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POSITIVE SOLUTIONS FOR SECOND-ORDER M-POINT
BOUNDARY-VALUE PROBLEMS WITH NONLINEARITY

DEPENDING ON THE FIRST DERIVATIVE

LIU YANG, XIPING LIU, CHUNFANG SHEN

Abstract. We consider multiplicity of positive solutions for second-order m-

point boundary-value problems, with the first order derivative involved in the

nonlinear term. Using a fixed point theorem, we show the existence of at least
three positive solutions. By giving an example we illustrate the main result of

the article.

1. Introduction

Multi-point boundary-value problems for ordinary differential equations arise in
different areas of applied mathematics and physics. For example, the vibrations
of a guy wire of uniform cross-section and composed of N parts of different densi-
ties can be set up as a multi-point boundary-value problem,many problems in the
theory of elastic stability can be handled as multi-point boundary-value problems
too.Recently, the existence and multiplicity of positive solutions for nonlinear or-
dinary differential equations and difference equations have received a great deal of
attentions.To identify a few,we refer the reader to [1, 5, 10, 11, 12] and references
therein. Ma and Wang [13] obtained the existence of one positive solution for more
general three-point boundary-value problem

u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(u) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, u(1) = αu(η), 0 < η < 1, (1.2)

under the assumption that f is either suplinear or sublinear, and that the following
conditions are satisfied:

(H1) f ∈ C([0,+∞), [0,+∞))
(H2) h ∈ C([0, 1], [0,+∞)) and there exists x0 ∈ (0, 1) such that h(x0) > 0
(H3) a ∈ C[0, 1], b ∈ C([0, 1], (−∞, 0])
(H4) 0 < αφ1(η) < 1, where φ1 is the unique solution of the linear problem

φ′′1(t) + a(t)φ′1(t) + b(t)φ1(t) = 0, t ∈ (0, 1), (1.3)

φ1(0) = 0, φ1(1) = 1. (1.4)
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In [13], the authors used a fixed point theorem for a mapping defined on Banach
spaces with cones, by Guo and Krasnosel’skii [6]. However all the above works about
positive solutions were done under the assumption that the first order derivative
x′ is not involved in the nonlinear term. On the other hand, to the best of our
knowledge, there are very few work considering the multiplicity of positive solutions
with dependence on derivatives.

In this paper, we consider the existence of at least three positive solutions for
the equation

x′′(t) + a(t)x′(t) + b(t)x(t) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1), (1.5)

subject to the boundary conditions

x(0) = 0, x(1) =
m−2∑
i=1

αix(ξi), (1.6)

or to the boundary conditions

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ξi), (1.7)

where ξi ∈ (0, 1), αi > 0, i = 1, 2, . . . ,m− 2 are given constants.
The interest in triple solutions evolved from the Leggett-Williams fixed point

theorem [9]. When x′ does not appear in nonlinear term there are results about
several nonlinear ordinary differential equations, obtained by the Leggett-Williams
fixed point theorem; see [7, 8]. Recently Avery and Peterson [2], Bai and Ge [3]
generalized the fixed point theorem of Leggett-Williams by using theorem of fixed
point index and Dugundji extension theorem. As applications of the results in [3, 4],
it has been obtained the existence of triple positive solutions of the boundary-value
problem

x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1, (1.8)

x(0) = x(1) = 0, or x(0) = x′(1) = 0. (1.9)

By using the main results of [3, 13], we give some simple criteria for the existence
of multiple positive solutions for problem (1.5) subject to (1.6) or (1.7).

2. Background definitions and preliminaries

For the convenience of the reader,we present here the necessary definitions from
cone theory in Banach spaces. This definitions can be found in the literature.

Definitions. Let E be a real Banach space over R. A nonempty convex closed set
P ⊂ E is said to be a cone provided that (i) au ∈ P , for all u ∈ P , a ≥ 0, and (ii)
u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if y−x ∈ P .
An operator is called completely continuous if it is continuous and maps bounded

sets into precompact sets.
The map α is said to be a nonnegative continuous convex functional on cone P

of a real Banach space E provided that α : P → [0,+∞) is continuous and

α(tx + (1− t)y) ≤ tα(x) + (1− t)α(y), ∀x, y ∈ P t ∈ [0, 1].
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The map β is said to be a nonnegative continuous concave functional on cone
P of a real Banach space E provided that β : P → [0,+∞) is continuous and
β(tx + (1− t)y) ≥ tβ(x) + (1− t)β(y), for all x, y ∈ P and t ∈ [0, 1].

