MA):

Recommend process Author: Customer

R
Design: Customer

Customer Requirements Author: Customer

CR
Design: Customer

Business Information Author: Business

Bl
Design: Business

Site of computation Business

Table 5.8 Author and design parameters for of computational

components for MA paradigm

85

The most beneficial feature of the mobile agent system is that a list of

businesses to be searched can be given to the agent at once unlike initiating the

process several times in other paradigms. The agent completes the searches by

itself thus avoiding requiring the user having to initiate the process repeatedly.

5.3 Evaluation of Trade-offs of Mobile Code Design Paradigms

for Recommend Activity in the Experiment

Each Mobile Code paradigm has tradeoffs depending on the conditions of

its implementation. From the results and their analysis presented in the earlier

part of this chapter, the summary about the Mobile Code design paradigms is

presented in Table 5.9.

86

It can be inferred from Table 5.9 that there are conditions under which

each Mobile Code paradigm is the most favourable paradigm. Or, if a paradigm

is used under any given conditions, there are trade-offs that affect the outcome of

the use of the paradigm. The most suitable paradigms of a given set of

parameters are shaded in grey.

87

Tradeoffs Remote Evaluation Code on Demand Mobile Agent

(REV) (COD) (MA)

Latency in response to - least for 1 host until - consistently
query no. of customers< 3 high for rising for

Businesses: 1 per host - less for multiple hosts
all values of no.
of customers

Customers: {1,5, 10, 15,
20} per 1 and 3 hosts

Latency in response to - nearly the same
query for 1 and multiple

Businesses: {1,5, 10, 15, - close to least for
hosts

20} multiple hosts

Customers: 20 per host

per 1 and 3 hosts

Travel time To Business - favorable for 1 host - remains similar

Businesses: 1 per host
until no. of customers for several sets of
< 10 customers

Customers: {1,5, 10, 15, - favorable for multiple
20}

hosts
per 1 and 3 hosts

Travel time for Mobile - favorable for 1 host - decreases as
Code when of the nO 'Of

Businesses: {1,5, 10, 15, 5<no. of
sses ~:5 r Businesses''

20} Businesses<10 or multiple
increase

Customers: 20 per host - close to least for
- not favorable for
multiple hqsts

per 1 and 3 hosts
multiple hosts

Net average effect of - close to least for - has lesser
changes on 1 host v/s 3 most parameters in ters in values for single
hosts multiple hosts hosts host that than

multiple hosts

Degree of design and 1 :. ,very high
authority by Customer

- Rand CR

Table 5.9: Comparison of tradeoffs of REV, COD and MA paradigm

88

5.4 Inference About Other E-commerce Scenarios from

Information and Statistics on the Current Scenario

Inferences about other paradigms based on the analyses on B2C

paradigm using this simulation framework are as follows:

1. B2B scenario

With the knowledge of delay in query response from the experiment

performed, since the COD paradigm has the least average values for most

parameters, it is perhaps the paradigm that should be considered for

incorporating in the current e-commerce applications or in the design of

forthcoming applications. Qualitatively, the REV and MA paradigms change the

paradigm of business by tending to distribute control more equally, thus creating

a better opportunity for e-commerce. These are definite reasons why REV and

MA should be incorporated more in e-commerce.

2. P2P scenario:

The wide ranges of users in the P2P scenario provide several

opportunities to use the different Mobile Code paradigms. Examples include:

• Mobile agents can be used for extracting information about the location of

required data

• REV can be used when there is a lack of available resources for computation

• COD is useful in utilizing the available resources rather than taxing an entity

that does not have the available resources.

89

3. M-commerce:

Light weight mobile agents are useful for this e-commerce scenario.

Mobile devices typically do not have adequate computing power compared to

desktop computers. Therefore, agents that can relocate and execute code and

manipulate information would be ideal for this scenario. In addition, the MA

paradigm yields good results when being executed on a single machine.

5.5 Abstraction of all Mobile Code Design Paradigms

The abstraction of all the Mobile Code design paradigms is presented

here with a series of steps to construct a new Mobile Code paradigms.

Requirements of a Mobile Code Design Paradigm

The requirements are resources and a site for computation. The resources

are Customer Requirements (CR), Recommend or any executable process (R)

and Business Information (Bl). The site for computation is typically the Business

or the Customer site.

Procedure for Designing a Mobile Code Paradigm

Step 1 : Identify the location of all the resources. Identify a site for

computation.

Step 2: Transfer the CR and R to the computation site

Step 3: Procure the required Bl from the Bl database to the computation

site.

90

Step 4: Compute for recommendations and send the results to the client.

Step 5: Move the R and CR to the next computation site and

repeat step 1.

The benefits of realizing an abstraction are that it gives an insight and a

possibility to create or discover new paradigms. One of the changes is the

interactions between components.

CHAPTERS

CONCLUSIONS AND FUTURE WORK

6.0 Overview

The conclusions derived from the research are discussed in this chapter.

The limitations in the research are presented. The directions for future research

are discussed at the end of this chapter.

6.1 Conclusions

The objective of the research is to evaluate the trade offs of Mobile Code

design paradigms in e-commerce applications. Delay in response to the query is

the primary metric that was measured. The conclusions that can be drawn from

the implementation of this experiment are as follows:

• Most Applicable Paradigm

· The most applicable Mobile Code design paradigm to a problem in a given

condition depends on the implicit factors of the condition. The factor that has

been measured in the research experiment was the delay in query response

time.

91

92

The above mentioned conclusion can be supported from the results

obtained in the research experiment. All the Mobile Code design paradigms,

namely Remote Evaluation (REV), Code on Demand (COD) and Mobile Agent

(MA), have been found to be the most suitable under varying parameters of the

conditions for the number of Businesses and number of Customers involved in

the experiment.

• Increase in the Number of Hosts in the Simulation Network

An increase in the number of hosts in the simulation network has

distributed the load and raised an increase in the availability of the computational

power. In the research experiment, upon increasing the number of hosts in the

network and maintaining the remaining parameters constant, the REV and the

COD paradigm exhibit similar performance. The MA paradigm implemented in

the research is not affected beneficially. This is due to the increase in the

network traffic with the introduction of a greater number of hosts in the

experiment.

• Time Taken to Tr~vel by Mobile Code

Mobile Code provides enormous flexibility in the design of architectures for

systems demanding code mobility. The time taken to travel by the Mobile Code

depends on the architectural abstraction of the paradigm.

93

The time taken to travel by the MA paradigm is the highest in this

experiment. But this is because the mobile agent designed appends the entire

set of results acquired from every business it visits in contrast to updating the

existing results with the business it is visiting, and thereby carrying only a limited

set of results. In the REV and COD paradigms, the Mobile Code takes more time

to travel from the customers to reach the businesses than the time it takes to

travel from businesses to reach the customer.

• Qualitative Analysis

The various possibilities of interactions in the Mobile Code paradigms

create new possibilities for business paradigms in e-commerce. The advent of

such business paradigms can significantly contribute to the growth of commerce

and society.

• Simulation Framework for Mobile Code Paradigms

The framework that is developed in the research experiment is an attempt

to develop a simulation framework that is independent of the Mobile Code

paradigm that it implements. Though it is not completely independent from the

Mobile Code paradigms, a great degree of flexibility and independence from

them has been achieved.

94

6.2 Limitations

Limitations in resources decrease the scope of implementation. And

limitations in implementation decrease the scope of research. Identifying the

limitations will help in understanding of the scope of the research better. Also,

research in future should aim in exceeding the limitations in the current research.

