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CONSTRUCTIVE SOBOLEV GRADIENT PRECONDITIONING
FOR SEMILINEAR ELLIPTIC SYSTEMS

JÁNOS KARÁTSON

Abstract. We present a Sobolev gradient type preconditioning for iterative
methods used in solving second order semilinear elliptic systems; the n-tuple of

independent Laplacians acts as a preconditioning operator in Sobolev spaces.

The theoretical iteration is done at the continuous level, providing a lineariza-
tion approach that reduces the original problem to a system of linear Poisson

equations. The method obtained preserves linear convergence when a polyno-

mial growth of the lower order reaction type terms is involved. For the proof of
linear convergence for systems with mixed boundary conditions, we use suit-

able energy spaces. We use Sobolev embedding estimates in the construction

of the exact algorithm. The numerical implementation has focus on a direct
and elementary realization, for which a detailed discussion and some examples

are given.

1. Introduction

The numerical solution of elliptic problems is a topic of basic importance in
numerical mathematics. It has been a subject of extensive investigation in the
past decades, thus having vast literature (cf. [5, 16, 23, 26] and the references
there). The most widespread way of finding numerical solutions is first discretizing
the elliptic problem, then solving the arising system of algebraic equations by a
solver which is generally some iterative method. In the case of nonlinear problems,
most often Newton’s method is used. However, when the work of compiling the
Jacobians exceeds the advantage of quadratic convergence, one may prefer gradient
type iterations including steepest descent or conjugate gradients (see e.g. [4, 9]).
An important example in this respect is the Sobolev gradient technique, which
represents a general approach relying on descent methods and has provided various
efficient numerical results [28, 29, 30]. In the context of gradient type iterations the
crucial point is most often preconditioning. Namely, the condition number of the
Jacobians of the discretized systems tends to infinity when discretization is refined,
hence suitable nonlinear preconditioning technique has to be used to achieve a
convenient condition number [2, 3]. The Sobolev gradient technique presents a
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general efficient preconditioning approach where the preconditioners are derived
from the representation of the Sobolev inner product.

The Sobolev gradient idea does in fact opposite to that which first discretizes
the problem. Namely, the iteration may be theoretically defined in Sobolev spaces
for the boundary-value problem (i.e. at the continuous level), reducing the non-
linear problem to auxiliary linear Poisson equations. Then discretization may be
used for these auxiliary problems. This approach is based on the various infinite-
dimensional generalizations of iterative methods, beginning with Kantorovich. For
recent and earlier results see [15, 22, 29, 30]. The author’s investigations include
the development of the preconditioning operator idea as shown in [12]. Some re-
cent numerical results are given in [20, 21] which are closely related to the Sobolev
gradient idea. Namely, a suitable representation of the gradient yields a precon-
ditioning elliptic operator; for Dirichlet problems the usual Sobolev inner product
leads to the Laplacian as preconditioner. For systems one may define independent
Laplacians as preconditioners, see [17] for an earlier treatment for uniformly ellip-
tic Dirichlet problems using the strong form of the operators. We note that the
constructive representation of the Sobolev gradients with Laplacians in [17, 21] is
due to a suitable regularity property.

In this context the Sobolev gradient can be regarded as infinite dimensional
preconditioning by the Laplacian. It yields that the speed of linear convergence
is determined by the ellipticity properties of the original problem instead of the
discretized equation, i.e., the ratio of convergence is explicitly obtained from the
coefficients of the boundary-value problem. Therefore, it is independent of the nu-
merical method used for the auxiliary problems. Another favourable property is the
reduction of computational issues to those arising for the linear auxiliary problems.
These advantages appear in the finite element methods (FEM) realization [13]. In
[13, 17, 21] Dirichlet problems are considered for uniformly elliptic equations.

The aim of this paper is to develop the above described realization of Sobolev
gradients for semilinear elliptic systems, including the treatment of non-uniformity
(caused by polynomial growth of the lower order reaction-type terms) such that
linear convergence is preserved, and considering general mixed boundary conditions
which need suitable energy spaces. The studied class of problems includes elliptic
reaction-diffusion systems related to reactions of autocatalytic type.