Suppose θ, γ : P → [0,+∞) are two nonnegative continuous convex functionals
satisfying

‖x‖ ≤ k max{θ(x), γ(x)} for x ∈ P, (2.1)
where k is a positive constant,and

Ω = {x ∈ P |θ(x) < r, γ(x) < L} 6= ∅, r > 0, L > 0. (2.2)

Let r > a > 0, L > 0 be given, γ, θ : P → [0,+∞) be nonnegative continuous
convex functionals satisfying (2.1) and (2.2), α be a nonnegative continuous concave
functional on P . Define the following convex sets:

P (γ, L; θ, r) = {x ∈ P |γ(x) < L, θ(x) < r},
P (γ, L; θ, r) = {x ∈ P |γ(x) ≤ L, θ(x) ≤ r},

P (γ, L; θ, r;α, a) = {x ∈ P |γ(x) < L, θ(x) < r, α(x) > a},
P (γ, L; θ, r;α, a) = {x ∈ P |γ(x) ≤ L, θ(x) ≤ r, α(x) ≥ a}.

Lemma 2.1. Let E be a Banach space,P ⊂ E be a cone and r2 ≥ c > b > r1 >
0, L2 ≥ L1 > 0 be given. Assume that γ, θ are nonnegative continuous convex
functionals on P such that (2.1), (2.2) are satisfied. α is a nonnegative continuous
concave functional on P such that α(x) ≤ θ(x) for all x ∈ P (γ, L2; θ, r2) and let
T : P (γ, L2; θ, r2) → P (γ, L2; θ, r2) be a completely continuous operator. Suppose
that

(S1) The set {x ∈ P (γ, L2; θ, c;α, b) : α(x) > b} is not empty, and α(Tx) > b
for x in P (γ, L2; θ, c;α, b);

(S2) γ(Tx) < L1, θ(Tx) < r1 for all x ∈ P (γ, L1; θ, r1);
(S3) α(Tx) > b, for all x ∈ P (γ, L2; θ, r2;α, b) with θ(Tx) > c.

Then T has at least three fixed points x1, x2, x3 in P (γ, L2; θ, r2). Further,

x1 ∈ P (γ, L1; θ, r1); x2 ∈ {P (γ, L2; θ, r2;α, b) : α(x) > b},
x3 ∈ P (γ, L2; θ, r2) \ (P (γ, L2; θ, r2;α, b) ∪ P (γ, L1; θ, r1)).

3. Positive solutions of (1.5), (1.6)

To state the main results of this section,we need the following lemma, which was
established by Ma and Wang [13].

Lemma 3.1. Assume that (H3) holds. Let φ1, φ2 be solutions of (1.3), (1.4), and

φ′′2(t) + a(t)φ′2(t) + b(t)φ2(t) = 0, t ∈ (0, 1), (3.1)

φ2(0) = 1, φ2(1) = 0. (3.2)

Then φ1 is strictly increasing and φ2 is strictly decreasing on [0,1].

Inspired by [13], we state following lemma which can be regard as a natural
extension.

Lemma 3.2. Suppose (H3) and

0 <
m−2∑
i=1

αiφ1(ξi) < 1. (3.3)
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Then the problem

x′′(t) + a(t)x′(t) + b(t)x(t) + y(t) = 0, t ∈ (0, 1) (3.4)

x(0) = 0, x(1) =
m−2∑
i=1

αix(ξi), (3.5)

is equivalent to integral equation

x(t) =
∫ 1

0

G(t, s)p(s)y(s)ds + Aφ1(t), (3.6)

where

A =
∑m−2

i=1 αi

1−
∑m−2

i=1 αiξi

∫ 1

0

G(ξi, s)p(s)y(s)ds, (3.7)

p(t) = exp
( ∫ t

0

a(s)ds
)
, ρ = φ′1(0), (3.8)

G(t, s) =
1
ρ

{
φ1(t)φ2(s) s ≥ t

φ1(s)φ2(t) s ≤ t,

u(t) ≥ 0 if y(t) ≥ 0.

The proof of this lemma is very similar to a proof in [13], so we omit it here. Let

q(t) = min{φ1(t)
|φ1|0

,
φ2(t)
|φ2|0

}, t ∈ [0, 1]

where |y(t)|0 = max |y(t)|, t ∈ [0, 1].
The following Lemma was also established by Ma and Wang.

