
A FAST MARCHING LEVEL SET METHOD FOR THE STEFAN PROBLEM

by

Gabriel Wood, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Applied Mathematics
May 2015

Committee Members:

 Ray Treinen, Chair

 Julio Dix

 Young Ju Lee

  

COPYRIGHT

by

Gabriel Wood

2015

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Gabriel T. Wood, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

Foremost, I would like to thank my beautiful wife and children for their patience

and understanding, and for continuing to put up with me while I completed this thesis.

Sincere thanks to my advisor Dr. Ray Treinen who started this project with me although I

had absolutely no experience in this field, worked late nights and early mornings,

weekends and holidays, who pushed me through impossible deadlines and broken

equipment to make sure this project was a success. I would like to thank my other

committee members, Dr. Julio Dix, and Dr. Young Ju Lee for all of their feedback.

!iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT iv ..

LIST OF FIGURES vi ...

ABSTRACT vii ...

CHAPTER

1. BACKGROUND 1 ..

2. FINITE DIFFERENCE METHODS 4 ..

3. SIGNED DISTANCE FUNCTIONS 9 ..

4. THE HEAT EQUATION 11 ...

5. THE LEVEL SET METHOD 15 ...

6. HJ WENO 19 ...

7. THE FAST MARCHING METHOD 25 ...

8. SOLVING THE STEFAN PROBLEM 30 ...

BIBLIOGRAPHY 36 ...

!v

LIST OF FIGURES

Figure Page

1.1 Domain 2 ...
3.1 Signed distance function 10 ..
3.2 Signed distance function for disjoint warm regions 10 ..
4.1 Heat distribution at time t = 0 13 ..
4.2 Heat distribution at time t = 10 13 ..
4.3 Heat distribution at time t = 100 14 ..
4.4 Heat distribution at time t = 500 14 ..
5.1 Zero level set at time t = 0 17 ...
5.2 Zero level set at time t = 15 18 ...
7.1 Initial band of close points 27 ...
7.2 After some time steps 27 ...
8.1 Heat distribution at time t = 0 31 ..
8.2 Heat distribution at time t = 10 31 ..
8.3 Free boundary at time t = 0, 5, 10 32 ..
8.4 Closer view of free boundary at time t = 0, 5, 10 32 ..
8.5 Fusing Level Sets, heat distribution t = 0 33 ..
8.6 Fusing Level Sets, heat distribution t = 10 33 ..
8.7 Four warm regions, heat distribution t = 0 34 ...
8.8 Four warm regions, heat distribution t = 10 34 ...
8.9 Four warm regions, heat distribution t = 25 35 ...

!vi

ABSTRACT

The Stefan problem describes the change in temperature distribution with respect

to time in a medium undergoing phase change. In this thesis we provide a unique

combination of established numerical techniques to solve the single phase Stefan problem

in two dimensions. For this purpose it is necessary to solve the heat equation and to track

the location of the free boundary as it moves. We define the finite difference method for

approximating the solution to partial differential equations which forms the basis for our

computations, and a collection algorithms using finite difference approximations that we

use to find the solution. To track the free boundary we use a level set method, combined

with a fast marching method to determine the velocity with which the boundary will

move according to the Stefan condition. The heat equation is solved with a second order

accurate implicit approach.

!vii

CHAPTER 1

BACKGROUND

The classical Stefan problem describes a temperature distribution in a

heterogeneous medium which is undergoing a phase change, such as ice melting in water.

The problem is named for J. Stefan, a physicist who worked extensively on this problem

and published a series of papers on the subject in 1889, see Vuik [12] for historical

background.

Stefan’s original formulation of the problem was to consider a quantity of seawater

which is cooled down to its freezing temperature. Assuming that no fluid is moving,

suppose that at a certain time the temperature of the adjacent air decreases to ↵ degrees

below the freezing temperature of the seawater. Thereafter the temperature of the air does

not change in time. Ice formation begins at the interface between air and seawater. The

resulting ice layer grows as a function of time. Stefan found that the thickness of the ice

layer h is proportional to the square root of the elapsed time.

A recent work on this problem uses adaptive multi grid techniques [6]. For this

Thesis, our formulation of the problem, based loosely on the formulation described by

Chen, Merriman, Osher, and Smereka in [2], is as follows. Consider a square domain, D,

of a pure material. At each time t, the material at any grid-point is either in liquid or solid

phase. Let T (x, t) represent the temperature of the material. We denote the region where

the material is in the liquid phase by ⌦ and the region where the material is solid by ⌦c.

The interface between the solid and liquid pases, i.e., the boundary of ⌦, is denoted by �.

