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ABSTRACT 

Transactive energy refers to the planning and control of the two-way energy flow 

between distributed generation and main grid in regards to the realization of economic 

benefits. This study addresses two research questions related to transactive energy 

operations: first, how to allocate renewable microgrid system to energize the battery swap 

and supercharging stations under demand and supply uncertainty? Second, is it 

economically feasible for wind turbines (WT), solar photovoltaics (PV), and energy 

storage system (ESS) to participate in day-ahead transactive energy market as virtual 

power plants? An optimization framework for sizing and siting WT, PV and ESS in a 

battery swap and supercharging network considering both island and grid-tied operations 

is proposed. Mixed integer linear programming models are formulated to minimize the 

annualized battery service infrastructure cost considering facility setup, spare batteries, 

and supercharger installs. For island microgrid, reducing the cost of ESS does not 

significantly stimulate its adoption because renewable generation largely depends on 

capacity factor of PV and WT is shown. In grid-tied microgrid operation, reducing the 

PV cost by 50% makes the system to install more panels in both sunny cities and windy 

cities is shown. For network model, the work shows that by reducing the PV capacity 

cost by 75% from the benchmark cost makes the system choose more PV for Texas cities 

and reduces the annual network cost by 29%. The system opts to behave as “prosumer” 

who fulfills the charging demand of vehicle fleet as well as enhancing grid reliability and 

security by participating in transactive energy market. 



 

1 

1. INTRODUCTION 

1.1 Research Motivation 

Prosumers are different from conventional consumers. Prosumers are the producer 

and consumer at the same time. In the energy sector prosumer refers to as an energy user 

who generates renewable energy in his/her domestic environment and sells the surplus 

energy to the main grid or his/her neighboring systems after fulfilling own demand (Espe 

et al. 2018). Energy demand in the world is rising alarmingly. The US Energy 

Information Agency (EIA) projects that the world energy demand in all sectors will 

increase nearly 50% by 2050 led by the growth in Asia. EIA also projects that the energy 

consumption in transportation sector will increase by nearly 40% between 2018 and 

2050. Hence, it is imperative to find alternative energy sources which are clean, 

abundant, and economical in nature, such as wind and solar power, and ocean and wave 

energy. Considering all these facts, allocating renewable microgrid in battery swap and 

supercharging station making the system prosumer (namely, being a consumer and 

producer at the same time) is becoming a new industry trend in smart grid era. North 

Carolina Clean Energy Technology Center has been working on a funded research project 

by SunShot and found that by adopting solar panels in 42 of America’s 50 largest cities is 

less expensive than solely depending on a utility company for electricity (Trabish 2015).  

Transportation is an important sector for energy consumption. According to US 

EIA, the transportation sector in USA consumes approximately 28% of energy used in 

USA. The International Energy Outlook (IEO 2017) projects a 28% increase in world 

energy consumption between 2015 and 2040. USA consumes 96% of transportation 

sector energy in the form of petroleum, 2.6% energy in natural gas and only less than 1% 
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energy in biomass, electricity, or other form of energy. For this reason, developments in 

electric transportation will provide clean energy for future. Additionally, it will provide 

alternative energy source for other industry sectors too. Electric transportation is a cost-

effective approach for reducing the dependency on fossil fuel energy resources. 

Currently, electric vehicles (EV) consist just 3% of global new car sales and the number 

will increase by another 4% by 2023. It is projected that EV will comprise 58% of new 

vehicle sales globally by 2040 (Edelstein 2020).  

Dependency and exploitation of finite energy resources has led to increased air 

pollution (Espe et al. 2018). The consequences of air pollution have been climate change 

through green-house gas emissions, and damage to human health. Hence reduction of air 

pollution by using alternative wind and solar energy resources is needed with the goal of 

ensuring zero carbon emissions in the environment. Walmart announced that suppliers 

have reported reducing more than 20 million metric tons of greenhouse gas emissions in 

the global value chain as a part of company’s Project Gigaton initiative (Froese 2018). 

Walmart also announced that they are planning to reduce greenhouse gas emissions up to 

one billion metric ton by 2030 in the global value chain. Air pollution can be reduced by 

significant amounts by adopting electrical vehicles. EV produces 1/3 of greenhouse gas 

emission compared to a gas vehicle (Minnesota Pollution Control Agency 2020). The 

Next Generation Energy Act 2007 of Minnesota will act as a turning point for reducing 

greenhouse gas emission by 30% in 2025. 

Based on the prosumer concept, reliance on fossil fuel can be reduced for energy 

generation and consumption. The adoption of prosumer concept motivates large 

industrial and commercial consumers to be self-reliance on their own energy generation 
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as well as to reduce air pollution via the adaption of electrical transportation. 

1.2 Literature Review 

The literature review focuses on three areas of the state-of-the-art research. They 

are battery swap, supercharging station and joint battery swap and supercharging station. 

1.2.1 Battery Swap Station 

Zheng et al. (2012) proposed an operation model of battery swap station for a 

fleet of electric buses in public transportation. By analyzing the characteristics of the 

battery lease mode and electric city buses, an optimal solution was obtained to maximize 

the annual profit of battery swap station and to minimize the charging impact on the grid. 

Pashajavid and Golkar (2013) proposed a scenario-based optimization algorithm 

for allocating charging station for a plug-in electric vehicles (PEV) fleet within a 

commercial area. The objective was to increase the penetration level of photovoltaic (PV) 

panels as well as to decrease side effects of vehicular loads. Based on the notion of 

copula, a multivariate stochastic modeling methodology was provided for developing a 

probabilistic model of the load demand due to PEV. Particle swarm optimization (PSO) 

algorithm was utilized to minimize energy loss as well as voltage deviation in the 

distribution system. The model was also tested by simulation. 

Yang et al. (2014) proposed a dynamic operation model of Battery Swap Station 

(BSS) in electricity market. The new mathematical programming model seek the optimal 

short-term battery policy, and 24-hour simulation results showing the confirmation of the 

feasibility and practicability of the model.  

Tan et al. (2014) formulated a model by using a mixed queueing network with an 

open queue of electric vehicles (EVs) and a closed queue of batteries. In the first research 
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stream, queueing network models were proposed as a framework for modeling and 

designing battery swap stations with a local charging mode. They conducted the 

experimentation based on one battery swap station and used simulation techniques to 

reveal rich insights for the infrastructure planning of practical battery swapping services. 

Yan et al. (2019) presented a real-time energy management strategy for a BSS 

based smart community microgrid (SCMG), using variable renewable energy to charge 

the EV batteries (EVB) and conventional residential loads (RL). A novel Lyapunov 

optimization framework based on queueing theory was designed to solve the proposed 

model. The proposed method simplifies the complex energy scheduling and transform it 

into a single optimization problem, making it suitable for real-time applications. 

Simulation results found that BSS used for the dual-purpose could improve the whole 

system economics and also facilitate the integration of renewable energy compared to 

isolated operations. 

Mahoor et al. (2019) focused on developing a mathematical model for uncertainty 

constrained in battery swapping station (BSS) for optimal operation which covered both 

the random customer demand of fully charged batteries and leveraged the available 

batteries for reducing the operation cost through demand shifting and energy sellback. 

The authors used mixed integer linear programming for solving the BSS scheduling 

problem for one station and modeled the battery degradation by providing a practical 

solution. Simulation techniques were also used to demonstrate the effectiveness of the 

proposed model and analyzed the viability in achieving minimum operation cost. 
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1.2.2 Supercharging Stations 

Yang et al. (2014) reviewed the state-of-the-art optimization methods on 

scheduling strategies for the grid integration with electric vehicles. The paper started with 

a concise introduction to analytical charging strategies, followed by a review of a number 

of classical numerical optimization methods, including linear, non-linear, dynamic 

programming as well as some other means such as queuing theory. Metaheuristic 

techniques were then discussed to deal with the complex, high-dimensional and multi-

objective scheduling problem associated with stochastic charging and discharging of 

electric vehicles. Finally, future research directions were suggested. 

Lu and Hua (2015) mainly focused on designing a supercharging station network 

by extending the flow refueling mode. Particularly, they combined with queueing theory 

and re-formulated a new location sizing model with a given largest waiting time that EV 

could accept. The location sizing model optimally allocated the charging spots without 

exceeding the given waiting time while maximizing the total charging service. The 

authors also pointed out several directions of the future development of the electric car. 

Yao et al. (2017) aimed at addressing these difficulties by deploying an energy 

storage system (ESS) in parking stations and exploiting the charging and discharging 

scheduling of EV to achieve better utilization of intermittent PV for EV charging. A real-

time charging optimization scheme was formulated by using mixed-integer linear 

programming (MILP). Extensive simulation techniques at the same time proposed the 

approach of maximizing the satisfaction of EV owners and minimizing the overall 

operational cost of the parking station. These supercharging station models usually did 

not incorporate or provide battery swap services. 
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Yang et al. (2017) aimed at presenting a data-driven optimization model for 

allocating charging stations and chargers for taxi in a city located in China. The objective 

function of this proposed approach was to minimize the overall investment considering 

vehicles’ dwell pattern as input and the probability of BEVs being charged during their 

dwell time as constraints. Using regression and logarithmic transformation, the authors 

transformed the optimization model as an ILP problem and solved it using Gurobi solver. 

The notable findings from this research were the dwell pattern of the taxi fleet which 

determined the siting of charging stations. It also provided information regarding waiting 

spots. In addition to charging spots, the utilization of chargers increased and the number 

of required chargers at each site decreased. The research also provided information 

regarding the tradeoff between installing more chargers versus providing more waiting 

spaces which could be quantified by the cost ratio of chargers and parking spots. 

Gusrialdi et al. (2017) proposed a strategy for coordinating the EV queues among 

charging stations getting information about the traffic flows around the areas charging 

stations were located. In this work, a distributed algorithm was proposed for scheduling 

the EV flows in the charging stations. Additionally, a distributed policy was also 

proposed for controlling the EV flows near the charging stations based on EVs own 

battery constraints. A real-life scenario of the highways in the United States, namely the 

Florida Turnpike was used for showing the performance improvement of the proposed 

strategy.  

1.2.3 Joint Battery Swap and Supercharging Station 

Short and Denholm (2006) modeled the effect of large-scale adoption of Plug-in 

Hybrid Electric Vehicle (PHEV) on the integration of wind energy into the US electricity 
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mix. Installed wind capacity increased by 243 GW, or 6% of total generation, when the 

vehicle fleet was converted to 50% PHEV under a smart charging plan. 

Turton and Moura (2008) used a global energy model that forecast the integration 

and impacts of EV and V2G. The authors found that the installed renewable energy 

capacity increased by 30 to 75% with V2G capable EV due to their ability to store 

intermittent energy and discharged it back to the grid when required. 

Borba et al. (2012) took an interesting approach for modeling EVs and wind 

energy. The Brazilian power sector was modeled from 2010 to 2030, with an assumed 

16-fold increase in wind generating capacity in the northeast. The authors then calculated 

the size of PHEV fleet that could be charged using the excess wind energy production. 

Since the excess production varied seasonally, occurring primarily between January and 

June, the authors assumed that the vehicles could drive on locally produced ethanol for 

the remainder of the year. Over 1.6 million vehicles could be powered in this manner by 

2030. 

Richardson (2013) reviewed the current literature on EV, the electric grid, and 

renewable energy integration. Key methods and assumptions of the literature were 

discussed. The economic, environmental and grid impacts of EVs were reviewed. 

Numerous studies assessing the ability of EVs to integrate renewable energy sources 

were assessed; the literature indicated that EV could significantly reduce the amount of 

excess renewable energy produced in an electric system. Studies on wind–EV interaction 

were much more detailed than those on solar PV and EV. The paper concluded with 

recommendations for future research. 

Zheng et al. (2014) presented a framework for optimal design of battery 
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charging/swap stations in distribution systems based on life cycle cost (LCC) 

minimization. The results showed that battery swap station was more suitable for public 

transportation in distribution systems. 

Mwasilu et al. (2014) presented a comprehensive review and assessment of the 

latest research and advancement of electric vehicles (EVs) interaction with smart grid 

portraying the future electric power system model. The conceptual goal of the smart grid 

along with the future deployment of the EV put forward various challenges in terms of 

electric grid infrastructure, communication, and control. Following an intensive review 

on advanced smart metering and communication infrastructures, the strategy for 

integrating the EV into the electric grid was presented. Various EV smart charging 

technologies were also extensively examined with the perspective of their potential, 

impacts and limitations under the vehicle-to-grid (V2G) phenomenon. Moreover, the high 

penetration of renewable energy sources (wind and photovoltaic solar) was soaring up 

into the power system. However, their intermittent power output posed different 

challenges on the planning, operation and control of the power system networks. On the 

other hand, the deployment of EVs in the energy market could compensate for the 

fluctuations of the electric grid. In this context, a literature review on the integration of 

the renewable energy and the latest feasible solution using EV with the insight of the 

promising research gap to be covered up were investigated. Furthermore, the feasibility 

of the smart V2G system was thoroughly discussed. In this paper, the EVs interactions 

with the smart grid as the future energy system model were extensively discussed and 

research gap was revealed for the possible solutions. 

Xu et al. (2015) focused on the mechanism of smart battery charging and 
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swapping operation service network for EV including its overall architecture and 

operational mode. Two different types of demonstration projects were presented which 

expound on the condition of EV’s infrastructure construction. Lastly, performance 

analysis of the charging behaviors of electric taxis in fast charging station based on the 

queuing theory was proposed. The simulation results showed that the service time and the 

number of generators had an influence on the average waiting time and the length of 

queue. 

Zhang and Wang (2016) studied a battery schedule framework to dispatch 

batteries between battery charging stations (BCS) and battery swap stations (BSS) 

efficiently. A two-direction battery dispatch model to reduce the transportation cost was 

established and solved by particle swarm optimization (PSO) method. Moreover, 

considering the serving ability limitations, the K-means clustering was utilized to pre-

partition the BCS and BSS to make the battery dispatch more efficient and effective. The 

proposed methods were finally verified by an urban battery logistics case. 

Zhang et al. (2016) proposed a new construction model by combining battery 

replacement and concentrated charging and presented a location optimization model. This 

location optimization model could be applied to determine appropriate places for 

establishing the power station and queueing theory to determine the optimal number of 

power equipment for achieving minimum costs. 

Wu et al. (2017) proposed an optimal charging strategy to improve the self-

consumption of PV-generated power and service availability while considering forecast 

errors. First, they introduced the typical structure and operation model of PV-based BSS. 

Second, three indexes were presented to evaluate operational performance. Then, PSO 
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algorithm was developed to calculate the optimal charging power and to minimize the 

charging cost for each time slot. The proposed charging strategy helped decrease the 

impact of forecast uncertainties on the availability of the battery swapping service. 

Finally, a day-ahead operation schedule, a real-time decision-making strategy, and the 

proposed PSO charging strategy for PV-based BSS were simulated in a case study. The 

simulation results showed that the proposed strategy could effectively improve the self-

consumption of PV-generated power and reduced charging cost. 

Liu et al. (2018) achieved the optimal operation of BSCS, a closed-loop supply 

chain-based BSCS model was proposed to realize the combined operation of battery 

charging stations and battery swap stations (BSS) while the quality of battery swapping 

service at BSS was ensured with a network calculus-based service model. Simulation 

results verified the feasibility of the proposed model and the heuristic solution with small 

optimality losses and less computation time. 

Ma and Zhang (2018) proposed a Bass diffusion model (BASS) model to predict 

the total number of electric vehicles and calculated the size of charging stations in the 

coming years. They considered that centralized charging stations were attached to 

substation construction which was considered as a fixed number. They also assumed that 

the less the battery changing stations in the city, the greater the total distance from the 

battery changing station to the charging station. A queuing model was formulated to 

optimize the location of charging stations and the model was solved to minimize the cost 

as the objective function by using the exhaustion method. The model was also tested 

using the data collected from China. 

Sun et al. (2018) proposed an objective function for finding the optimal policy of 
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charging in way the overall cost of charging was minimized by ensuring quality of 

service along with EV blocking probability did not exceed a certain value. The problem 

was formulated using constrained Markov decision process and the problem was solved 

using Lagrangian method and dynamic programming. In this paper, the problem was 

created considering one batter swapping and charging station.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1.1 Summary of Literature Review 

Author

Journal 

Name

Year of 

Publish Paper Id

Battery 

Swap/Su

perchar

ger/Both

Car/Truc

k/Ship

One station/ 

Network 

Design(Mult

i-Station)

Queueing Model/ 

Simulation/Statisti

cs/Random 

Process Model

Type of optimization 

model

Single/Multi-

objective

Min Cost/ 

Max Profit

Distributed 

Generation

1

Yagang 

Zhang,Dingli 

Qi,Wei 

Jiang,Shuang Lei

Promet-

Traffic&Tran

sportation 2016

Optimal allocation of changing 

station for electric vehicle based on 

queueing theory Both

EV not 

stated 

clearly Multi-station Queueing Model

Linear Programming 

(Location Allocation)

Single 

objective Min cost N/A

2

Fang Lu, Guowei 

Hua IEEE 2015

A location-sizing model for electric 

vehicle charging station deployment 

based on queuing theory

super 

charge

EV not 

stated 

clearly

Network 

(Multi 

Station) Queueing Model

Linear Programming 

(Location Allocation)

Single 

objective

Max flow 

refilled with p 

facilities N/A

3

Jian Ma, Liyan 

Zhang  Energy 2018

A deploying method for predicting 

the size and optimizing the location 

of an electric vehicle charging Both

EV not 

stated 

clearly Multi-station Queueing Model

Linear Programming 

(Location Allocation)

Single 

objective Min cost N/A

4

JieYan, Mohan 

Menghwar, 

Ehtisham Asghar Energy 2019

Real-time energy management 

forasmart-community microgrid 

with battery swapping and 

Battery 

Swap

EV not 

stated 

clearly

Multi-

station+ 

house-hold Queueing Model

Linear Programming 

model+simulation

Single 

objective

Max use of 

renewable 

energy

Renewable 

energy

5

Shengjie Yang, 

Jiangang Yoa etc. Energy 2014

Dynamic operation model of the 

battery swapping station for EV 

(electric vehicle) in electricity 

Battery 

Swap

EV not 

stated 

clearly One-station

Dynamic  operation 

model

Dynamic operation 

model

Single 

objective N/A N/A

6

 Mohsen Mahoor, 

Zohreh S. 

Hosseini, Amin Energy 2019

Least-cost operation of a battery 

swapping station with random 

customer requests 

Battery 

Swap

EV not 

stated 

clearly One-station -

Mixed Integer Linear 

Programming

Single 

objective

Min Operation 

Cost N/A

7

Xiaoqi Tan, Bo 

Sun and Danny 

H.K. Tsang IEEE 2014

Queueing Network Models for 

Electric Vehicle Charging Station 

with Battery Swapping

Battery 

Swap

EV not 

stated 

clearly One-station

Queueing Network 

Model Steady state distribution Multi objective N/A N/A

8

E. Pashajavid, and 

M. A. Golkar

Journal of 

Renewable 

and 

Sustainable 2013

Optimal placement and sizing of 

plug in electric vehicles charging 

stations within distribution 

networks with high penetration of 

Battery 

Swap 

Station

EV not 

stated 

clearly Multi Station Probabilistic Model Metaheuristic Multi objective

Min Energy 

loss + Voltage 

deviation PV

9

Xiaohui Xu, 

Liangzhong Yao, 

Pingliang Zeng, 

Yujun Liu and, Springer 2015

Architecture and performance 

analysis of a smart battery charging 

and swapping operation service 

network for electric vehicles in Both

Electric 

Taxi Multi Station

Queueing Network 

Model Simulation N/A N/A N/A

10

Leehter Yao, 

Zolboo Damiran 

and Wei Hong Lim Energy 2017

Optimal Charging and Discharging 

Scheduling for Electric Vehicles in 

a Parking Station with Photovoltaic 

System and Energy Storage System

Super 

Charge

EV not 

stated 

clearly One-station Simulation

Mixed Integer Linear 

Programming Multi objective

Max 

satisfaction of 

EV 

owner+Min PV

11

Yu Zheng, Zhao 

Yang Dong, Yan 

Xu, Ke Meng,  

JunHua Zhao and  

Jing Qiu IEEE 2014

Electric Vehicle Battery 

Charging/Swap Stations in 

Distribution Systems: Comparison 

Study and Optimal Planning Both Bus Multi Station

Cost benefit 

analysis

Mixed Integer Linear 

Programming Single objective

Max Net 

Present Value N/A

12

Zhile Yang, Kang 

Li, Aoife Foley, 

Cheng Zhang

Proceedings 

of the 19th 

World 

Congress The 

International 

Federation of 

Automatic 

Control Cape 

Town, South 

Africa 2014

Optimal Scheduling Methods to 

Integrate Plug-in Electric Vehicles 

with the Power System: A Review

Super 

Charge

EV not 

stated 

clearly N/A

Meta Heuristic 

Algorithm

LP, NLP, Dynamic 

programming N/A N/A N/A

13

Xian Zhang, 

Guibin Wang IEEE 2016

Optimal Dispatch of Electric 

Vehicle Batteries between Battery 

Swapping Stations and Charging 

Stations Both

EV not 

stated 

clearly One-station K means clusturing Metaheuristic Single objective

Min 

transportation 

cost N/A

14

Xiaochuan Liu, 

Tianyang Zhao, 

Shuhan Yao, IEEE 2019

Distributed Operation Management 

of Battery Swapping-Charging 

Systems Both Trucks

Network 

(Multi 

Station)

Time space 

network technique

Mixed Integer Linear 

Programming, Heuristic 

and Simulation Multi objective Max revenue N/A

15

Shengjun Wu, 

Qingshan Xu, Qun 

Li, Xiaodong 

Yuan, and Bing 

International 

Journal of 

Photoenergy 2017

An Optimal Charging Strategy for 

PV-Based Battery Swapping 

Stations in a DC Distribution 

System Both

EV not 

stated 

clearly One-station Simulation Metaheuristic Single objective

 minimize the 

charging cost 

for each time 

slot PV

16

Zheng, D., Wen, 

F., & Huang, J. IEEE 2012

Optimal Planning of Battery Swap 

Station

Battery 

Swappin

g Electric bus - Simulation Simulation Single objective

 maximize the 

annual profit 

of battery swap 

station and 

minimize the N/A

1
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1.3 Research Questions and Contributions 

This research addresses following two questions related to allocation of renewable 

microgrid in battery swap and supercharging stations for electric vehicles:  

• First, is it economically viable to integrate wind- and solar-based microgrid along 

with energy storage system (ESS) to power the battery swap and supercharging 

facilities in island operations? 