The limitations in resources and implementation that have been encountered

during the research are:

• Number of Hosts in the Simulation Framework

One of the factors affecting the proposed metric, delay in the response to

query, is the number of hosts in the simulation framework. The number of

hosts participating in the simulation network has been limited to only 3. With

the availability of more hosts, it is possible to simulate the experiment with

more businesses and customers.

• Metrics Incorporated in the Simulation Framework

Delay of response to the query is the only metric that has been measured in

the research experiment. It is desirable to have more metrics incorporated in

the framework that can be measured for every Mobile Code paradigm.

95

• Simulated E-commerce Scenarios

The simulated e-commerce scenario was suitable mostly only for the B2C e­

commerce scenario. A modification in the framework to incorporate multiple

business scenarios that simulate their conditions is desirable.

• Strong Coupling of Metric Points to the Framework

The metric that has been measured is strongly coupled to the simulated

framework. Such hard binding is not desirable when there is need to simulate

the frameworks without the measurement of the metrics. It could also be

possible that the very metric that is measured also affects the performance of

the system.

6.3 Directions for Future Research

Mobile Code design paradigms present new opportunities to technology

and business. There is an ample scope for beneficial research in this field. Some

directions for future research are:

• Ideal Framework for Simulation

µCode has been the only Mobile Code implementation technology that is

independent of the Mobile Code design paradigm. However, there is no

framework that has been developed thus far that implements the Mobile Code

paradigms and is independent of them. An attempt has been made to develop a

simulation framework that is independent of the Mobile Code paradigms. The

96

Ideal Simulation Framework mentioned in the section 4.2.1 can be pursued.

Such a framework could decide the best possible Mobile Co~e design paradigm

in the given conditions by quantitatively evaluating the tradeoffs.

The Ideal Simulation Framework should be developed to incorporate the

abstraction of Mobile Code design paradigms discussed in Results Chapter 5. It

will facilitate the discovery of new Mobile Code paradigms and enhance the

development of the existing ones.

• New Design Paradigms in Mobile Code

This research has involved only 3 Mobile Code paradigms, which are

REV, COD and MA. The flexibility of the interactions in Mobile Code presents

more opportunities to develop new design paradigms. The new paradigms will

have to be tested and compared to the existing paradigms. However, the highest

motivation for using these paradigms will depend on their application.

• Quantitative Comparison of Different E-commerce Scenarios

There exist various e-commerce scenarios namely: 828, 82C, P2P, etc.

Investigation of the various scenarios quantitatively on factors such as the ratio of

customers to businesses, the number or customers and businesses, the

application level maturity of the users can be very useful for not only research in

Mobile Code but also for several other fields in e-commerce.

97

• Flexibility of Change in the Implemented Paradigm in an Application

Since the Mobile Code paradigms have tradeoffs and are best suited

under different conditions, the possibility of dynamically changing the Mobile

Code paradigms implemented in an application under the given conditions can

be explored.

• Survey of the Current Applications and their Technologies used in E­

commerce

An attempt to survey and classify the current applications and their

technologies has been made in the initial stage of the research, but it was not

concluded due to the large size of the problem and its deviation from the

research. Knowledge about the current applications and their implementation

technologies can forecast the benefits that can be achieved by incorporating

Mobile Code in the applications.

Mobile Code has possibilities for several applications and

implementations. This research project has only brought to surface the potential

and richness of Mobile Code.

APPENDIX A

In this section, an overview of the program used to implement the

simulation framework for Mobile Code paradigms is presented. The entire code is

too long to be included in this document. A major part of it has been included in

Appendix B. The code can be obtained by request from the author by emailing

him to naveenkoneru@yahoo.com.

The classes that are used in the implementation of the simulation

framework are:

• Class ParadigmCustomerCntrllr

• Class ParadigmCustomer

• MobileCodeGroup

• SendBack

• noObjClass

• CalculateHostPortld

• ExpDataHandler

• BIDataHandler

• CRDataHandler

• RDataHandler

• Product

98

99

A script was developed to start the execution of the simulation framework

with the required input parameters. Figure A 1 shows the interaction of classes in

the developed simulation framework .

R Handler

CR
Data

Calculate
Host Port Id

.. ---------------- ----- -------. ,,,,-· --...
--~ Send Back !

-... ---1 i -----... .,,. .. ,,
.. ,. ... __ ---

s dB ck : --------------

·-----~-~-----~-- .. J

Paradigm
Customer

Paradigm
Customer
Controller

Shell
Script

Exp Data
Handler

Shell
Script

Results
data
base

Shell
Script

Shell
Script

HOST 1 HOST2 HOST 31 HOST 4

Paradigm
Business

Paradigm
Business
Controller

Figure A 1: Interaction of classes in the simulation framework

Bl
Data

Bl Data
Handler

APPENDIX B

/**

*
* Class BIDataHandler

*

*
* BIDataHandler is the class that handles the operations of BIData
* which is stored in BIData.txt

*
***/

package data;

import java.io.*;
import java.lang.*;

public class BIDataHandler
static final int MAX_BIData_SIZE = 6;
private Product[] BIData = new Product[MAX_BIData_SIZEJ;

public void loadBIDataFromFile() {
// Load the BIData[J with the input data from BIData.txt //change

try {
BufferedReader in= new BufferedReader(new

FileReader("data/BIData.txt"));
for (inti= O; i < MAX_BIData_SIZE; i++)

String line= in.readLine();
int productid Integer.parseint quotedString(line, 0,

'\t', '\t'));
String productName quotedString(line, 1,

'\t', '\t')
String manufacturerName quotedString(line, 2, '\t',

'\t')
int itemid

'\t', '\t'));
String processor

'\t') ;
int memory

'\t', '\t'));
double price

'\t', '\t'));
int qualityRanking

'\t', '\t'));

Integer.parseint (quotedString(line, 3,

quotedString(line, 4, '\t',

Integer.parseint (quotedString(line, 5,

Double.parseDouble(quotedString(line, 6,

Integer.parseint quotedString(line, 7,

int customerRating Integer.parseint quotedString(line, 8,
'\t', '\t'));

BIData[i] = new Product(productid, productName,manufacturerName,
itemid,

processor, memory, price, qualityRanking, customerRating);

catch (IOException e) {

100

System.out.println("BIDataHandler Exception: Could not open the file
BIData.txt");

}

private static String quotedString(String from, int startCharPos,
//change sig

char start, char end) {
// This function is used in loadBIDataFromFile() to extract the
II required BIData from a line of data. Used only within the class
II and is hence "private".

try {
int startPos = O;
for(int i=O; i<startCharPos; i++)

startPos from.indexOf(start, startPos) + l;
int endPos = from.indexOf(end, startPos + l);

if (endPos == -1) // end is the length of the string
endPos = from.length();

if (startPos > endPos) // start after end
return null;

else if (startPos == -1) // no start found
return null;

else
return from.substring(startPos, endPos);

catch (NullPointerException e) {
return "EOF for BIData.txt";

// toString
public String toString() {
II does not really return the BIData but prints them

for (inti= O; i < MAX_BIData_SIZE; i++) {
System.out.println(BIData[i]);

return "The above is BIData.txt ";

II accessor
public Product[] getBIData() {
// Returns the BIData pointer and the objects
II can be accessed from that pointer

return BIData;

// Copying the BIData
public void makeCopy(BIDataHandler CopyBIDataHandler) {

System.arraycopy(this.BIData, 0, CopyBIDataHandler.getBIData(), O,
MAX_BIData_SIZE);