1

Figure 1.1: Domain

Let V represent the normal velocity at the front �. The governing equations for our

formulation of the problem are

c

s

@T

@t

= r · (k
s

rT), x 2 ⌦c

, (1.1)

c

l

@T

@t

= r · (k
l

rT), x 2 ⌦, (1.2)

where c
l

and c
s

denote the volumetric heat capacities and k

s

and k
l

are the thermal

diffusivities of the material in ⌦ and ⌦c, respectively. On �, the jump condition

L

~

V = �

k

l

@T⌦

@

~

N

� k

s

@T⌦c

@

~

N

�
(1.3)

2

holds, where L denotes the latent heat of solidification. The jump is taken from liquid to

solid, and the vector ~

N is the outward normal vector at the front. In the liquid region @T⌦

@

~

N

denotes the normal derivative of T and @T⌦c

@~n

the corresponding normal derivative of T in

the solid region. Equation (1.3) is commonly referred to as the Stefan condition. For

simplification scale the coordinate axes such that the constants scale to 1, and assume that

the temperature in the solid region, ⌦c, will be uniformly equal to 0�C. With these

assumptions, equation (3) simplifies to

~

V = �@T⌦

@

~

N

(1.4)

This velocity V will tell us how the boundary of the liquid region will move as the

surrounding ice is melted.

3

CHAPTER 2

FINITE DIFFERENCE METHODS

The finite difference method is a technique for approximating the solution to a

differential equation defined on a discrete grid. The finite difference approximations for

the derivatives are one of the oldest numerical methods to solve differential equations and

were known by Euler in 1768 when he published Institutionum calculi integralis. Stability

and convergence criteria were established by Courant, Friedrichs, and Lewy in 1928, and

by 1947 many of the formulas were already standardized as stated by Fox in [5]. The

exploration of finite difference techniques in numerical applications expanded in the

1950’s, and numerous papers were published on the subject during this time period.

For the sake of simplicity, consider the one-dimensional case. The main concept

behind any finite difference scheme is related to the definition of the derivative of a

smooth function u at a point x 2 R:

u

0(x) = lim
h!0

u(x+ h)� u(x)

h

As h tends to zero (without vanishing), the quotient on the right-hand side

provides a good approximation of the derivative. We consider the approximation to be

good when the error committed in this approximation tends toward zero when h tends

toward zero. If the function is sufficiently smooth in the neighborhood of x, it is possible

to quantify this error using a Taylor series expansion. Assuming that the function is well

behaved, we can create a Taylor series expansion:

f(x0 + h) = f(x0) +
f

0(x0)

1!
h+

f

(2)(x0)

2!
h

2 + ...+
f

(n)(x0)

n!
h

n +R(n)(x)

4

Where R(n) is a remainder term. The remainder term, as well as the higher order terms are

small, which allows us to approximate the the first derivative as:

f

0(x) ⇡ f(x+ h)� f(x)

h

. (2.1)

With the inclusion of more neighboring grid points, higher order derivatives can be

estimated in a similar fashion.

Rate of Convergence

The order of a finite difference method is a way of quantifying the convergence of

the numerical approximation to the solution of a partial differential equation to the true

solution. A finite difference stencil is first order if the error is O(�x), second order if the

error is O(�x)2, nth order if the error is O(�x)n where �x is the grid spacing in the x

direction.

Spatial Derivatives

There are many different difference formulas that may be used to approximate the

derivative of a function at a particular point. Depending on the numerical data, or the

nature of the underlying function, we can choose the stencil that best approximates the

derivative at any given point. Common stencils for first order derivatives are the forward

and backwards differences, (O(�x)), and central difference (O(�x)2):

f

0(x) ⇡ f(x+ h)� f(x)

h

forward difference (2.2)

f

0(x) ⇡ f(x)� f(x� h)

h

backward difference (2.3)

f

0(x) ⇡ f(x+ h)� f(x� h)

2h
central difference (2.4)

5

The same is true for second order or higher derivatives, though they require more points to

be used to estimate the derivatives.

f

00(x) ⇡ f(x� h)� 2f(x) + f(x+ h)

h

2
centered difference (2.5)

Finite difference weights on an arbitrarily spaced grid

All of the proceeding equations assume that the function is defined on a uniform

grid, this need not be the case. The following algorithm by Fornberg [3] computes the

required weights for finite difference formulas on uniform, or non-uniform grids, for more

details see Fornberg [4].

Given data values u
i

at the locations x
i

, i = 0, 1, ..., n, the Lagrange interpolation

polynomial based on the first j + 1 function values u
i

= u(x
i

), i = 0, 1, ..., j becomes

p

j

(x) =
jX

i=0

L

i,j

(x)u
i

, j = 0, 1, ..., n,

where

L

i,j

(x) =
(x� x0) . . . (x� x

i�1)(x� x

i+1) . . . (x� x

j

)

(x
i

� x0) . . . (xi

� x

i�1)(xi

� x

i+1) . . . (xi

� x

j

)
(2.6)

Assuming for simplicity that we want the approximations to be accurate at x = 0, we get

d

k

u(x)

dx

k

�����
x=0

⇡ d

k

p

j

(x)

dx

k

�����
x=0

· u
i

=
jX

i=0

c

k

i,j

· u
i

.