• Second, is it economically viable to integrate wind- and solar-based microgrid 

along with main grid to power the battery swap and supercharging facilities in 

interconnected operation mode?  

For answering those above questions and after reviewing all the state-of-the-art 

research conducted on this topic, the contribution of the thesis work is: 

• First, the modeling of the optimization model of battery swap and supercharging 

stations consists of integrating renewable and distributed generating units such as 

WT and PV under power uncertainty. 

• Second, the design of the optimization model of battery swap and supercharging 

stations not only consist of integrating renewable microgrid power, but also taking 

into account demand response and grid-tied operation with 2-way energy flow. 

That design and modeling framework makes the EV battery service stations to 

behave as “energy prosumer”.  

• Third, the thesis also presents the design of a network optimization model of EV 

supercharging stations of Tesla located in Texas for showing the application of 

the research in real world.  
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1.4 Thesis Overview 

The thesis consists of six chapters. Chapter 1 provides the research motivation, 

literature review, and research contributions. 

Chapter 2 discusses the Erlang queueing models for battery services. The 

modeling of battery swap service using Erlang B, supercharging service using Erlang C, 

and Erlang A is for situations with battery service withdrawal are discussed in detail. 

 Chapter 3 proposes an optimization framework for allocating renewable 

microgrid in single battery swap station with island and grid-tied microgrid, respectively. 

A microgrid is comprised of wind turbine (WT), photovoltaics (PV) and energy storage 

systems (ESS). The optimization model has tested using ten different cities located in 

USA capacity factor data of WT and PV for renewable microgrid along with varying 

different other parameters in the models. 

 Chapter 4 proposes an optimization framework for allocating renewable 

microgrid in single joint battery swap and supercharging station with grid-tied-microgrid. 

The optimization model has tested using ten different cities located in USA capacity 

factor data of WT and PV for renewable microgrid along with varying different other 

parameters in the model.  

 Chapter 5 presents a network optimization framework of Tesla supercharging 

stations located in Texas. The network optimization model has solved using two 

approaches. In the first approach, the network optimization model has solved for each 

specific zone separately. In the second approach, the network optimization model has 

solved consisting of all zones together. This model has solved using seven cities located 

in Texas capacity factor data of WT and PV for renewable microgrid along with varying 
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different other parameters in the model.  

 Chapter 6 concludes the work and discusses the future research directions. 
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2. ERLANG QUEUEING MODELS FOR BATTERY SERVICES 

2.1 Erlang B Model for Battery Swap 

Let k=0, 1, …, s be the number of batteries under recharging in the charge bay in 

a station. The battery swap process with EV blocked is modeled as M/G/s/s Erlang B 

queue, and its transition diagram is shown in Figure 2.1 below. 

 

Figure 2.1 The M/G/s/s Queue (Erlang B) 

In this case, λb is the EV arrival rate (e.g. cars/hour) of a station and μb is the battery 

recharge rate in the charge bay. Namely, to charge a depleted battery to the desired State 

of Charge (SOC) level, the average charging duration is 1/μb. To facilitate the model 

presentation, parameters and variables of Erlang B model are listed in Table 2.1. 
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Table 2.1 Notation 

Symbol Explanation 

i           Index of customer zone for i=1, 2, …, I 

j Index of candidate station location, for j=1,2, …, J 

λb EV arrival rate of a station 

λd EV arrival rate of a supercharging service 

μb Battery recharge rate in the charge bay 

μd Supercharging rate 

θ Expected EV arrivals during a battery recharge cycle in the charge bay 

 Expected EV arrivals during a supercharging cycle 

B(s) Probability of spare battery stockout 

C (m, s) Probability that an EV waits for a supercharger 

Nb The number of batteries in the charge bay under recharging 

Nq The number of EV waiting for superchargers 

Nc The number of EV under supercharging 

Nd Total number of EV in supercharging queue, and Nd = Nq + Nc 

τb Time duration for swapping a battery 

Pb Power for charging a battery in charge bay 

Pd Power for charging a battery using supercharger 

Ps Total power demand of a station 

Pj Power capacity or limit of station j 

Fj Setup cost for station j 

Fb Unit cost of spare battery 

Fd Unit cost of supercharger 

xj Whether a station opens in location j, binary decision variable 

s The base stock level of spare batteries in a station, integer decision variable 

m The number of superchargers in a JBSS, integer decision variable 

 

Let X be the random variable representing the number of vehicles arriving at a 

Joint Battery Swap and Supercharging (JBSS) station during 1/μb. Given the spare battery 

stock level is s, the chance that an EV is blocked in the swap queue (i.e. stockout 

probability) can be estimated as follows (Winston 2004). 

Step 1: Solving for Bk for k=1, 2, …, s 

0

1

b
k

b

B
 


 

= = =  (2.1) 

b

b





=   (2.2) 
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= =  (2.3) 
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1,2,

!

k

kB for k s
k
= =  (2.4) 

Step 2: Compute 0.  

 (2.5) 

 

Step 3: Compute all other k for k= 1, 2, 3, …, s. 

 (2.6) 

 

 

 (2.7) 

 

 

 (2.8) 

 

  

 (2.9) 

 

Where B(s) is the probability of being blocked. 

Step 4: Compute L, Ls, Lq, W, Ws, Wq. 

   (2.10) 
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 (2.11) 

  

 

Where W is the total swap time in the queue system, Ws is the swap time, and Wq is the 

waiting time. For Erlang B, Wq=0. Similarly, L is the total number of EV in the queue 

system. Ls is the number of EV in swapping, and Lq is the number of EV waiting which is 

always zero for Erlang B model.   

2.2 Erlang C Model for Supercharging  

An arriving EV is directed to the supercharging queue if the stockroom has no 

spare battery. A supercharger represents the Level-3 DC fast charge technology with an 

output power up to 80kW based on SAEJ1772 standards (SAE 2010). Tesla EV service 

network maintains its own charging standard in which the power of a supercharger is 

between 72 kW to 150 kW.   Let λd be the EV arrival rate of the supercharging queue, 

then 

( )d bB s =
                                                                                                                (2.12) 

The above result is due to the fact that an EV blocked in the swap queue moves to the 

superchargers. Since 0<B(s)≤1, but here λd ≤ λb. Let, m be the number of superchargers in 

a JBSS. Then the supercharging queuing process can be modeled as an M/M/m/∞ Erlang 

C queue. The state in the transition diagram below represents the number of EV for 
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supercharging service. 

 

Figure 2.2 The M/M/m/∞ Queue (Erlang C) 

Note that μd is the service rate per supercharger (e.g. cars/hour), or 1/μd is the average 

time duration given the supercharger is available. The M/M/m/∞ system is also referred 

to as the Erlang C delayed model because it accommodates a waiting line when all 

superchargers are busy. This differs from Erlang B which does not accommodate the 

waiting. Let Y be the number of EV under supercharging service during a period of 1/μd. 

The probability that an EV has to wait in the supercharging queue is given as (Winston 

2004): 

For k=0, 1, 2, …., m. 

1 0d dC C =  (2.13) 

1 1 ,( 1) ( ) 1 1d k d k d d kC k C K C k m   − ++ + = +   −  (2.14) 

1 1 ( ) ,d k d k d d kC m C m C k m   − ++ = +   (2.15) 

1, 1d k d kk C C k m  −=    (2.16) 

1,d k d kk C C k m  −=    (2.17) 
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The probability distribution, for the number of EV in the Erlang C queue system, 

    (2.23) 
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An EV that has arrived at the supercharging area needs to wait if all superchargers are 

busy and occupied by earlier arrived cars. Owing to the PASTA property (PASTA stands 

for Poisson Arrivals See Time Averages), the wait probability is given by, 
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intd
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( )d bB s =
 (2.28) 

   (2.29) 

 

It is worth mentioning that the PASTA property refers to the expected state of a queueing 

system as seen by an arrival from a Poison process. An arrival from a Poisson process 

observes the system as if it were arriving at a random moment in time. Therefore, the 

expected value of any parameter of the queue at the instant of a Poisson arrival is simply 

the long-run average value of that parameter (Ibe, 2013). By substituting equation (2.25), 

we have 
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2.3 Erlang A Model for Customer Withdrawal 

In the Erlang A model customers arrive to the queueing system according to a 

poison process with rate λ. Customers are equipped with patience times τ that are exp(θ) 

independent and identically across customers. The service times are also independent and 

identically distributed with rate μ. Finally, the processes of arrivals, patience and service 

are mutually independent. For a given customer, the patience time τ results in an 
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abandonment if the waiting time is prolonged. 

 

Figure 2.3 Erlang A Queue with Customer Abandonment 

Let v be the offered waiting time i.e., the time a customer equipped with infinite patience 

must wait in order to get service. The actual waiting/queueing time then equals  

W=min{v, }. (2.31) 

L(t) =The total number of customers in system at time t (served plus queued). 

L={L(t), t ≥ 0} is for Markov birth-death process with the following transition-rate 

diagram. 

 

Figure 2.4 The M/M/N+M (G) Queue (Erlang A) 

Let, dj stands for the death-rate in state j, for 0 ≤ j ≤ ∞, Then  

.min( , ) .max( , )jj d j      (2.32) 

The bounds on the left-hand and right-hand sides of (2.32) correspond to death-rates of 

an M/M/∞ queue with service rates min (μ, θ) and max (μ, θ). In some sense, which can 

be made precise via stochastic orders between distributions, these two M/M/∞ queues 
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provide lower and upper (stochastic) bounds for Erlang-A system. The lower bound will 

be used later to prove that Erlang-A always reaches the steady-state. In the special case of 

equal service and abandonment rate (μ=θ), the Erlang-A and M/M/∞ in fact coincide. As 

customary, define the limiting distribution of L by, 

lim { ( ) }, 0j
t

P L t j j
→

= =   (2.33) 

When existing, the limit distribution is also a steady-state (or stationary) distribution, 

which is calculated via the following version of the steady-state equations: 

1( 1). , 0 1j jj j n  += +   −  (2.34) 

1( ( 1 ) ) ,j jn j n j n    += + + −   (2.35) 

It is straightforward to derive the “recipe” solution: 
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Where, 
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The solution makes sense-equivalently the Markov Process L is ergodic, if the infinite 

sum in (2.37) converges, which is a consequence of the lower bound in (2.32), 
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The Gamma function is defined by 

( ) 1

0

, 0x tx t e dt x



− − =   (2.39) 

The incomplete Gamma function is defined as 
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Let, B1,n denote the blocking probability in M/M/n/n system (Erlang B) and recall the 

Erlang-B formula, 
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 (2.42) 

A simple way for calculating B1,n is the recursion, 
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Where  is called offered load per server. 
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Using equations (2.37), (2.41) and (2.42), one obtains. 
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2.4 Modeling Battery Swap Services Using Erlang B 

 For example, EV arrival rate of a station, λb = 1.5 EV/hour, battery recharge rate in 

the charge bay, μb =0.5 EV/hour and the number of batteries under recharging in the 

charge bay k=3. The probability of spare battery stockout is given,  
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Putting the values in the above equation, the probability of spare battery stockout B(s)= 

0.213. For this particular system, Lq=0, Ls=L, Wq=0, Ws=W. Since, cars receive immediate 

service once entering the system. We can compute L and Ls by using these formulas 

stated below, 

(1 )b
s s

b

L L





= = −  (2.49) 

1
s

b

W W


= =  (2.50) 

By using the previous data, the value of L=Ls = 2.36 and the value of W=Ws = 2. EV 

arrival rate of a station, λb = 1.5 EV/hour and battery recharging rate in the charge bay, μb 

=0.5 EV/hour. The expected EV arrivals during a battery recharge cycle in the charge 

bay,  

1.5
3

0.5

b

b





= = =  

The computation of πs, L, Lq, Ls, W, Wq, Ws for the values of k from 0 to 10 are listed in 

Table 2.2. 

Table 2.2 Values of πs, L, Lq, Ls, W, Wq, Ws 

k πs L Lq Ls W Wq Ws 

0 0.047 2.86 0 2.86 2 0 2 

1 0.142 2.58 0 2.58 2 0 2 

2 0.213 2.36 0 2.36 2 0 2 

3 0.213 2.36 0 2.36 2 0 2 

4 0.160 2.52 0 2.52 2 0 2 

5 0.096 2.72 0 2.72 2 0 2 

6 0.048 2.86 0 2.86 2 0 2 

7 0.021 2.94 0 2.94 2 0 2 

8 0.008 2.98 0 2.98 2 0 2 

9 0.003 2.99 0 2.99 2 0 2 

10 0.001 2.99 0 2.99 2 0 2 

 



 

 

28 

The Erlang B queueing model by using MATLAB programming is given below, 

 

Figure 2.5 Flow Chart of Erlang B Model in MATLAB Code 

The computation of Erlang B can be easily implemented in Matlab programming 

environment. At the start of the Erlang B model in Matlab first input the values of k, λb 

and μb. Then the model will calculate the θ value by diving λb and μb. If the value of s is 

from 1 to k, the model will go to the next step of the flowchart, otherwise the model will 

start from the beginning. If the model goes to the next step by following the conditions, it 

will start calculating the numerator value by using power (theta, s)/factorial(s). After that 

if the value of k is from 0 to s then the model will go to the next step and calculate the 
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denominator value by using den + power (θ, k)/factorial(k). If the condition is not 

fulfilled, the model will start from the beginning. Now, the final result can be obtained by 

diving the numerator from the denominator.  

After running the model for the value of k=9, λb =1.5 and μb = 0.5, the obtained 

value of πs from the MATLAB is 0.003. From the excel model of Erlang B the πs value 

for k=9, λb =1.5 and μb = 0.5 is 0.0026. Both results are almost identical (Please refer 

Appendix 1). 

2.5 Modeling Supercharging Service Using Erlang C 

For example, EV arrival rate of a station, λb = 1.5 EV/hour and battery recharge 

rate in the charge bay, μb =0.5 EV/hour. The Erlang C model,  

1d
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
  (2.51) 

Putting the values in the above equation, the number of superchargers in a JBSS station 

which is m≥4 can be obtained. 

To calculate the probability that an EV needs to wait for a supercharger, the equation 

below can be used 
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The value of B(s) is obtained from Erlang B model. By putting the value of m=4, λb = 1.5, 

μb =0.5, B(s)=0.213 and k=3 in the above equations, C(m, s)= 0.119 is obtained. The 

values of L, Ls, Lq, W, Ws, Wq can be calculated by using the equations below, 
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qW W W= +  (2.59) 

After putting the above stated values in the equations, the obtained results are Lq = 0.023, 

L= 3.03, Ls=3, Ws=2, Wq= 0.24 and W= 2.24. 

The computation of C(m, s), L, Lq, Ls, W, Wq, Ws for the values of k from 0 to 10 are listed 

below, 

Table 2.3 Values of C(m, s), L, Lq, Ls, W, Wq, Ws 

k B(s) ρd C(m, s) L Lq Ls W Wq Ws 

0 0.047 0.036 1.65E-05 3.000 6.07E-07 3 2.0000 3.29E-05 2 

1 0.142 0.107 0.0029 3.003 0.00035 3 2.0058 0.0058 2 

2 0.213 0.160 0.0279 3.005 0.00532 3 2.0558 0.0558 2 

3 0.213 0.160 0.1185 3.023 0.02258 3 2.2370 0.2370 2 

4 0.160 0.120 0.4681 3.064 0.06386 3 2.9361 0.9361 2 

5 0.096 0.072 0.9415 3.073 0.07308 3 3.8831 1.8831 2 

6 0.048 0.036 0.9993 3.038 0.03733 3 3.9986 1.9986 2 

7 0.021 0.015 0.9999 3.016 0.01568 3 3.9999 1.9999 2 

8 0.008 0.006 1 3.006 0.00582 3 4 2 2 

9 0.003 0.002 1 3.002 0.00193 3 4 2 2 

10 0.001 0.001 1 3.001 0.00058 3 4 2 2 

 

The Erlang C model by using MATLAB program is given below, 
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Figure 2.6 Flow Chart of Erlang C Model in MATLAB Code 

At the start of the Erlang C model in MATLAB, the first input values are k, λb, μb, B and 

m. Then the model will calculate the θ value by diving the λb and μb. Then the model 
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calculates the P value by using this formula (λb B) / (mμb). At the next step, the model 

will calculate the q value by multiplying m and P values. If the value of m is from 0 to k 

then the model will go to the next step of the flowchart, otherwise the model will start 

from the beginning. If the model goes to the next step by following the conditions then it 

will start calculating the numerator value by using num=power (q, m)/factorial(m)  (1-

P). After that if the value of k is from 0 to m then the model will go to the next step and 

calculate the denominator value by using den + power (q, k)/factorial(k) + num. If the 

condition is not fulfilled, then the model will start from the beginning. Now, the model 

can calculate the value of kk by diving the numerator value and denominator value. At the 

last step of the model, the final value can be obtained by using this formula 1-final(kk).  

After running the model for the value of k=9, λb =1.5, μb = 0.5, B=0.0026, m=4 then the 

model can calculate the value of C(m,s) from the MATLAB which is 1. From the excel 

model of Erlang C the value C(m,s) for k=9, λb =1.5, μb = 0.5, B=0.0026, m=4 is 1 which 

are similar values (Please refer Appendix 2).  
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3. MICROGRID SIZING FOR A SINGLE BATTERY SERVICE STATION 

3.1 Minimizing Cost of Battery Swap Station with Island Microgrid 

 3.1.1 System Configuration 

An EV battery swap station in island microgrid operation is designed to meet the 

battery service demand under the environmental requirement. Island microgrid operation 

is an electrical power supply mode with a small number of distributed generating units 

and consumers. It has the capability to connect with main grid system. Island microgrid 

operation is chosen based on different factors like geographical area, cost, and climate 

condition. The EV battery swap station with an island microgrid consists of wind turbine 

(WT), solar photovoltaic (PV), energy storage system (ESS), and the EV battery swap 

station acts as the load. Here, WT and PV are primary power units and the ESS stores the 

surplus energy which is not consumed by the battery swap station and saved for later use 

when the output of WT and PV become low. 

 

Figure 3.1 An EV Battery Swap Station in Island Microgrid Operation 
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 3.1.2 Operating Principle of a Battery Swap Station  

Firstly, some basic terminologies are introduced below. 

Vehicle Arrival: Two assumptions are made regarding the EV arrival process. First, EV 

arrivals at a battery swap station occur randomly and independently. Second, the arrival 

rate is assumed to be constant value. In essence, these two assumptions allow to model 

the arrival process as a Poisson process, which also has been used in the literature, for 

example Tan et al. (2014), Mak et al. (2013), and Avci et al. (2015). 

Battery Charging Duration: The charging duration of a depleted battery is assumed to 

follow a general distribution. In this thesis model, the charging duration is defined as 

charging a battery from a low state-of-charge (SOC) level to the desired SOC level. Some 

studies use specific distributions to model the charging duration (Chen 2007). The actual 

duration may vary significantly because the energy residuals of batteries unloaded from 

EV differ from each other. As a result, a general distribution is more appropriate to 

represent the charging duration. In addition, given two identical batteries with the same 

energy residuals, the charging duration also differs depending on the level of the charging 

power used in the charge bay (Voelcker 2018).  

Battery Inventory: The spare battery inventory is a decision variable and plays a critical 

role in achieving the service level requirement. In our model, an incoming EV receives 

the swap service only if the stockroom possesses a spare battery with the required SOC 

level; otherwise, the EV needs to wait for the next available spare battery.  

Service Time: Service time refers to the time duration from when the EV arrives in the 

station to when the battery is swapped for leaving. If a spare battery is available, it takes 

couple of minutes to complete the exchange. However, the service time is prolonged if an 
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on-hand spare battery is not available upon the EV arrival. Figure 3.2 depicts the 

operational procedure of the EV battery swap station. Using Erlang-C queueing model 

for battery swap, the goal of the model here is to determine the base stock level of 

battery, the capacity of WT, PV, and ESS such that during the course of a year, the 

station achieves the zero-energy performance at the minimum cost. 

