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On the ellipticity and solvability of an abstract

second-order differential equation *

Abdelillah El Haial & Rabah Labbas

Abstract

In this work we give some new results on a complete abstract second-
order differential equation of elliptic type in the non-homogeneous case.
Existence, uniqueness, and maximal regularity of the strict solution are
proved under some natural assumptions which imply the ellipticity of the
differential equation.

1 Introduction

In this paper, we study the second-order abstract differential equation
u”(t) + 2Bu/(t) + Au(t) = f(t), te(0,1)

under the non-homogeneous boundary conditions

u(0) = ¢, u(l) =1,

(1)

(2)

where ¢, 1 and f(t) belong to a complex Banach space E, and A, B are two
closed linear operators with domains D(A), D(B). We are interested in the
existence, uniqueness, and maximal regularity of the strict solution u when
f is regular (for instance f is Holder continuous function). We recall that

u € C([0,1]; E) is a strict solution of (1)-(2) if and only if
u € C*([0,1); B) N C¢1([0,1]; D(B)) N C([0, 1]; D(A))

and u satisfies (1) and (2).
Throughout this paper we assume the following hypotheses:

H1) Operator B generates a strongly continuous group on E

H2) There exists K > 0 such that for all A > 0, [[(4A — B2 = X)) <

K/(1+ )
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H3) Forallp € R,and all A > 0, (A—B?>—=X)"Y(B—pl)"' = (B—pl)~1(A-
B2 A)"'=0

H4) There exists K > 0 such that for all A > 0,
i) [[B(A—B> =) "M < K/(L+ V),
ii) [|B*(A—B*= M) Yym <K,
it}) [|A(A— B2 = A1) "pm < K.

Note that H1 implies D(B) = E, but the domain D(A — B?) may be not
dense. On the other hand, it is not difficult to see that assumptions H1, H2, H3
permit us to apply the Da Prato and Grisvard [1] sum theory and deduce that,
necessarily,

(A=A e L(E) and [[(A— D)"Y nm < K/(1+ ), for all A > 0.

(See the proof of Theorem 3.3, the end of statement i)).

Several authors have studied equation (1) when it is regarded as an abstract
Cauchy problem, that is under the following initial data u(0) = ¢, w'(0) = .
See, for instance, Favini [2], Neubrander [10], Liang and Xiao [8]. The techniques
used in these papers are based on the parabolicity of (1), that is the parabolicity
of the operator pencil defined by

P(\):D(A)ND(B)— E; z+— P\)z=\1+2\B+ A)z.

In this paper we try to provide an unified treatment of some class of sec-
ond order partial differential equations when they are regarded as equations of
elliptic type. The principal part of these equations can be written in the form

Pu = 0Fu + 2b(.)0%,u + a(.)9%u,
or more generally
Pu = 0%u + B(z,0,)0pu + Az, 0,)0%u,

where B(z,d,) and A(z,0,) are linear differential operators in R™ with some
natural assumptions on their coefficients of order m and I.

So, our objective is to express the ellipticity of these concrete operators in
general abstract form, find a representation of the solution of the problem (1)-(2)
and study its maximal regularity.

Some particular equations of type (1) can be used to describe the singular-
ities of the solutions in elliptic problems on singular domains. Let us give the
following example of Laplacian operator

—Au=g, ge€LP(Q)
u=0 on 0Q,

in a conical domain Q@ = {po : p > 0,0 € G} C R", where G is an open subset
of the sphere S”~!. In the three dimensional domain, the boundary dQ has a
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vertex at O and also edges depending on whether the boundary OG has corners
or not. Let us assume that the variational solution u of this Dirichlet problem
exists. So, we would have u = u, + ug, with a regular part u,, € W2P(Q) and
a singular part ug in explicit form. Then, one performs the change of variable
p = e! which maps @ onto the infinite cylinder R x G. The Laplacian equation
in polar coordinates is

-1 1
Diu + nTDpqu p—QA’u =g

where A’ denotes the Laplace-Beltrami operator on S”~!. The above mentioned
change of variable leads us to

Dfu + Dyu + Ay = 62tg =0,
then by puttting v(t)(0) = e*tu(e'o) and go(t)(c) = e®tg; we have
D?v+(n—2—2w)Dw + w(w —n+2)v+ Av =gy
v=0 onJdR x Q)
where @ = —2 + n/p, precisely the opposite of the Sobolev exponent of W?2? .
This final equation can be regarded as a particular form of our abstract general
problem (1). See, for details, Labbas-Moussaoui-Najmi [7].