Where the second subscript for ck
i,j

denotes the stencil width; we abbreviate ck
i,n

as ck
i

. By

Taylor’s formula

L

i,j

(x) =
jX

k=0

d

k

L

i,j

(x)

dx

k

�����
x=0

· x
k

k!
=

jX

k=0

c

k

i,j

x

k

k!
, (2.7)

i.e., the weights ck
i,j

can be read off from the Taylor coefficients of L
i,j

(x). Equation (2.6)

implies the recursion relations

L

i,j

(x) =
(x� x

j

)

(x
i

� x

j

)
L

i,j�1(x)

6

and

L

j,j

(x) =

(
⇧j�2

⌫=0(xj�1 � x

⌫

)

⇧j�1
⌫=0(xj

� x

⌫

)

)
(x� x

j�1)Lj�1,j�1(x)

Substitution of the Taylor series (2.7) into these leads to the following recursion relations

for it’s coefficients:

c

k

i,j

=
1

x

j

� x

i

(x
j

c

k

i,j�1 � kc

k�1
i,j�1), (2.8)

c

k

j,j

=

(
⇧j�2

⌫=0(xj�1 � x

⌫

)

⇧j�1
⌫=0(xj

� x

⌫

)

)
(kck�1

j�1,j�1 � x

j�1c
k

j�1,j�1). (2.9)

Starting from the trivial c00,0 = 1, assuming any undefined weights to be zero, all the

required weights ck
i,j

follow recursively from (2.8) and (2.9). The ratios of the products in

(2.9) are also evaluated recursively. In order to interpolate to find a the value of a partial

derivative at a point in between grid points, this algorithm can be used to calculate weights

for the needed order of accuracy.

Time Derivatives

Many approaches can be taken to find the time derivatives, and the best method to

use will depend on the nature of the problem. The simplest technique is an Explicit

method in which the the value at time n+ 1 depends explicitly on the value at time n. The

advantage of this method is simplicity, and computational speed. However, the use of an

explicit method imposes limitations on the size of the time step that can be used, and so

we are limited by the CFL condition, see Moler [7] for example, to the upper bound

�t 1

2
�x

2

in one dimension, and

�t 1

4
�x

2

in two dimensions. As this shows, when the grid size is decreased, the size of the time step

shrinks rapidly. To get around this problem, an implicit method can be employed which

7

does not have such a time step restriction. As an illustration, if we consider the one

dimensional heat equation:
@T

@t

= k

@

2
T

@x

2
(2.10)

where T represents the temperature distribution. An implicit discretization of this equation

is:
T

n+1
i

� T

n

i

�t

= k

T

n+1
i+1 � 2T n+1

i

+ T

n+1
i�1

�x

2
(2.11)

T

n

i

is the temperature distribution at the point i and at time n.

Simplifying and letting k = 1

T

n

i

= (1 + 2�)T n+1
i

� �T

n+1
i+1 � �T

n+1
i�1 (2.12)

where � = �t

�x

2 . This gives us the current time step in terms of the following time step,

and a linear system of equations must be solved in order to find the value of T n

i

. The need

to solve a system of equations causes this approach to be more computationally

demanding and as a result much slower than the explicit method, per time step. This

increase in computational complexity is compensated for by the fact that there is no time

step restriction in the implicit method for stability, so we are able to take much larger

steps. However If the time step is too large it may result in an inaccurate solution so some

care must be taken to maintain consistency. This method is second order accurate in

space, and first order accurate in time.

The Crank-Nicolson method uses a combination of implicit and explicit

approaches and is second order accurate in both space and time.

T

n+1
i

� T

n

i

�t

=
1

2
(
T

n

i+1 + 1� 2T n+1
i

+ T

n+1
i�1

�x

2
+

T

n

i+1 � 2T n

i

+ T

n

i�1

�x

2
) (2.13)

This scheme is the most accurate at small timesteps, and the implicit method is best for

larger values of �t.

8

CHAPTER 3

SIGNED DISTANCE FUNCTIONS

A distance function d(~x) can be defined

d(~x) = min(|~x� ~x

i

|), 8~x
i

2 @⌦ (3.1)

Then d(~x) = 0 when x is on the boundary, see Osher and Fedkiw [9] for more details. If

we consider a point x 2 ⌦ which is not on the boundary and let x
c

2 @⌦ be the nearest

boundary point to x. Now, imagine a line segment from x to x
c

, for any point on this line

segment x
c

will be the closest boundary point. Using the distance function d(~x) to define a

signed distance function

�(~x) =

(
d(~x) ~x 2 ⌦

�d(~x) ~x 2 ⌦c

,

�(~x) will indicate a direction to the boundary as well as a distance, as we can see in

Figure 3.1. By initializing the signed distance function such that the zero level set of �(~x)

corresponds to the boundary of ⌦, we can easily determine the distance to the boundary

for each point ~x, and which region of the domain it falls into, by evaluating �(~x).