 

Figure 3.2 The Process of Battery Swap Service with Waiting (Zhang et al. 2021) 

 3.1.3 Description of Optimization Model 

 

The following model is defined in the context of island microgrid operation 

condition. The objective function consists of cost of investing spare batteries, station 

facility, and the microgrid system. The latter consist of WT, PV, and ESS units. Note that 

both ESS and EV battery can store electric energy, the former is use as energy buffer for 

absorbing surplus renewable energy from WT or PV. 
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Table 3.1 Notation of Modeling Battery Swap Station 

Notation Explanation 

s number of spare EV batteries in the station 

aB unit cost of an EV battery  

aWT unit cost of WT system (unit: $/MW) 

aPV unit cost of PV system (unit: $/MW) 

aESS unit cost of ESS system (unit: $/MWh) 

B capital recovery factor of an EV battery unit 

WT capital recovery factor of WT system 

PV capital recovery factor of PV system 

ESS capital recovery factor of ESS system 

WT operating hours of WT per period (unit: hour) 

PV operating hours of PV per period (unit: hour) 

T number of periods 

t index of period and t=1, 2, …, T 

WT,t capacity factor of WT at time t 

PV,t capacity factor of PV at time t 

bWT operation and maintenance cost of WT per MWh (unit: $/MWh) 

bPV operating and maintenance cost of PV per MWh (unit: $/MWh) 

bESS operating and maintenance cost of ESS per MWh (unit: $/MWh) 

cWT carbon credits or incentive of WT per MWh (unit: $/MWh) 

cPV carbon credits or incentive of PV per MWh (unit: $/MWh) 

cESS carbon credits or incentive of ESS per MWh (unit: $/MWh) 

EV,t EV arrival rate at time t 

 time step size or duration of a period (unit: hour) 

PEV power for charging a depleted battery (MW) 

  

Table 3.2 Explanation of Decision Variables 

Notation Explanation 

Pc
WT installed capacity of WT (unit: MW) 

Pc
PV installed capacity of PV (unit: MW) 

Bc
ESS installed capacity of ESS (unit MWh) 

BESS,t the amount of energy stored in ESS at time t (unit: MWh) 

 

The following cost model is formulated to capture the annualized cost of a battery swap 

station: 
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 (3.1) 

The objective function is the minimization of the annualized cost of a battery swap 

station. There are two major constraints associated with this model:  

a) Energy balance in each period 

  , , , 1 , ,

c c

EV t EV ESS t ESS t WT t WT WT PV t PV PV
P B B P P     

−
+ −  +

,        for t=1, 2, ..., T. (3.2) 

b) ESS State at time t 

,0 c

ESS t ESSB B 
, for t=1, 2, ..., T. (3.3) 

c) Initial ESS energy state (assuming it is full) 

                        ,0

c

ESS SSEB B=
 (3.4) 

d) End time ESS energy 

                        , EESS T

c

SSB B=
 (3.5) 

e) Non-Negativity of Decision Variables 

                        , , 0c c c

WT PV ESSP P B   (3.6) 

 3.1.4 Parameters of Numerical Experiments 

Parameters are the values assumed to be known and serve as the input data of the 

optimization model. The parameters for our optimization model are given below: 
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Table 3.3 Parameters of WT, PV and ESS 

Notation Value Unit 

aB 1200 (for Nissan Leaf 2nd Generation) $/item 

aWT 1.5M $/MW 

aPV 2M $/MW 

aESS 0.5M (Case1 as benchmark) 

0.2M (Case2) 

$/MWh 

$/MWh 

B 0.12 n/a 

WT 0.08024 n/a 

PV 0.08024 n/a 

ESS 0.12 n/a 

WT 1 hour 

PV 1 hour 

 1 hour 

T 8736 hour 

t index of period and t=1, 2, …, T hour 

WT,t Each city hourly WT capacity factor n/a 

PV,t Each city hourly PV capacity factor n/a 

EV,t 2 cars/hour 

PEV 0.075 MW 

bWT 8 $/MWh 

bPV 4 $/MWh 

bESS 2 $/MWh 

cWT 0 $/MWh 

cPV 10 $/MWh 

cESS 0 $/MWh 

 

 3.1.5 Charactering Climate Profiles  

 For the optimization model of single battery swap station, the hourly capacity 

factor over the course of a year is used to implement the island microgrid model in ten 

different cities. That means 8736 capacity factor data of WT and PV, respectively, for 

each city is used. The cities are Reno, Yuma, Tucson, Las Vegas, Los Angeles, Salt Lake 

City, San Jose, Sacramento, San Francisco and Phoenix. These ten cities are chosen 

based on their diversity in weather condition. These ten cities have categorized based on 

two criteria. The first one is strong wind and strong sun, the second one is weak wind and 

strong sun. If the capacity factor (CF) of WT is less than 0.19 then the city has weak wind 
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and if the CF of WT is higher than 0.19 then the city has strong wind. Additionally, if the 

capacity factor of PV is less than 0.2 then the city has weak sun and vice versa. These 

two criteria actually cover a diverse weather profile in the world.  

Table 3.4 Weather Condition of Ten Cities 

Wind Sun City 

Strong Strong Las Vegas, Sacramento, Salt Lake City, San Francisco 

Weak Strong Reno, Yuma, Tucson, Phoenix, San Jose, Los Angeles 

 

For better understanding of the capacity factor of WT and PV of ten different cities, the 

maximum and minimum values are calculated, and the results are shown in Table 3.5. 

Table 3.5 Capacity Factor of WT and PV at Each City 

City and State Minimum 

Capacity 

Factor WT 

Maximum 

Capacity 

Factor WT 

Avg. 

Capacity 

factor WT 

Minimum 

Capacity 

Factor PV 

Maximum 

Capacity 

Factor PV 

Avg. 

Capacity 

factor PV 

Reno, AZ 0 0.96 0.14 0.156 0.467 0.314 

Yuma, AZ 0 1 0.19 0.194 0.51 0.349 

Tucson, AZ 0 0.96 0.15 0.255 0.579 0.417 

Las Vegas, NV 0 0.96 0.207 0.253 0.547 0.393 

Los Angeles, CA 0 0.996 0.134 0.103 0.431 0.259 

Salt Lake City, UT 0 0.96 0.219 0.057 0.358 0.201 

San Jose, CA 0 0.88 0.118 0.13 0.46 0.285 

Sacramento, CA 0 1 0.192 0.173 0.562 0.379 

San Francisco, CA 0.087 0.73 0.387 0.052 0.364 0.215 

Phoenix, AZ 0.007 0.21 0.097 0.134 0.396 0.289 

 

The average capacity factor of WT and PV of ten different cities are also calculated. 

Those data will be helpful to provide additional information about the renewable power 

generation as well as giving general idea about the weather condition of these cities.  
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Figure 3.3 Average Capacity Factor of PV and WT for Each City 

 3.1.6 Computational Results and Discussion  

 Model 3.1 is executed in AMPL computational environment with the given 

parameters and hourly wind and solar capacity factors of ten cities. Case 1 serves as the 

benchmark, and the optimal sizing of WT, PV and ESS units along with the costs are 

summarized in Table 3.6. Note that the ESS capacity cost is assumed to be $0.5M/MWh. 

Table 3.6 Installation Capacity of PV, WT and ESS and System Cost for Case 1 

City WT (MW) PV (MW) ESS (MWh) Annual Cost ($) 

Reno, AZ 0.008 0.85 0.034 155,780 

Yuma, AZ 0 0.71 0.024 132,451 

Tucson, AZ 0 0.56 0.011 107,115 

Las Vegas, NV 0 0.55 0.032 108,303 

Los Angeles, CA 0.012 1.19 0.068 209,787 

Salt Lake, UT 0.001 1.91 0.354 337,370 

San Jose, CA 0 0.990 0.077 178,442 

Sacramento, CA 0 0.81 0.031 144,158 

San Francisco, CA 1.01 0.25 0.079 220,999 

Phoenix, AZ 0 0.99 0.038 175,819 

 

For further study of the feasibility of the model with different parameter values, Model 

3.1 is run by reducing ESS system cost from $0.5M/MWh to $0.2M/MWh. Table 3.7 
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presents the results for Case 2 based on the reduced ESS cost. 

Table 3.7 Capacity of PV, WT and ESS for Case 2 (Unit Cost of ESS is $0.2M/MWh) 

City WT (MW) PV (MW) ESS (MWh) Annual Cost ($) 

Reno, AZ 0.025 0.83 0.12 154,251 

Yuma, AZ 0 0.68 0.19 130,783 

Tucson, AZ 0 0.56 0.028 106,607 

Las Vegas, NV 0 0.55 0.044 107,122 

Los Angeles, CA 0.023 1.14 0.196 204,328 

Salt Lake, UT 0.01 1.84 0.611 320,414 

San Jose, CA 0 0.996 0.078 175,634 

Sacramento, CA 0 0.77 0.177 141,466 

San Francisco, CA 1.02 0.24 0.117 217,678 

Phoenix, AZ 0 0.94 0.267 171,446 

 

 

Figure 3.4 PV Capacity of Each City 

The PV Capacity of Each City graph shows that Tucson, Las Vegas and San Jose, in 

these three cities the capacity of PV remains same despite the cost of ESS being 40% of 

$0.5M/MWh. The possible reason could be the energy generation from PV does not 

increase as the PV output depends on the capacity factor of PV of each city. The ESS 

does not actively contribute to power generation, rather its role is for regulating the 

uncertainty of power supply through storing and discharging energy. That is why in these 
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three cities the capacity of PV remains almost same after reducing the price of ESS. 

 

Figure 3.5 ESS Capacity of Each City 

Fig 3.5 shows that the ESS capacity of Reno, Yuma, Los Angeles, Salt Lake City, 

Sacramento and Phoenix increases significantly. However, the graph also shows that the 

ESS capacity of San Jose remain the same even if the price of ESS is down from 

$0.5M/MWh to $0.2M/MWh. Reducing the ESS price do not increase the energy 

generation from PV and WT. Energy generation from WT and PV depend on the capacity 

factor of PV and WT of each city. So, reducing the price actually does not increase the 

capacity of ESS at San Jose because of this.  

3.2 Minimizing Battery Swap Station Cost with Grid-tied Microgrid  

 3.2.1 System Configuration 

 In this setting, the microgrid is interconnected with the main grid through circuit 

breakers or common coupling point. As such the system is able to realize two-way power 

flow. The microgrid under study consists of WT, solar PV, energy storage system (ESS), 

and the EV battery swap station that acts as the load. A grid-tied microgrid system is 

investigated by considering two operational scenarios. In scenario one, if the wind blows 
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hard or the sunshine is strong, the microgrid is able to fully energize the swap station 

with no reliance on the main grid. If surplus power is generated from WT and PV, it can 

be stored in the ESS or fed into the main grid. In scenario two, if the aggregate power 

output of WT and PV is less than the load, the ESS plays as complementary energy 

source to co-power the battery swap station. Situations may also occur when the main 

grid power must be imported if the energy of ESS is depleted. 

 

Figure 3.6 An EV Battery Swap Station with Grid-Tied Microgrid 

 3.2.2 Model Formulation 

 In this section, an integrated microgrid and battery swap station (BSS) planning 

model is presented with the goal of minimizing annual system cost. The goal is to size 

WT, PV and ESS units as well as to allocate the number of spare EV batteries. There are 

five major cost items involved: 1) annualized microgrid installation cost; 2) microgrid 

maintenance and operation cost; 3) carbon credits which is revenue to the station; 4) EV 

battery purchase and holding cost; and 5) the revenue of selling to or cost of purchasing 

electricity from the main grid.  

 



 

 

44 

Table 3.8 Notation for Modeling Battery Swap Station with Grid-Tied Microgrid 

Notation Explanation 

T number of planning periods (e.g., for one-year T=8,736 for hourly 

planning) 

g operating time of generator g in a period 

ag capacity cost of renewable generator g. (unit: $/MW) 

bES ES operating cost (unit: $/MWh) 

dES capacity cost of electric energy storage ES unit in station. (unit: 

$/MWh) 

DVB,k unit cost of EV battery pack type i in station. (unit: $/item) 

g capital recovery factor for renewable generator g. 

ES capital recovery factor for electric energy storage unit in station. 

VB capital recovery factor for EV battery packs in station. 

IM,t price of importing electricity to the main grid at time t (unit: 

$/MWh) 

EX,t price of selling (or exporting) electricity to the main grid at time t 

(unit: $/MWh). 

EV,k,t arrival rate of EV with battery type k at time t. (unit: cars/hour) 

PEV,k power for charging a unit of battery type k. (unit: MW/battery)   

 time step of one planning period. (e.g. if T=8736 hours/year, then 

=1 hour) 

 

Table 3.9 Explanation of Decision Variables 

Notation Explanation 

Pg
c power capacity of renewable generator g for g=1, 2, …, G. 

Bc
ES energy capacity of electrical storage unit in station. 

sk number of spare EV battery type k in station for k=1, 2, …, K. 

BES,t amount of energy stored in ES unit at time t. (unit: MWh) 

EIM,t the amount of energy imported from the main grid at time t 

EEX,t the amount of energy exported to the main grid at time t 

 

The following cost model is developed to capture these five cost items of a battery swap 

station: 

 

2 ,

1 1 1 1

, , , , ,

1 1

( , , ) ( )
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G T G T
c c c c c

g k ES g g g g g gt g g ES ES ES ES ES t

g t g t
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VB VB k k IM t IM t EX t EX t

k t

f B a P b c P d B b B

d s E E

   

  
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= =
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  

 

P s

 (3.7) 

There are five major constraints associated with this planning model:  
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a) Energy balance in each period 

, , , , , 1 , ,

1 1

K G
c

EV k t EV k ES t ES t EX t IM t gt g g

k g

P B B E E P   −

= =

+ − + − =  for t=1, 2, ..., T. (3.8)   

b) EV spare battery demand constraints 

, ,EV k t ks   , for t=1, 2, ..., T, and for k=1, 2, ..., K. (3.9) 

c) Energy Storage State at time t 

,0 c

ES t ESB B  , for t=1, 2, ..., T. (3.10) 

d) Initial energy stored in ES at t=0 

,0

c

ES ESB B=  (3.11) 

e) End time ES energy at t=T 

,

c

ES T ESB B=  (3.12) 

f) Electricity import and export 

, ,, 0EX t IM tE E  , for t=1, 2, ..., T. (3.13) 

g) Non-Negativity of Decision Variables 

0c

gP  , for g=1, 2, …, G. (3.14) 

0c

ESB  ,  (3.15) 

sk{0, 1, 2, …}, for k=1, 2, …, K. (3.16) 

 3.2.3 Results and Discussion for Phoenix 

 Three cities are chosen to test the model: Phoenix, San Francisco, and Salt Lake 

City. These cities are the good representatives of the mix of wind and weather conditions. 

Model 3.2 is solved in AMPL computational environment with the given parameters and 

among ten different cities hourly capacity factors of WT and PV Phoenix is picked as the 
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first city to run the optimization model. Case 1 is denoted as a benchmark, the optimal 

sizing of WT, PV and ESS units along with the number of battery packs and the annual 

cost are summarized in Table 3.12. 

Table 3.10 Parameter Values with Unit for Model 3.2 (Case 1 for Benchmark) 

Notation Value Unit 

G Since wind and PV are used, G=2 n/a 

 1 hour 

T 8736 hours 

a1 1.5M (g=1 is for WT) $/MW 

a2 2M (g=2 is for PV) $/MW 

dES 0.4M (ES capacity cost) $/MWh 

dVB,1 7,000 (for Nissan Leaf 1st generation battery) $/item 

dVB,2 12,000 (for Nissan Leaf 2nd Generation) $/item 

b1 8 (WT operating cost) $/MWh 

b2 4 (PV operating cost) $/MWh 

bES 2 (ES operating cost) $/MWh 

c1 0 (WT carbon credit) $/MWh 

c2 10 (PV carbon credits) $/MWh 

1 0.0944 (7% compound interest, 20 years) n/a 

2 0.0944 (7% compound interest, 20 years) n/a 

ES 0.1424 (7% compound interest, 10 years) n/a 

VB 0.1424 (7% compound interest, 10 years) n/a 

1,t Hourly WT capacity factor for t=1, 2, …, T n/a 

2,t Hourly PV capacity factor for t=1, 2, …, T cars/hour 

EV,k,t 5 for t=1, 2, …, T n/a 

PEV,1 0.024 (power for charging 1st generation Leaf battery) MW 

PEV,2 0.040 (power for charging 2nd generation Leaf battery) MW 

IM,t 70 (electricity price of importing from main grid) $/MWh 

EX,t 35 (electricity sale price of exporting to main grid) $/MWh 

 

Table 3.11 Parameter Values for Sensitivity Analysis for Model 3.2 (Cases 2 to 9) 

Case Notation Value Unit 

2 a2 1M (g=2 is for PV) $/MW 

3 dES 0.1M (ES capacity cost) $/MWh 

4 dES 0.05M (ES capacity cost) $/MWh 

5 
dVB,1 3,500 (for Nissan Leaf 1st generation battery) $/item 

dVB,2 6,000 (for Nissan Leaf 2nd Generation) $/item 

6 c2 0 (PV carbon credits) $/MWh 

7 EV,k,t 10 for t=1, 2, …, T, for k=1 and 2 car/hour 

8 
PEV,1 0.048 (power for charging 1st generation Leaf battery) MW 

PEV,2 0.08 (power for charging 2nd generation Leaf battery) MW 

9 ρIM,t 150 $/MWh 
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Table 3.12 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Phoenix 

Case Annual cost 

($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Prosumer behavior 

1 206,616 0 0.85 5 5 0 Import, export 

2 -71,131 0 20 5 5 0 export 

3 206,616 0 0.85 5 5 0 Import, export 

4 206,616 0 0.85 5 5 0 Import, export 

5 199,852 0 0.85 5 5 0 Import, export 

6 209,215 0 0 5 5 0 import 

7 413,232 0 1.71 10 10 0 Import, export 

8 399,704 0 1.71 5 5 0 Import, export 

9 231,478 0 1.19 5 5 0 Import, export 

 

After comparing Cases 1 with 2 and find out that reducing the PV capacity cost 

by half and down to $1M/MW makes the system increases PV capacity from 0.85MW to 

20 MW. The negative cost indeed indicates that the system in Case 2 creates profit by 

selling surplus PV energy to the grid.  Cases 3 and 4 are computed at the reduced cost of 

ESS unit. It is interesting to see that ESS is not competitive in Phoenix if even the cost is 

down to $0.1M/MWh as opposed to current cost of $0.4M/MWh. In other words, the 

system never chooses ESS even the cost is down to $0.1M/MWh, and the station opts to 

export the energy to the main grid instead of storing at the ESS. In case of power 

shortage, the station chooses to import the energy from the main grid. In Case 5, the EV 

battery cost is halved, the required spare parts remain the same as these of Case 1. This 

shows that the station will not keep more spare battery packs because of reduced cost.   

 Case 7 shows that by doubling the battery swap demand, the station needs to 

install twice of PV capacity to fulfill the demand. This result is reasonable because the 

station needs more PV power to charge more exchanged batteries given the same time. 

Case 8 assumes that the charge power for each battery type doubles as oppose to Case 1. 

Though the demand for spare battery remains the same, the installed PV capacity also 



 

 

48 

doubles to meet the increased charged power.  

Case 9 shows that by increasing the electricity purchase price from the main grid 

from $70/MWh to $150/MWh, the install capacity of PV is increased. The result is 

reasonable because it is better off to install more PV to fulfill the demand of the battery 

swapping station and the additional energy can be easily sold to the main grid which is 

profitable. The amount of energy export to the main grid is also increased in each hour.   

Now, the objective function value of our optimization model is compared which 

is annual cost of the battery swap station with grid tied micro-grid among different cases 

of Phoenix. In comparison between Case1 (i.e. benchmark) with Case 5, Figure 3.7 

shows that reducing the EV battery cost by a half from the benchmark case, the total 

annual cost of battery swap station drops by certain amounts, but not significant. 

Additionally, in comparison between Cases 1 with 2, Figure 3.7 also shows that reducing 

the PV capacity cost down to a half of the benchmark case makes the system profitable.  

 

Figure 3.7 Annual Cost for Each Case for Phoenix 

Comparison between the Cases 1 with 8 shows that the amount of energy 

imported from the main grid in December doubles in Case 8 because of doubling the 
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power for the batteries compared to Case1. December is chosen because at this time the 

PV generation is the lowest in a year and this is a perfect period to compare the amount 

of energy purchased from the main grid.  

 

Figure 3.8 Energy Imported from Main Grid in December (Case 1) 

 

Figure 3.9 Energy Imported from Main Grid in December (Case 8) 

Comparison between Cases 1 with 2 shows that the amount of energy exported to the 

main grid in May turns out to be quite high for Case 2 by reducing the capacity cost of 
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PV by $1M/MW from the Case1.  

 

Figure 3.10 Energy Exported to the Main Grid in May (Case 1) 

 

Figure 3.11 Energy Exported to the Main Grid in May (Case 2) 
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 3.2.4 Results and Discussion for Las Vegas, Reno, Sacramento, San Jose, 

Tucson and Yuma 

 Model 3.2 is solved in AMPL computational environment with the given 

parameters and among ten different cities hourly capacity factors of WT and PV, Phoenix 

is picked as the first city to run our optimization model. Additionally, Model 3.2 has run 

in AMPL computational environment for other cities like Las Vegas, Reno, Sacramento, 

San Jose, Tucson and Yuma. Case 1 is denoted as a benchmark, the optimal sizing of 

WT, PV and ESS units along with the number of battery packs and the annual cost are 

summarized in Table 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18. All these six cities are 

showing similar results like Phoenix due to having similar weather condition.  

Table 3.13 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Las Vegas 

Case Annual cost 

($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS(MWh) Prosumer 

1 156,445 0 0.83 5 5 0 import export 

2 -817,982 0 20 5 5 0 export 

3 156,445 0 0.83 5 5 0 import export 

4 156,438 0 0.83 5 5 0.003 import export 

5 149,681 0 0.83 5 5 0 import export 

6 183,236 0 0.73 5 5 0 import export 

7 312,890 0 1.66 10 10 0 import export 

8 299,362 0 1.66 5 5 0 import export 

9 162,885 0 0.96 5 5 0 import export 

 

Table 3.14 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Reno 

Case Annual cost 

($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS(MWh) Prosumer 

1 193,728 0 0.85 5 5 0 import export 

2 -249,761 0 20 5 5 0 export 

3 193,728 0 0.85 5 5 0 import export 

4 193,727 0 0.85 5 5 0.0008 import export 

5 186,964 0 0.85 5 5 0 import export 

6 209,214 0 0 5 5 0 import 

7 387,456 0 1.7 10 10 0 import export 

8 373,928 0 1.7 5 5 0 import export 

9 212,178 0 1.09 5 5 0 import export 
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Table 3.15 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Sacramento 

Case 
Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 
Prosumer 

1 164,961 0 0.83 5 5 0 import export 

2 -717,466 0 20 5 5 0 export 

3 164,961 0 0.83 5 5 0 import export 

4 164,961 0 0.83 5 5 0 import export 

5 158,197 0 0.83 5 5 0 import export 

6 189,659 0 0.69 5 5 0 import export 

7 329,922 0 1.66 10 10 0 import export 

8 316,394 0 1.66 5 5 0 import export 

   9 175,661 0 1.06 5 5 0 Import export 

 

Table 3.16 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in San Jose 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS(MWh) Prosumer 

1 208,999  0  0.72  5  5  0  Import export 

2 -40,944  0  20  5  5  0  export 

3 208,999  0  0.72  5  5  0  import export 

4 208,999  0  0.72  5  5  0  import export 

5 202,235  0  0.72  5  5  0  import export 

6 209,214  0  0  5  5  0  import 

7 417,998  0  1.44  10  10  0  import export 

8 404,470  0  1.44  5  5  0  import export 

9 231,328 0 1.19 5 5 0 import export 

 

Table 3.17 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Tucson 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS(MWh) Prosumer 

1 147,137 0 0.8 5 5 0 import export 

2 -987,834 0 20 5 5 0 export 

3 147,137 0 0.8 5 5 0 import export 

4 147,133 0 0.8 5 5 0.002 import export 

5 140,373 0 0.8 5 5 0 import export 

6 174,997 0 0.73 5 5 0 import export 

7 294,274 0 1.6 10 10 0 import export 

8 280,746 0 1.6 5 5 0 import export 

9 152,616 0 0.93 5 5 0 import export 
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Table 3.18 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Yuma 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Prosumer 

1 176,682 0 0.83 5 5 0 import export 

2 -502,022 0 20 5 5 0 export 

3 176,682 0 0.83 5 5 0 import export 

4 176,682 0 0.83 5 5 0 import export 

5 169,918 0 0.83 5 5 0 import export 

6 200,493 0 0.73 5 5 0 import export 

7 353,364 0 1.66 10 10 0 import export 

8 339,836 0 1.66 5 5 0 import export 

9 188,828 0 1.06 5 5 0 import export  

 

 3.2.5 Results and Discussion for San Francisco: 

 Model 3.2 is solved for the wind and weather condition of San Francisco. Case 1 

is denoted as a benchmark, the optimal sizing of WT, PV and ESS units along with the 

number of battery packs and the annual cost are summarized in Table 3.19.  