}

// getters for records : these return the index of all the
// records in the BIData[] which satisfy the given conditions eg: price

public void getRecordsFromBIData(int[] indexPrice, double price) {
try {

for (inti= O, j = 0; i < MAX_BIData_SIZE; i++) {
if (BIData[i] .getPrice() <= price) {

indexPrice[j] = i;
j++;

101

catch (ArrayindexOutOfBoundsException e) {
System.out.println("EXCEPTION ArrayindexOutOfBounds: No of results

exceeded"
+ "array size in

BIDataHandler.getRecordsFrornBIData(indexPrice,price)");
}

public void getRecordsFromBIData(int[] indexMemory, int memory)
try {

for (inti= 0, j = 0; i < MAX_BIData_SIZE; i++) {
if (BIData[i].getMemory() >= memory) {

indexMemory[j] = i;
j++;

catch (ArrayindexOutOfBoundsException e) {
System.out.println("EXCEPTION ArrayindexOutOfBounds: No of results

exceeded"
+ "array size in

BIDataHandler.getRecordsFromBIData(indexPrice,price)");
}

}//EOF

/**

*
* Class CalculateHostPortid

*
***/
*
* This class calculates the Business and the Customer addresses and
* informs the Customers about all the Business addresses that the
* Mobile Code needs to travel. An address is a combination of the
* Host Id and the Port Number.

*
*
***/

public class CalculateHostPortid{
public void CalculateBusinessHostPortid(String[] businessHostid,

int[] businessPortid, int noOfB, int noOfMachines) {

final int MAX_noOfB = 40; // Maximum no. of Businesses on all
machines

final int MAX_noOfMachines = 4; // Maximum no. of Machines

102

final String[] MACHINE= new String[S]; // Business Machine IPaddresses
MACHINE[0] null; // durnrnny
MACHINE[l] "147.26.101.222";
MACHINE[2] "147.26.101.223";
MACHINE[3] "147.26.101.224";
MACHINE[4] "147.26.101.221";

if(noOfB > MAX_noOfB){
System.out.println("noOfB > MAX_noOfB Hence quitting

CalculateBusinessHostPortid");
}

test

test

if(noOfMachines > MAX_noOfMachines){
System.out.println("noOfMachines > MAX_noOfMachines "+

"Hence quitting CalculateBusinessHostPortid");

try {
// This method is used by ParadigmCustomerContrllr
int[] noOfBMachine = new int[S]; // 5 is chosen so that we can

//go from 1 - 4 instead of 0 - 3.

// Min Hosts per every machine
int perMachine = noOfB/noOfMachines;
int reminder= noOfB % noOfMachines;

II No of Hosts for every machine
// Machine 1
for(int i = 1; i <= noOfMachines; i++) {

noOfBMachine[i] = perMachine;
if(reminder >= i)

noOfBMachine[i]++;

// Checking for the noOfBMachine per each machine
System.out.println("The No of Businesses per each machine are:"); //

for(int i = 1; i < 5; i++) II

103

System.out.println("noOfBMachine[" +i+ "]

int k = O, port= 1970;

"+ noOfBMachine[i]); //test

test

for(int i = 1; i <= 4; i++) {
for(int j = O; j < noOfBMachine[i]; j++){
businessHostid[k] MACHINE[i];
businessPortid[k] = port;

k++;
port= port+ 1;

II for(k = O; k < businessHostid.length; k++) {

System.out.println("businessHostid[" + k + "]
// test

System.out.println("businessPortid[" + k + "]
// test

"+ businessHostid[k]);

"+ businessPortid[k]);

}

test

catch (ArrayindexOutOfBoundsException e) {
System.err.println("Array out of bounds in

CalculateBusinessHostPortid()");

if(noOfB > MAX_noOfB)
System.out.println("noOfB > MAX_noOfB Hence quitting

CalculateBusinessHostPortid()");

if(noOfMachines > MAX_noOfMachines)
System.out.println("noOfMachines > MAX_noOfMachines "+

"Hence quitting CalculateBusinessHostPortid");

e.printStackTrace();
catch (Exception e) {

II

System.err.println("Error in CalculateBusinessHostPortid()");
e.printStackTrace();

}//EoClass

/**

*
* Class CRDataHandler

*

*
* CRDataHandler is the class that handles the operations of
* CRData which is stored in CRData.txt

*
***/

package data;

import java.io.*;
import java.lang.*;

public class CRDataHandler
private String processor;
private int memory;
private double price;
private int,qualityRanking;
private int customerRating;

// Accessors

public String toString() {
String CRlist =" CR are processor: "+ processor+

"Memory : "+memory+
"Price : "+price+
"Quality Ranking: "+ qualityRanking +
"CustomerRating: "+ customerRating;

return CRlist;

public String getProcessor() {
return processor;

public int getMemory() {
return memory;

public double getPrice(){
return price;

public int getQualityRanking(){
return qualityRanking;

public int getCustomerRating(){
return customerRating;

// Setters

104

public void loadCRDataToFile(String processor, int memory, double price,
int qualityRanking, int customerRating){

// Load the CRData.txt file with the given input CRData
try{

BufferedWriter out= new BufferedWriter(new
FileWriter("data/CRData.txt"));
out.write(processor + "\n" +memory+ "\n" +price+ "\n" +

qualityRanking + "\n" + customerRating + "-1");
out.close();

catch (IOException e){

public void loadCRDataToFile(String filename, String processor, int memory,
double price, int qualityRanking, int customerRating){

// Load the <filename> file with the input CRData
try{

BufferedWriter out= new BufferedWriter(new FileWriter(filename));
out.write(processor + "\n" +memory+ "\n" +price+ "\n" +

qualityRanking + "\n" + customerRating +" -1");
out.close();

catch (IOException e) {

public void loadCRDataFromFile() {
// Load the CRData with the input data from CRData.txt
try{

System.out.println("loadCRDataFromFile() is called."); //test
BufferedReader in= new BufferedReader(new

FileReader("data/CRData.txt"));
setProcessor(in.readLine());
setMemory(Integer.parseint(in.readLine()));
setPrice(Double.parseDouble(in.readLine()));
setQualityRanking(Integer.parseint(in.readLine()));
setCustomerRating(Integer.parseint(in.readLine()));
in. close() ;

catch (IOException e) { }

public void loadCRDataFromFile(String filename) {
// Load the CRData with the input data from CRData.txt
try{

System.out.println("loadCRDataFromFile(filename) is called."); //test
filename= "data/"+ filename; // ???
BufferedReader in= new BufferedReader(new FileReader(filename));
setProcessor(in.readLine());
setMemory(Integer.parseint(in.readLine()));
setPrice(Double.parseDouble(in.readLine()));
setQualityRanking(Integer.parseint(in.readLine()));
setCustomerRating(Integer.parseint(in.readLine()));
in. close() ;

catch (IOException e) { }

public void inputNewData(String processor, int memory, double price,
int qualityRanking, int customerRating) {

this.processor= processor;
this.memory memory;
this.price = price;

105

this.qualityRanking
this.customerRating

qualityRanking;
customerRating;

public void setProcessor(String processor){
this.processor= processor;

public void setMemory(int memory) {
this.memory= memory;

public void setPrice(double price) {
this.price= price;

public void setQualityRanking(int qualityRanking) {
this.qualityRanking = qualityRanking;

public void setCustomerRating(int customerRating) {
this.customerRating = customerRating;

/**

*
* Class ExpDataHandler

*

*
* ExpDataHandler is the class that handles the operations
* to store the Timestamps that are recorded in the experiement