The signed distance function has several useful properties that simplify

calculations and enable us to represent more complicated domains simply. Let ⌦ be the

union of pairwise disjoint closed regions ⌦1,⌦2, ...,⌦n

. Then

� = min(�1(~x),�2(~x), ...,�n

(~x)) is the signed distance function representing the union of

the interior regions ⌦ as in Figure 3.2. Where �1 represents the signed distance to @⌦1, �2

is the signed distance to @⌦2, and so forth. Similarly, if ⌦ is the intersection of multiple

closed regions, � = max(�1(~x),�2(~x), ...,�n

(~x)) is the signed distance function

representing the interior regions of ⌦. The complement of the set �(~x) is a signed distance

9

function, where �c(~x) = ��(~x). The region �1(~x) \ �2(~x) has a signed distance function

defined by �(~x) = max(�1(~x),��2(~x)).

0
20

40
60

80

0

20

40

60

80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.1: Signed distance function

0

20

40

60

80

0
20

40
60

80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: Signed distance function for disjoint warm regions

10

CHAPTER 4

THE HEAT EQUATION

The heat equation, also sometimes called the diffusion equation, describes the

variation in heat in a given region over a period of time.

u

t

= �

2�u (Heat Equation)

where � is a constant, and �u = u

xx

+ u

yy

+ u

zz

= @

2
u

@x

2 +
@

2
u

@y

2 +
@

2
u

@z

2

Derivation

Professor Blank of Kansas State University showed us this elegant derivation of

the heat equation. We consider a three dimensional liquid region, ⌦, completely contained

inside a block of ice. Let u(x, y, z, t) be the temperature distribution in ⌦ at time t and let

E(t) be the total amount of heat contained in ⌦ at time t. Then,

E⌦(t) =

Z

⌦

cu dV

where c is the specific heat. The change in total heat with respect to time is then given by

E

0
⌦(t) =

Z

⌦

cu

t

dV. (4.1)

We know by Fourier’s law, see Mortimer [8] for example, that the heat flux density

through the boundary of ⌦ is

~q = kru,

where k is the thermal conductivity of water. Since all heat must escape through the

boundary of ⌦, and no work is done on the system, the change in total heat is

E

0
⌦(t) =

Z

@⌦

kru · ~n ds,

11

where @⌦ is the boundary of the liquid region. By the divergence theorem we have

E

0
⌦(t) =

Z

@⌦

kru · ~n ds =

Z

⌦

k�u dV (4.2)

By (4.1) and (4.2),

Z

⌦

cu

t

dV =

Z

⌦

k�u dV
Z

⌦

(cu
t

� k�u) dV = 0

cu

t

� k�u = 0

cu

t

= k�u

u

t

= �

2�u

where �2 = k/c.

Numerical Solution

Using an implicit method for the time derivative and second order accurate stencils

for the spacial derivatives, we can build an accurate heat equation solver that is

numerically stable for larger timesteps. Given data that is not initially smooth, the heat

equation will smooth the function instantaneously and the solution will remain stable

despite any initial discontinuities, as can be seen in Figures 4.1 and 4.2. The solution

evolves quickly, and will reach a steady state in a short period of time. We note that the

steady state is the solution to Laplace’s equation �u = 0 with the same boundary data.

Figures 4.3 and 4.4 were generated using our explicit heat equation solver where 500

timesteps completes in .068 seconds.

12

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

xy

u

Figure 4.1: Heat distribution time t = 0

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

xy

u

Figure 4.2: Heat distribution time t = 10

13

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.5

0.6

0.7

0.8

0.9

1

xy

u

Figure 4.3: Heat distribution time t = 100

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.5

0.6

0.7

0.8

0.9

1

xy

u

Figure 4.4: Heat distribution time t = 500

14

CHAPTER 5

THE LEVEL SET METHOD

The Level Set Method is a technique developed by Osher and Sethian in [10] to

track evolving interfaces on a fixed cartesian grid. Given a domain D, and an interface �

in Rn bounding an open region ⌦, we wish to analyze and compute its subsequent motion

under a velocity field, ~V . This velocity could be due to an external force, or based on

some internal physical properties as in the Stefan problem. We define a smooth function

�(x, t), called the level set function, with the interface � defined as the set where

�(x, t) = 0, x = x(x1, ..., xn

) 2 R

n. The level set function � is a signed distance function

with the following properties

�(x, t) > 0 for x 2 ⌦

�(x, t) < 0 for x 62 ⌦

�(x, t) = 0 for x 2 @⌦.

We use the function � to represent the interface and also to evolve the interface. We

evolve the interface in time by solving the level set equation, also called the convection or

advection equation, introduced by Osher and Sethian for interface evolution. The level set

equation is given by

�

t

+ ~

V ·r� = 0, (Level Set Equation)

where �
t

is the partial derivative of � with respect to time. This equation defines the

motion of the interface �, where �(~x) = 0. For all later time the free boundary can be

captured by locating the set �(t).