Table 3.19 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in San Francisco 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Prosumer 

1 172,075  0.66  0  5  5  0  import export 

2 148,707  0  1.73  5  5  0  import export 

3 172,075  0.66  0  5  5  0  import export 

4 172,075  0.66  0  5  5  0  import export 

5 165,311  0.66  0  5  5  0  import export 

6 172,075  0.66  0  5  5  0  import export 

7 344,150  1.31  0  10  10  0  import export 

8 330,622  1.31  0  5  5  0  import export 

9 210,137 1.37 0 5 5 0 import export 

 

Comparison between the Case 1 with Case 2 shows that reducing the PV capacity 

cost by half and down to $1M/MW makes the system chooses PV capacity of 1.73 MW 

instead of WT capacity of 0.66 MW. The annual cost of battery swapping station in Case 

1 is reduced by 13.6% in Case 2 because of reducing the PV capacity cost by half and 
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down to $1M/MW. Cases 3 and 4 are computed at the reduced cost of ESS unit. It is 

interesting to see that ESS is not competitive in San Francisco if even the cost is down to 

$0.1M/MWh as opposed to current cost of $0.4M/MWh. In other words, the system 

never chooses ESS even the cost is down to $0.05M/MWh, and the station opts to export 

the energy to the main grid instead of storing at the ESS. In Case 5, the EV battery cost is 

halved, the required spare parts remain the same as these of Case 1. This shows that the 

station will not store more spare battery packs because of reduced cost.   

 Case 7 shows that by doubling the battery swap demand, the station needs to 

install twice of WT capacity to fulfill the demand. This result is reasonable because the 

station needs more WT power to charge more exchanged batteries given the same time. 

Case 8 assumes that the charge power for each battery type doubles as oppose to Case 1. 

Though the demand for spare battery remains the same, the installed WT capacity also 

doubles to meet the increased charged power.  

 Case 9 shows that by increasing the electricity importing price from the main grid 

from $70/MWh to $150/MWh, the install capacity of WT is increased. The result is 

reasonable because it is better to install more WT to fulfill the demand of the battery 

swapping station and the additional energy can be easily sold to the main grid which is 

profitable. For this reason, the amount of exporting of energy to the main grid is also 

increased in each hour.   

 3.2.6 Results and Discussion for Salt Lake City: 

 Model 3.2 is solved for Salt Lake City and Case 1 is denoted as a benchmark. The 

optimal sizing of WT, PV and ESS units along with the number of battery packs and the 

annual cost are summarized in Table 3.20. 
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Table 3.20 Total Cost, Capacity of PV, WT and ESS for Cases 1 to 9 in Salt Lake City 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Prosumer 

1 209,214 0 0 5 5 0 import 

2 159,186 0 1.6 5 5 0 import export 

3 209,214 0 0 5 5 0 import 

4 209,214 0 0 5 5 0 import 

5 202,450 0 0 5 5 0 import 

6 209,214 0 0 5 5 0 import 

7 418,429 0 0 10 10 0 import 

8 404,901 0 0 5 5 0 import 

9 328,993 0 1.16 5 5 0 import export 

 

Comparison between the Cases 1 with 2 shows that reducing the PV capacity cost 

by half and down to $1M/MW makes the system to install 1.6 MW PV instead of 0 MW. 

The annual cost of battery swap station in Case 2 is reduced by 23.9% compared with 

Case 1 because of reducing the PV capacity cost by half. 

Case 9 shows that by increasing the electricity import price from $70/MWh to 

$150/MWh, the system prefers to install more PV capacity. The result is reasonable 

because it is better to install more PV to fulfill the demand of the battery swap station 

instead of importing from the main grid and the surplus energy can be sold to the main 

grid for revenue generation. For this reason, the amount of energy exported to the main 

grid also increases in each hour.   
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4. MICROGRID SIZING FOR A JOINT BATTERY SWAP AND 

SUPERCHARGING STATION 

4.1 Microgrid Sizing for a Joint Battery Swap and Supercharging Station 

 4.1.1 System Setting 

 In this setting, the station offers two types of services: battery swapping and on-

board supercharging. When an EV arrives in the station, the depleted battery is 

exchanged if a spare battery is available in the stock. Upon exchange, the EV exists the 

station and the depleted battery is moved to the charge bay for recharging. If the battery 

stock has no spare pack, the EV approaches an onsite supercharger to recharge the on-

board battery with no need of exchange.   

 

Figure 4.1 A Battery Swap and Supercharging Station with Grid-Tied Microgrid 

A station capable of performing battery swap and supercharging is depicted in Figure 4.1. 

The electricity of the joint battery swap and supercharging (JBSS) station is co-powered 

by the microgrid and the main grid. The microgrid consists of WT, PV and energy 

storage (ES) system. Since the microgrid is interconnected with the main grid, the 

operating principle is the same as the pure battery swap station in Chapter 3. 
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 4.1.2 Model Formulation 

 In this section, the microgrid sizing model in Chapter 3 is extended to a JBSS 

station that offers both battery swap and on-board supercharging. Besides the battery 

inventory, the supercharging equipment is also part of the station’s asset. By comparing 

with Model 3.2, the cost of the JBSS station now includes the installation of 

superchargers.  

Table 4.1 Notation for Modeling Battery Swap and Supercharging Stations 

Notation Explanation 

T number of planning periods (e.g. for one-year T=8736 for hourly planning) 

G Since WT and PV are used, G=2 

 time step or length of one planning period. (e.g. if T=8736 hours/year, then 

=1 hour) 

g operating time of generator g in a period 

τswap the time to exchange a battery given a spare battery is available (unit: hour) 

τmax the maxium acceptable service time of an EV for swap or supercharging 

(unit: hour) 

ag capacity cost of renewable generator g. (unit: $/MW) 

dES capacity cost of electric energy storage ES unit in station. (unit: $/MWh) 

dVB,k unit cost of EV battery pack type i in station. (unit: $/item) 

dSC installation cost of a supercharger 

bES ES operating cost (unit: $/MWh) 

bg operating cost of generator g for g= 1,2, …, G. 

g capital recovery factor for renewable generator g 

ES capital recovery factor for electrical energy storage unit in station 

VB capital recovery factor for spare battery packs in station 

ɸSC capital recovery factor of superchargers (where ‘SC’ stands for 

supercharging) 

IM,t price of importing or buying electricity from the main grid at time t (unit: 

$/MWh) 

EX,t price of exporting selling electricity to the main grid at time t (unit: 

$/MWh). 

EV,k,t arrival rate of EV with battery type k at time t. (unit: cars/hour) 

λg,t hourly capacity factor of WT and PV t=1, 2, …, T 

cg carbon credits of renewable generator g. 

Bc
VB,k capacity of battery type k. (unit: MWh/battery) 

πk probability that an EV uses a supercharger due to stockout of battery type k 

αk service level criterion for using bettery swap 

PSC power of a supercharger (unit: MW) 

PVB,k power of recharging battery type k in charge bay (unit: MW) 
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Table 4.2 Explanation of Decision Variables 

Notation Explanation 

Pg
c power capacity of renewable generator g for g=1, 2, …, G. (unit: MW) 

Bc
ES energy capacity of electrical storage unit in station (unit: MWh) 

BES,t amount of energy stored in ES unit at time t (unit: MWh) 

sk number of spare battery type k in station for k=1, 2, …, K 

m number of superchargers in a station 

EIM,t the amount of energy imported from the main grid at time t (unit: 

$/MWh) 

EEX,t the amount of energy exported to the main grid at time t (unit: $/MWh) 

 

The annualized cost of the JBSS station is given as follows: 
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 (4.1) 

There are five major constraints associated with the hourly operation of a JBSS station. 

These constraints are elaborated below. 

a) Energy balance in each period

, , , , , , , , 1 , ,

1 1 1

(1 )
K K G

c c c

k EV k t VB k k EV k t VB k ES t ES t EX t IM t gt g

k k g

B B B B E E P       −

= = =

− + + − + − =  
,  

                                                                                for t=1, 2, ..., T.  (4.2) 

Or equivallently 

, , , , , 1 , ,

1 1

K G
c c

EV k t VB k ES t ES t EX t IM t gt g

k g

B B B E E P   −

= =

+ − + − =  , for t=1, 2, ..., T. (4.3) 

Note that the value of k falls between 0 and 1. If k=0, it means all incoming EV 

receives battery swap services, and there is no use of superchargers. If k=1, it means all 

EV need to recharge their on-board battery using superchargers because the statiom has 

no spare packs. In reality 0<k<1 depending on the allocated safety stock level of the 
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spare battery in a JBSS station. 

b) Service level requirement (probability vs. time constraints) 

, , ,

1
max(1 )

K
c

k EV k t VB k

k
k swap

SC

B

mP

  

  


=− + 


, for t=1, 2, ..., T, and k=1, 2, ..., K. (4.4) 

Equation (4.4) can be re-arranged as follows 

, , , max

1

1
(1 )

K
c

k swap k EV k t VB k

kSC

B
mP

    
=

− +  , for t=1, 2, ..., T, and k=1, 2, ..., K. (4.5) 

Or equivalently 

max , , ,

1

(1 )
K

c

SC k swap SC k EV k t VB k

k

mP mP B    
=

− −  , for t=1, 2, ..., T, and k=1, 2, ..., K. (4.6) 

 c) Spare battery demand constraints 

An amount of spare battery units is allcoated in the JBSS station to meet the swap 

demand. This constraint is defined as follows 

,

, ,

,

(1 )
VB k

k EV k t kc

VB k

P
s

B


  −  , for t=1, 2, ..., T, and for k=1, 2, ..., K. (4.7) 

Where the left hand side represents the minimum amount of batteries being exchanged 

for type k with probability 1-k. Here Bc
VB,k is the capacity of battery type k, and PVB,k is 

the recharge power of battery type k in the charge bay. Note that  is the time duration of 

a planning period. The right hand side represents the turn-around rate of the battery 

inventory. For instance, during period , if only one depleted battery can be recharged, 

the inventory must have sk units to meet the swap demand with probability1-k. If the 

recharge turn-around time doubles, it implies that two empty batteries can be recharged to 

full or PVB,k/B
c
VB,k=2. Then only 0.5sk spare batteris are needed to meet the swap demand 
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during . In an extreme case which though never happens: when the time to recharge a 

empty battery is zero, there is only one spare battery is needed, i.e., sk=1, to meet the 

deamand.  Equation (4.7) can also be rewritten as 

, , , , (1 )c

k VB k EV k t VB k ks P B  − , for t=1, 2, ..., T, and for k=1, 2, ..., K. (4.8) 

d) ES capacity limit at time t 

,0 c

ES t ESB B  , for t=1, 2, ..., T. (4.9) 

e) Initial ES energy at t=0 

,0

c

ES ESB B=  (4.10) 

f) ES energy at end time at t=T 

,

c

ES T ESB B=  (4.11) 

g) Non-negativity of decision variables 

0c

gP  , for g=1, 2, …, G. (4.12) 

0c

ESB  , (4.13) 

, 0IM tE  , for t=1, 2, …, T. (4.14) 

, 0EX tE  , for t=1, 2, …, T. (4.15) 

sk{0, 1, 2, …}, for k=1, 2, …, K. (4.16) 

m{0, 1, 2, …} (4.17) 

4.2 Numerical Experiments 

 4.2.1 Values of Model Parameters 

 Parameters are the values (or data) which are known in the optimization model. 

The parameters for the optimization model are summarized in Table 4.3 below: 
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Table 4.3 Parameters with Unit for Model 4.1 (Case 1 for Benchmark) 

Notation Value Unit 

G Since WT and PV are used, G=2 n/a 

 1  hour 

T 8736  hour 

a1 1.5M (g=1 is for WT) $/MW 

a2 2M (g=2 is for PV) $/MW 

dES 0.4M (ES capacity cost) $/MWh 

dVB,1 7,000 (for Nissan Leaf 1st generation battery) $/item 

dVB,2 12,000 (for Nissan Leaf 2nd Generation) $/item 

b1 8 (WT operating cost) $/MWh 

b2 4 (PV operating cost) $/MWh 

bES 2 (ES operating cost) $/MWh 

c1 0 (WT carbon credit) $/MWh 

c2 10 (PV carbon credits) $/MWh 

1 0.0944 (7% compound interest, 20 years) n/a 

2 0.0944 (7% compound interest, 20 years) n/a 

ES 0.1424 (7% compound interest, 10 years) n/a 

VB 0.1424 (7% compound interest, 10 years) n/a 

1,t Each city hourly WT capacity factor for t=1, 2, …, T n/a 

2,t Each city hourly PV capacity factor for t=1, 2, …, T car/hour 

EV,k,t 5 for t=1, 2, …, T n/a 

PEV,1 0.024 (power for charging 1st generation Leaf battery) MW 

PEV,2 0.040 (power for charging 2nd generation Leaf battery) MW 

IM,t 140 (electricity price of importing from main grid) $/MWh 

EX,t 35 (electricity sale price of exporting to main grid) $/MWh 

τswap 0.05(the time to swapping battery given a spare pack is 

available) 

hours 

τmax 0.3 (the maxium acceptable service time of an EV for swap 

or supercharging) 

hour 

dSC 150,000 (installation cost of a supercharger) $/supercharger 

ɸSC 0.0944 (7% compound interest, 20 years) n/a 

Bc
VB,k 0.024 and 0.04 (capacity of EV battery type k) MWh/battery 

πk 0.1 (probability that an EV uses supercharger because 

battery type k is out of stock) 

n/a 

αk 0.8 (service level criterion for using bettery swap) n/a 

PSC 0.15 (power of a supercharger) MW 

PVB,k 0.8 (the recharge power of battery type k in charge bay) MW 

 

 4.2.2 Computational Results and Discussions 

 Model 4.1 is solved in AMPL computational environment with the given 

parameters in Table 4.3. The model is implemented in ten different cities based on the 
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hourly capacity factors of WT and PV. The optimal sizing of WT, PV and ESS units, the 

number of spare batteries and superchargers (SC), and the associated annual cost are 

found which are summarized in Table 4.4.  

Table 4.4 Results of Objective Function and Decision Variables in Each City 

City Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Num 

of SC 

Prosumer 

Phoenix 396,005  0 0.60 2 3 0 1 Import, export 

San Francisco 179,265 1.55 0 2 3 0 1 Import, export 

Salt Lake City 336,991 0.90 0 2 3 0 1 Import, export 

Reno 377,934 0.35 0.50 2 3 0 1 Import, export 

Yuma 346,499 0.56 0.41 2 3 0 1 Import, export 

Tucson 345,510 0.34 0.51 2 3 0 1 Import, export 

Las Vegas 334,129 0.42 0.47 2 3 0 1 Import, export 

Los Angeles 355,876 0.74 0 2 3 0 1 Import, export 

Sacramento 342,138 0.49 0.44 2 3 0 1 Import, export 

San Jose 394,293 0.35 0.50 2 3 0 1 Import, export 

 

Phoenix is a sunny city based on weather conditions. For this reason, after 

analyzing the values from the table, Phoenix chooses to install 0.6 MW of PV as 

microgrid generation. From Table 4.4, San Francisco installs 1.55 MW of WT as 

microgrid generation. This makes sense from Chapter 3 weather condition data (see 

Tables 3.4 and 3.5), that San Francisco is a city with strong wind.  

According to Chapter 3 weather condition data, Salt Lake City is a strong wind 

and strong sun city but from Table 4.4, Salt Lake City only installs 0.9 MW of WT as 

power generating unit with not installing any PV is found. For Reno, Yuma and Tucson 

these three cities have strong sun and weak wind according to weather condition data in 

Tables 3.4 and 3.5 of Chapter 3. The results indicate that these three cities opt to install 

both WT and PV as microgrid generating units. Las Vegas and Sacramento both possess 

strong wind and strong sun. From Table 4.4, both of these cities choose WT and PV as 

onsite generating units based on their weather condition.  
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           An interesting result for Los Angeles is found. Based on the weather data in 

Tables 3.4 and 3.5, Los Angeles is a city with weak wind and strong sun but from the 

above table, Los Angeles is installing WT as onsite generation and also importing and 

exporting energy to the main grid. These process makes the whole system act as 

prosumer. Since, San Jose has strong sun and weak wind. But from Table 4.4, San Jose is 

installing both WT and PV as distributed power generating units.  

   In summary, Table 4.4 shows that all these ten cities are importing energy from the 

main grid and also exporting energy to the main grid and serving as prosumer.  

4.3 Sensitivity Analysis 

 4.3.1 Values of Model Parameter 

 The sensitivity analysis parameters are defined based on the consideration of 

technology change, government incentives, and energy market dynamics. With the 

advancement of technology, the capacity cost of PV and ES system and the cost of 

swapping battery may go down in near future. These scenarios have considered while 

choosing the sensitivity analysis value for Cases 2, 3, 4 and 5. The government currently 

gives carbon credits to PV installation. In future when the PV cost continues to decline, 

the government could terminate the carbon credits. In Case 6, this scenario has 

considered while setting zero carbon credits for PV. When EV becomes more accessible 

to people, the demand for EV battery swap and supercharging station are expected to go 

up. For this reason, the EV battery service demand has doubled in Case 7. With the 

advancement of technology, the battery power capacity and supercharger power could 

increase as well.  These factors have considered in Cases 8 and 11. In real life, the 

electricity purchase price varies with time during a day. This scenario has captured by 
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changing the electricity importing price based on TOU in Case 9. In future the demand 

for renewable energy could increase to mitigate the climate change. For this reason, the 

selling price of renewable energy could go up. This situation is captured in Case 10.  

Table 4.5 Parameter for Sensitivity Analysis for Model 4.1 (Cases 2 to 11) 

Case Notation Value Unit Comments 

2 a2 1M $/MW g=2 is for PV 

3 dES 0.1M $/MWh ES capacity cost 

4 dES 0.05M $/MWh ES capacity cost 

5 
dVB,1 3,500 $/item for Nissan Leaf 1st generation battery 

dVB,2 6,000 $/item for Nissan Leaf 2nd Generation 

6 c2 0 $/MWh PV carbon credits 

7 EV,k,t 10 car/hour for t=1, 2, …, T, for k=1 and 2 

8 

PEV,1 0.048 MW 
power for charging 1st generation Leaf 

battery 

PEV,2 0.08 MW 
power for charging 2nd generation Leaf 

battery 

9 ρIM,t 140, 70 $/MWh 
TOU rate $140/MWh from 9am to 

9pm, and $70/MWh from 10pm to 8am 

10 ρEX,t 70 $/MWh standard utility rate   

11 PSC 0.3 MW supercharger power 

The ten cities have been categorized based on two criteria. The first one is strong wind 

and strong sun, the second one is weak wind and strong sun. If the capacity factor (CF) of 

WT is less than 0.19 then the city has weak wind and if the CF of WT is higher than 0.19 

then the city has strong wind. Additionally, If the capacity factor of PV is less than 0.2 

then the city has weak sun and vice versa. These two criteria actually cover a diverse 

weather profile in the world. Different cities have picked from each category to run the 

sensitivity analysis for covering a diverse weather profile. 

Table 4.6 Weather Condition of Ten Cities 

Wind Sun City 

Strong  Strong  Las Vegas, Sacramento, Salt Lake City, San Francisco 

Weak  Strong  Reno, Yuma, Tucson, Phoenix, San Jose, Los Angeles 
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 4.3.2 Phoenix 

 Phoenix is picked as the first city to carry out the sensitivity analysis. Model 4.1 is 

solved in AMPL computational environment with the given parameters using the hourly 

capacity factors of WT and PV in Phoenix. The optimal sizing of WT, PV and ESS units 

along with the number of spare batteries and superchargers are summarized in Table 4.7. 

Note that Case 1 is a benchmark. 