Equations (1)-(2) can be illustrated, for instance, by the following simple
model differential problem
0%u 0%u 0%u
W(tx)_’_Qbm(t’x)—i_aW(tx) :f(t,l‘), (t,l‘) €3,
w0, z) = p(x), u(l,z)=49), zeR,

where ¥ =10,1[ x R and

3)

a—0b*>0. (4)

Then we can choose in E = LP(R), 1 < p < oo, the operators A, B defined by
D(B) = W'?(R), (Bu)(z)=bu'(x), Yu € D(B)
D(A) = W?P(R), (Au)(z) = au”(z), Yu € D(A).

In our study, hypotheses H2 and H4 express the ellipticity of (1) and gen-
eralize the one used in Krein [5] in the case B = 0. In example (3) these two
assumptions are equivalent to (4). So we cannot reduce equations (1)-(2) to
some first order system. When B = 0, Labbas [6] has studied problem (1)-(2)
and gives necessary and sufficient conditions on ¢, ¥, f(0) and f(1) for having
a unique strict solution when f is Hélder continuous function. In this work we
generalize these results since all the hypotheses considered here, coincide with
those used in [6] in the case B = 0. Note that assumptions H1, H2, H3 allow us
to apply the sum theory of linear operators as in Da Prato-Grisvard [1] and give
Da(6;+00) = Dr(6;4+00) N Dp2(8;+0) where L = A — B? and, for 6 €]0,1]

Dp(0;+00) = {90 € E:supr?|L(L — 1) Yy||p < oo} ,
>0
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(see Grisvard [4]).

In section 2, we build the natural representation of the solution of (1)-(2) by
using the operational calculus and the Dunford integral.

In section 3, we prove an essential lemma, which allow us to justify and
to study the optimal smoothness of the previous representation; we then give
necessary and sufficient conditions on ¢,, f(0) and f(1) for having a strict
solution when f is Holder continuous function.

Finally, in section 4, we give an example, to which our abstract results can
be applied.

2 Construction of the solution

If A and B are two scalars such that B2 — A = —\ is strictly positive, then the
solution of (1) is given by

sinhv—-A(1-1¢%) _,p sinh vV—At 4_yp /1
= —— 7 _— — G t, d 9
u(®) sinh v/ —\ ¢ et sinh v/—X ‘ v 0 vl ) ()ds

+ _ sinh v/=X(1—t) sinh v/ Xs
GU=lts) = = Samv=x o 0ss<t

— __ sinhv/=X(1—s) sinh v/t
G =ts) = = Samva o tss<L

G\/j(f, S) =

Now, it is well known that H2 implies the existence of §y €]0,7/2[ and g9 > 0
such that the resolvent set of A— B? contains the following sector of the complex
plane

S(00,e0) = {z € C: |arg(z)| < do} U B(0, &),

where B(0,¢&q) is the open ball of radius €. If v denotes the sectorial boundary
curve of S(dp,e0) oriented positively, then the natural representation of the
solution of (1)-(2), in the abstract case, is given by the Dunford integral

e—tB
ut) = S [ om0 e
Y
(1-)B
S | av== 0L = AD ax (5)
Y
1

2mi

//1 G =(t,s)e”""IB(L — XI)7! f(s)ds d),
v J0O

where L = A — B2, D(L) = D(A) N D(B?),

_ sinhvV=A(1 —¢)

= te (0,1),A €.
9—x(t) b/ (0,1) ¥
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Here v/—\ is the analytic determination defined by Rey/—A > 0. From writing

1— 6—2\/—_)\(1—t)

l9,=x(t)] = \e_mt(l_e_—Q\/_—ANa

we deduce that there exists two constants ¢y and K such that

l9=x(t)] < Koe "t yx e, vt €], 1),

: (6)

lg=5(1 — )] < Koe @P"*0-0 v e 4 vi e [0,1],
where ¢y = cos(m/2 — 8p/2) and Ko = 2/(1 — exp(—2co,/20)). On the other
hand, for any f € C([0,1]; E), we can see that

1
1
|| / Gym(t ) (@sls < re—erslflow, YA€ ()

According to H1, H2 and estimates (6)-(7), all the integrals in (5) converge
absolutely for every t €]0,1][.