Lemma 3.3. Suppose (H3) and (3.3) are satisfied, y ∈ C[0, 1], y ≥ 0, then the
solution of (3.4)-(3.5) satisfies

u(t) ≥ |u|0q(t), t ∈ [0, 1]. (3.9)

Thus, for any δ ∈ [0, 1/2], there exists λ such that

u(t) ≥ λ|u|0, t ∈ [δ, 1− δ], (3.10)

where λ = min{q(t) : t ∈ [δ, 1− δ]}. Let

M = max
0≤t≤1

∫ 1

0

G(t, s)p(s)ds +
∑m−2

i=1 αi

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)ds;

N = max
0≤t≤1

|
∫ 1

0

∂G(t, s)
∂t

p(s)ds +
∑m−2

i=1 αiφ
′
1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)ds|;

m = min
δ≤t≤1−δ

∫ 1−δ

δ

G(t, s)p(s)ds +
∑m−2

i=1 αiφ1(δ)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1−δ

δ

G(ξi, s)p(s)ds.

To present our main results, we assume there exist constants r2 ≥ b
λ > b > r1 > 0,

L2 ≥ L1 > 0 such that b
m < min{ r2

M , L2
N } and the following assumptions hold:

(A1) f(t, u, v) ∈ C([0, 1]× [0,+∞)×R, [0,+∞));
(A2) f(t, u, v) < min{r1/M,L1/N}, (t, u, v) ∈ [0, 1]× [0, r1]× [−L1, L1];
(A3) f(t, u, v) > b/m, (t, u, v) ∈ [δ, 1− δ]× [b, b/λ]× [−L2, L2];
(A4) f(t, u, v) ≤ min{r2/M,L2/N}, (t, u, v) ∈ [0, 1]× [0, r2]× [−L2, L2].
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Theorem 3.4. Under assumption (A1)-(A4), (H3), (3.3), Problem (1.5)-(1.6) has
at least three positive solutions x1, x2, x3 satisfying

max
0≤t≤1

x1(t) ≤ r1, max
0≤t≤1

|x′1(t)| ≤ L1;

b < min
δ≤t≤1−δ

x2(t) ≤ max
0≤t≤1

x2(t) ≤ r2, max
0≤t≤1

|x′2(t)| ≤ L2;

max
0≤t≤1

x3(t) ≤
b

λ
, max
0≤t≤1

|x′3(t)| ≤ L2.

(3.11)

Proof. Problem (1.5)-(1.6) has a solution x = x(t) if and only if x solves the operator
equation

x(t) =
∫ 1

0

G(t, s)p(s)f(s, x(s), x′(s))ds + Aφ1(t) = (Tx)(t), 0 < t < 1.

Let X = C1[0, 1] be endowed with the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, 1],
and the maximum norm

‖x‖ = max
{

max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|
}
.

Define the cone P ⊂ X by

P = {x ∈ X|x(t) ≥ 0, min
δ≤t≤1−δ

x(t) ≥ λ|x(t)|0, t ∈ [0, 1]}.

Define functionals

γ(x) = max
0≤t≤1

|x′(t)|, θ(x) = max
0≤t≤1

|x(t)|,

α(x) = min
δ≤t≤1−δ

|x(t)|, for x ∈ X.

Then γ, θ : P → [0,+∞) are nonnegative continuous convex functionals satisfying
(2.1) and (2.2); α is nonnegative continuous concave functional with α(x) ≤ θ(x)
for all x ∈ X.

Now we verify that all the conditions of Lemma 2.1 are satisfied. If x ∈
P (γ, L2; θ, r2), then γ(x) ≤ L2, θ(x) ≤ r2 and assumption (A4) implies

f(t, x(t), x′(t)) ≤ min{L2

N
,
r2

M
},

consequently

θ(Tx) = max
0≤t≤1

[
∫ 1

0

G(t, s)p(s)f(s, x(s), x′(s))ds

+
∑m−2

i=1 αiφ1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)f(s, x(s), x′(s))ds]

≤ r2

M
max
0≤t≤1

[
∫ 1

0

G(t, s)p(s)ds +
∑m−2

i=1 αiφ1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)ds]

≤ r2

M
[ max
0≤t≤1

∫ 1

0

G(t, s)p(s)ds +
∑m−2

i=1 αi

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)ds]

≤ r2

M
M = r2.