*
***/

import java.io.*;
import java.sql.*;

public class ExpDataHandler{

final String databaseHost = "147.26.101.225";
final String database "data";
final String userid "naveen";
final String password "resultsl";

ExpDataHandler() {
System.out.println("edh: In the contructor of ExpDataHandler()"); //

test
}

// Report the values to the database
public void reportCustomerDataToDB(int expid, String destination,

long[) TimeCalcs, long[) TimeCounters) {
String url = "";
String urlMaskPassword
try {

// Test the Driver

n". ,

Class.forName ("com.mysql.jdbc.Driver");
System.out.println ("MySQL Driver Found");

// Connection string

// test

106

url = "jdbc:mysql://" + databaseHost +"/"+database+
"?user="+ userid +"&password="+ password;

urlMaskPassword = "jdbc:mysql://" + databaseHost +"/"+database+
"?user="+ userid + "&password=***********";

Connection con= DriverManager.getConnection(url);
System.out.println("Connection established to"+ urlMaskPassword +

" ... "); II test

// Write the insert query
String insertStmt = "insert into timerdata values (" + expid + ",' "
+destination+"', "+ TimeCalcs[0J + ", "
+ TimeCalcs[l] + ", "+ TimeCalcs[2] + ", "+ TimeCalcs[3] + ", "+

TimeCalcs[4] + ", "

107

+ TimeCalcs[S]+ ", "+ TimeCounters[0J + ", "+ TimeCounters[l] + ", "+
TimeCounters[2] + ", "

n

test

+ TimeCounters[3] + ", "+TimeCounters[4] + ", "+TimeCounters[S] + ",

+ TimeCounters[6] + ", 0)"; // the 0(zero) is for the 'index' field,
// which is actually an auto-incremented

System.out.println("The insertStmt is : "+ insertStmt); //

II Create a statement
Statements= con.createStatement();
s.execute(insertStmt);
s .close();
con. close () ;
catch (java.lang.ClassNotFoundException e) {
System.out.println("MySQL JDBC Driver not found ... ");
e.printStackTrace();
catch (java.sql.SQLException e) {
System.out.println("SQLException");
e.printStackTrace();

// Load the TimerData.xls file with the given input Experiment Data
public void reportCustomerData(int expid, String destination,

long[] TimeCalcs, long[] TimeCounters) {
System.out.println("edh: In the reportCustomerData() "); //

test
System.out.println("edh: NOTE: Should we change the path of the file"+

" 'TimerData.xls' "); // test

FileWriter fout;
try{

// change - Should we change the path of the file 'ExpData.xls'
//change

// change - should we convert 'paradigm' into int

fout = new FileWriter("TimerData.xls", true); // true - for appending at
EOF

fout.write(expid + "\t" +destination);

// TimeCalcs values
for(int i = 0; i< 6; i++)

fout.write("\t" + TimeCalcs[i]);

// TimeCounter values
for(int i = 0; i< 7; i++)

fout.write("\t" + TimeCounters[i]);

fout.write("\n");
fout.close();

catch (FileNotFoundException fex) {
System.out.println("edh: fex: File 'ExpData.xls' not found exception"

+" in reportExpData()");
catch (Exception e){
e.printStackTrace();

II Load the expdata file in the 'data' database with the given input
Experiment Data

public void reportExpDataToDB(int expid, boolean ifCreateReqs, boolean
ifExecute,

String paradigm, int noOfB, int noOfC, int noOfMachines)

String url = "";
String urlMaskPassword
try {

II Test the Driver

n n. ,

108

Class.forName ("com.mysql.jdbc.Driver");
System.out.println ("MySQL Driver Found"); II test

II Connection string
url = "jdbc:mysql:II" + databaseHost +"I"+ database+

"?user="+ userid +"&password="+ password;
urlMaskPassword = "jdbc:mysql:II" + databaseHost +"I"+ database+

"?user="+ userid + "&password=***********";
Connection con= DriverManager.getConnection(url);
System.out.println("Connection established to"+ urlMaskPassword +

n ••• ") ; I I test

II Write the insert query
String insertStmt = "insert into expdata values (" + expid + ",

+ ifCreateReqs + "', '" + ifExecute + "', '" + paradigm + "',
+ ", " + noOfC + ", "

I fl

"+ noOfB

+ noOfMachines + ", NOW(), 0) "; II NOW() is a function for the 'time'
field which is of

II the type TIMESTAMP and 0 for 'index' which is autoincremented
System. out .println ("The insertStmt is : " + insertStmt); I I test

II Create a statement
Statements= con.createStatement();
s.execute(insertStmt);
s. close();
con.close();
catch (java.lang.ClassNotFoundException e) {
System.out.println("MySQL JDBC Driver not found ... ");
e.printStackTrace();
catch (Java.sql.SQLException e) {
System.out.println("SQL Exception");
e.printStackTrace();

II Load the ExpData.xls file with the given input Experiment Data
public void reportExpData(int expid, boolean ifCreateReqs, boolean

ifExecute,
String paradigm, int noOfB, int noOfC, int noOfMachines

System.out.println("edh: In the reportExpData() "); II test
System.out.println("edh: NOTE: Should we change the path of the file"+

FileWriter fout;
try{

n 'ExpData.xls' "); // test

// change - Should we change the path of the file 'ExpData.xls'
//change

// change - should we convert 'paradigm' into int

fout = new FileWriter("ExpData.xls", true); // true - for appending at
EOF

fout.write(expid+ "\t" + ifCreateReqs + 0 \t" + ifExecute + 0 \t" +
paradigm+

109

"\t" + noOfB + "\t"+ noOfC + "\t"+ noOfMachines + "\n");
fout.close();

catch (FileNotFoundException fex) {
System.out.println("edh: fex: File 'ExpData.xls' not found exception"

+ n in reportExpData()");
catch (Exception e){
e.printStackTrace();

/**
*
*
*

Class MobileCodeGroup

*
* MobileCodeGroup is the Mobile Code Group class. It loads the
* The data objects and class objects in a "Group" and transfers
* Them to the destination. It "unpacks" the contents there and
* Starts a new thread of execution.

*
***/

package muCodeExtensions;

import mucode.*;
import Java.lang.reflect.*;
import java.io.*;

public class MobileCodeGroup extends Thread
implements GroupHandler, Serializable

private transient MuServer server= null;
private noObjClass noObj = new noObjClass();
private String source= null;

public MobileCodeGroup() {
System.out.println("mcg: In the MobileCodeGroup parameterless

constructor"); //test
}

public MobileCodeGroup(MuServer server) {
this.server= server;
System.out.println("mcg: In the 'MobileCodeGroup parameter' constructor");

//test
System.out.println("mcg: The MuServer is"+ server); //test

public final void ship(String destination, String[] classNames,
ObJect[] obJectNames)

throws MuCodeException, ClassNotFoundException, IOException
if(server == null)

server= MuServer.getServer(this);

// Checking if control is in ship()
System.out.println ("mcg: In ship() of MobileCodeGroup") ;
System.out.println("mcg: MobileCodeGroup's MuServer is n +server);

// Creating a 'group' with 'Handler' and 'Root' as "shipClassName"

110

//test
//test
//test

// shipClassName can be invoked in unpack if this(i.e. MobileCodeGroup)
// can be a ubiquitous class
String shipClassName = this.getClass() .getName();
System.out.println("mcg: MobileCodeGroup's Handler and Root are"+

shipClassName); //test

// Setting 'noObj.no' to the reqd value before creating the group
noObj.no = objectNames.length;
System.out.println("mcg: Before packing, noObj.no: "+ noObJ.no);