The paper first gives a general development of the method: after a brief Hilbert
space background, the theoretical iteration is constructed in Sobolev space and con-
vergence is proved. Linear convergence is obtained in the norm of the corresponding
energy space, equivalent to the Sobolev norm. An excursion to Sobolev embeddings
is enclosed, which is necessary for determining the required descent parameter (and
the corresponding convergence quotient). Then numerical realization is considered
with focus on direct elementary realization. A detailed discussion is devoted to the
latter, giving a general extension of the ideas of [19, 21]. Also numerical examples
are presented.

2. General construction and convergence

2.1. The gradient method in Hilbert space. In this subsection the Hilbert
space result of [17] on non-differentiable operators is suitably modified for our pur-
poses.
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First we quote the theorem on differentiable operators this result relies on. The
classical theorem, mentioned already by Kantorovich [22], is given in the form
needed for our setting, including suitable conditions and stepsize.

Theorem 2.1. Let H be a real Hilbert space and F : H → H have the following
properties:

(i) F is Gâteaux differentiable;
(ii) for any u, k, w, h ∈ H the mapping s, t 7→ F ′(u + sk + tw)h is continuous

from R2 to H;
(iii) for any u ∈ H the operator F ′(u) is self-adjoint;
(iv) there are constants M ≥ m > 0 such that for all u ∈ H

m‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ M‖h‖2 (h ∈ H).
Then for any b ∈ H the equation F (u) = b has a unique solution u∗ ∈ H, and for
any u0 ∈ H the sequence

uk+1 = uk − 2
M + m

(F (uk)− b) (k ∈ N)

converges linearly to u∗, namely,

‖uk − u∗‖ ≤ 1
m
‖F (u0)− b‖

(M −m

M + m

)k (k ∈ N) . (2.1)

A short proof of the theorem (cf. [27]) is based on proving the estimate

‖F (uk)− b‖ ≤
(M −m

M + m

)k‖F (u0)− b‖ (k ∈ N) (2.2)

(to which end one verifies that J(u) ≡ u− 2
M+m (F (uk)− b) possesses contraction

constant M−m
M+m ). Then (2.2) yields (2.1) since assumption (iv) implies

m‖u− v‖ ≤ ‖F (u)− F (v)‖ (u, v ∈ H).

Proposition 2.2. Under the assumptions of Theorem 2.1 we have

‖uk − u0‖ <
1
m
‖F (u0)− b‖ (k ∈ N).

Proof.

‖uk − u0‖ ≤
k−1∑
i=0

‖ui+1 − ui‖

=
2

M + m

k−1∑
i=0

‖F (ui)− b‖

≤ 2
M + m

‖F (u0)− b‖
k−1∑
i=0

(M −m

M + m

)i

≤ ‖F (u0)− b‖ 2
(M + m)(1− M−m

M+m )
=

1
m
‖F (u0)− b‖.

�

Proposition 2.2 allows localization of the ellipticity assumption (cf. [15]):

Corollary 2.3. Let u0 ∈ H, r0 = 1
m‖F (u0)− b‖, B(u0, r0) = {u ∈ H : ‖u−u0‖ ≤

r0}. Then in Theorem 2.1 it suffices to assume that
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(iv)’ there exist M ≥ m > 0 such that for all u ∈ H 〈F ′(u)h, h〉 ≥ m‖h‖2 (h ∈
H), and for all u ∈ B(u0, r0) 〈F ′(u)h, h〉 ≤ M‖h‖2 (h ∈ H),

instead of assumption (iv), in order that the theorem holds.

Proof. The lower bound in (iv)’ ensures that F is uniformly monotone, which yields
existence and uniqueness as before. Owing to Proposition 2.2 the upper bound M
is only exploited in B(u0, r0) to produce the convergence result. �

Turning to non-differentiable operators, we now quote the corresponding result
in [17]. First the necessary notations are given.

Definition 2.4. Let B : D → H be a strictly positive symmetric linear operator.
Then the energy space of B, i.e. the completion of D with respect to the scalar
product

〈x, y〉B ≡ 〈Bx, y〉 (x, y ∈ D)

is denoted by HB . The corresponding norm is denoted by ‖ · ‖B .