Also

γ(Tx) = max
0≤t≤1

|
∫ 1

0

∂G(t, s)
∂t

p(s)f(s, x(s), x′(s))ds
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+
∑m−2

i=1 αiφ
′
1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)f(s, x(s), x′(s))ds|

≤ L2

N
max
0≤t≤1

|
∫ 1

0

∂G(t, s)
∂t

p(s)ds +
∑m−2

i=1 αiφ
′
1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)ds|

≤ L2

N
N = L2.

Hence,T : P (γ, L2; θ, r2) → P (γ, L2; θ, r2) and T is completely continuous on [0, 1].
In the same way, if x ∈ P (γ, L1; θ, r1), then assumption (A2) yields

f(t, x(t), x′(t)) < min{L1

N
,
r1

M
}, 0 ≤ t ≤ 1.

As in the argument above,we can obtain that T : P (γ, L1; θ, r1) → P (γ, L1; θ, r1).
Therefore, condition (S2) of Lemma 2.1 is satisfied.

To check condition (S1) of Lemma 2.1, we choose x(t) = b
λ = c. It’s easy to

see x(t) = b
λ ∈ P (γ, L2; θ, c;α, b) and α( b

λ ) > b. So {x ∈ P (γ, L2; θ, c;α, b)|α(x) >

b)} 6= ∅. If x ∈ P (γ, L2; θ, c;α, b), we have b ≤ x(t) ≤ b
λ , |x′(t)| < L2 for δ ≤ t ≤

1− δ. From the assumption (A2), we have

f(t, x(t), x′(t)) >
b

m
.

By the definition of α and the cone P ,

α(Tx) = min
δ≤t≤1−δ

[
∫ 1

0

G(t, s)p(s)f(s, x(s), x′(s))ds

+
∑m−2

i=1 αiφ1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1

0

G(ξi, s)p(s)f(s, x(s), x′(s))ds]

>
b

m
min

0≤t≤1
[
∫ 1−δ

δ

G(t, s)p(s)ds +
∑m−2

i=1 αiφ1(t)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1−δ

δ

G(ξi, s)p(s)ds]

≤ b

m
[ min
0≤t≤1

∫ 1−δ

δ

G(t, s)p(s)ds +
∑m−2

i=1 αiφ1(δ)

1−
∑m−2

i=1 αiφ1(ξi)

∫ 1−δ

δ

G(ξi, s)p(s)ds]

≥ b

m
m = b.

Then α(Tx) > b, for all x ∈ P (γ, L2; θ, c;α, b). This shows that condition (S1)
of lemma 2.1 is also satisfied. Finally we show (S3) holds too. Suppose x ∈
P (γ, L2; θ, r2;α, b) with θ(Tx) > b

λ . Then,by the definition of α and Tx ∈ P , we
have

α(Tx) = min
δ≤t≤1−δ

|(Tx)(t)| ≥ λ · max
0≤t≤1

|(Tx)(t)| = λ · θ(Tx) = λ · b

λ
= b.

So condition (S3) of lemma 2.1 is satisfied. Therefore, Lemma 2.1 yields that
problem (1.5)-(1.6) has at least three positive solutions x1, x2, x3 in P (γ, L2; θ, r2)
and (3.11) is satisfied. �

Remark 3.5. In Lemma 2.1, we need only T : P (γ, L2; θ, r2) → P (γ, L2; θ, r2);
therefore, condition (A1) can be substituted with the weaker condition

(C1) f ∈ C([0, 1]× [0, r2]× [−L2, L2], [0,+∞)).
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From the proof of Theorem 3.4, it is easy to see that, if conditions like (A1)-(A4) are
appropriate combined, we can obtained an arbitrary number of positive solutions
for this problem.

Corollary 3.6. Suppose condition (A1) is satisfied and there exist constants 0 <
r1 < b1 < b1/λ ≤ r2 < b2 < b2/λ · · · ≤ rn, 0 < L1 ≤ L2 ≤ · · · ≤ Ln−1, n ∈ N , such
that

bi/m ≤ min{ri+1

M
,
Li+1

N
}

If the following two conditions are satisfied then problem (1.5)-(1.6) admits at least
2n− 1 positive solutions.

(E1) f(t, u, v) < min{ ri

M , Li

N }, (t, u, v) ∈ [0, 1]× [0, ri]× [−Li, Li], 1 ≤ i ≤ n;
(E2) f(t, u, v) > bi

m , (t, u, v) ∈ [δ, 1− δ]× [bi,
bi

λ ]× [−Li+1,−Li+1], 1 ≤ i ≤ n− 1.