15

We use � to define the outward unit normal vector

~

N =
r�

|r�| , (5.1)

so we see that the normal vector ~

N points in the direction of r�, which implies that for

any tangential vector ~T , ~T ·r� = 0. Letting ~

V = V

n

~

N + V

t

~

T the level set equation is

�

t

+ (V
n

~

N + V

t

~

T) ·r� = 0,

which is equivalent to

�

t

+ V

n

~

N ·r� = 0.

Also,

V

n

~

N ·r� = V

n

r�

|r�| ·r� = V

n

|r�|2
|r�| = V

n

|r�|,

so the level set equation becomes

�

t

+ V

n

|r�| = 0.

As the velocity ~

V is only valid on the zero level set of � we create a speed function

~

F

ext

that is a continuous extension of ~V off of � onto all of D. There will be more

discussion on finding the extension velocity chapter 7. The motion is analyzed by

advecting the � values with the extension velocity ~

F

ext

. Using the extension velocity, our

modified level set equation becomes

�

t

+ ~

F

ext

|r�| = 0. (5.2)

We compute the velocity at each grid point as a scalar speed value which is the

magnitude of a velocity vector in the direction outward normal to �. We then solve the

Level Set Equation, which in effect moves all of the level sets with the normal velocity

given by ~

F

ext

. In this way we determine the location of � at the next time step.

16

20 40 60 80 100 120

20

40

60

80

100

120

Figure 5.1: Zero level set at time t = 0

Using the level set approach, we create an algorithm that deals with more

complicated configurations of the domain automatically and does not require any

additional machinery. In instances where ⌦ is the union of several pairwise disjoint

regions, this method will allow these regions to merge (or not) as dictated by the physical

conditions of the problem. An example of this is a domain consisting of multiple warm

liquid regions which are initially surrounded by ice, merging into a single closed region as

the ice between them is melted. In Figures 5.1 and 5.2 we see the merging of two such

regions.

17

20 40 60 80 100 120

20

40

60

80

100

120

Figure 5.2: Zero level set at time t = 15

18

CHAPTER 6

HJ WENO

In order to discuss the HJ WENO method it is necessary to first go over a couple

of techniques on which HJ WENO is based, and we follow the explanation by Osher in

[9]. The first idea is upwinding, or upwind differencing, which allows us to choose the

stencil to use in the finite difference approximations based on the direction that the

relevant information is traveling. The second is the HJ ENO method, which will choose

the most accurate interpolation of � to use when choosing a stencil for the finite difference

approximations.

Upwinding

Once we have a signed distance function, �(~x), and a velocity defined at each point

in the domain, we can evolve � by F to solve for the location of the boundary at the next

time step. A first order accurate method for this is the forward Euler method given by:

�

n+1 � �

n

�t

+ ~

F

n ·r�

n = 0 (6.1)

If we expand the second term, for the two dimensional case we get

�

n+1 � �

n

�t

+ u

n

�

n

x

+ v

n

�

n

y

= 0 (6.2)

Where un and vn are the components of ~F in the x and y directions, respectively, at time

n. The sign of ~n indicates the direction of motion of �(~x) at time n. If un

i

, u evaluated at

the point x = i at time n is greater than zero, then the values of � are moving from left to

right, so we need to look to the left of x
i

to determine what value of � will land on x
i

at

19

the end of the time step. Similarly if u
i

< 0 we need to look to the right of x
i

to determine

which value of � will be used in updating x
i

for the next time step. This information

enables us to choose the best stencil to use to approximate the derivative. The points that

need to be used to approximate the derivative will be those points in the direction that the

information is coming from. If u
i

is positive, we will need to choose a finite difference

stencil that incorporates the information to the left of x
i

, D�x

i

will give the most relevant

information in this case as it uses the point to the left of x
i

to calculate the derivative. The

technique of choosing the approximation to be used in the derivative based on the sign of

the velocity function at the point in question is called upwind differencing, or upwinding.

This will bias the finite difference stencil in the direction that the most relevant

information is coming from.

HJ ENO

The HJ ENO method is a way of extending the first order accurate upwinding

scheme to higher spacial order by finding better approximations to �

�
x

and �+
x

. This is

accomplished by using the smoothest possible interpolation of � and then differentiating

to get �
x

. Newton’s divided difference interpolation is used to interpolate �, the 0th

divided differences of � at each grid node i located at x
i

are defined by:

D

0
i

� = �

i

The first divided differences of � defined midway between grid nodes as

D

1
i+ 1

2
� =

D

0
i+1��D

0
i

�

�x

The second and third divided difference are defined as

D

2
i

� =
D

1
i+ 1

2
��D

1
i� 1

2
�

2�x

20

and

D3
i+ 1

2
� =

D

2
i+1��D

2
i �

3�x

where the third divided difference is defined midway between the grid nodes. These

divided differences are used to create a polynomial of the form

�(x) = Q0(x) +Q1(x) +Q2(x) +Q3(x)

This polynomial can be differentiated in order to find the differences, ��
x

and �+
x

to be

used for upwinding.