Table 4.7 Results of Objective Function and Decision Variables in Phoenix 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Num. 

of SC 

Prosumer 

1 396,005 0 0.60 2 3 0 1 Import, export 

2 314,276 0 1.33 2 3 0 1 Import, export 

3 395,851 0 0.62 2 3 0.061 1 Import, export 

4 394,296 0 0.79 2 3 0.56 1 Import, export 

5 392,445 0 0.60 2 3 0 1 Import, export 

6 404,666 0 0.54 2 3 0 1 Import, export 

7 789,305 0 1.21 3 5 0 2 Import, export 

8 789,305 0 1.21 3 5 0 2 Import, export 

9 311,327 0 0.57 2 3 0 1 Import, export 

10 395,079 0 0.66 2 3 0 1 Import, export 

11 396,005 0 0.60 2 3 0 1 Import, export 

 

             After comparing Cases 1 and 2, find out that reducing the PV capacity cost by 

half (i.e. down to $1M/MW) makes the system increases PV capacity from 0.60 MW to 

1.33 MW. The annual cost of $314,276 is less than the benchmark cost of $396,005, 

indicating that the system in Case 2 creates profit by selling more surplus PV energy to 

the main grid.  Cases 3 and 4 are computed at the reduced cost of ESS unit. It is 

interesting to see that ESS is became competitive in Phoenix when the cost is down to 

$0.05M/MWh as opposed to current cost of $0.4M/MWh in Case 4. In other words, the 

system chooses ESS to store energy when the cost is down to $0.1M/MWh and 

$0.05M/MWh. In Case 5, the EV battery cost is halved, the required spare parts remain 

the same as those of Case 1. This shows that the station will not store more battery packs 
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because of reduced cost. Case 6 indicates that PV is still advantageous compared to wind 

even if the carbon credits are removed.  

 Case 7 shows that by doubling the battery swap demand, the station needs to 

install twice of PV capacity to fulfill the demand. This result is reasonable because the 

station needs more PV power to charge more exchanged batteries given the same time 

period. By doubling the battery swap demand, the station requires more spare battery 

packs and superchargers for fulfilling the increased demand of the station. 

           Case 8 assumes the charge power for each battery type doubles relative to Case 1. 

As a result, the installed PV capacity also doubles to meet the increased charging power. 

In addition, the station is storing more spare battery packs and superchargers for fulfilling 

the increased EV service demand of the station. 

 Case 9 shows that by reducing the electricity importing price from the main grid 

from $140/MWh to $70/MWh between 10pm and 8am, the annual cost of the battery 

swap and super charging station is reduced.  

           After comparing Case 10 with Case 1, find that by increasing the selling price of 

electricity to the main grid, the station opts to install more PV capacity to fulfill the 

demand of the battery swap and supercharging station and sells the surplus energy to 

main grid which is profitable.  

           Comparison between Case 11 with Case 1, find that by increasing the level of 

supercharging power from 0.15MW to 0.3MW there is no significant impact on the 

installation capacity of PV, ESS, and the number of spare batteries and superchargers.  
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 4.3.3 Salt Lake City 

 Salt Lake City is chosen as the second city to run the optimization model for 

sensitivity analysis. Case 1 is denoted as a benchmark, the optimal sizing of WT, PV and 

ESS units, the number of battery packs and superchargers and the annual cost are 

summarized in Table 4.8.  

Table 4.8 Results of Objective Function and Decision Variables in Salt Lake City 

Case Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Num. 

of SC 

Prosumer 

1 336,991 0.90 0 2 3 0 1 Import, export 

2 323,853 0.67 0.71 2 3 0 1 Import, export 

3 336,991 0.90 0 2 3 0 1 Import, export 

4 336,990 0.90 0 2 3 0.003 1 Import, export 

5 333,431 0.90 0 2 3 0 1 Import, export 

6 336,991 0.90 0 2 3 0 1 Import, export 

7 671,276 1.80 0 3 5 0 2 Import, export 

8 671,276 1.80 0 3 5 0 2 Import, export 

9 289,052 0.65 0 2 3 0 1 Import, export 

10 240,153 9.29 0 2 3 0 1 Import, export 

11 336,991 0.90 0 2 3 0 1 Import, export 

 

           After comparing Case 2 with Case 1, find that reducing the PV capacity cost by 

half makes the system to increase PV capacity from 0 to 0.71 MW. The annual cost of 

$323,853 indicates that the system in Case 2 creates profit by selling surplus PV energy 

to the main grid. Cases 3 and 4 are computed at the reduced cost of ESS unit. In Case 3, it 

is interesting to see that ESS is still not competitive in Salt Lake City when the cost is 

down from $0.4M/MWh to $0.1M/MWh. In other words, the station opts to export the 

surplus renewable energy to the main grid instead of storing in the ESS. In Case 4, by 

reducing the ESS cost to $0.05M/MWh, the station installs very small capacity of ESS 

which again shows that ESS is not even competitive in Salt Lake City. In Case 5, the EV 

battery cost is halved, the required spare parts remain the same as those of Case 1. This 

shows that the station will not store more spare battery packs because of reduced cost. 
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Case 6 indicates that PV is not advantageous compared to wind for Salt Lake City with 

and without carbon credits of PV.  

           Case 7 shows that by doubling the battery swap demand, the station needs to 

install twice of WT capacity to fulfill the demand. This result is reasonable because the 

station needs more WT power to charge more swapped batteries given the same time. By 

doubling the battery swap demand, the station requires more spare battery packs and 

superchargers for fulfilling the EV service demand. 

           Case 8 assumes the charging power for each battery type doubles as oppose to 

Case 1. The installed WT capacity also doubles to meet the increased charging power. In 

addition, the station is keeping more spare battery packs and installing more 

superchargers for fulfilling the increased demand of the station. 

           Case 9 shows that by reducing the electricity importing price from the main grid 

from $140/MWh to $70/MWh between 10pm and 8am, the annual cost of the battery 

swap and supercharging station is reduced.  

           After comparing Case 10 with Case 1, find that by increasing the exporting cost of 

electricity from the main grid, the station opts to install more WT capacity which is 

9.29MW, more than ten times of 0.9MW in Case 1. It is profitable to sell surplus energy 

to the main grid due to increasing exporting price of electricity. It also helps to fulfill the 

demand of the battery swap and supercharging station. 

           After comparing Case 11 with Case 1, find that increasing the level of  

supercharging power from 0.15MW to 0.3MW does not have any impact on the 

installation capacity of PV and ESS, and the number of spare batteries and superchargers.  
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 4.3.4 San Francisco 

 Model 4.1 is solved in AMPL computational environment with the given 

parameters for sensitivity analysis and the hourly capacity factors of WT and PV in San 

Francisco are used to run the optimization model. Case 1 is denoted as a benchmark, the 

optimal sizing of WT, PV and ESS units along with the number of battery packs and 

superchargers and the annual cost are summarized in Table 4.9.  

Table 4.9 Results of Objective Function and Decision Variables in San Francisco 

Case 
Annual 

cost ($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Num. of 

SC 
Prosumer 

1 179,265 1.55 0 2 3 0 1 Import, export 

2 179,265 1.55 0 2 3 0 1 Import, export 

3 179,265 1.55 0 2 3 0 1 Import, export 

4 179,258 1.56 0 2 3 0.01 1 Import, export 

5 175,705 1.55 0 2 3 0 1 Import, export 

6 179,265 1.55 0 2 3 0 1 Import, export 

7 355,825 3.09 0 3 5 0 2 Import, export 

8 355,825 3.09 0 3 5 0 2 Import, export 

9 174,395 1.24 0 2 3 0 1 Import, export 

10 112,093 3 0 2 3 0 1 Import, export 

11 179,265 1.55 0 2 3 0 1 Import, export 

 

After comparing the Case 2 with Case 1, find out that reducing the PV capacity 

cost by half and down to $1M/MW does not make the system chooses any PV capacity 

for San Francisco. Cases 3 and 4 are computed at the reduced cost of ESS unit. In Case 3, 

it is interesting to see that ESS is not even competitive in San Francisco when the cost is 

down to $0.1M/MWh as opposed to current cost of $0.4M/MWh. In other words, the 

system does not choose ESS to store energy when the cost is down to $0.1M/MWh, 

hence the station opts to export energy to the main grid instead of storing at the ESS. In 

Case 4, by reducing the ESS cost to $0.05M/MWh, the station installs very small 

capacity of ESS which again shows that ESS is not even competitive in San Francisco. In 

Case 5, the EV battery cost is halved, the required spare parts remain the same as these of 
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Case 1. This shows that the station will not store more spare battery packs because of 

reduced cost. Case 6 indicates that PV is not advantageous compared to wind for San 

Francisco with and without carbon credits of PV.  

Case 7 shows that by doubling the battery swap and supercharging station 

demand, the station needs to install twice of WT capacity to fulfill the demand. This 

result is reasonable because the station needs more WT power to charge more exchanged 

batteries given the same time. By doubling the battery swap demand, the station is 

installing more spare battery packs and superchargers for fulfilling the demand of the 

station. 

     Case 8 assumes that the charging power for each battery type doubles as oppose to 

Case 1. As a result, the installed WT capacity also doubles to meet the increased charged 

power. Not only that but also the station is installing more spare battery packs and 

superchargers for fulfilling the increased demand of the station. 

            Case 9 shows that by reducing the electricity importing price from the main grid 

from 10 pm to 8am from $140/MWh to $70/MWh, the annual cost of the battery swap 

and supercharging station is reduced.  

           After comparing Case 10 with Case 1, find out that by increasing the exporting 

cost of electricity from the main grid, the station opts to install more WT capacity which 

is 3MW from 1.55MW to fulfill the demand of the battery swap and supercharging 

station. The negative cost indicates that the battery swap and supercharging station sells 

the surplus energy to main grid which is profitable due to increasing exporting cost of 

electricity.  

           After comparing Case 11 with Case 1, find out that by increasing the super 
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chargers power from 0.15MW to 0.3MW does not has any impact on the installation 

capacity of PV, ESS, number of spare batteries and number of super chargers.  

 4.3.5 Los Angeles 

 Model 4.1 is solved in AMPL computational environment with the given 

parameters for sensitivity analysis and among ten different cities hourly capacity factors 

of WT and PV Los Angeles is picked as the fourth city to run the optimization model. 

Case 1 is denoted as a benchmark, the optimal sizing of WT, PV and ESS units along 

with the number of battery packs and superchargers and the annual cost are summarized 

in Table 4.10.  

Table 4.10 Results of Objective Function and Decision Variables in Los Angeles 

Case Annual cost 

($) 

WT 

(MW) 

PV 

(MW) 

Battery 

type 1 

Battery 

type 2 

ESS 

(MWh) 

Num. 

of SC 

Prosumer 

1 355,876 0.74 0 2 3 0 1 Import, export 

2 309,986 0.38 1.01 2 3 0 1 Import, export 

3 355,876 0.74 0 2 3 0 1 Import, export 

4 355,876 0.74 0 2 3 0.001 1 Import, export 

5 352,316 0.74 0 2 3 0 1 Import, export 

6 355,876 0.74 0 2 3 0 1 Import, export 

7 709,046 1.49 0 3 5 0 2 Import, export 

8 709,046 1.49 0 3 5 0 2 Import, export 

9 298,227 0.43 0 2 3 0 1 Import, export 

10 301,674 3.90 0 2 3 0 1 Import, export 

11 355,876 0.74 0 2 3 0 1 Import, export 

 

           After comparing Case 2 with Case 1, find out that reducing the PV capacity cost 

by half and down to $1M/MW makes the system chooses PV capacity of 1.01 MW from 

0 MW for Los Angeles. Cases 3 and 4 are computed at the reduced cost of ESS unit. In 

Case 3, it is interesting to see that ESS is not even competitive in Los Angeles when the 

cost is down to $0.1M/MWh as opposed to current cost of $0.4M/MWh. In other words, 

the system does not choose ESS to store energy when the cost is down to $0.1M/MWh 

hence the station opts to export energy to the main grid instead of storing at the ESS. In 
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Case 4, by reducing the ESS cost to $0.05M/MWh, the station installs very small 

capacity of ESS which again shows that ESS is not even competitive in Los Angeles. In 

Case 5, the EV battery cost is halved, the required spare parts remain the same as these of 

Case 1. This shows that the station will not store more spare battery packs because of 

reduced cost. Case 6 indicates that PV is not advantageous compared to wind for Los 

Angeles with and without carbon credits of PV.  

           Case 7 shows that by doubling the battery swap and supercharging station demand, 

the station needs to install twice of WT capacity to fulfill the demand. This result is 

reasonable because the station needs more WT power to charge more exchanged batteries 

given the same time. By doubling the battery swap demand, the station is installing more 

spare battery packs and superchargers for fulfilling the demand of the station. 

            Case 8 assumes the charge power for each battery type doubles as oppose to Case 

1. So, the installed WT capacity also doubles to meet the increased charged power. Not 

only that but also the station is installing more spare battery packs and superchargers for 

fulfilling the increased demand of the station. 

            Case 9 shows that by reducing the electricity importing price from the main grid 

from 10 pm to 8am from $140/MWh to $70/MWh, the annual cost of the battery swap 

and supercharging station is reduced.  

           After comparing Case 10 with Case 1, find out that by increasing the exporting 

cost of electricity from the main grid, the station opts to install more WT capacity which 

is 3.9 MW from 0.74 MW to fulfill the demand of the battery swap and supercharging 

station. The annual cost indicates that the battery swap and supercharging station sells the 

surplus energy to main grid which is profitable due to increasing exporting cost of 
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electricity.  

           After comparing Case 11 with Case 1, find out that by increasing the super 

charger’s power from 0.15MW to 0.3MW does not has any impact on the installation 

capacity of PV, ESS, the number of spare batteries and super chargers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

74 

5. VIRTUAL POWER PLANT PLANNING FOR EV SERVICE NETWORK 

5.1 Virtual Power Plant (VPP)  

 5.1.1 The Concept of VPP 

 A virtual power plant works remotely to combine a number of independent energy 

resources from disparate locations into a network that provides reliable power in 24 hours 

a day. Relatively new on the energy landscape, the plants employ software-based 

technology that relies on the smart grid infrastructure and communication protocols. They 

utilize planning, scheduling, and bidding of distributed energy resources (DER) to create 

the energy network that provides reliable electric power. (Cohn 2018) 

 

Figure 5.1 Structure of Virtual Power Plants (VPP) 

 5.1.2 Advantage and Disadvantages of VPP 

 VPP can provide ancillary services to respond to the imbalances created by 

renewable energy and other intermittent resources, or failures of large power plants. The 

following advantages and disadvantages of VPP are elaborated (Cohn 2018). 
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Advantages: 

1) lower cost,  

2) more flexibility,  

3) reduction in harmful emissions, and 

4) lower energy loss 

Disadvantages: 

1) vulnerable to cyber-attacks, 

2) high levels of distributed energy resources can affect local voltage, unless a 

voltage control   scheme is in place, and 

3) regulatory obstacle: incentives are needed to help VPP operators bring their 

benefits to the system. 

 5.1.3 The Current Deployment of VPP in the World 

 Below the details of the current deployment of VPP in USA, Europe and Japan 

are discussed. 

USA: 

California: Due to wildfire, Californian residents face power outage frequently. A 

German energy storage company named Sonnen is planning to spread across seven large 

apartment complex in California combining solar panels and energy storage systems in a 

form of VPP to power them. By applying these measure, residents of those apartment 

complex will not have to reply on the utility companies and the power outage rate will be 

reduced (Calma 2020). In Los Angeles, California Sunrun Inc. is planning to incorporate 

virtual solar plant with batteries in 75,000 apartment buildings which will provide enough 

power to replace one of retiring plants in LA (Cowan 2019).  



 

 

76 

Colorado: Holy Cross Energy has developed a VPP consisting of four homes with PV, 

energy storage system, EV chargers and heat pumps to power those homes (Howland 

2020). 

New York:  The utility company Con Edison announced that they are planning to offer 

300 homes in Queens and Brooklyn with solar panels combining with battery so that it 

can create virtual power plant for New York’s grid (Coren 2016). The state of New York 

is reforming their energy vision with VPP and they are planning to apply VPP in cinema 

hall in NY (Cohn 2018). 

Texas: According to Jack Daly, assistant to city manager of David Morgan, Georgetown 

Texas is planning to apply VPP technology to compensate their high rising power 

demand (Howland 2020). AutoGrid company is teaming up Japanese energy service 

company to create battery storage system for exiting solar panels at house in Austin, 

Texas (Marcus 2020). 

Europe: 

Denmark: Centrica has got the contract to develop a VPP for 87,000 homes and 

businesses in Denmark (Nhede 2018). One of the Danish island named Bornholm, will be 

the one of the world’s smartest grids using VPP under the EcoGrid Project (Kumegai 

2012). 

Germany: Statkraft has the largest VPP in Germany which consists of 1300 wind farms, 

100 solar panels, 12 biomass power plant and 8 hydro power plants (statkraft.com). 

Sonnen a German company claims that they can offer up to 90% more cost efficiency by 

using VPP (Enkhardt 2020). 

UK: Centrica along with Sonnen have installed a network consisting of 100 domestic 
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batteries forming the UK’s most advanced VPP (centrica.com). Tesla has launched UK 

based VPP project which will encourage EV owners in UK to install domestic PV and 

batteries for creating flexible energy services to the grid (edie newsroom 2020). 

Japan: ENERES a Japan based company is developing a VPP consisting of 10,000 

assets. ENERES will use software from California’s AutoGrid company (Driscoll 2019). 

 5.1.4. VPP Application in Transportation Electrification 

 Goa et al. (2014) present the analysis of characteristics of the EV and also 

summarize the possibility of accessing EV as grid. The paper represents a detailed 

introduction of VPP concept and its participation mechanism. In addition, the paper aims 

to propose an accessing mode based on the VPP concept along with the advantages of the 

mode. Hassan et al. (2013) models an energy system of the Great Britain (GB) energy at 

the national level for a range of wind power penetration and three different transport 

scenarios: vehicles with internal combustion engines (IC), electric vehicles (EV) without 

vehicle-to-grid (V2G) capability, and EV with V2G capability. The paper presents that 

adding V2G capability in EV can provide a flexible energy storage mechanism that 

reduces the necessary electricity imports, and increases the autonomy of such systems, 

even at low wind power penetration levels. Sousa et al. (2011) present a simulated 

annealing approach for addressing energy management from the point of view of a VPP 

operating in a smart grid. Distributed generation, demand response, and grid enable 

vehicles are intelligently managed on a multi period basis according to V2G users’ 

profiles and requirements. 
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5.2 Tesla Supercharging Network 

 In this section the overview of the Tesla supercharging network was presented in 

three different regions of the world: North America, Europe, and East Asia. 

 5.2.1 Overview of Tesla Supercharging Network World-Wide 

 Tesla Inc. is an American electric vehicle manufacturing and clean energy 

company (tesla.com). Tesla so far build Model S, Model 3, Model X and Model Y 

electric vehicles. Tesla also has manufactured solar roof tile and energy storage system 

(i.e. battery) (tesla.com, Raz (2017)). Tesla has started building their supercharging 

network around the world in 2012 and the supercharging station network consists of 480-

volt fast chargers known as superchargers (Lambert 2019). Tesla build three types of 

super chargers so far. The first one super charger V1, the second one is super charger V2 

and the latest one is super charger V3. Tesla improved its supercharging technology from 

supercharger V1 to V2 (and currently V3) to make higher power charging possible, hence 

reducing the amount of time it takes to recharge Tesla EV battery using Tesla 

supercharger (P.E. 2019). Tesla supercharger V1 and V2 could charge up to 150 kW 

power distributed between two cars at the maximum speed of 150 kW per car depending 

on model version of EV (Field 2020, Lambert 2019). Tesla supercharger V3 could 

deliver up to 250 kW power (Field 2020). Depending on the model of cars and how many 

people are using supercharging facility to charge their cars on the supercharging stations 

can decide the supercharging time of the SOC level of battery. According to Tesla 

website, until July 2020, Tesla owns 1971 supercharging stations globally which contains 

17467 super-chargers (tesla.com). Particularly, Tesla deploys supercharging stations in 

North America, Europe and Asia Pacific. In the USA, Tesla has so far 1004 
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supercharging stations all over the states (www.tesla.com). 

 

Figure 5.2 Tesla Supercharging Network in North America (Source: Tesla Website, Year: 

2020) 

Table 5.1 List of Supercharging Stations in USA (Source: Tesla Website) 
State Name Total # of SC State Name Total # of SC 

Alabama 7 North Carolina 19 

Arkansas 2 North Dakota 6 

Arizona 25 Nebraska 5 

California 199 New Hampshire 7 

Colorado 23 New Jersey 39 

Connecticut 24 New Mexico 9 

District of Columbia 2 Nevada 20 

Delaware 4 New York 51 

Florida 55 Ohio 18 

Georgia 18 Oklahoma 5 

Iowa 11 Oregon 18 

Idaho 6 Pennsylvania 27 

Illinois 27 Puerto Rico 1 

Indiana 16 Rhode Island 1 

Kansas 9 South Carolina 6 

Kentucky 7 South Dakota 8 

Louisiana 7 Tennessee 11 

Massachusetts 27 Texas 65 

Maryland 25 Utah 12 

Maine 11 Virginia 30 

Michigan 25 Vermont 4 

Minnesota 15 Washington 30 

Missouri 14 Wisconsin 13 

Mississippi 6 West Virginia 8 

Montana 15 Wyoming 11 
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In Europe, Tesla has so far 586 supercharging stations in different European countries. 

The map and list of the number of supercharging stations in Europe are given below. 