Proof. When n = 1, it follows from condition (E1) that

T : P (γ, L1; θ, r1) → P (γ, L1; θ, r1) ⊆ P (γ, L1; θ, r1).

Then by Schauder’s fixed-point theorem, T has at least one fixed point x1 in
P (γ, L1; θ, r1). When n = 2, it is clear that Theorem 3.4 holds. Then we can
obtain at least three positive solutions x2, x3, x4. Along this way, we can complete
the proof by the induction method. �

4. Positive solutions of (1.5), (1.7)

In this section we study problem (1.5), (1.7). The method and existence results
are remarkable analogous to those in section 3. First, we give some Lemmas.
Suppose φ3 is the unique solution of the linear boundary-value problem

φ′′3(t) + a(t)φ′3(t) + b(t)φ1(t) = 0, t ∈ (0, 1), (4.1)

φ′3(0) = 0, φ3(1) = 1. (4.2)

satisfying

0 <
m−2∑
i=1

αiφ3(ξi) < 1. (4.3)

Then problem

x′′(t) + a(t)x′(t) + b(t)x(t) + y(t) = 0, t ∈ (0, 1) (4.4)

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ξi), (4.5)

is equivalent to integral equation

x(t) =
∫ 1

0

G1(t, s)p(s)y(s)ds + A1φ3(t), (4.6)

where

A1 =
∑m−2

i=1 αi

1−
∑m−2

i=1 αiφ3(ξi)

∫ 1

0

G1(ξi, s)p(s)y(s)ds, (4.7)

p(t) = exp(
∫ t

0

a(s)ds), ρ1 = −φ3(0)φ′2(0), (4.8)
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G1(t, s) =
1
ρ1

{
φ3(t)φ2(s) 1 ≥ s ≥ t ≥ 0
φ3(s)φ2(t) 0 ≤ s ≤ t ≤ 1,

x(t) ≥ 0 if y(t) ≥ 0.

Let (H3), (4.3) be satisfied, substituting φ1(t) with φ3(t), we can obtain a similar
result as in lemma 3.3. Let

M1 = max
0≤t≤1

∫ 1

0

G1(t, s)p(s)ds +
∑m−2

i=1 αi

1−
∑m−2

i=1 αiφ3(ξi)

∫ 1

0

G1(ξi, s)p(s)ds;

N1 = max
0≤t≤1

|
∫ 1

0

∂G1(t, s)
∂t

p(s)ds +
∑m−2

i=1 αiφ
′
3(t)

1−
∑m−2

i=1 αiφ3(ξi)

∫ 1

0

G1(ξi, s)p(s)ds|;

m1 = min
δ≤t≤1−δ

∫ 1−δ

δ

G1(t, s)p(s)ds +
∑m−2

i=1 αiφ3(δ)

1−
∑m−2

i=1 αiφ3(ξi)

∫ 1−δ

δ

G1(ξi, s)p(s)ds.

Analogous to Theorem 3.4, using results established above, it is not difficult to
show that problem (1.5),(1.7) has at least three positive solutions.

Theorem 4.1. Suppose conditions (H3), (4.3), (C1) are satisfied and there exist
constants r2 ≥ b

λ1
> b > r1 > 0, L2 ≥ L1 > 0 such that b

m1
< min{ r2

M1
, L2

N1
} and

the following assumptions hold:
(A5) f(t, u, v) < min{r1/M1, L1/N1}, (t, u, v) ∈ [0, 1]× [0, r1]× [−L1, L1];
(A6) f(t, u, v) > b/m1, (t, u, v) ∈ [δ, 1− δ]× [b, b/λ1]× [−L2, L2];
(A7) f(t, u, v) ≤ min{r2/M1, L2/N1}, (t, u, v) ∈ [0, 1]× [0, r2]× [−L2, L2].

Then problem (1.5), (1.7) has at least three positive solutions x1, x2, x3 satisfying

max
0≤t≤1

x1(t) ≤ r1, max
0≤t≤1

|x′1(t)| ≤ L1;

b < min
δ≤t≤1−δ

x2(t) ≤ max
0≤t≤1

x2(t) ≤ r2, max
0≤t≤1

|x′2(t)| ≤ L2;

max
0≤t≤1

x3(t) ≤
b

λ1
, max

0≤t≤1
|x′3(t)| ≤ L2.

(4.9)

Further we can establish following multiplicity results of problem (1.5), (1.7).