3 Smoothness of the solution

Let us set, for ¢ and ¥ in F,

e—tB

U(t,—B, L)y = —/ ()L — AI)"'dX  t €]0, 1],

21
c(1-1)B

U(l—t, B, L) =

L—t)(L— X)) 'pdX\ teo,1
e | 90 ADdx e 0]
then we have the essential lemma

Lemma 3.1 Under assumptions H1 and H2

i) there exists a positive constant K = K (g¢,00) such that

IUt,—B,L)¢le
IU =, B,L)Y|le

Klolls, VYee E,Vte0,1],

<
<K|¢ls, W eBvte 1]

i) U(.,—B,L)p € C([0,1]; E) if and only if p € D(L),

iii) U(1 —.,B, L)Y € C([0,1]; E) if and only if v € D(L).

Proof. i) For t > 0 we can write

U(ta _B7 L)QO
eftB L 67tB 1
= S [ amO@-anTedn s T [ g @@ - AT
i ¥

21 ™
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= I++I,7

where
Vi ={zemnlz = 1/?}, L ={zen |2 <1/t*}. (8)

Then we have

+oo e—co\>\|1/2t too p,—coo
Il < Kol | alole < 260 | dolelle < Kl

A
and
B )
- = L — X)) pdA
T |, v~ O A
o—tB )
57 /t (L= A)" pd
o—tB — N1 —
_ / / v —Acoshv/—A(1 s)ds)(L—)\I)_lcpd)\
 2mi sinh v/
o—tB
- / (L — XI)"tpdX
21 Cl/t2
— I/ + I//
where
Cijez = {z: |argz| < & and |2 = 1/t*}.
Then

Ky [0 A
170 < 52 [ Pl els < Kol
€0

Y +do et de
1205 < gz [ 1= D) el < Klells
Similarly we obtain

U=t B,L)Yllp < K|¢llp, VyeE,vtel0l]

ii) Fix € > 0 and let » € D(L), then there exists y € D(L) such that

e —yll <e. (9)
Using the identity
_ L—-X)"'Ly vy
LX)ty = L-A)"Ly _y
(L=AD) : s

we have

e tB L— A1
vt-8.05 =5 [ 050 By
ol
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which gives
1 [ K
U =B, Lyle < o= |  —=dALylz < K||Ly|e vt €[0,1].  (10)
21 Jeo |
Now, from the equality
U(tv 7Ba L)@ — Y= U(ta 7B7L)90 - U(ta 7B7L)y + U(ta 7B?L)y —y+y- 2
and the estimates (9), (10) we deduce that
Ut,—B,L)yp—p—0 as t—0".

The continuity in ¢ > 0 is easily verified. Conversely, assume U(.,—B,L)p €
C([0,1]; E), then lim;_, g+ U(t, — B, L) exists and is necessarily equal to ¢; how-
ever

gyt P(L—X)""p e D(L),

which implies that U(t,—B, L)y € D(L).
For statement iii) it is enough to substitute 1 — ¢ for ¢. (]

Let us consider, for 6 € ]0, 1], the well known real interpolation space between
D(L) and E characterized by

Dp(0;+00) = {p € E: supr?||L(L — 1)~ Yp|p < 00}
r>0

(See Grisvard([3]).
Lemma 3.2 Under assumptions H1, H2, H3 and for 6 €]0,1/2[ we have

U(.,—B,L)p € C*([0,1; E) if and only if ¢ € D(6;+00).