// Creating a group
Group group= server.createGroup(shipClassName, shipClassName);
group.addObject("ShipHandlerLabel", this);
group.addObject("noObj", noObj);
group.setDynamicLinkSource(group.getSource());
group.setSynchronousTransfer(false);

// Adding Classes in the group
group.addClasses(classNames);

// Adding Objects in the group

//test
//test

//test

// NOTE - The classes of the objects will also be added here individually,
if

// not added before
for (inti= O; i < objectNames.length; i++) {

String objectKey ="Obj"+ 1;
System.out.println("mcg: The name of"+ objectNames[i] +"is"+

obJectKey); //test
group.addObject(objectKey, objectNames[i]);
group.addClass(objectNames[i] .getClass());

System.out.println("mcg: The noObJ.no are"+ noObj.no); //test

// List the classes in the group
String[] groupClasses = group.getClasses();
System.out.println("mcg: Group Classes to be SHIPPED are");
for (int i =0; i < groupClasses.length; i++)

System.out.println(" "+ groupClasses[i]);

// REAL DEAL - finally
try {

group.ship(destination);
} catch (Exception e) { e.printStackTrace();

public synchronized Thread unpack(Group group)
throws MuCodeException {

System.out.println("mcg: In unpack() of MobileCodeGroup");
MobileCodeGroup destnHandler

=(MobileCodeGroup)group.getObject("ShipHandlerLabel");

//test

//test
//test

//test

//test

server= group.getServer();
System.out.println(11 mcg: The Thread after unpacking is"+

Thread.currentThread()); //test
System.out.println(11 mcg: And the MuServer is"+ server);
noObjClass noObj = (noObJClass)group.getObJect("noObjff);

// List the classes in the group
//test

111

//test
//test

String[] groupClasses = group.getClasses();
System.out.println(ffmcg: Group Classes that are
for (int i =0; i < groupClasses.length; i++)

SHIPPED are"); //test

System.out.println(" ff+ groupClasses[i]);

// List the objects in the group
System.out.println(11mcg: The noObj.no are" +noObj.no);
System.out.println(11mcg: The obJects are ff);

//test
//test

//test

//test
//test

for (inti= O; i < noObj.no; i++) {
String objectKey ="Obj"+ i;
Object objectListed = group.getObject(objectKey);
System.out.println("mcg: "+ objectListed);

//change
//test

//test
//test

II For the source of the Group
this.source= group.getSource();

II To run() the thread
this.start();

return null;

public void run(){
// Checking if control is in run()
System.out.println(ffmcg: In the run of MobileCodeGroup"); //test
System.out.println("mcg: Do the required processing and send back"

+ "the required classes and objects with SendBackff); //test

try {
// Sample return information
String destination= this.source; // change
//String[] classNames = {ToolkitNext.class.getName() };
//change

String[] classNames = {};
//ToolkitNext tknl = new ToolkitNext();
Object[] obJectNames = new Object[]{};

//change

// Creating a 'SendBack' Thread to send back classes and objects
Thread.sleep(SOOO);
SendBack shipHandlerReturn = new SendBack(server);
System.out.println(11 mcg: While sending back 11); //test
System.out.println(11 mcg: destination : 11 + destination);
System.out.println(11 mcg: classNames : ff+ classNames[OJ);
System.out.println(11 mcg: objectNames : 11 + objectNames[OJ); //test

//test
//test

II Make change to 'destination'
//shipHandlerReturn.shipBack(destination, classNames,

objectNames);//change
shipHandlerReturn.shipBack("127.0.0.1:1988ff, classNames,

objectNames);//change

//change

} catch (Exception e) { e.printStackTrace(); }

/**

*
* Class ParadigmBusinessCntrllr

*

*
* ParadigmBusinessCntrllr is the class that is started at the
* Business to start a MuServer ready to receive Mobile Code sent
* by the Customers.
***/

class ParadigrnBusinessCntrllr{

void main(Expid, IfCreateReqs, IfExecute, paradigm,
CustomerHostid, CustomerPortid, BusinessHostid, BusinessPortid)
{

TimeStamp;
BusinessTimeCounterl;

According to the paradigms -
new ParadigrnBusiness(NoOfB, NoOfC, NoOfMachines,

BusinessHostid, BusinessPortid)
// Will NOT load any muServers. Will ONLY STORE CHostid,etc •.
// This will create a ParadigrnBusiness Object
if (IfCreateReqs ==yes)

ParadigmBusiness.InputNewData()
// Asks what do you want to input eg: CR, R, BI
// Each paradigm knows what it needs
// Calls CRHandlers & inputs new CR Data and R Data

BusinessTimeCounter2;
II These times may have to be counted by the MobileCodeGroup itself
// and their values will have to be passed to SendBack to be taken back
// to ParadigmCustomerCntrllr which can store them in the database
if (IfExecute == no)

if(IfCreateReqs == yes)
ExpDataHandler.ReportBusinessMeasurements()
// At this point measurements O 1 2 can be sent
// with the rest as O or NULL

quit()
ParadigrnBusiness.PerformQuery()
II 0. fork() the listener and continue PerformQuery() with the thread

112

// Since the CustomerHostid, CustomerPortid, BusinessHostid, BusinessPortid
// are already there,
// 1. ParadigrnBusiness launches to recieve Mobile Code. It
// has the required code (eg.BI Handler,R Handler, etc) in it's
// shared class space. And hence the MobileCode that comes with the
// ParadigmBusiness can access the classes
II 2. MobileCode.PerformQuery() - Mobile Code performs Query by interacting
// with BI Data through BI Data Handlers
II 3. MobileCode stores the results in it
// 4. LoadDataToMobileCode() - In the case of sending it back to Customer,
// add/delete the classes that are recieved with the MobileCode when
// sending it back to Customer
II 5. MobileCode tells ParadigrnBusiness where it needs to send back

MobileCode
// Refer to Picco's examples
TimeCoutner3;
ParadigmBusiness.end()
// End of ParadigrnBusiness object - perhaps cleanup, etc.
ExpDataHandler.ReportBusinessMeasurements()
// Sends all the measurements to ExperimentDataHandler
DisplayMeasurements()
// Can display measurements that have been sent to the database

void D1splayMeasurements()
// Display all measurement taken

package paradigm;

import muCodeExtensions.*;
import data.*;

public interface ParadigmBusinessinterface {
ParadigmBusiness(String BHostIP, int BHostPort);
void loadBDataToMobileCode();
void performQuery();
void stopParadigmBusinessServer();

import mucode.*;
import mucode.abstractions.*;
import mucode.util.*;

/**
*
* Class ParadigmCustomer

*

*
* ParadigmCustomer is the class that is starts an instance of the
* Customer. It then, loads the Mobile Code with the objects and classes
* and ships them to the destination. It then starts a MuServer to receive
* Customer Mobile Code that are returning from the Business.
* which is stored in BIData.txt

*
***/

public class ParadigmCustomer{

private int CHostPort 0;
private String customerSource null;
private String[] businessDestination = new String[40];
private MuServer s null;
private CRDataHandler CR null;
private RHandler R null;
private String[] classesToBeShipped= null;
private Object[] ObJectsT0BeSh1pped= null;

ParadigmCustomer(Str1ng CHostIP, int CHostPort,
String[] BHostIP, int[] BHostPort)

// Concatenating strings to resolve source and destination MuServers
this.CHostPort = CHostPort;
th1s.customerSource = CHostIP + ":" + CHostPort;
//for(int i = 0; 1 < 40; 1++)
for(int i = O; (i < 40) && ((BHostIP[i] != null)); i++) // test

this.businessDestination[i] = BHostIP[1] + "·" + BHostPort[i];

System.out.println("In ParadigmCustomer constructor\n" +
"CustomerSource is"+ customerSource);

// Checking on values
for(int i = 0; (i < 40) && ((BHostIP[i] != null)); i++)

System.out.println("businessDestination[" +i+ "] =" +
businessDestination[1]);//test

}

// test

// test

113

public void inputNewCData() {
// This function is used to input values of CR, etc by creating
// objects of CRDataHandler and inputting CRData.txt, etc.