 

Figure 5.3 Tesla Supercharging Network in Europe (Source: Tesla Website, Year: 2020) 

Table 5.2 List of Supercharging Stations in Europe (Source: Tesla Website) 
State Name Total # of SC State Name Total # of SC 

Austria 22 Luxembourg 1 

Belgium 15 Netherlands 31 

Bulgaria 1 Norway 69 

Croatia 8 Poland 9 

Czech Republic 4 Portugal 8 

Denmark 13 Russia 1 

Finland 9 Serbia 2 

France 83 Slovakia 3 

Germany 81 Slovenia 3 

Hungary 7 Spain 34 

Iceland 3 Sweden 43 

Ireland 5 Switzerland 19 

Italy 37 United Kingdom 75 
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Figure 5.4 Tesla Supercharging Network in Asia (Source: Tesla Website, Year: 2020) 

Table 5.3 List of Supercharging Stations in Asia Pacific (Source: Tesla Website) 

Country Name Total # of SC 

China 281 

Japan 25 

South Korea 32 

Taiwan 20 

UAE 3 

Australia 41 

Jordan 4 

Kazakhstan 2 

New Zealand 10 

 

 5.2.2 Tesla Supercharging Network in Texas 

 Tesla has built 46 supercharging stations in the state of Texas actively giving its 

service to the EV owners which is indicated by the red sign in the map of Figure 5.5. The 

gray sign in the map indicates that Tesla is working on the construction of the new 
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supercharging stations in those places. The number of supercharging stations in Texas are 

under-construction is 19. According to Tesla, those supercharging stations will open for 

service at the end of year 2020. There are total 395 super charging point installed in all 

the opened stations which means 395 EV can be recharged at the same time. The average 

number of supercharging points or installs in each station is 8.6 in Texas. The standard 

deviation of the supercharging point is 2.6. The maximum number of supercharging 

points in a station is 18 and the minimum number of supercharging points in a station is 

2. In Texas there are 45 supercharging stations install 150 kW of supercharger and only 3 

supercharging stations install 72 kW of supercharger. All these supercharging stations in 

combination create demand for energy about 57.04 MW. (Source: tesla.com) 

 

Figure 5.5 Tesla Supercharging Network in Texas (Source: Tesla Website, Year: 2020) 
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Table 5.4 List of Supercharging Stations in Texas (Source: Tesla Website, Year: 2020) 

Statio

n No. 
Address City 

# of 

SC 
Zone 

WT/PV 

CF 

1 
San Marcos Premium Outlets 3939 

Interstate 35 

San Marcos, TX 

78666 
12 Austin 

  

2 
6406 N. Interstate 35 Frontage 

Road 

Austin, TX 78752-

0000 
8 Austin 

  

3 
Gateway Shopping Center 9607 

Research Boulevard 
Austin, TX 78759 18* Austin 

Same 

WT and 

PV CF 

4 
CEFCO Convenience Store 3025 

East Austin Street 

Giddings, TX 

78942 
8 Austin 

  

5 
Amigos Country Corner and 

Travel Center 1415 FM 609 

Flatonia, TX 

78941 
8 Austin 

  

6 
La Quinta Inn and Suites 3107 S 

Laurent St. 

Victoria, TX 

77901 
6 

Corpus 

Christi   

7 
Embassy Suites by Hilton 110 

Calle Del Norte Drive 

Laredo, TX 

78041-9143 
8 

Corpus 

Christi 

Same 

WT and 

PV CF 

8 
Holiday Inn Express & Suites 

Kingsville 2400 South US Hwy 77 

Kingsville, TX 

78363-2844 
8 

Corpus 

Christi   

9 
Schlitterbahn Resort South Padre 

Island 100 Padre Blvd 

South Padre 

Island, TX 78597 
2* 

Corpus 

Christi   

10 16851 IH 20 Cisco, TX 76437 8 Dallas   

11 2616 Whitmore Street 
Fort Worth, TX 

76107 
16* Dallas 

  

12 1200 Ballpark Way 
Arlington, TX 

76011-5110 
10 Dallas 

  

13 261 North Carroll Avenue 
Southlake, TX 

76092 
10 Dallas 

  

14 9740 North Central Expressway 
Dallas 75231-

4302 
11 Dallas 

  

15 7161 Bishop Road Plano, TX 75024 12 Dallas   

16 2700 West University Drive Denton, TX 76201 6 Dallas   

17 237 Frontage Road 
Henrietta, TX 

76365 
12 Dallas 

  

18 1300 Ave F NW Childress, Texas 
Childress, TX 

79201 
8 Dallas 

  

19 8231 West Amarillo Blvd. 
Amarillo, TX 

79124 
8 Dallas 

Same 

WT and 

PV CF 

20 107 East 12th Street 
Shamrock, TX 

79079 
6 Dallas 

  

21 
Collin Street Bakery 701 Interstate 

35 

Bellmead, TX 

76705 
10 Dallas 

  

22 
Love's Travel Stop 1021 Dale 

Evans Drive 
Italy, TX 76651 10 Dallas 
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Table 5.4 List of Supercharging Stations in Texas Continued 

23 
Collin Street Bakery 2035 

Interstate 45 Frontage Rd 
Corsicana, TX 75109 10 Dallas 

  

24 

City of Sulphur Springs Police 

Department 300 W Tomlinson 

Street 

Sulphur Springs, TX 

75482 
8 Dallas 

Same 

WT and 

PV CF 

25 Collin Street Bakery 17044 I-20 Lindale, TX 75771 8 Dallas   

26 Olive Garden 3101 Mall Drive 
Texarkana, TX 75503-

2434 
8 Dallas 

  

27 6401 South Desert Boulevard El Paso, TX 79932-8515 8 El Paso   

28 1921 Frontage Rd Van Horn, TX 79855 8 El Paso 

Same 

WT and 

PV CF 

29 25675 Nelson Way Katy, TX 77494 12 Houston   

30 
Gateway Travel Plaza 2615 NW 

Stallings Dr 

Nacogdoches, TX 75964-

2629 
8 Houston 

  

31 
Holiday Inn Express & Suites 148 

Interstate 45 
Huntsville, TX 77340 6 Houston 

  

32 
Atrium Inn & Suites 2535 Texas 

71 
Columbus, TX 78934 6 Houston 

  

33 20500 Southwest Freeway Richmond, TX 77469 8 Houston 
  

34 
Holiday Inn - Houston East 16311 

East Fwy 
Channelview, TX 777530 8 Houston 

Same 

WT and 

PV CF 

35 
Rudy's Country Store and BBQ 

14620 Northwest Freeway 
Houston, TX 77040 8 Houston 

  

36 14820 North Fwy Houston, TX 77090 6 Houston   

37 100 East Pinehurst Street Pecos, TX 79772 8 Midland   

38 3001 Antelope Trail Midland, TX 79706-3525 8 Midland 

Same 

WT and 

PV CF 

39 300 SE Georgia Ave. Sweetwater, TX 79556 8 Midland   

40 2571 North Front Street Fort Stockton, TX 79735 8 Midland   

41 2415 N Main Street Junction, TX 76849 8 San Antonio   

42 1307 Ave. A Ozona, TX 76943 6 San Antonio 

Same 

WT and 

PV CF 

43 24165 I-10 #300 San Antonio, TX 78357 10 San Antonio   

44 
Huebner Oaks Shopping Center 

11745 I-10 
San Antonio, TX 78230 10 San Antonio 

  

45 
Schertz H-E-B Plus! 17460 IH 

35N 
Schertz, TX 78154 8 San Antonio 

  

46 
Love's Travel Center 2645 S. 

Hwy 37 
Three Rivers, TX 78071 8 San Antonio 

  

The sign (*) in the top left indicates 72kW per SC and all others are 150kW per SC.  
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5.3 Wind and Solar Data in Texas 

 5.3.1 Wind Speed Data of Texas Cities 

 Weibull distribution is widely used to model the wind speed profile. Weibull 

distribution has two parameters:  the scale parameter c and shape parameters k. The scale 

parameter describes the height of the distribution curve while the shape parameter 

describes the slope of the curve. Weibull wind distribution curve is calculated either 

annually or monthly. (oneenergy.com) Figure 5.6 below shows the probability density 

distribution of wind speed in cities of Texas. The distribution of wind speed is skewed 

(i.e. it is not symmetrical) on the right side for Corpus Christi, San Antonio, El Paso and 

Austin. The distribution of wind speed is skewed on the left side for Midland. The 

distribution of wind speed is symmetrical for Dallas and Houston.  

 

Figure 5.6 Weibull Distribution of Texas Wind Speed (one year) 

The below graph represents the monthly average wind speed of seven Texas cities. From 

the graph, in January Corpus Christi has the highest average wind speed which is 5.11 
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m/s. In February Midland has the highest average wind speed which is 5.30 m/s. In 

March, April and May, Corpus Christi has the highest average wind speed which are 

5.75, 6.07 and 6.48 m/s. In June, Midland has highest average wind speed which is 5.29 

m/s. In July, Corpus Christi and Midland have highest average wind speed which is 4.65 

m/s. In August, Corpus Christi and Midland have again highest average wind speed 

which is 4.73 m/s. In September, Midland has highest average wind speed which is 4.93 

m/s. In October and December, Midland and Corpus Christi have highest average wind 

speed which are 5.07 and 4.12 m/s. In November, Corpus Christi has highest average 

wind speed which is 4.78 m/s.  

 

 

Figure 5.7 Monthly Average Wind Speed of Texas Cities in 2019 

Figure 5.8 gives more statistical characteristics of seven Texas cities and offers more 

insights about the wind speed data. The graph informs us about the maximum, the 

minimum, the median and the average wind speed of seven Texas cities.  
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Figure 5.8 Box Plot of Average Wind Speed in 2019 

 5.3.2 Estimating Capacity Factor of Wind Turbine 

 Wind Speed data shown at the previous section are collected from web portal of 

Weather Underground (wunderground.com). The website usually records their data by 

using the Automated Surface Observing Systems (ASOS) at the local airport (Pham 

2019). The ASOS wind sensors are installed 8-10 m above the ground. According to 

Heier (2005), the wind speed at reference height (measured in meters) can be measured 

using the following equation: 

( ) ;h g g

g

h
v v for h h

h

=   (5.1) 

Let vg (m/s) be the wind speed measured near the ground at height hg. The parameter k is 

the Hellman exponent that depends on the coastal location and the shape of the terrain on 

the ground, and the stability of the air. Table 5.5 provides example values of the 

Hellmann exponent. This research uses the unstable air above human inhabited areas k= 

0.27. 
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Table 5.5 Hellmann Exponent (Kaltschmitt, M. et al. 2007) 

Location  

Unstable air above open water surface 0.06 

Neutral air above open water surface 0.1 

Unstable air above flat open coast 0.11 

Neutral air above flat open coast 0.16 

Stable air above open water surface 0.27 

Unstable air above human inhabited areas 0.27 

Neutral air above human inhabited areas 0.34 

Stable air above flat open coast 0.4 

Stable air above human inhabited areas 0.6 

 

 

Figure 5.9 Daily Wind Speed of 2019 at 80m Above the Ground 

A wind turbine (WT) system possesses four operating phases depending on the wind 

speed. Let Pw(v) be the instantaneous output of wind turbine at wind speed v. Then the 

cubic power curve is given as (Thiringer and Linders, 1993). 
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where vc, vr and vs stands for the cut-in speed, the rated speed, and the cut-off speed 

respectively. Note Pm is the rated power capacity in a unit of either MW or KW 

depending on the size of the wind turbine. 

The capacity factor of a WT, denoted as λ, is the ratio of the power generated by the WT 

when the wind speed is equal to (vc ≤ v ≤ vr) and the rated peak power Pm. It is a fraction 

between zero and one that can be estimated using below equation.  

3( )m

r

m

v
p

v

p
 =  (5.3) 

 

Figure 5.10 Daily Capacity Factor of WT in Austin in 2019 

 

Figure 5.11 Daily CF of WT in Corpus Christi in 2019 
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Figure 5.12 Daily CF of WT in Dallas in 2019 

 

Figure 5.13 Daily CF of WT in El Paso in 2019 
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Figure 5.14 Daily CF of WT in Houston in 2019 

 

Figure 5.15 Daily CF of WT in Midland in 2019 

 

Figure 5.16 Daily CF of WT in San Antonio in 2019 
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 5.3.3 Solar Data of Texas Cities 

 The below graph shows that in Austin, San Antonio, Dallas, Corpus Christi, 

Midland and Houston in August has the highest average temperature in 2019. In El Paso 

the highest average temperature takes place in July and August.  

 

Figure 5.17 Average Monthly Temperature of Seven Cities of Texas 

 

Figure 5.18 Radar Diagram of Average Monthly Temperature of Seven Cities of Texas 
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Table 5.6 Weather Condition of Texas Cities 

Weather 

Condition 

Austin Corpus Christi Dallas El paso Houston Midland San Antonio 

Cloudy 124 132 119 50 94 80 134 

Foggy 16 22 N/A 6 12 11 5 

Mostly Cloudy 73 121 94 84 100 5 88 

Mostly Sunny 82 47 118 157 63 260 83 

Partly Cloudy 48 35 15 58 75 N/A 29 

Scattered Showers 16 7 13 10 8 5 21 

Thunderstorm 6 1 5 N/A 11 4 5 

Rain N/A N/A N/A N/A 1 N/A N/A 

Scattered 

Thunderstorm 

N/A N/A N/A N/A 1 N/A N/A 

Rain Snow N/A N/A 1 N/A N/A N/A N/A 

 

 5.3.4 Estimating Capacity Factor of Solar Photovoltaics (PV) 

 Originally from Pham et al. 2019, the output power of a PV system depends on 

multiple factors that are summarized in Table 5.6. Unless specified, the unit of all angles 

is radian (rad). 

Table 5.7 Key Parameters in PV Power Generation. 

Factor Symbol Explanation 

weather coefficient Wt between 0 and 1 

PV size (m2) A PV surface area 

PV efficiency η 15–20% for commercial PV 

calendar date d d ∈{1, 2, …, 365} 

solar hour (rad) ω related to the local hour 

PV temperature (oC) To operating temperature 

latitude (rad) ɸ depends on location 

PV azimuth angle (rad) α if facing the south, α = 0 

PV tilt angle (rad) β between PV and the ground 

Solar zenith angle (rad) φ between the zenith and Sun's ray 

solar incident angle (rad) θ Between the norm to PV and Sun's ray 

local hours t t = 1, 2, …, 24 

 

A 3-step procedure was presented to calculate the output power of a PV system based on 

the study of Cai et al. (2010). These steps are summarized as follows:  

Step 1: For PV facing the south, the sunrise and sunset times in day d∈{1, 2, …, 365} are 
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given by 

cos( ) cos( ) tan( ) tanrise set    − = = − −
 (5.4) 

2 ( 284)
0.40928sin( )

365

d


+
=

 (5.5) 

where, ωrise and ωset are, respectively, the sunrise and the sunset angles in day d perceived 

by the PV panel, and δ is the declination angle. PV has no power output before sunrise 

and after sunset. 

Step 2: Estimating the solar irradiance incident on the PV at time t on date d under clear 

sky condition, 

0.678(cos ) 2 ( 4)
1370*(0.7 )(1 0.034cos( ))(cos 0.1(1 )

365
t

d
I   




− −
= + + −

 (5.6) 

Where 

cos cos cos cos sin sin     = +   (5.7) 

cos sin sin cos sin cos sin cos cos cos cos cos

cos sin sin cos cos cos sin sin sin

           

        

= − +

+ +
 (5.8) 

In the above equation, the solar irradiance (W/m2) is received by the panel at time t of 

day d. The solar zenith angle φ is estimated by equation (5.7). The solar hour angle ω is 

determined by the local time t. Starting from ω = -π/2 at 6am, It increases 15° every hour 

until reaching ω = π/2 at 6pm. In the northern hemisphere, to maximize the energy yield, 

the PV panel faces the South and its tilt angle shall equal the local latitude, namely if α = 

0 and β = ϕ, then equation (5.8) can be simplified as 

cos cos cos  =  (5.9) 

Step 3: The actual output of a PV system considering the weather uncertainty now can be 

estimated as: 
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 01 0.005( 25)t t tp W AI T= − −
 (5.10) 

where Pt is the actual output power (in Watt) of the PV system and Wt is a weather 

coefficient that varies between 0 to 1 to mimic the nine states of the weather condition 

(Lave and Kleissl, 2011). The values of Wt are summarized in Table 5.8. The capacity 

factor of a PV system can be estimated by 

max
1

1

*

T

PV t

tPV

P
P T


=

= 
 (5.11) 

where PPV max is the rated capacity of a PV system, and T is the number of generation 

hours. For PV in the southern hemisphere, simply set α = π and change ϕ into a native 

angle. 

 

Table 5.8 Weather Coefficients under Different States 

Weather State Abbreviation Wt 

Mostly Sunny MS 1 

Partly Cloudy PC 0.7 

Cloudy C 0.5 

Mostly Cloudy MC 0.3 

Scattered Showers SS 0.2 

Scattered Thunderstorm ST 0.2 

Foggy F 0.1 

Thunderstorm T 0.1 

Rain R 0.1 

Rain Snow RS 0.05 
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Figure 5.19 Daily CF of PV in Austin in 2019 

 

Figure 5.20 Daily CF of PV in Corpus Christi in 2019 
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Figure 5.21 Daily CF of PV in Dallas in 2019 

 

Figure 5.22 Daily CF of PV in El Paso in 2019 
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Figure 5.23 Daily CF of PV in Houston in 2019 

 

Figure 5.24 Daily CF of PV in Midland in 2019 

 

Figure 5.25 Daily CF of PV in San Antonio in 2019 
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5.4 Sizing Renewable Microgrid for VPP Operations  

 5.4.1 Model Formulation 

 This section aims to allocate the renewable portfolio and microgrid capacity in 

supercharging stations with following objectives: 

1) Realizing two-way energy flow between microgrid and main grid. 

2) Engaging transactive energy trading in prosumer energy market. 

3) Minimizing annual operating cost of the supercharging infrastructure. 

4) Attaining net-zero energy operation 

The parameters and decision variables associated with the model is listed in Tables 5.9 

and 5.10, respectively.  

Table 5.9 Parameters for Model 5.1 

Notation Explanation 

T number of period in a year, and t=1, 2, …, T 

J number of supercharging stations for j=1, 2, …, J 

G number of renewable power generation type, for g=1, 2, …, G 

ag capacity cost of generation g ($/MW) 

bg operating and maintenance cost of generation g ($/MWh) 

cg carbon credits or subsidies of generation g ($/MWh) 

aESS capacity cost of ESS unit ($/MWh) 

bESS operating and maintenance cost of ESS ($/MWh) 

g capital recovery factor of generation g 

ESS capital recovery factor of ESS unit 

gjt capacity factor of generation g in station j at time t 

EV,jt EV arrival rate of station j at time t 

 time step size or duration of a period (unit: hour) 

Psc,j power demand of a supercharger (MW) 

Pj
station maximum load of station j (MW) 

jt
buy electricity buying price ($/MWh) 

jt
sell electricity selling price ($/MWh) 

Bj0 initial energy stored in ESS of station j 
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Table 5.10 Decision Variables for Model 5.1 

Notation Explanation 

Pgj
c installed capacity of generation g in station j (unit: MW) 

Bj
c
ESS installed capacity of ESS in station j (unit: MWh) 

Bjt energy stored in ESS unit in station j at time t (unit: MWh) 

Ejt
buy

 electricity purchased by station j from main grid at time t (unit: MWh) 

Ejt
sell electricity sold by station j to main grid at time t (unit: MWh) 

 

The objective function consists of cost of investing station facility, superchargers, and 

microgrid system across the entire supercharging network. The microgrid consist of WT, 

PV, and ESS units. The following optimization model, denoted as Model 5.1, is 

formulated to minimize the annualized cost of the supercharging network. 

The objective function: 

Model 5.1 

Minimize 

1 1 1 1 1 1

1 1 1 1

( , , , , ) ( )

( ) (5.12)

J G J T G J
c c buy sell c c c

gj j jt jt jt g g gj g g gjt gj ESS ESS j

j g j t g j

J T J T
buy buy sell sell

ESS jt jt jt jt jt

j t j t

f P B B E E a P b c P a B

b B E E

   

 

= = = = = =

= = = =

= + − +

+ + −

  

 
 

The objective function is to minimize the annualized cost of the entire supercharging 

network comprised of J stations. The first and second terms represent the capacity cost, 

operating and maintenance cost and carbon credits of installing WT and PV in station j. 

The third and fourth terms are the capacity cost and operating and maintenance cost of 

ESS unit in station j. The last term is the purchase cost or revenue income in transactive 

energy trading.  

Constraints of Model 5.1: 

a) Energy balance equation in station j at time t 
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, , , 1
1

( )
G

sell c buy

EV jt SC j jt jt j t gjt gj jt
g

P E B B P E 
−

=

+ + − = +
;  

                                                       for t=1, 2, ..., T, and for j=1, 2, …, J. (5.13) 

This constraint states that the amount of energy consumed including ESS storage at time t 

equals the sum of microgrid generation and the energy purchased from the main grid. If 

the planning is made hourly, then =1 hour, and T=8760 hours for one year. 

b) Battery State at time t 

0 c

jt j
B B  , for t=1, 2, ..., T, and for j=1, 2, …, J. (5.14) 

The constraint simply states that the energy stored in the ESS should not be exceed its 

capacity.   

c) Initial ESS energy is full 

0

c

j j
B B= , for j=1, 2, …, J. (5.15) 

This constraint states that the ESS unit is full at the initial time.          

d) End time ESS energy state is also full 

 
c

jT j
B B= , for j=1, 2, …, J. (5.16)  

This constraint states that the ESS unit is full at the last period of time.          

e) The limitation of the selling energy 

0 sell station

jt jE P  , for t=1, 2, ..., T, and j=1, 2, …, J (5.17) 

Where Pj
station is the maximum power or load when all the superchargers in station j is in 

use. This constraint states that the maximum amount of energy sold to the main grid 

should not exceed the maximum supercharging station power. This constraint is in place 

to ensure that the traded energy to the main grid from station j is capped to ensure the 

grid stability. 
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f) Non-Negativity of Decision Variables 

, , , , 0c c buy sell

gj j jt jt jtP B B E E  , for t=1, 2, ..., T, and j=1, 2, …, J, and g=1, 2, ..., G. (5.18)  

These constraints simply defines the non-negativity condition of decison variables.   

  5.4.2 Values of Model Parameters 

 Parameters are the values (or data) which are known in the optimization model. 