Proof. Let ¢ € Dp(6;+00) and 7,t €]0, 1 such that 7 < ¢, then

U<t7 _37 L)QO - U(T7 _Ba L)SO

o—tB .
i /w(gﬂ(t) _gw—A(T))MWA

(e7tB — e~ 7B) / L(L—\I)~1
+ 5 : 9=x(7) 3 @d\

= L+ 1D

I; may be written as

e tB L(L—XI)~t
L = — ot S S
C= S ] R
e B L(L— M)t
+ o tim o0 — 0,5() HEEM

2 4t
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_ na,
(where fyi_T and 7”7 are defined in (8)), and

|\l
N
e A

. t=T]
1Yl E < Ko i}l}lT Wd A2l DL (5400)

ILe < 2K / lell Dy (0400):
i

from which it follows

IL|e < K(t— 7')29||<P||DL(0;+00)-

We write I as
—(t-7)Bgp, — P
_ 20 —tB € 1 1
I, = (t*’]') e ( (t_T)Qa )a

with
1

O, = — L—X\)"Ypd
1= 5 ng(T)( )" pdA,

then, for Vr > 0, the classical operational calculus gives

- 1 L(L — )"ty
L(L—rI) 1@1:_2m/gﬁ(7) ( r_)\) P,
vy

which implies that

_ K
1L = D)7 @1l < el 6400

therefore,
P, € DL(Q; +OO) C DBQ(H;-i-OO) = DB(QH; +OO) .

EJDE-2001/57

The last equality holds by using the well known reiteration theorem in interpo-

lation theory (see, Lions-Peetre [9]). So, we obtain

1L20le < Kt —7)%|®1] Dy (26:4+00)-

The main result in this work is the following

Theorem 3.3 Assume HI1,H2,H3, and Hj}. Let ¢ € D(L),vv € D(L) and

f € C?([0,1]; E) with 0 €]0,1/2[. Then u given in (5) satisfies
i) u(t) € D(A) for all t € [0,1]

ii) Au(.) belongs to C([0,1]; E) if and only if Ap, Ay, f(0) and f(1) belong

to D(L)

i) Au(.) belongs to C?°([0,1]; E) if and only if Ap ,Av, £(0) and f(1) belong

to D (0; +00).
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Furthermore, if
By € Dp(60 +1/2;+00) and By € D (0 + 1/2;400), (11)

then

) v (t) € D(B) for allt € [0,1]

v) Bu'(.) € C([0,1]; E) if and only if B*¢ and By belong to D(L)

vi) Bu'(.) € C?([0,1]; E) if and only if B%p, B*} belong to D (6; +00).
Proof. Statement i). The study of the first and second integral in representa-
tion (5) is identical since ¢ and (1—t) have the same role. So we can assume that

1 = 0. Moreover in the third integral in (5) we write f(s) = (f(s)— f(t))+ f(t),
then, after two integration by parts, we get

e—tB

ut) = S [ om0 e

eftB

o /gm(t)(L — AN B2 + M) THf(H)dA

o(1-1)B

5 /g\/j\(l —t)(L — M)"H(B% + M) f(t)dA

27rz// Gy=x(t,s)e” " "IB(L = AT (f(s) = f(1))ds dA

+% A(BQ + M) THL = M) THf(t)dA

5
= E a;.
i=1

All these integrals converge absolutely. From Lemma 3.1 and H4, we deduce that
the first integral a; belongs to D(A). Writing A = L+ B? = (L—X)+(B?*+\I)
and using H4 we obtain

AL =AY B2+ M) () = (L = M) 7)) + (B2 + A7 F(1),

which implies, as for the first integral, that as and as belong to D(A). For aq,
we use iii) of H5 which gives

I [ untoodem AL =01 09) = fts
1
A (S“p0<t<1/ Gy (t.5) [t = o d)d ] [ llcae
€0 0

o0 1
K( / St P llon
€0



10 On the ellipticity and solvability EJDE-2001/57

the last estimate follows in virtue of Holder’s inequality. For as we apply the
Da Prato-Grisvard’s [1] sums theory to B and L. In fact, from H1 we deduce
that B? generates a bounded holomorphic semigroup in E (see Stone [11]); then
(B% + L) is closable and