114

// NOT working right now - This function can be used to input values in CR,
etc. //???

CR= new CRDataHandler();
CR.loadCRDataFromFile();
System.out.println("CR is"+ CR); //test

public void loadCDataToMobileCode() {
// In the REV Paradigm, we load CRDataHandler and RHandler Objects
// This is NOT really loading data to MobileCode but preparing the
// list of classes and objects to add to MobileCodeGroup

// Objects to be shipped
objectsToBeShipped = new Object[]{};

System.out.println("Objects to be shipped are ");
//test

for (inti= O; i < objectsToBeShipped.length; i++
//test

System.out.println(" "+ objectsToBeShipped[i]);
//test

// Classes to be shipped
// None until now, since all classes are there on both the business &

customer side
if(classesToBeShipped == null)

System.out.println(" classesToBeShipped are none");
//test

else {
System.out.println(" classesToBeShipped are");
for (inti= O; i < classesToBeShipped.length; i++

System.out.println(" "+ classesToBeShipped[i]);

public void performQuery(int expid, long[] TimeCounter) {
// Starting the MuServer
s = new MuServer();

// Having ubiquitous classes for recieval
s.addUbiquitousClass(SendBack.class.getName());
s.addUbiquitousClass(noObjClass.class.getName());
s.addUbiquitousClass(BIDataHandler.class.getName());
s.addUbiquitousClass(RHandler.class.getName());

try {
// Booting a server to listen for incoming groups
s.boot();

// Setting the port number for incoming groups
String CHostPortValue = "" + CHostPort;

//test

//test

s.setProperty("port", CHostPortValue);
System.out.println("MuServer sis listening to"+ s.getPort());
//test

//test

//test
//test
//test

//???

System.out.println("CHostPortValue is"+ CHostPortValue); //test
System.out.println("Current MuServer Port Number : "+ s.getPort());

//test

// Creating a MobileCodeGroup called 'shipHandler' and

115

// shipping it to all businesses
MobileCodeGroup shipHandler = new MobileCodeGroup(s);
for (int i = O; (i < 40) && ((businessDestination [i] != null)); i++) {

System.out.println("businessDestination =" + businessDestination[i] +
//test

"\ncustomerSource =" + customerSource);
shipHandler.ship(businessDestination[i], customerSource,

classesToBeShipped, objectsToBeShipped, expid,
TimeCounter);

}

catch (Exception e) { e.printStackTrace(); }

public Product[] displayQueryResults() {
return null;

public void stopParadigmCustomerServer()
}

class ParadigmCustomerCntrllr{

void main(expid, ifCreateReqs, ifExecute, paradigm,
customerHostid, customerPortid, noOfB, noOfC, noOfMachines)
{

2DArrayOfHostid_Portid CalculateBusinessHostPortid(
customerHostid, customerPortid, noOfB, noOfC, noOfMachines)

//test

// Using class CalculateHostPortid, calculate the IP Address and Port of all
// the ParadigmBusiness that the ParadgimCustomer will send MobileCode.
// This function will return address pairs in a 2D array

TimeStamp;
CustomerTimeCounterl;

According to the paradigms -
new ParadigmCustomer(customerHostid, customerPortid,

businessHostid, businessPortid)
// Will NOT load any muServers. Will ONLY ,STORE CHostid,etc ..
// This will create a ParadigmCustomerObject
if (IfCreateReqs ==yes)

ParadigmCustomer.InputNewData()
// Asks what do you want to input eg: CR, R, BI
// Each paradigm knows what it needs
// Calls CRHandlers & inputs new CR Data and R Data

CustomerTimeCounter2;
if (!£Execute== no)

if(IfCreateReqs == yes)
ExpDataHandler.ReportCustomerMeasurements()
// At this point measurements 1 2 3 4 5 can be sent
// with the rest as O or NULL

quit()
ParadigmCustomer.LoadDataToMobileCode()
// Knows what to load into MobileCode if CR, R, etc
// At this point we have to start the MuServer (since we
II need to have a MuServer started to create a 'group' i.e.
// to be transported)
CustomerTimeCounter3;
ParadigmCustomer.PerformQuery()
// Since the CustomerHostid, CustomerPortid,

2D[BusinessHostid,BusinessPortid]
II are already there, 1. MobileCode is sent to ParadigmBusiness
II 2. Performs query there and stores the results in Mobile Code
II 3. Recieves the results

// Primarily what is in Picco's examples
CustomerTimeCoutner4;
ParadigmCustomer.DisplayQueryResults()

116

// Mobile Code has query results. They are NOT stored with ParadigmCustomer.
// Therefore acces results from Mobile Code
ParadigmCustomer.end()
// End of ParadigmCustomer object - perhaps cleanup, etc.
ExpDataHandler.ReportCustomerMeasurements()
// Sends all the measurements to ExperimentDataHandler
DisplayMeasurements()
// Can display measurements that have been sent to the database

void DisplayMeasurements()
// Display all measurement taken

package paradigm;

import muCodeExtensions.*;
import data.*;

public interface ParadigmCustomerinterface {

public void ParadigmCustomer(String CHostIP, int CHostPort,
String BHostIP, int BHostPort);

public void inputNewCData();
public void loadCDataToMobileCode();
public void performQuery();
public,Product[] displayQueryResults();
public void stopParadigmCustomerServer();

/**
*
* Class Product

*

*
* Product is the class that handles the operations of Product

*
***/

package data;

import Java.io.*;

public class Product
private int
private String
private String
private int
private String
private int
private double
private int
private int

// Constructors

product Id;
productName;
manufacturerName;

itemid;
processor;

memory;
price;

qualityRanking;
customerRating;

public Product (int productid, String productName,
String manufacturerName, int itemid, String processor,
int memory, double price, int qualityRanking, int customerRating){

/*

*/

this.productid = productid;
this.productName = productName;
this.manufacturerName = manufacturerName;
this.itemid = itemid;
this.processor= processor;
this.memory= memory;
this.price= price;
this.qualityRanking = qualityRanking;
this.customerRating= customerRating;

/ /toString ()
public String toString()

String ProductList = productid + ff\t" + productName + ff\t 11 +
manufacturerName + ff\tff + itemid + "\tff +processor+ 11 \tff+
memory+ "\tff +price+ 11 \tff + qualityRanking + ff\tff+
customerRating;

return ProductList;

/ /toString ()
public String toString() {

String ProductList = 11 Product Id: ff+ productid +

//Accessors

ff Product Name : "+ productName +
ff Manufacturer : ff+ manufacturerName +
ff\n Item Id: ff+ itemid +
ff processor: ff+ processor+
ff Memory : ff+ memory+
ff\n Price : 11 +price+
"Quality Ranking : 11 + qualityRanking +
11 CustomerRating: ff+ customerRating + ff\n\nff;

return ProductList;

public int getProductid() {
return productid;

public String getProductName(){
return productName;

public String getManufacturerName() {
return manufacturerName;

public int getitemid() {
return itemid;

public String getProcessor(){
return processor;

public int getMemory() {
return memory;

public double getPrice(){
return price;