�

x

(x
i

) = Q

0
1(xi

) +Q

0
2(xi

) +Q

0
3(xi

);

To find ��
x

, start with k = i� 1, and to find �+
x

we start with k = i, then define

Q1(x) = (D1
k+ 1

2
�)(x� x

i

)

then

Q

0
1(xi

) = D

1
k+ 1

2
�

So for ��
x

Q

0
1(xi

) = D

1
k+ 1

2
� = D

1
i�1+ 1

2
� = D

1
i� 1

2
� = D

�
�

and similarly for �+
x

Q

0
1(xi

) = D

1
k+ 1

2
� = D

1
i+ 1

2
� = D

+
�

Then, the first-oder accurate polynomial interpolation is first-order upwinding. Adding the

Q

0
2(xi

) will get us to second order accuracy, and adding Q

0
3(xi

) term will lead to third

order accuracy. When adding the second, and if necessary the third term, we have an

option to choose to include either the point to the left or to the right. We will choose the

21

term based on the direction in which the data is varying more slowly, in order to avoid

interpolating near discontinuities or large gradients which can cause error in the

interpolating function which will then lead to errors in the approximation of the

derivatives.

The result is a third-order accurate scheme that uses a subset of

�

i�3,�i�2,�i�1,�i

,�

i+1,�i+2 that depends on how the stencil is chosen. If we define the

following v1 = D

�
�

i�2, v2 = D

�
�

i�1, v3 = D

�
�

i

, v4 = D

�
�

i+1, v5 = D

�
�

i+2, then

�

1
x

=
v1

3
� 7v2

6
+

11v3
6

, (6.3)

�

2
x

= �v2

6
+

5v3
6

+
v4

3
, (6.4)

�

3
x

=
v3

3
+

5v4
6

� v5

6
(6.5)

are the three potential HJ ENO approximations to ��
x

. The one of these approximations

with the least error will be chosen by choosing the smoothest possible polynomial

interpolation of �.

HJ WENO

With the HJ ENO method, only one of the three candidate stencils (6.3), (6.4), or

(6.5) is chosen. It turns out that in smooth regions where the function is well behaved, this

is unnecessary. Much higher accuracy can be gained by using a weighted combination of

the three ENO approximations, up to fifth order in smooth regions. The HJ WENO

approximation of (��
x

)
i

is given by:

�

x

= w1�
1
x

+ w2�
2
x

+ w3�
3
x

(6.6)

where 0 w

k

 1 are the weights and w1 + w2 + w3 = 1. It has been found that in

smooth regions, the weights w1 = .1, w2 = .6, and w3 = .3 give the optimal

22

approximations. In smooth regions, these weights will lead to inaccurate results. It is

necessary then to base the weights on some estimate of the smoothness of the stencils in

(6.3), (6.4), and (6.5). If we set

S1 =
13

12
(v1 � 2v2 + v3)

2 +
1

4
(v1 � 4v2 + 3v3)

2
, (6.7)

S2 =
13

12
(v2 � 2v3 + v4)2 +

1

4
(v2 � v4)

2
, (6.8)

and

S3 =
13

12
(v3 � 2v4 + v5)

2 +
1

4
(3v3 � 4v4 + v5)

2
. (6.9)

Then use the smoothness estimates and define

↵1 =
.1

(S1 + ✏)2
, (6.10)

↵2 =
.6

(S2 + ✏)2
, (6.11)

and

↵3 =
.3

(S3 + ✏)2
, (6.12)

with ✏ = 10�6 max(v21, v22, v23, v24, v25) + 10�99, where the 10�99 term prevents division by

zero in the ↵ calculations. Then we set the weights as follows:

w1 =
↵1

↵1 + ↵2 + ↵3
, (6.13)

w2 =
↵2

↵1 + ↵2 + ↵3
, (6.14)

and

w3 =
↵3

↵1 + ↵2 + ↵3
. (6.15)

If the data are sufficiently smooth, these will give approximately the optimal weights

w1 ⇡ .1, w2 ⇡ .6, and w3 ⇡ .3. If one of the stencils incorporates a region where the data

are not smooth, the corresponding value for ↵ will be small when compared to the other

23

stencils, and the stencil will be given minimal weight. There can still be problems if all

three stencils include data that is not smooth, but in this case the HJ ENO method would

have trouble as well. If these problematic areas are localized, the method will repair itself

and only have temporary, localized error as a result.

24

CHAPTER 7

THE FAST MARCHING METHOD

The fast marching method is a technique introduced by Sethian [11] to solve

certain boundary value problems by propagating information out from a boundary at

which values are known.