(BE+ D) =8=-— / (B> + A1)~ (L — AI) 1A,
21 ~

which implies that Sz = A~z for all z € E; therefore, a5 = A~ f(t).
Statements ii) and iii). We have

Au(t) = e;f A 9y=x(t)(L = AI) " Apdr
_62_7: Lgm(t)(BQ + AN f(t)dA
_62_: Lgm(t)(L— D)L (t)dA
_6(12;;)3 /yg\/j(l —t)(B% + AI) ! f(t)dA
_6“2:;3 / gy=(1 = 1)(L =AD" f(t)d
L / / G5 (t,5)e™IPAL — A1) (f(s) — f(1))ds A
+f()
- im(tﬂf(t)-

As in lemmas 3.1 and 3.2, vi(.) € C([0,1]; E) if and only if Ap € D(L) and
v1(.) € C?([0,1]; E) if and only if Ap € Dr(0; +00). Let us write for 0 < 7 <
t<1

eftB

valt) —wa(r) = — / 0 (D) (B2 + XI)7H(f() — F(r))d

211

e*TB

211

/ (9,75(t) = gy=x(T) (B + A1) ™! (f(r) = f(0))dA
(e—tB je—TB
T omi / gyx(O(B* + A7 (f () = £(0))dA

/gﬂ(t)(BQ + ) F(0)dA

e—tB

+

211

e—TB

271

/gm(T)(BQ + M) 7LF(0)dA
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hE

bia

i=1
then, as in the proof of Lemma 3.1, we have

[o1]] < K(t — 7)20||f||c29(E),
and writing by as

e ™8 /t/\/—)\cosh\/—/\(l—s
2mi Jr Sy sinh v/ —A

by = — ) (B2 £ A (f(r) - £(0))dAds.

b2l =

N

+oo 7|)\\1/2cos 20
// AP sl e

e~ 9C 26
< K / [ drash e
E0S

< K/ (/O+0<> efacodff)szafldsnf||029(E)
< K =7 flle2o )
< K@t —=7)2 2oy
for b3, we have
b= 5 / t / gus (e BB(B? + \I)~ (£ (1) — £(0))dAds,
T Jy

and

oo =AY ot 126
sl < K// W sl e

+oo 7|)\\1/zcos 20
// ANl v

< K@t =71 fllcoom)-

The sum by + b5 can be estimated by the same method used in lemma 2; it
follows that

b4 + b5l 2 < K (¢ = 7)*[1£(0) ]| p,y2 (03400
if and only if f(0) € Dg2(#;+0c0). Similarly vz(.) belongs to C??([0, 1]; E) if and
only if £(0) belongs to Dy (6;+00) and wvy(.) + vs(.) belongs to C%([0,1]; E) if
and only if f(1) belongs to Dy, (0; +00).
Finally,

ve(t) — vg(T)
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-5l ] Gt B AL = A1) ((s) — £(2)ds
27”// (Gt s) — GH(m, s))e DB AL — A TY(f(s) — f(t))ds dA
- / | Gt e 9 - e CIB AL A ) - f(0)ds i
27”// G (ts) (eB™IB _ eG=DBY AL — XI)7(f(s) — f(t))ds dX
+%// G (t,8)eCIPAL = NI)TH(f(s) = f(t))ds dX

_ S .8 (s—t)B _ —1 s) — s
2m// (G =(t:5) = G (T, 8))e A(L =A™ (f(s) = f(t))ds dA

77'B

s | SR DALL = AU 4 AD )~ Fr)dN
e(lfr)B

Corr [ 9= DAL = ATHB? + A (£(0) ~ £

- (1)~ ()
= 3= (F) - £0))

Using the fact that in the first integral (since 0 < 7 < s <t < 1)
) e~ 1A 2eo(t—s)
‘Gm(t,s)’ SK |)\|1/2

we have

+o0 7\)\|1/2c0t s) 2
letle < / / AN sl e

+oo
< K / [ e rdoyds| fllowe
VEa(t-s)