117

public int getQualityRanking(){
return qualityRanking;

public int getCustomerRating() {
return customerRating;

// Writing BIData to File
public void addProductToBIDataFile (int productid, String productName,

String manufacturerName, int itemid, String processor,
int memory, double price, int qualityRanking, int customerRating){

// Load the BIData.txt file with the given input BIData

try{
BufferedWriter out= new BufferedWriter(new

FileWriter("data/BIData.txt",true));
out.write(productid + "\t" + productName + "\t" +
manufacturerName + "\t" + itemid + "\t" +processor+ "\t"+
memory+ "\t" +price+ "\t" + qualityRanking + "\t"+
customerRating + "\n");

out.close();
catch (IOException e) { }

// Setters
public void setProductid(int productid) {

this.productid = productid;

public void setProductName(String productName){
this.productName productName;

}

public void setManufacturerName(String manufacturerName) {
this.manufacturerName = manufacturerName;

public void setitemid(int itemid) {
this.itemid = itemid;

public void setProcessor(String processor){
this.processor= processor;

public void setMemory(int memory) {
this.memory= memory;

public void setPrice(double price) {
this.price= price;

public void setQualityRanking(int qualityRanking){
this.qualityRanking = qualityRanking;

public void setCustomerRating(int customerRating){
this.customerRating = customerRating;

118

}//EOF

/**
*
* Class RHandler

*

*
* RHandler is the class that handles the operations of the
* Recommend (R) Process

*
***/

package data;

public class RHandler{

// queryAlgorithm() takes the CRDataHandler Object, BIDataHandler Object
// and 'indexResults', which contains the index number of records in

BIData.txt.

/*

*/

// Returns indexResults[maxNoOfResults]
public int[] queryAlgorithm(CRDataHandler CRDataOp, BIDataHandler BIDataOp,

int[] indexResults) {

int MAX_BIData_SIZE = 6;

int[] indexPrice = new int[MAX_BIData_SIZE];
BIDataOp.getRecordsFromBIData(indexPrice,CRDataOp.getPrice());
int[] indexMemory = new int[MAX_BIData_SIZE];
BIDataOp.getRecordsFromBIData(indexMemory, CRDataOp.getMemory());

System.out.println("The indexPrice[] values are:"); //test
for (inti= 0; i < MAX_BIData_SIZE; i++) //test

System.out.println(indexPrice[i]); //test

System.out.println("The indexMemory[] values are:"); //test
for (inti= 0; i < MAX_BIData_SIZE; i++) //test

System.out.println(indexMemory[i] +" "); //test

int k =0;
for (inti= 0; i < MAX_BIData_SIZE; i++) {

for (int J = 0; j < MAX_BIData_SIZE; j++)

119

if ((indexMemory[i] == indexPrice[j]) && (k < indexResults.length)) {
indexResults[k] = i;

/*

*/

k++;
break;

System.out.println("The indexResults[] values
for (inti= 0; i < indexResults.length; i++)

System.out.println(indexResults[i]);

return indexResults; //change when moved

are:"); //test
//test
//test

/**

*
* Class SendBack

*

*
* Send Back is the Mobile Code that is sent back from the
* Business to the Customer after the processing at the Business
* is complete.

*
***/

package muCodeExtensions;

import mucode.*;
import mucode.abstractions.*;
import java.io.*;
import java.lang.reflect.*;

public class SendBack extends Thread
implements GroupHandler, Serializable

private String results;
private transient MuServer server= null;
private noObjClass noObj = new noObJClass();

public SendBack()
System.out.println("sb: SendBack parameterless constructor");
System.out.println("sb: SendBack MuServer is"+ server);//test

public SendBack(MuServer server)
this.server= server;

public SendBack(String results)
this.results= results;

II???

public void shipBack(String destination, String[] classNames,
ObJect[] objectNames)

throws MuCodeException, ClassNotFoundException, IOException
if(server == null)

this.server= MuServer.getServer();

120

// Checking if control is in ship()
System.out.println("sb: In shipBack() of SendBack");
System.out.println("sb: SendBack's MuServer is"+ server);

//test
//test
//test

// Creating a 'group' with 'Handler' and 'Root' as "shipBackClassName"
// shipBackClassName can be invoked in unpack if this(i.e. SendBack)
// can be a ubiquitous class
String shipBackClassName = this.getClass() .getName();
System.out.println("sb: SendBack's Handler and Root are"+

shipBackClassName);
//test

// Setting 'noObj.no' to the reqd value before creating the group
noObJ.no = objectNames.length;
System.out.println("sb: Before packing, noObj.no : "+ noObj.no);

//test

// Group group= server.createGroup("SendBack", shipBackClassName);
Group group= server.createGroup(shipBackClassName, shipBackClassName);

121

group.addObject("SendBackHandlerLabel", this);
group.addObject("noObj", noObj);
group.setDynamicLinkSource(group.getSource());
group.setSynchronousTransfer(false);

//test

// Adding Classes in the group
group.addClasses(classNames);

// Adding Objects in the group
// NOTE - The classes of the objects will also be added here individually

???
for (inti= 0; i < objectNames.length; i++) {

String objectKey ="Obj"+ i;
System.out.println("sb: The name of"+ objectNames[i] + n is n +

objectKey); //test
group.addObject(objectKey, objectNames[i]);
group.addClass(objectNames[i] .getClass());

System.out.println("sb: The noObj.no are"+ noObj.no); //test

// List the classes in the group
String[] groupClasses = group.getClasses();
System.out.println("sb: Group Classes to be SHIPPED are");
for (int i =0; i < groupClasses.length; i++)

System.out.println(" "+ groupClasses[i]);

// REAL DEAL - finally
group.ship(destination);

// REAL DEAL - continuation ... after arriving at destination
public Thread unpack(Group group)

throws MuCodeException {

//test
//test
//test
//test

Syste~.out.println("sb: In unpack() of MobileCodeGroup"); //test
SendBack destnHandler =(SendBack)group.getObject("SendBackHandlerLabel");
server= group.getServer();
System.out.println("sb: The thread after unpacking is"+

Thread.currentThread()); //test
noObJClass noObJ = (noObjClass)group.getObject("noObj"); //test

// List the classes in the group
String[] groupClasses = group.getClasses();
System.out.println("sb: Group Classes that are SHIPPED
for (int i =0; i < groupClasses.length; i++)

System.out.println("sb: "+ groupClasses(i]);

//test
are");//test

//test
//test

// List the objects in the group //test
System.out.println("sb: The noObj.no are" +noObJ.no); //test
System.out.println("sb: The objects are"); //test

for (inti= 0; i < noObj.no; i++) {
String objectKey ="Obj"+ i;
ObJect objectListed = group.getObject(objectKey);
System.out.println("sb: "+ objectListed);

this.start();
return null;

public void run() {

//change
//test
//test
//test

122

System.out.println("sb: In the run of SendBack"); //test
System.out.println("sb: Reaching the SendBack and bringing back"

+ n required objects and classes"); //test
System.out.println("sb: Do the required processing if necessary");//test

REFERENCES

N. A.Adam, 0. Dogramaci, A. Gangopadhyay, Y. Yesha. Electronic Commerce

Technical, Business, and Legal Issues, Prentice Hall 1999.