Finding Signed Distances

We build a signed distance function �(~x) with two properties:

1. The value of � at a point ~x represents the signed distance from that point to the

boundary.

2. The function must satisfy |r�(~x)| = 1.

In order to solve the equation in property 2, which is a version of the Eikonal equation, we

use an upwinding approximation from Godunov:

[max(D�x

ij

�,�D

+x

ij

�, 0)2 +max(D�y

ij

�,�Dij

+y

�, 0)2]
1
2 = 1 (7.1)

where D+x

ij

is the forward difference in the x direction at the point (i,j), D�x

ij

is the

backward difference in the x direction at the point (i,j), similarly for the y direction.

D

�x

� =
�

i,j

� �

i�1,j

h

�D

+x

� =
�

i,j

� �

i+1,j

h

D

�y

� =
�

i,j

� �

i,j�1

h

�D

+y

� =
�

i,j

� �

i,j+1

h

25

This upwinding approach will propagate information from the smallest values to the

largest values, so we use a systematic method to find the solution starting with the

smallest values of �, those which are closest to the boundary.

The first step is to locate the points which are adjacent to the free boundary. As

�(~x, t = 0) is a signed distance function we are able to easily locate these points, as any

point with a neighbor who has the opposite sign will be adjacent to the boundary. Using a

one grid point thick band of points adjacent to the boundary on either side the distance to

the boundary can be calculated quickly by using a contour plotter, such as Matlab’s

contour function, to determine the zero isocontour of the signed distance function. Once

the location of the boundary is known, the distance at points adjacent to the front is

determined as the Euclidean distance to the closest boundary point, d(~x) = ||x� x

c

||2.

Now that distance to the front has been calculated for all points adjacent to the

boundary we begin with the fast marching algorithm. The idea is to start with the point

having the smallest distance value, and then “march” from this point calculating the values

of distance as we progress away from the boundary. Since we are progressing from a

closed surface, the points outside will be calculated seperately from the points inside. In

other words, we march inward from the free boundary to the center, and then march

outward to the edge of the computational domain. Start by partitioning the points in ⌦ into

three sets: Accepted, Close, and Far. The initial band of calculated points is placed in the

set Close, with all other points in Far, and Accepted is empty. From there we repeat this

process:

1. Tag the point closest to the boundary as Trial.

2. Move the point Trial from Close into Accepted.

3. Move all neighbors of Trial that are in Far into Close.

26

4. Recalculate the distance to the boundary for neighboring points in Close by finding

the solution to the quadratic 7.1, based only on points that are in Accepted.

5. Repeat until all points are in Accepted.

�

ext

= Accepted is now a signed distance function whose zero level set corresponds to

�(~x) = 0.

Figure 7.1: Initial band of close points

Figure 7.2: After some timesteps

27

In performing calculations we consider all points in Far and Close to have value

infinity. Then the solution to the quadratic 7.1 is as follows:

Let ↵ = max(D�x

�,�D

+x

�, 0) and � = max(D�y

�,�D

+y

�, 0) then 7.1 is always of the

form ⇣
�

ij

� a

h

⌘2

+
⇣
�

ij

� b

h

⌘2
� 1

2

= 1 (7.2)

where a and b are defined

a =

(
�

i�1,j for ↵ = D

�x

�

�

i+1,j for ↵ = �D

+x

�

b =

(
�

i�1,j for � = D

�y

�

�

i+1,j for � = �D

+y

�

Given that only the values in accepted are finite, only one of �
i�1,j,�i+1,j and only one of

�

i,j�1,�i,j+1 will be finite. The corresponding difference formula will take the value �1
and will not be chosen by 7.1. The solution to 7.1 is

�

i,j

=
a+ b

h

±
p

(a+ b)2 � 2(a2 + b

2 � h

2)

2
.

Extension Velocity

In many problems involving a moving boundary, the velocity F will be defined at

the boundary by physical conditions, or otherwise given by the model. In these cases there

is some natural definition for the way that the boundary will evolve with time. Away from

the boundary there may be no such definitions. It is necessary then, to extend the front

velocity F to all of the points away from the front. The velocity at these points, denoted

F

ext

, can be constructed somewhat arbitrarily, with the only requirement being that in the

limit as one approaches the zero level set F
ext

must be equal to F :

lim
x!a

F

ext

(x) = F (a)

28

where a is a point on the front.

Since we are creating these values however we like, we can choose to create them

in such a way as to preserve the signed distance function. If F
ext

is constructed carefully it

will avoid the stretching and bunching of the level sets that will damage the signed

distance function and create the need for frequent reinitialization that can be costly in

terms of computations. We construct F
ext

such that

rF

ext

·r� = 0 (7.3)

Then the level set function will remain a signed distance function for all time, as

long as � and F
ext

are smooth. Since � is initially a signed distance function,

|r�(x, t = 0)| = 1. When we move � under the level set equation �
t

+ F

ext

|r�| = 0 then

d|r�|2
dt

=
d

dt

(r� ·r�)

= 2r� · d

dt

r�

= �2r� ·rF

ext

|r�|� 2r� ·r|r�|F
ext

The terms on the right are both zero by the construction of the extension velocity and the

fact that |r�(x, t = 0)| = 1. Hence, |r�| = 1 is a solution tho this equation and the

uniqueness result for this differential equation shows that |r�| = 1 for all time.