< K(t—1)% Il c2e (&)

o / /7 /T cosh \/_S H1lh—\/ﬁnh NESY:

xe”TTIBA(L — AT (f(s) — f(t))dEdAds,

Writing ¢, as

we obtain

_ 1/2C s
leslle < K / / / 2069 (¢ — )20 ded || ds|| ]| 2o
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<k [ [ / e~ (1 — )20 |\ dnds| lcae
t—s 29 +o0

< K// / ae”7da)dnds| f||c20 ()
0 Veon

t—s d
/ sl fllow )

S

N
=
\

N

1
K/o (1 = ) (— — sl fllo=ocey

N

T |t—8‘29 1
Kt-7) | ————dsllfllo=em)
0

+oo 20—1
< K=" fllcoe )

N

dz) || fllc2e(m)

For c3 + ¢4, we write
= e_TB(e_(t_T)BQQ — Ps)

where

oy = 2m// Gl =l(ts) ePAL — N7 (f(s) — f(t)dsdA

_Tm/w/r G;X(t,s)eSBA(L—)\I)_l(f(s)—f(t))dsdA;

using the fact that for r > 0 and A € «

e ) A A = e A
we get
L(L—7rI)"t®,
B 2m// G+ (t, s)e AA(L—M)‘l(f(s)—f(t))dsdA
o / / G AL AT () — F()ds A,
and

|L(L —rI)~ sl
Al

+oo 1
6
< K[t 16 o)l o ) N ey

0<t<1 Jo

K/ - 260
(60 |)\|9|r )\|)HJHC (E)

13
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K
< T—9||f||029(E);

therefore, ®5 € Dy (6; +00) C Dp2(0;4+00) = Dp(260;+00). Thus we have

~(t=1Bgp, -
e 2 2
c3+c < t—7)% su

lles + calle K( ) Sup | (t—7)20

< K(t=7)% P2l p s (20100)-
By reasoning in the same manner for the last integral we obtain
lvs(t) = ve(7)||m = O((t = 7)**).

Statement iv). We have

=

/ o—tB / )
= — L— X))~
u'(t) 57 [Ygﬁ(t)( A" pdA

e—tB

2mi

/gm(t)(L — M) Bpd\

e—tB
S [0 AT B s
e—tB !
o /gﬂ(t)B(Bz+)‘I)_1(L—>\I)_1f(t)d/\
Y
(1-1)
- 127:@-3 /g’mﬂ—t>(L—AI>‘1<32+M)—1f(t>cu
e(1—t)B .
T o /g\/j\(l_t>B(32"‘)‘I)_l(L—)\I)_lf(t)d)\
Y
*ﬁ / /O1 G y=x(t,s)e”TIPB(L = M) TH(f(s) — f(£))ds dX
Y
1 ' - —S —
_%/yA (9tG\/_—>\(t,S)e (t ‘)B(L—AI) 1(f(5)_f(t))d8d)\

8
= Zwi(t).

The derivative of the last integral in (5) is obtained by differentiating the kernel
and then writing f(s) = (f(s)— f(t))+ f(t) and carrying out two integrations by
parts. We verify that all these integrals converge absolutely. The first integral
wi (t) € D(B). In fact, we write

e B , e B L(L—X)~'Byp
(L — A" 'Byd)\ = (0 Yk S b At ) 5 Y
2ri /f’m( I ) BedA =50 /ng() py ’

then we have

e tB L(L—))"'B
Md}\\h@

/
L L
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+oo e~ A 1/2COt
< K( / i PDIBElD, 04172120
0

< K[IBol by 0+1/2:400) -
Due to Lemma 3.1 and H4, we have wy(t) € D(B). Moreover, we can write

w3 (t) + wa(t)

67153

ot VR0 — g O = AD B AN )

eftB

+ 211

eftB

/ V=g 5(t)(L = M) 7 (B? + XI) 7' f(t)dA

+

i /gm(t)B(BZ FAD YL — AL (£)d

e~tB [ /e VA2
= L=\ —1 B2 I —1
o), 1—e2VA (L= X)"(B* + M) f(t)dA

/gm(t)(B VAL =AD" (),

e—tB

+ 2mi
which implies that ws(t) + ws(t) € D(B). Similarly, we show that the sum
ws(t) +we(t) € D(B). As in the proof of statement i), we also obtain that wz(t)
and wg(t) belong to D(B).