These parameter values have chosen considering different facts with the best effort to use 

real life data. The capital recovery factor and supercharging rate are calculated based on 

actual data. The model parameters are summarized in Tables 5.11 and 5.12 respectively. 
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Table 5.11 Parameters for Model 5.1 

Notation Explanation Value Unit 

T number of period in a year, and t=1, 

2, …, T 

8760 hours  

J Number of supercharging stations for 

j=1, 2, …, J 

Austin-5 

San Antonio-6 

El Paso-2 

Dallas-17 

Midland-4 

Corpus Christi-4 

Houston-8 

N/A 

G Number of renewable power 

generation type, for g=1, 2, …, G 

WT CF, PV CF (g=1, 

WT; g=2, PV) 

N/A 

ag capacity cost of generation g  1.5 (g=1 for WT),  

2 (g=2 for PV) 

$M/MW 

bg Operating and maintenance cost of 

generation g  

8 (WT operating cost), 4 

(PV operating cost) 

$/MWh 

cg Carbon credits or subsidies of 

generation g  

0 (WT carbon credit), 10 

(PV carbon credit) 

$/MWh 

aESS capacity cost of ESS unit  0.4 (ES capacity cost) $M/MWh 

bESS Operating and maintenance cost of 

ESS  

2 (ES operating cost) $/MWh 

g capital recovery factor of generation g 1 = 0.0944 (7% 

compound interest, 20 

years), 2 = 0.0944 (7% 

compound interest, 20 

years) 

N/A 

ESS capital recovery factor of ESS unit 0.1424 (7% compound 

interest, 10 years) 

N/A 

gjt capacity factor of generation g in 

station j at time t 

See appendix N/A 

EV,jt EV arrival rate of station j at time t 5 cars/hour 

 Time step size or duration of a period  1 hour 

 

Psc,j Power demand of superchargers in 

station j 

The total number of 

Superchargers in a 

particular station is 

multiplied by the power 

demand of a 

supercharger. 

MW 

Pj
station Maximum load of station j when all 

superchargers are in use  

 MW 

jt
buy Electricity buying price   70 (electricity price of 

importing from main 

grid) 

$/MWh 

jt
sell Electricity selling price  35 (electricity sale price 

of exporting to main grid) 

$/MWh 

Bj0 Initial energy in ESS of station j full  
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Table 5.12 Parameter Values of Psc,j and Pj
station 

Station No Psc,j Pj
station Zone 

1 1.8 2.16 
 

2 1.2 1.44 
 

3 1.296 1.5552 Austin 

4 1.2 1.44 
 

5 1.2 1.44 
 

6 0.9 1.08 
 

7 1.2 1.44 Corpus Christi 

8 1.2 1.44 
 

9 0.144 0.1728 
 

10 1.2 1.44  

11 1.152 1.3824  

12 1.5 1.8 
 

13 1.5 1.8 
 

14 1.65 1.98 
 

15 1.8 2.16 
 

16 0.9 1.08 
 

17 1.8 2.16 Dallas 

18 1.2 1.44 
 

19 1.2 1.44 
 

20 0.9 1.08 
 

21 1.5 1.8 
 

22 1.5 1.8 
 

23 1.5 1.8 
 

24 1.2 1.44 
 

25 1.2 1.44 
 

26 1.2 1.44 
 

27 1.2 1.44 El Paso 

28 1.2 1.44 
 

29 1.8 2.16 Houston 

30 1.2 1.44 
 

31 0.9 1.08 
 

32 0.9 1.08 
 

33 1.2 1.44 
 

34 1.2 1.44 
 

35 1.2 1.44 
 

36 0.9 1.08 
 

37 1.2 1.44 
 

38 1.2 1.44 Midland 

39 1.2 1.44 
 

40 1.2 1.44 
 

41 1.2 1.44 
 

42 0.9 1.08 
 

43 1.5 1.8 San Antonio 

44 1.5 1.8 
 

45 1.2 1.44 
 

46 1.2 1.44 
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 5.4.3 Implementing in the Supercharging Network of Texas  

 Texas is divided into seven zones based on three considerations. The first 

consideration is weather conditions. The second consideration is where most of Tesla's 

supercharging stations are currently located in Texas. The third consideration is 

the largest cities of Texas. Based on these three considerations, the seven zones are 

Austin, San Antonio, Dallas, Houston, El Paso, Corpus Christi and Midland. According 

to Tesla website (Year 2020), Texas has 46 supercharging stations actively giving its 

service to the EV owners. Based on the distance to the next big city of any particular 

station, the zone of that particular supercharging station is assigned. For example, Tesla 

supercharging station at San Marcos, TX should be assigned to Zone Austin because the 

distance from San Marcos to the next big city, San Antonio is larger than to Austin. The 

46 supercharging stations have classified in seven zones of Texas (See Table 5.4). 

According to Table 5.4, Austin has 5, Dallas has 17, Corpus Christi has 4, El Paso has 2, 

Midland has 4, San Antonio has 6 and Houston has 8 supercharging stations. All the 

supercharging stations in each zone follows the same weather condition so their WT and 

PV capacity factor are same (See Table 5.4). Model 5.1 is solved in two different ways. 

Firstly, the model has solved for each specific zones separately. Secondly, the model has 

solved at an aggregate network level consisting of all the zones together. 

a)  Solving the model for each specific zones separately:  

Model 5.1 is solved in AMPL computational environment with the given parameters in 

Table 5.11 and 5.12. The model is implemented in seven different zones based on the 

hourly capacity factors of WT and PV of each Texas city. The optimal sizing of WT, PV 

and ESS units along with the associated annual cost are summarized in Table 5.13.  
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Table 5.13 Results of Objective Function and Decision Variables in Each Zone 

Station 

Number 

WT(MW) PV(MW) Annual Cost 

($) 

ESS Capacity 

(MWh) 

Prosumer Zone 

1 0 0 20,529,936 0 Import Austin 

2 0 0 
    

3 0 0 
    

4 0 0 
    

5 0 0 
    

6 5.58 0 8,552,291 0 Import & 

Export 

Corpus 

Christi 

7 7.44 0 
    

8 7.44 0 
    

9 0.89 0 
    

10 6 0 69,402,772.2

8 

0 Import Dallas 

11 5.76 0 
    

12 7.5 0 
    

13 7.5 0 
    

14 8.25 0 
    

15 9 0 
    

16 4.5 0 
    

17 9 0 
    

18 6 0 
    

19 6 0 
    

20 4.5 0 
    

21 7.5 0 
    

22 7.5 0 
    

23 7.5 0 
    

24 6 0 
    

25 6 0 
    

26 6 0 
    

27 0 0 7,358,400 0 Import El Paso 

28 0 0 
    

29 9 0 28,284,034 0 Import Houston 

30 6 0 
    

31 4.5 0 
    

32 4.5 0 
    

33 6 0 
    

34 6 0 
    

35 6 0 
    

36 4.5 0 
    

37 7.44 0 12,274,121.0

4 

0 Import & 

Export 

Midland 

38 7.44 0 
    

39 7.44 0 
    

40 7.44 0 
    

41 6 0 22,879,621.8

0 

0 Import San 

Antonio 

42 4.5 0 
    

43 7.5 0 
    

44 7.5 0 
    

45 6 0 
    

46 6 0 
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Figure 5.26 WT Installation at Each Supercharging Station 

From Table 5.13, the four supercharging stations in Midland zone and the four 

super charging stations in Corpus Christi zone are installing WT as onsite generating 

units. Midland and Corpus Christi both are windy cities and the other cities near these 

cities also show similar weather condition, so it is obvious that in both cities the stations 

install WT instead of PV. The extra energy produced by the WT, sold to the main grid. 

When the generation of WT is not enough to fulfill the demand, the model chooses to buy 

electricity from the main grid. Because of this reason the model is fulfilling the prosumer 

function via importing and exporting energy between the station and the main grid. The 

model for Midland and Corpus Christi is not choosing ESS system to store the energy 

because it is more profitable to sell the energy to the main grid than storing it in ESS 

system.  

From Table 5.13, the six supercharging stations in San Antonio zone, seventeen 

supercharging stations in Dallas zone and eight supercharging stations in Houston zone 

are installing WT as their power generating units. San Antonio, Dallas and Houston all 
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the three cities are windy cities and the other cities near these cities also show similar 

weather condition, so it is obvious that the stations in or near these cities install WT 

instead of PV as onsite generating units. From Table 5.13, the model for San Antonio, 

Dallas and Houston are producing less electricity to fulfill the demand of supercharging 

stations in these three zones. Hence these supercharging stations are buying electricity 

from the main grid to fulfill their needs. All the supercharging stations from these three 

zones are not installing ESS system to store the energy or to sell the energy to the main 

grid because the power generating units are not producing surplus energy.  

From Table 5.13, the five supercharging stations in Austin zone and the two 

supercharging stations in El Paso zone are not installing any WT and PV as onsite 

generation. Instead of installing WT and PV to fulfill the demand of their supercharging 

stations, Austin and El Paso supercharging stations are buying electricity from the main 

grid. The reason behind this activity is, it is more cost effective to buy the electricity from 

the main grid than to install power generating units to produce electricity.  

b) A network planning model consisting of all the zones: 

Now Model 5.1 is solved for sizing renewable microgrid for all the supercharging 

stations as an integrated network. The model is solved in AMPL computational 

environment with the given parameters in Tables 5.11 and 5.12. In this network model 

CF data of WT and PV are assigned to the supercharging stations based on their actual 

location (See Table 5.4). The optimal sizing of WT, PV and ESS units along with the 

associated annual cost and the results are summarized in Table 5.14. 
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Table 5.14 Results of Objective Function and Decision Variables in Network Model 

Annual Cost ($) 169,281,175.70         
 

Station No. WT (MW) PV 

(MW) 

ESS 

Capacity 

(MWh) 

Prosumer Zone 
 

1 0 0 0 Import Austin 
 

2 0 0 0 Import Austin 
 

3 0 0 0 Import Austin 
 

4 0 0 0 Import Austin 
 

5 0 0 0 Import Austin 
 

6 5.58 0 0 Import & 

Export 

Corpus Christi 

7 7.44 0 0 Import & 

Export 

Corpus Christi 

8 7.44 0 0 Import & 

Export 

Corpus Christi 

9 0.89 0 0 Import & 

Export 

Corpus Christi 

10 6 0 0 Import Dallas 
 

11 5.76 0 0 Import Dallas 
 

12 7.5 0 0 Import Dallas 
 

13 7.5 0 0 Import Dallas 
 

14 8.25 0 0 Import Dallas 
 

15 9 0 0 Import Dallas 
 

16 4.5 0 0 Import Dallas 
 

17 9 0 0 Import Dallas 
 

18 6 0 0 Import Dallas 
 

19 6 0 0 Import Dallas 
 

20 4.5 0 0 Import Dallas 
 

21 7.5 0 0 Import Dallas 
 

22 7.5 0 0 Import Dallas 
 

23 7.5 0 0 Import Dallas 
 

24 6 0 0 Import Dallas 
 

25 6 0 0 Import Dallas 
 

26 6 0 0 Import Dallas 
 

27 0 0 0 Import El paso 
 

28 0 0 0 Import El paso 
 

29 9 0 0 Import Houston 
 

30 6 0 0 Import Houston 
 

31 4.5 0 0 Import Houston 
 

32 4.5 0 0 Import Houston 
 

33 6 0 0 Import Houston 
 

34 6 0 0 Import Houston 
 

35 6 0 0 Import Houston 
 

36 4.5 0 0 Import Houston 
 

37 7.44 0 0 Import & Midland 
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Export 

38 7.44 0 0 Import & 

Export 

Midland 
 

39 7.44 0 0 Import & 

Export 

Midland 
 

40 7.44 0 0 Import & 

Export 

Midland 
 

41 6 0 0 Import San Antonio 

42 4.5 0 0 Import San Antonio 

43 7.5 0 0 Import San Antonio 

44 7.5 0 0 Import San Antonio 

45 6 0 0 Import San Antonio 

46 6 0 0 Import San Antonio 

 

 

Figure 5.27 WT Installation at Each Supercharging Station  
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Figure 5.28 Amount of Electricity Purchased (MW) 

 

Figure 5.29 Electricity Purchased (MW) for Corpus Christi 
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Figure 5.30 Electricity Purchased (MW) for Midland 

 

 

Figure 5.31 Amount of Electricity Purchased by Stations for 24 hours (MW) 
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Figure 5.32 Amount of Electricity Sold to Main Grid (MW) 

 

Figure 5.33 Amount of Electricity Sold to Main Grid for Corpus Christi 
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Figure 5.34 Amount of Electricity Sold to Main Grid (MW) for Midland 

 

Figure 5.35 Amount of Electricity Sold to Main Grid (MW) for 24 hours 
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From Table 5.14, the supercharging stations in Midland and Corpus Christi zones 

are producing extra energy after fulfilling their demand. All these supercharging stations 

are selling their extra energy to the main grid instead of storing the extra energy to the 

ESS system due to profitability. It is also found from Table 5.14 that all the 

supercharging stations at Midland and Corpus Christi zone are also buying electricity 

from the main grid in certain time periods when their onsite generation is lower than the 

demand.  

From Table 5.14, supercharging stations in the zones of San Antonio, Dallas and 

Houston are installing WT as their power generating units. All the three cities are windy 

cities, so it is obvious that supercharging stations choose to install WT instead of PV. 

From Table 5.14, the network model is producing less electricity for San Antonio, Dallas 

and Houston zones to fulfill the demand of supercharging stations at these three zones, 

hence the supercharging stations are buying electricity from the main grid to fulfill their 

demand. All the supercharging stations from these three zones are not installing ESS 

system to store or sell the energy to the main grid because the power generating units are 

not producing extra energy.  

From Table 5.14, supercharging stations in Austin and El Paso zones are not 

installing any WT and PV as their power generating units. Instead of installing WT and 

PV to fulfill the demand of their supercharging stations, the stations in both zones are 

buying electricity from the main grid. The reason behind this activity is, it is more cost 

effective to buy the electricity from the main grid than to install power generating units to 

self-produce electricity.  
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 5.4.4 Sensitivity Analysis 

 The network problem of Model 5.1 is solved in AMPL computational 

environment with changing value of capacity cost of renewable microgrid generation PV 

from $2M/MW to $1.5M/MW, $1M/MW and $0.5M/MW. Other parameters and the 

hourly capacity factor of WT and PV of Texas in these cities stay the same. The 

sensitivity analysis parameters are chosen based on considering different facts and 

aspects. With the advancement of technology, the capacity cost of PV likely will continue 

to decline in near future. These scenarios have considered while choosing the sensitivity 

analysis value for Case 1, 2, and 3. The optimal sizing of WT installation for three cases 

including the benchmark case are summarized in Table 5.15. 
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Table 5.15 Comparison of WT Installation in Supercharging Stations in Different Cases 

Station 

No. 

Benchmark 

WT (MW) 

Case 1 

(MW) 

Case 2 

(MW) 

Case 3 

(MW)  

Zone 

1 0 0 0 0.00 Austin 

2 0 0 0 0.00 Austin 

3 0 0 0 0.00 Austin 

4 0 0 0 0.00 Austin 

5 0 0 0 0.00 Austin 

6 5.58 5.58 5.58 1.90 Corpus Christi 

7 7.44 7.44 7.44 2.54 Corpus Christi 

8 7.44 7.44 7.44 2.54 Corpus Christi 

9 0.89 0.8928 0.89 0.30 Corpus Christi 

10 6 6 6 0.00 Dallas 

11 5.76 5.76 5.76 0.00 Dallas 

12 7.5 7.5 7.5 0.00 Dallas 

13 7.5 7.5 7.5 0.00 Dallas 

14 8.25 8.25 8.25 0.00 Dallas 

15 9 9 9 0.00 Dallas 

16 4.5 4.5 4.5 0.00 Dallas 

17 9 9 9 0.00 Dallas 

18 6 6 6 0.00 Dallas 

19 6 6 6 0.00 Dallas 

20 4.5 4.5 4.5 0.00 Dallas 

21 7.5 7.5 7.5 0.00 Dallas 

22 7.5 7.5 7.5 0.00 Dallas 

23 7.5 7.5 7.5 0.00 Dallas 

24 6 6 6 0.00 Dallas 

25 6 6 6 0.00 Dallas 

26 6 6 6 0.00 Dallas 

27 0 0 0 0.00 El Paso 

28 0 0 0 0.00 El Paso 

29 9 9 9 0.00 Houston 

30 6 6 6 0.00 Houston 

31 4.5 4.5 4.5 0.00 Houston 

32 4.5 4.5 4.5 0.00 Houston 

33 6 6 6 0.00 Houston 

34 6 6 6 0.00 Houston 

35 6 6 6 0.00 Houston 

36 4.5 4.5 4.5 0.00 Houston 

37 7.44 7.44 2.56 0.00 Midland 

38 7.44 7.44 2.56 0.00 Midland 

39 7.44 7.44 2.56 0.00 Midland 

40 7.44 7.44 2.56 0.00 Midland 

41 6 6 6 0.00 San Antonio 

42 4.5 4.5 4.5 0.00 San Antonio 

43 7.5 7.5 7.5 0.00 San Antonio 

44 7.5 7.5 7.5 0.00 San Antonio 

45 6 6 6 0.00 San Antonio 

46 6 6 6 0.00 San Antonio 
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Figure 5.36 WT Installation at Each Supercharging Station (MW) 

Comparison among benchmark case with three cases can be easily done using Table 5.15 

and Fig 5.36. After comparing benchmark and case 1 from Fig 5.36, it is found out that 

after reducing the capacity cost of PV from $2M/MW to $1.5M/MW there is no 

significant difference in generation of WT. Secondly, after comparing benchmark with 

case 2 where the reduced capacity cost of PV from $2M/MW to $1M/MW, it can be seen 

from Fig 5.36 that in Midland’s four supercharging stations the generation of WT is 

reduced from 7.44 MW to 2.56 MW because the generation of PV is increased in those 

stations because of reduced capacity cost of PV. Thirdly, from Fig 5.36, after comparing 

benchmark with case 3, it can be seen that the generation of WT is significantly reduced 

because of reducing capacity cost of PV from $2M/MW to $0.5M/MW. Because all those 

supercharging stations are installing more PV generation than WT because of reduced 

capacity cost of PV and it is profitable to install more PV.  
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Table 5.16 Comparison of PV Installation in Supercharging Stations in Different Cases 

Station No. Benchmark 

PV (MW) 

Case 1 Case 2 Case 3 Zone 

1 0 0 0 55.80 Austin 

2 0 0 0 37.20 Austin 

3 0 0 0 40.18 Austin 

4 0 0 0 37.20 Austin 

5 0 0 0 37.20 Austin 

6 0 0 0 25.90 Corpus Christi 

7 0 0 0 34.54 Corpus Christi 

8 0 0 0 34.54 Corpus Christi 

9 0 0 0 4.14 Corpus Christi 

10 0 0 0 37.66 Dallas 

11 0 0 0 36.15 Dallas 

12 0 0 0 47.07 Dallas 

13 0 0 0 47.07 Dallas 

14 0 0 0 51.78 Dallas 

15 0 0 0 56.48 Dallas 

16 0 0 0 28.24 Dallas 

17 0 0 0 56.48 Dallas 

18 0 0 0 37.66 Dallas 

19 0 0 0 37.66 Dallas 

20 0 0 0 28.24 Dallas 

21 0 0 0 47.07 Dallas 

22 0 0 0 47.07 Dallas 

23 0 0 0 47.07 Dallas 

24 0 0 0 37.66 Dallas 

25 0 0 0 37.66 Dallas 

26 0 0 0 37.66 Dallas 

27 0 0 0 37.20 El Paso 

28 0 0 0 37.20 El Paso 

29 0 0 0 37.20 Houston 

30 0 0 0 24.80 Houston 

31 0 0 0 18.60 Houston 

32 0 0 0 18.60 Houston 

33 0 0 0 24.80 Houston 

34 0 0 0 24.80 Houston 

35 0 0 0 24.80 Houston 

36 0 0 0 18.60 Houston 

37 0 0 24.62 37.20 Midland 

38 0 0 24.62 37.20 Midland 

39 0 0 24.62 37.20 Midland 

40 0 0 24.62 37.20 Midland 

41 0 0 0 39.60 San Antonio 

42 0 0 0 29.70 San Antonio 

43 0 0 0 49.50 San Antonio 

44 0 0 0 49.50 San Antonio 

45 0 0 0 39.60 San Antonio 

46 0 0 0 39.60 San Antonio 
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Figure 5.37 PV Installation at Each Supercharging Station (MW) 

Comparison among benchmark case with other cases can be easily done using Table 5.16 

and Fig 5.37. From Fig 5.37 it can be seen that by reducing the capacity cost of PV from 

$2M/MW to $1M/MW (case 2), the generation of PV at Midland’s four supercharging 

stations has significantly increased from 0M to 24.62MW. It can be also seen from Fig 

5.37, in case 3 where the reduced capacity cost of PV to $0.5M/MW, the generation of 

PV has significantly increased for all supercharging stations in Texas.  
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Table 5.17 Comparison of ESS Storage of Supercharging Stations in Different Cases 

Station 

No. 