29

CHAPTER 8

SOLVING THE STEFAN PROBLEM

Now that all of the pieces are in place we can solve the Stefan problem. The idea is

to use the level set method to track the location of the free boundary, and then solve the

heat equation inside this boundary at each time step. The algorithm is as follows:

1. Using the Fast Marching Method, determine the velocity F based on the Stefan

condition and the extension velocity F
ext

at each point in the computational domain,

such that F
ext

agrees with F at the boundary.

2. Move the level sets with this velocity, updating the position of the free boundary.

3. Solve the heat equation in ⌦, determining the heat distribution at the next timestep

4. Repeat

The velocity is given on @⌦ by the Stefan condition,

V = �@T⌦

@~n

(8.1)

We calculate V for each point in the initial band of close points inside the free

boundary. To accomplish this, we calculate rT at each of these close interior gridpoints

using their calculated distances to the boundary, and Fornberg’s one sided difference

weights to maintain second order accuracy. Once the velocity is calculated at points near

the boundary, we “march” inward and outward from the boundary to every point in the

computational domain calculating F
ext

at each point used in finding the signed distance

function. This method maintains the signed distance function such that it does not need to

be reinitialized.

30

0
20

40
60

80

0

20

40

60

80
0

0.02

0.04

0.06

0.08

0.1

Figure 8.1: Heat distribution at time t = 0

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.02

0.04

0.06

0.08

0.1

xy

u

Figure 8.2: Heat distribution at time t = 10

31

35 40 45 50 55 60 65 70 75 80

30

35

40

45

50

55

60

65

70

75

Figure 8.3: Free boundary at time t = 0, 5, 10

66 68 70 72 74 76 78

64

66

68

70

72

74

Figure 8.4: Closer view of free boundary at time t = 0, 5, 10

32

0

20

40

60

80
0 10 20 30 40 50 60 70 80

0

0.05

0.1

0.15

0.2

Figure 8.5: Fusing Level Sets, heat distribution t = 0

0

20

40

60

80
0 10 20 30 40 50 60 70 80

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 8.6: Fusing Level Sets, heat distribution t = 10

33

30

35

40

45

50

55

60

65

70

75

80

20 25 30 35 40 45 50 55 60 65 70

0

0.5

1

1.5

Figure 8.7: Four warm regions, heat distribution t = 0

30

35

40

45

50

55

60

65

70

75

80

20 25 30 35 40 45 50 55 60 65 70

0

0.1

0.2

0.3

0.4

Figure 8.8: Four warm regions, heat distribution t = 10

34

30

35

40

45

50

55

60

65

70

75

80

20 25 30 35 40 45 50 55 60 65 70

0

0.02

0.04

0.06

0.08

0.1

Figure 8.9: Four warm regions, heat distribution t = 25

35

BIBLIOGRAPHY

[1] D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods, J.
Comput. Phys. 148 (1999), no. 1, 2–22.

[2] S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan
problems, J. Comput. Phys. 135 (1997), no. 1, 8–29.

[3] Bengt Fornberg, Calculation of weights in finite difference formulas, SIAM Rev. 40 (1998), no. 3,
685–691 (electronic).

[4] , A practical guide to pseudospectral methods, Cambridge Monographs on Applied and
Computational Mathematics, vol. 1, Cambridge University Press, Cambridge, 1996.

[5] L. Fox, Some improvements in the use of relaxation methods for the solution of ordinary and partial
differential equations, Proc. Roy. Soc. London. Ser. A. 190 (1947), 31–59.

[6] Maxime Theillard, Chris H. Rycroft, and Frédéric Gibou, A multigrid method on non-graded adaptive
octree and quadtree Cartesian grids, J. Sci. Comput. 55 (2013), no. 1, 1–15, DOI
10.1007/s10915-012-9619-2. MR3030701

[7] Cleve B. Moler, Numerical computing with MATLAB, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2004.

[8] Robert Mortimer, Physical Chemistry, Elsevier Academic Press, Burlington, MA, 2008.

[9] Stanley Osher and Ronald Fedkiw, Level set methods and dynamic implicit surfaces, Applied
Mathematical Sciences, vol. 153, Springer-Verlag, New York, 2003.

[10] Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49.

[11] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad.
Sci. U.S.A. 93 (1996), no. 4, 1591–1595.

[12] C. Vuik, Some historical notes on the Stefan problem, Nieuw Arch. Wisk. (4) 11 (1993), no. 2,
157–167.

36