Corollary 4.2. Suppose condition (A1) is satisfied and there exist constants 0 <
r1 < b1 < b1/λ ≤ r2 < b2 < b2/λ · · · ≤ rn, 0 < L1 ≤ L2 ≤ · · · ≤ Ln−1, n ∈ N , such
that

bi/m ≤ min{ri+1

M
,
Li+1

N
}

If the following two conditions are satisfied then problem (1.5), (1.7) admits at least
2n− 1 positive solutions:

(E3) f(t, u, v) < min{ ri

M1
, Li

N1
}, (t, u, v) ∈ [0, 1]× [0, ri]× [−Li, Li], 1 ≤ i ≤ n;

(E4) f(t, u, v) > bi

m1
, (t, u, v) ∈ [δ, 1−δ]× [bi,

bi

λ1
]× [−Li+1,−Li+1], 1 ≤ i ≤ n−1

5. Examples

In this section we present an example to illustrate our main results. Consider
the boundary-value problem

x′′(t)− x(t) + f(t, x(t), x′(t)) = 0, 0 < t < 1

x(0) = 0, x(1) = e1/2x(1/2),
(5.1)



EJDE-2006/24 POSITIVE SOLUTIONS 9

where

f(t, u, v) =
1
5

{
et + u4 + ( v

1000 )3 0 ≤ u ≤ 5
et + 625 + ( v

1000 )3 u > 5

Considering lemma 3.1, 3.2, we obtain

φ1(t) =
e1+t − e1−t

e2 − 1
, φ′1(0) =

2e

e2 − 1
,

φ2(t) =
e2−t − et

e2 − 1
, p(t) = 1, δ =

1
4
, λ =

e
5
4 − e

3
4

e2 − 1
,

G(t, s) =
1

2e(e2 − 1)

{
(e1+t − e1−t)(e2−s − es) s ≥ t

(e1+s − e1−s)(e2−t − et) s ≤ t,

M = max
0≤t≤1

∫ 1

0

G(t, s)ds +
e1/2

1− e1/2φ1(1/2)

∫ 1

0

G(1/2, s)ds

=
(e + 1− 2e1/2)(1 + e1/2 + e3/2)

e + 1
.

m = min
1
4≤t≤ 3

4

∫ 3
4

1
4

G(t, s)ds +
e1/2φ1(1/4)

1− e1/2φ1(1/2)

∫ 3
4

1
4

G(1/2, s)ds

=
1
2
− e1/2 +

e7/4 − e5/4

e− 1
.

N = max
0≤t≤1

|
∫ 1

0

∂G(t, s)
∂t

ds +
e1/2φ′1(t)

1− e1/2φ1(1/2)

∫ 1

0

G(1/2, s)ds|

=
(e1/2 − 1)(e2 + 1)

e− 1
.

Choose r1 = 1, r2 = 1000, b = 4, L1 = 10, L2 = 1000, then min{ r1
M , L1

N } = 1
M ,

min{ r2
M , L2

N } = 1000
N . We can check that conditions (C1), (H3), (3.3) are satisfied

and that f(t, u, v) satisfies

f(t, u, v) <
1
M

, for (t, u, v) ∈ [0, 1]× [0, 1]× [−10, 10];

f(t, u, v) >
4
m

, for (t, u, v) ∈ [
1
4
,
3
4
]× [4,

4
λ

]× [−1000, 1000];

f(t, u, v) <
1000
N

, for (t, u, v) ∈ [0, 1]× [0, 1000]× [−1000, 1000].

Then all assumptions of Theorem 3.4 hold. Thus, (5.1) has at least three positive
solutions x1, x2, x3 satisfying

max
0≤t≤1

x1(t) ≤ 1, max
0≤t≤1

|x′1(t)| ≤ 10;

4 < min
1
4≤t≤ 3

4

x2(t) ≤ max
0≤t≤1

x2(t) ≤ 1000, max
0≤t≤1

|x′2(t)| ≤ 1000;

max
0≤t≤1

x3(t) ≤
4
λ

, max
0≤t≤1

|x′3(t)| ≤ 1000 .
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Remark 5.1. We see that the nonlinear term involves the first order derivative
and can it change sign. The early results for multiplicity of positive solutions, to
the author’s best knowledge, are not applicable to the problem above. Meanwhile,
as the nonlinear term does not satisfy the suplinear or sublinear condition even if
the nonlinear term is f(t, u, v) = f(u), we can not obtain even one positive solution
of this problem from [13].
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