Benchmark 

(MWh) 

Case 1  

(MWh) 

Case 2  

(MWh) 

 Case 3  

(MWh) 

Zone 

1 0 0 0 0.00 Austin 

2 0 0 0 0.00 Austin 

3 0 0 0 0.00 Austin 

4 0 0 0 0.00 Austin 

5 0 0 0 0.00 Austin 

6 0 0 0 1.50 Corpus Christi 

7 0 0 0 2.00 Corpus Christi 

8 0 0 0 2.00 Corpus Christi 

9 0 0 0 0.24 Corpus Christi 

10 0 0 0 0.73 Dallas 

11 0 0 0 0.70 Dallas 

12 0 0 0 0.91 Dallas 

13 0 0 0 0.91 Dallas 

14 0 0 0 1.00 Dallas 

15 0 0 0 1.09 Dallas 

16 0 0 0 0.55 Dallas 

17 0 0 0 1.09 Dallas 

18 0 0 0 0.73 Dallas 

19 0 0 0 0.73 Dallas 

20 0 0 0 0.55 Dallas 

21 0 0 0 0.91 Dallas 

22 0 0 0 0.91 Dallas 

23 0 0 0 0.91 Dallas 

24 0 0 0 0.73 Dallas 

25 0 0 0 0.73 Dallas 

26 0 0 0 0.73 Dallas 

27 0 0 0 0.00 El Paso 

28 0 0 0 0.00 El Paso 

29 0 0 0 0.00 Houston 

30 0 0 0 0.00 Houston 

31 0 0 0 0.00 Houston 

32 0 0 0 0.00 Houston 

33 0 0 0 0.00 Houston 

34 0 0 0 0.00 Houston 

35 0 0 0 0.00 Houston 

36 0 0 0 0.00 Houston 

37 0 0 0.04092 0.00 Midland 

38 0 0 0.04 0.00 Midland 

39 0 0 0.04 0.00 Midland 

40 0 0 0.04 0.00 Midland 

41 0 0 0.00 1.92 San Antonio 

42 0 0 0 1.44 San Antonio 

43 0 0 0 2.40 San Antonio 

44 0 0 0 2.40 San Antonio 

45 0 0 0 1.92 San Antonio 

46 0 0 0 1.92 San Antonio 
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Figure 5.38 ESS Storage at Each Supercharging Station (MWh) 

Using Table 5.17 and Fig 5.38, it can be seen that in case 3 where the capacity cost of PV 

is reduced from $2M/MW to $0.5M/MW, ESS storage system is used to store the extra 

generation from PV. It is profitable to do that because those extra energy can be used 

fulfilling the demand of supercharging stations at later time and also can be sold to the 

main grid when the selling price will be high to sale based on TOU rate.  Note I&E 

stands for import and export. 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

E
S

S
 S

to
ra

g
e 

(M
W

h
)

Station Number

ESS Storage at each supercharging stations

Benchmark ESS storage (MWh)

Case 1

Case 2

 Case 3



 

 

123 

Table 5.18 Comparison of Prosumer Activity of Supercharging Stations in Different 

Cases 

Station No. Benchmark Prosumer Case 1 Case 2 Case 3 Zone 

1  I  I  I I & E Austin 

2  I  I  I I & E Austin 

3  I  I  I I & E Austin 

4  I  I  I I & E Austin 

5  I  I  I I & E Austin 

6 I & E I & E I & E I & E Corpus Christi 

7 I & E I & E I & E I & E Corpus Christi 

8 I & E I & E I & E I & E Corpus Christi 

9 I & E I & E I & E I & E Corpus Christi 

10  I  I  I I & E Dallas 

11  I  I  I I & E Dallas 

12  I  I  I I & E Dallas 

13  I  I  I I & E Dallas 

14  I  I  I I & E Dallas 

15  I  I  I I & E Dallas 

16  I  I  I I & E Dallas 

17  I  I  I I & E Dallas 

18  I  I  I I & E Dallas 

19  I  I  I I & E Dallas 

20  I  I  I I & E Dallas 

21  I  I  I I & E Dallas 

22  I  I  I I & E Dallas 

23  I  I  I I & E Dallas 

24  I  I  I I & E Dallas 

25  I  I  I I & E Dallas 

26  I  I  I I & E Dallas 

27  I  I  I I & E El Paso 

28  I  I  I I & E El Paso 

29  I  I  I I & E Houston 

30  I  I  I I & E Houston 

31  I  I  I I & E Houston 

32  I  I  I I & E Houston 

33  I  I  I I & E Houston 

34  I  I  I I & E Houston 

35  I  I  I I & E Houston 

36  I  I  I I & E Houston 

37 I & E I & E  I I & E Midland 

38 I & E I & E  I I & E Midland 

39 I & E I & E  I I & E Midland 

40 I & E I & E  I I & E Midland 

41  I  I  I I & E San Antonio 

42  I  I  I I & E San Antonio 

43  I  I  I I & E San Antonio 

44  I  I  I I & E San Antonio 

45  I  I  I I & E San Antonio 

46  I  I  I I & E San Antonio 

 

From Table 5.18, it can be seen by reducing the capacity cost of PV from $2M/MW to 



 

 

124 

$0.5M/MW makes the system choosing more PV for generation which can be used to 

fulfill the demand of supercharging stations and also can be sold to the main-grid for 

making profit.  

Table 5.19 Comparison of Annual Cost for Different Cases 

Benchmark Objective function $169,281,175.70 

Case 1 Objective function $169,281,175.70 

Case 2 Objective function $168,833,353.20 

Case 3 Objective function $119,416,800.20 

 

 

Figure 5.39 Annual Cost ($) 

From Table 5.19 and Fig 5.39, it can be seen that by reducing the capacity cost of PV 

from $2M/MW to $1M/MW and $0.5M/MW significantly reduces the annual cost of the 

network system by selling the extra energy to the main-grid.  
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 5.4.5 Comparison between results of Model 5.1 solved in two different ways 

 As it has mentioned earlier in Chapter 5 that Model 5.1 has solved in two different 

ways. In the first way, the model has solved for each specific zones separately and in the 

second way, the model has solved like a network planning model consisting of all the 

zones. After analyzing the results of Model 5.1, some interesting things have found which 

are described in Table 5.20. 

Table 5.20 Comparison between Results of Model 5.1 Solved in Two Different Ways 

    Model for each specific zone separately   

Zone City Total installed WT 

(MW) 

Total 

installed PV 

(MW) 

Total 

installed ESS 

(MWh) 

Total 

Cost ($) 

1 Austin 0 0 0 20,529,936 

2 Corpus 

Christi 

21.35 0 0      8,552,291  

3 Dallas 114.51 0 0 69,402,772 

4 El Paso 0 0 0 7,358,400 

5 Houston 46.5 0 0 28,284,034 

6 Midland 29.76 0 0 12,274,121 

7 San 

Antonio 

37.5 0 0 22,879,622 

Sum 
 

249.62 0 0 169,281,176 

    Network model consisting of all zones   

Zone City Total installed WT 

(MW) 

Total 

installed PV 

(MW) 

Total 

installed ESS 

(MWh) 

Total 

Cost ($) 

1 Austin 0 0 0 
 

2 Corpus 

Christi 

21.35 0 0 
 

3 Dallas 114.51 0 0 
 

4 El Paso 0 0 0 
 

5 Houston 46.5 0 0 
 

6 Midland 29.76 0 0 
 

7 San 

Antonio 

37.5 0 0 
 

Sum 
 

249.62 0 0 169,281,176 

 

After comparing the results of Model 5.1 solved in two different ways in Table 5.20, it 

can be seen that the two results are identical. The findings of total installed WT, PV and 
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ESS are same both in the model for each specific zones separately and the network model 

consisting of all zones. It can be also seen from Table 5.20 that the total cost is also 

identical for the model solved for each specific zone separately and the network model 

consisting of all zones together. Based on the findings, the conclusion can be drawn that 

solving the problem in smaller section and combining it later, will give almost identical 

results if anyone solves the same problem creating a large network problem. 

 Providing validation for the conclusion sentence, model 5.1 is run again in AMPL 

computational environment by combining two zones into one (Austin and Corpus Christi 

zone), then three zones into one (El paso, Midland and San Antonio zone) and finally 

again two zones into one (Dallas and Houston zone). The findings are summarized in 

Table 5.21. 

Table 5.21 Results of Model 5.1 Solved in Three Parts 

Zone Total 

installed 

WT 

(MW) 

Total 

installed 

PV 

(MW) 

Total 

installed 

ESS 

(MWh) 

Total Cost ($) 

Austin and Corpus Christi  21.35 0 0   29,082,227  

El-Paso, Midland and San 

Antonio 

67.26 0 0   42,512,143  

Dallas and Houston 161.01 0 0   97,686,806  

Sum 249.62 0 0   169,281,176  

 

From Table 5.21, it can be seen that both Table 5.20 and Table 5.21 are showing identical 

results for total installed WT, PV and ESS and also for total cost. So, based on the current 

findings, the conclusion can be validated that solving the problem in smaller section and 

combining it later, will give almost identical results if anyone solves the same problem 

creating a large network problem. 
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6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 This thesis addresses two research questions related to allocation of renewable 

microgrid in battery swapping and supercharging stations for electric vehicles: First, is it 

economically viable to integrate wind- and solar-based microgrid along with main grid to 

power the battery swap and supercharging facilities? Second, where and how should the 

battery swap and supercharging stations be located to minimize the facility operating 

cost?     

 An optimization framework was proposed for allocating renewable microgrid in 

battery swapping and supercharging stations with island and grid-tied microgrid mode, 

respectively. A microgrid is comprised of a wind turbine (WT), photovoltaics (PV) and 

energy storage systems (ESS). A network model is also proposed comprising of 46 

supercharging stations to prove the viability of a real-world application of allocation of 

renewable microgrid for electric vehicle. The network model is tested using data from 

Tesla supercharging stations located in the state of Texas. A mixed integer linear 

programming model is developed to minimize the annualized cost of battery services 

considering facility setup, spare batteries, and superchargers. Those optimization models 

are tested on ten different cities in the US using hourly solar PV and WT capacity factor 

data across eleven years. For the network model, hourly solar PV and WT capacity factor 

data of Texas cities are used. The model is tested in real world Tesla supercharging 

stations using the data retrieved from Tesla website.  

 For island microgrid, it is shown that reducing the ESS cost does not stimulate the 

installation of ESS, PV and WT. This is because the energy generation largely depends 
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on capacity factor of PV and WT. In grid-tied microgrid operation, reducing the PV 

capacity cost by 50% makes the system install more PV both in sunny and windy cities. 

This is because the station can sell the surplus renewable energy to the main grid and 

makes the overall system profitable. It is also shown that reducing the ESS cost by 75% 

from the current cost of $0.4M/MWh does not make the system choose ESS, instead the 

station opts to export energy to the main grid for both sunny and windy cities. For 

network model, it is shown that by reducing the PV capacity cost by 75% from the 

current cost of $2M/MW makes the system choose more PV for Texas cities and reduces 

the entire system annual cost by 29%. Moreover, the system opts to behave as 

“prosumer” acting as a consumer and producer at the same time.  

 There are three managerial implications from this study. Firstly, the integration of 

renewable microgrid in battery swap and supercharging stations makes the system 

prosumer and profitable. Secondly, this work shows that electric transportation is a cost-

effective approach to reducing dependency on fossil fuel generation. Third, battery 

energy storage cost is the main driver behind the large scale installation of onsite wind 

and solar generation, rather demand responses and government policies plays the key 

roles.   

6.2 Future Work 

 In this thesis, only Texas supercharging stations of Tesla have considered for 

building the network model. Future work can be expanded by enlarging the network 

model in state-wide, nation-wide, and globalized manner. 

 In this thesis, seven Texas cities weather data of 2019 have collected for 

calculating WT and PV hourly capacity factor. This work can be expanded by collecting 
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weather data of Texas cities for multiple years for better forecasting of WT and PV 

hourly capacity factor or via considering different locations for the model.  

            In this thesis, passenger cars are considered for electric transportation. Future 

work can be expanded via considering e-trucks and other public transportation medium 

for electric transportation. By increasing the medium of electric transportation will give 

more power assurance via renewable energy. 

            The future work of this thesis can be expanded through using blockchain. 

Blockchain is a technology which helps storing real-time data with unalterable and 

transparent feature. Blockchain could be further incorporated in the decision making to 

facilitate the direct peer-to-peer trading. Blockchain gives the user opportunity to share 

data in a secure way.  
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APPENDIX SECTION 

1. MATLAB code of modeling battery swap with Erlang B: In this code, the notion 

theta=θ, lambdaB= λb, muB= μb.  

 

%ErlangB 

clc 

clear all 

close all 

K = input('the value of k'); 

lambdaB = input('arrival rate lambdaB'); 

muB = input('service rate muB');  

theta=lambdaB./muB; 

kk=1; 

%pi will be using for performance analysis 

for s=1:K 

    num=power(theta,s)/factorial(s); 

    den=0; 

    for k=0:s 

        den=den+power(theta,k)/factorial(k); 

    end 

    final(kk)=num/den; 

    disp(final(kk)); 

    kk=kk+1; 

end 
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2. MATLAB code of modeling supercharging with Erlang C: In this code, the 

notion theta=θ, lambdaB= λb, muB= μb, B= B(s), P= ρd,  q=m* ρd. 

 

%ErlangC 

clc 

clear all 

close all 

K = input('the value of k'); 

lambdaB = input('arrival rate lambdaB'); 

muB = input('service rate muB'); 

B = input('probability of erlang b'); 

m = input('the number of super chargers'); 

theta=lambdaB./muB; 

P=(lambdaB*B)./(m*muB); 

q=m*P; 

kk=1; 

%pi will be using for performance analysis 

for m=0:K 

    num=power(q,m)/(factorial(m)*(1-P)); 

    den=0; 

    for K=0:m 

        den=(den+power(q,K)/factorial(K))+num; 

    end 

    final(kk)=num/den; 

    F=1-final(kk); 

    disp(F); 

    kk=kk+1; 

end 
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3. AMPL code of Model 3.1 Minimizing Cost of Battery Swap Station with Island 

Microgrid 

 

Model File: 

#Initial battery full hourly  
set period; 
set period0; 
param fib >=0; 
param ab >=0; 
param s >=0; 
param fiwt >=0; 
param awt >=0; 
param fipv >=0; 
param apv >=0;  
param fiess >=0; 
param aess >=0; 
param tauwt >=0; 
param bwt >=0; 
param cwt >=0; 
param lambdawt{t in period} >=0; 
param taupv >=0; 
param bpv >=0; 
param cpv >=0; 
param lambdapv{t in period}>=0; 
param bess >=0; 
param cess>=0; 
param lambdaev{t in period}>=0; 
param tau >=0; 
param pev >=0; 
 
var pcwt>=0; 
var pcpv>=0; 
var bcess>=0; 
var besst{t in period0}>=0; 
 
minimize tot_cost: 
(fib*ab*s)+ 
(fiwt*awt*pcwt)+ 
(fipv*apv*pcpv)+ 
(fiess*aess*bcess)+ 
(sum{t in period} tauwt*(bwt-cwt)*lambdawt[t]*pcwt)+ 
(sum{t in period} taupv*(bpv-cpv)*lambdapv[t]*pcpv)+ 
(sum {t in period} (bess-cess)*besst[t]); 
 
subject to c1 {t in period}:(lambdaev[t]*tau*pev)+(besst[t]-
besst[t-1])<=(lambdawt[t]*tauwt*pcwt)+(lambdapv[t]*taupv*pcpv); 



 

 

133 

subject to c2 {t in period0}:0<=besst[t]; 
subject to c3 {t in period0}:besst[t]<=bcess; 
subject to c4:besst[0]=bcess; 
subject to c5:besst[8736]=bcess; 
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4. AMPL code of Model 3.2 Minimizing Battery Swap Station Cost with Grid-tied 

Microgrid. 

 

Model File: 

#Initial battery full 
set GRID; 
set BATTERY; 
set PERIOD; 
set PERIOD0; 
param fig{g in GRID} >=0; 
param ag{g in GRID} >=0; 
param bg{g in GRID} >=0; 
param cg{g in GRID} >=0; 
param lambdagt{t in PERIOD,g in GRID} >=0; 
param taug{g in GRID} >=0; 
param fies >=0; 
param des >=0; 
param bes >=0; 
param fib >=0; 
param dbk{k in BATTERY} >=0; 
param roimt{t in PERIOD} >=0; 
param roext{t in PERIOD} >=0; 
param lambdaev{t in PERIOD,k in BATTERY} >=0;  
param pevk{k in BATTERY} >=0; 
param tau >=0; 
 
var pcg{g in GRID}>=0; 
var sk{k in BATTERY} integer; 
var bces>=0; 
var best{t in PERIOD0} >=0; 
 
var eimt{t in PERIOD} >=0; 
var eext{t in PERIOD} >=0; 
 
minimize tot_cost: 
(sum{g in GRID} fig[g]*ag[g]*pcg[g])+ 
(sum{t in PERIOD,g in GRID} (bg[g]-
cg[g])*lambdagt[t,g]*pcg[g]*taug[g])+ 
(fies*des*bces)+ 
(sum{t in PERIOD} bes*best[t])+ 
(sum{k in BATTERY} fib*dbk[k]*sk[k])+ 
(sum{t in PERIOD} (roimt[t]*eimt[t]-roext[t]*eext[t])); 
 
subject to c1{t in PERIOD}:(sum{k in BATTERY} 
lambdaev[t,k]*tau*pevk[k])+best[t]-best[t-1]+eext[t]-
eimt[t]=(sum{g in GRID} lambdagt[t,g]*pcg[g]*taug[g]); 
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subject to c2{k in BATTERY,t in PERIOD}: lambdaev[t,k]*tau <= 
sk[k]; 
subject to c3{t in PERIOD0}: 0 <= best[t]; 
subject to c4{t in PERIOD0}: best[t] <= bces; 
subject to c5: best[0]=bces; 
subject to c6: best[8736]=bces; 
subject to c9{g in GRID}: pcg[g]<=20; 
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5. AMPL code of Model 4.1 Microgrid Sizing for a Joint Battery Swap and 

Supercharging Station. 

 

Model File:  

#Initial battery full 
set GRID; 
set BATTERY; 
set SUPERCHARGER; 
set PERIOD; 
set PERIOD0; 
param fig{g in GRID} >=0; 
param ag{g in GRID} >=0; 
param bg{g in GRID} >=0; 
param cg{g in GRID} >=0; 
param lambdagt{t in PERIOD,g in GRID} >=0; 
param taug{g in GRID} >=0; 
param fies >=0; 
param des >=0; 
param bes >=0; 
param fib >=0; 
param dbk{k in BATTERY} >=0; 
param roimt{t in PERIOD} >=0; 
param roext{t in PERIOD} >=0; 
param lambdaev{t in PERIOD,k in BATTERY} >=0;  
param bcvbk{k in BATTERY} >=0; 
param tau >=0; 
param fisc >=0; 
param dsc >=0; 
param pik >=0; 
param pvbk{k in BATTERY} >=0; 
param psc >=0; 
param ak >=0; 
param tauswap >=0; 
param taumax >=0; 
 
var pcg{g in GRID}>=0; 
var sk{k in BATTERY} integer; 
var bces>=0; 
var best{t in PERIOD0} >=0; 
var m{i in SUPERCHARGER} integer; 
var eimt{t in PERIOD} >=0; 
var eext{t in PERIOD} >=0; 
 
minimize tot_cost{i in SUPERCHARGER}: 
(sum{g in GRID} fig[g]*ag[g]*pcg[g])+ 
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(sum{t in PERIOD,g in GRID} (bg[g]-
cg[g])*lambdagt[t,g]*pcg[g]*taug[g])+ 
(fies*des*bces)+ 
(sum{t in PERIOD} bes*best[t])+ 
(sum{k in BATTERY} fib*dbk[k]*sk[k])+ 
(fisc*dsc*m[i])+ 
(sum{t in PERIOD} (roimt[t]*eimt[t]-roext[t]*eext[t])); 
 
subject to c1{t in PERIOD}:(sum{k in BATTERY} 
lambdaev[t,k]*tau*bcvbk[k])+best[t]-best[t-1]+eext[t]-
eimt[t]=(sum{g in GRID} lambdagt[t,g]*pcg[g]*taug[g]); 
subject to c2{k in BATTERY,t in PERIOD}: 
lambdaev[t,k]*bcvbk[k]*(1-pik) <= sk[k]*pvbk[k]; 
subject to c3{i in SUPERCHARGER,t in PERIOD}: (sum{k in BATTERY} 
pik*lambdaev[t,k]*bcvbk[k])+((1-pik)*tauswap*m[i]*psc) <= 
taumax*m[i]*psc; 
subject to c5{t in PERIOD0}: 0 <= best[t]; 
subject to c6{t in PERIOD0}: best[t] <= bces; 
subject to c7: best[0]=bces; 
subject to c8: best[8736]=bces; 
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6. AMPL code of Model 5.1 Sizing Microgrid for VPP Operation at Tesla network. 

 

Model File: 

#Initial battery full 
#correct 
set GRID; 
set STATIONS; 
set PERIOD; 
set PERIOD0; 
 
param fig{g in GRID} >=0; 
param ag{g in GRID} >=0; 
param bg{g in GRID} >=0; 
param cg{g in GRID} >=0; 
param lambdagjt{t in PERIOD,g in GRID,j in STATIONS} >=0; 
param fiess >=0; 
param aess >=0; 
param bess >=0; 
param robuyjt{t in PERIOD, j in STATIONS} >=0; 
param roselljt{t in PERIOD, j in STATIONS} >=0; 
param lambdaevjt{t in PERIOD, j in STATIONS} >=0;  
param pscj{j in STATIONS} >=0; 
param tau >=0; 
param pstationj{j in STATIONS} >=0; 
 
var pcgj{g in GRID, j in STATIONS}>=0; 
var bcj{j in STATIONS} >=0; 
var bjt{t in PERIOD0, j in STATIONS}>=0; 
var ebuyjt{t in PERIOD, j in STATIONS} >=0; 
var eselljt{t in PERIOD, j in STATIONS} >=0; 
 
minimize tot_cost: 
(sum{g in GRID, j in STATIONS} fig[g]*ag[g]*pcgj[g,j])+ 
(sum{t in PERIOD,g in GRID,j in STATIONS} (bg[g]-
cg[g])*lambdagjt[t,g,j]*pcgj[g,j]*tau)+ 
(fiess*aess*(sum{j in STATIONS}bcj[j]))+ 
(sum{t in PERIOD,j in STATIONS} bess*bjt[t,j])+ 
(sum{t in PERIOD,j in STATIONS} (robuyjt[t,j]*ebuyjt[t,j]-
roselljt[t,j]*eselljt[t,j])); 
 
subject to c1{t in PERIOD,j in STATIONS}: 
(lambdaevjt[t,j]*tau*pscj[j])+eselljt[t,j]+(bjt[t,j]-bjt[t-
1,j])=(sum{g in GRID} 
lambdagjt[t,g,j]*pcgj[g,j]*tau)+ebuyjt[t,j]; 
subject to c2{t in PERIOD0, j in STATIONS}: 0 <= bjt[t,j]; 
subject to c3{t in PERIOD0,j in STATIONS}: bjt[t,j] <= bcj[j]; 
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subject to c4{j in STATIONS}: bjt[0,j]=bcj[j]; 
subject to c5{j in STATIONS}: bjt[8760,j]=bcj[j]; 
subject to c6{t in PERIOD, j in STATIONS}: 0<=eselljt[t,j]; 
subject to c7{t in PERIOD, j in STATIONS}: eselljt[t,j]<= 
tau*pstationj[j]; 
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