Statements v) and vi). We have

, e—tB , L
Bu(t) — W/g\/x(t)(L—AI)_ Bepd)
Y
—tB
o [ - A B
e—tB !
~ 5 /g’m(t)B(L — A)7H(B? 4+ M) f(t)dA
)
e 'P 2/ 2 —1 —1
+5— Lgm(t)B (B2 4+ XI)"Y(L — M)~ f(t)d\
(1-t)B
% / 9. =1 = t)B(L = AXI)~ (B + AI)~' f(t)dX
c(1-1)B .
5 /gm(l —t)B*(B? + MX)"H(L — M) f(t)dX
v
1
+% //0 G —(t,s)e”""IBBX(L — XI) 7 (f(s) — f(t))ds d\
Y
1
—2%// G = (t,s)e”"TIBBAL — \I)TN(f(s) — f(t))ds dA
v J0

= Z xi(t)v
i=1
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and for 0 <7 <t<1, we get

e—tB
z1(t) —a1(7) =

t
- L(L-X)"'B
— / / 9y=3($)L(L = \) "' Bydrds

—tB —TB L bV lB
Gt i) / g~ LL=A)TBe )\

A
= IlJrIg,
then
+C>O6 AV 2¢os
s < Ko [ /| VR UA L L PR,
+oo —oc
20’6 0
< K, / / Szt ds| Belo, 011/
20—1 +OO e 7
< K/ s (/0 Wda)dSHBSDHDL(aH/Moo)

< K(t = 1) Bellp(041/2:400)-
Writing I in the form
L=e B e "8d, — ),
with

1 L(L — \)~'Byp
Oy = — 7 Td\
3= g / g —(7) :

we obtain
_1 K
ILL = ) Bgllp < 5| Belp, 1172000 V1 > 0.

Therefore, &3 € D (0;4+00) C Dp(260;+00). Thus we have

ef(tfr)B(DS — ®y

||I2HE < K(t_T)29 sup H 7_)29 ||E

t—7>0 (t o
< K(t—7)*03]|py (20400)-

The techniques for the rest of the proof is quite similar to those used in the
precedent statements. O

Remark In the same manner we have a similar result to Theorem 3.3 when
the second member f has a spatial smoothness, that is for all ¢ € [0,1], f(¢) €
Dp(0,00) and sup,e o1y |1 £ (1)l Dy (0,00) < 00, With o €]0, 1[. We omit to prove
this assertion in this work.

Remark We can consider other hypotheses instead of (11) involving a com-
parison of D(B) and D((—L)%) for some « €]0,1].
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Example

Here we exhibit an example which can give an idea of other possible applications.
Consider E = LP(R) with 1 < p < oo and

D(A) = W*™P(R), Ay =A(x,0.)v = > axp®),

0<k<2m
D(B) =W™P(R), By =Bx,0)v= > by,
0<k<m
where (ag,, — b2,) > 0. Then we know that
Dp(#;+00) = (D(L); E)1-,00
= (WP™P(R); LP(R))1-0,00
mo
B (R).

Where this last space is a Besov space defined, for instance, in Grisvard [4]. It
is not difficult to see that H1, H2, H3, and H4 are satisfied. Applying Theorem
3.3 we have the following statement.

Theorem 3.4 Let f € C?([0,1]; LP(R)) such that for j = 0,1 the mappings
x +— f(j,z) belong to Bgfgg(R) and assume that o, ¥ belong to W?™P(R) and
©Cm) (™) belong to ngqgg(]R). Then the problem

O2u(t,z) + B(x, 0:)0u(t, ©) + Az, 05)0%u(t, x) = f(t,x)
u(0,7) = p(x), u(l,z) = Y(x),
has a unique solution u satisfying
i) we C2([0,1]; LP(R)) N C([0, 1], W™ P(R)) N C([0, 1], W2™P(R)),
i) 02w, OO and 0%u belong to C2%([0,1]; LP(R)).
Acknowledgments. The authors would like to express our thanks to Pro-

fessor Jerry L. Bona for his valuable remarks and suggestions concerning this
work.
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