Amazon.com, Inc. www.amazon.com, 2005.

R. Balakrishnan. A Service Framework Specification for dynamic a-services

interaction, In Proceedings of Fourth International Enterprise Distributed

Object Computing Conference, 2000.

M. Baldi, G. P. Picco. Evaluating the Tradeoffs of Mobile Code Design

Paradigms in Network Management Applications, In Proceedings of the

20th International Conference on Software Engineering, Kyoto, pages

146-155, Japan, 1998.

W. Binder. Using Mobile Agents for Software Distribution and Maintenance:

Autonomous Stations Capable of Securely Executing Dynamically

Uploaded Applications, In 2nd IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGRID'02), vol. 00, pages 352, 2002.

J. Bredin, D. Kotz, D. Rus. Economic Markets as a Means of Open Mobile-Agent

Systems, In Workshop on Mobile Agents in the Context of Competition

and Cooperation, Seattle, USA, 1999.

T Campbell. Insider Secrets to Successful eBay Trading, 2000.

121

124

A. Carzaniga, G. P. Picco, G. Vigna. Designing Distributed Applications with

Mobile Code Paradigms, In Proceedings of the 19th International

Conference on Software Engineering, pages 22-32, ACM Press, 1997.

COMERGENT. 2004 E-Commerce Survey Benchmarking of Best Practices, In A

survey of leading manufacturers, distributors and retailers, 2004.

G. Cugola, C. Ghezzi, G. P. Picco, G. Vigna. Analyzing Mobile Code Languages,

In Mobile Object Systems: Towards the Programmable Internet, pages 94-

109, February 1997.

A. Datta, M. Hauswirth, K. Aberer. Beyond "Web of Trust": Enabling P2P E­

commerce, In CEC 03, IEEE Conference on E-commerce, pages 24-27,

Newport Beach, June 2003.

W. S. Davis and J. Benamati. E-commerce Basics, Pearson Education, Addison

Wesley, 2003.

eBay Inc. www.ebay.com, 2005.

A. Fuggetta, G. P. Picco, G. Vigna. Understanding Code Mobility, In IEEE

Transactions on Software Engineering, Vol. 24, No. 5, pages 342-361,

MAY 1998.

R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson and D. Rus. D'Agents:

Applications and Performance of a Mobile-Agent System, Software-­

Practice and Experience, 32(6):543-573, May, 2002.

Half.com Inc. www.half.com, 2005.

HP. Supply Chain Management for the adaptive enterprise. The innovation,

success, and vision of HP's Global Supply Chain, 2004.

125

M. Merz, K. Muller-Jones, W. Lamersdorf. Agents, Services, and Electronic

Markets: How do they Integrate? In IFIPIIEEE International Conference on

Distributed Platforms, Dresden, 1996.

H. Qi, F. Wang. Optimal itinerary analysis for mobile agents in ad hoc wireless

sensor networks, In The 13th International Conference on Wireless

Communications, vol. 1, pages 147-153. Calgary, Canada, July, 2001.

F. Sandakly, P. Poyet. Java and Code Mobility in B&C Applications: A Case

Study.

C. G. Thomas, R. Oppermann. Supporting Information Consumers by Search

Agents in the World-Wide Web.

M. Kezunovic, X. Xu. Mobile Agent Software Applied in Maintenance Scheduling,

IEEE, 2001.

D. B. Lange, M. Oshima. Mobile Agents with Java: The Aglet API, In Mobility:

processes, computers, and agents, pages 494 - 512, ACM Press, New

York, 1999.

K. C. Laudon, C. G. Traver. E-commerce business, technology society, page 7,

Addison Wesley, 2002.

J. Lee, K. Siau and S. Hong. Enterprise Integration with ERP and EAi, In

Communications of the ACM, volume 46, issue 2, pages 54-60, 2003.

D. Luckham, A. Manens, S. Bhansali, W. Park, S. Daswani. Modeling and Causal

Event Simulation of Electronic Business Processes, In ACM Conference

on Electronic Commerce (EC'03), San Diego, U.S.A., 2003.

126

M. Merz, W. Lamersdorf. Agents, Services, and Electronic Markets: How do they

Integrate?, In IFIPIIEEE International Conference on Distributed

Platforms, 1996.

Mobile Agent List. http://draco.cis.uoguelph.ca/link.html.

Napster, LLC. www.napster.com, 2005.

C.M. Parker and Swatman. Web-TRECS: The Design and Use of an E­

commerce Business, In Quarterly Journal of Electronic Commerce, Vol 1,

No 1, pp. 77-88, Greenwich, 2000.

G. P. Picco. Mobile Agents, In Proceedings of the z1d International Workshop on

Mobile Agents 98 (MA '98), Springer, Lecture Notes on Computer Science

vol. 1477, pp. 160-171, Stuttgart (Germany}, K. Rothermel and F. Hohl

eds., 1998.

G. P. Picco. A Mobile Code toolkit, http://mucode.sourceforge.net/, 2000.

G. Samaras. Mobile Commerce: Vision and Challenges (Location and its

Management}, In 2002 Symposium on Applications and the Internet,

pages 43-45, 2002.

J. Schafer, J. Konstan, and J. Riedl. Recommender Systems in E-commerce, In

Proceedings of the First ACM Conference on Electronic Commerce,

pages 158-166, ACM Press, 1999.

Sun Microsystems. Java TM 2 Platform Standard Ed.5.0,

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#currentTime

Millis(}, 2004.

127

A. Tuzhilin, G. Adomavicius. Integrating User Behavior and Collaborative

Methods in Recommender Systems, In CHI' 99 Workshop Interacting with

Recommender Systems, Pittsburgh, U.S.A., 1999.

United Nations. E-COMMERCE AND DEVELOPMENT REPORT 2002, In United

Nations Conference on Trade and Development, New York and Geneva,

2002.

UNITED STATES DEPARTMENT OF COMMERCE. E-Stats, In

www.census.gov/estats, May 11, 2005.

U.S. Census Bureau, 2003. 2003 Annual Trade Survey,

www.census.gov/eos/www/whestats.html , 2003.

Vogt, C. Intractable ERP: A Comprehensive Analysis of Failed Enterprise­

Resource-Planning Projects, In ACM SIGSOFT Software Engineering

Notes, Vol. 27, No. 2, March 2002.

A. G. White. Convergence of Peer-2-Peer Computing (P2P) and Buisness-2-

Business (828) 'New Economy' Business Models, In ITtoolbox Supply

Chain, 2001 .

WITSA. INTERNATIONAL SURVEY OF E- COMMERCE 2000, The World

Information Technology and Services Alliance, 2002.

VITA

Naveen Koneru was born in Hyderabad, India, on November 2nd 1978,

the first son of K. B. S. Saibabu and Dr. K. Krishna Kumari. He developed an

interest in computers while attending St. Patrick's High School, Hyderabad. He

pursued his interest and graduated with a Bachelor of Engineering in Computer

Science from Osmania University, Hyderabad, India, in 2001. He entered the

Graduate College of Texas State University - San Marcos in September 2001 to

pursue a Master of Science degree · in Computer Science. While attending

Graduate School, he has worked as a Team Lead of Technical Support

Specialists in the College of Education, Texas State University- San Marcos. He

is interested in Software Engineering and Business Management.

Permanent Address:

House no: N 2/4,

Kakateeyanagar,

Habsiguda,

Hyderabad - 500 007.

INDIA

Email : naveenkoneru@yahoo.com

This thesis was typed by Naveen Koneru in Microsoft Office Word 2003.