For any r ∈ N+ we denote by Hr ≡ H × H × · · · × H (r times) the product
space. The corresponding norm is denoted by

[[u]] ≡
( r∑

i=1

‖ui‖2
)1/2

(u ∈ Hr).

The obvious analogous notation is used for the products of HB .

Theorem 2.5 ([17]). Let H be a real Hilbert space, D ⊂ H. Let Ti : Dr →
H (i = 1, . . . , r) be non-differentiable operators. We consider the system

Ti(u1, . . . , ur) = gi (i = 1, . . . , r) (2.3)

with g = (g1, . . . , gr) ∈ Hr. Let B : D → H be a symmetric linear operator with
lower bound λ > 0. Assume that the following conditions hold:

(i) R(B) ⊃ R(Ti) (i = 1, . . . , r);
(ii) for any i=1,. . . ,r the operators B−1Ti have Gâteaux differentiable exten-

sions Fi : Hr
B → HB , respectively;

(iii) for any u, k, w, h ∈ Hr
B the mappings s, t 7→ F ′

i (u+sk+tw)h are continuous
from R2 to HB;

(iv) for any u, h, k ∈ Hr
B

r∑
i=1

〈F ′
i (u)h, ki〉B =

r∑
i=1

〈hi, F
′
i (u)k〉B ;

(v) there are constants M ≥ m > 0 such that for all u, h ∈ Hr
B

m
r∑

i=1

‖hi‖2
B ≤

r∑
i=1

〈F ′
i (u)h, hi〉B ≤ M

r∑
i=1

‖hi‖2
B .

Let gi ∈ R(B) (i = 1, . . . , r). Then
(1) system (2.3) has a unique weak solution u∗ = (u∗1, . . . , u

∗
r) ∈ Hr

B, i.e. which
satisfies

〈Fi(u∗), v〉B = 〈gi, v〉 (v ∈ HB , i = 1, . . . , r);



EJDE-2004/75 CONSTRUCTIVE SOBOLEV GRADIENT PRECONDITIONING 5

(2) for any u0 ∈ Dr the sequence uk = (uk
1 , . . . , uk

r )k∈N, given by the coordinate
sequences

uk+1
i ≡ uk

i −
2

M + m
B−1(Ti(uk)− gi) (i = 1, . . . , r; k ∈ N),

converges linearly to u∗. Namely,

[[uk − u∗]]B ≤ 1
m
√

λ
[[T (u0)− g]]

(M −m

M + m

)k (k ∈ N) .

The proof of this theorem in [17] is done by applying Theorem 2.1 to the operator
F = (F1, . . . , Fr) and the right-side b = {bi}r

i=1 = {B−1gi}r
i=1 in the space Hr

B .
This implies that the assumption can be weakened in the same way as in Corollary
2.3. That is, we have

Corollary 2.6. Let u0 ∈ D, bi = B−1gi (i = 1, . . . , r), r0 = 1
m [[F (u0) − b]]B,

B(u0, r0) = {u ∈ Hr
B : [[u − u0]]B ≤ r0}. Then in Theorem 2.2 it suffices to

assume that
(v)’ there exist M ≥ m > 0 such that for all u ∈ HB

∑r
i=1〈F ′

i (u)h, hi〉B ≥
m[[h]]2B (h ∈ HB), and for all u ∈ B(u0, r0)

∑r
i=1〈F ′

i (u)h, hi〉B ≤
M [[h]]2B (h ∈ HB),

instead of assumption (v), in order that the theorem holds.

Finally we remark that the conjugate gradient method (CGM) in Hilbert space
is formulated in [9] for differentiable operators under fairly similar conditions as
for Corollary 2.3, and this result is extended to non-differentiable operators in [18]
similarly to Corollary 2.6. Compared to the gradient method, the CGM improves
the above convergence ratio to (

√
M−

√
m)(

√
M+

√
m), on the other hand, the extra

work is the similar construction of two simultaneous sequences together with the
calculation of required inner products and numerical root finding for the stepsize.

2.2. The gradient method in Sobolev space. We consider the system of bound-
ary value problems

Ti(u1, . . . , ur) ≡ −div(ai(x)∇ui) + fi(x, u1, . . . , ur) = gi(x) in Ω

Qui ≡ (α(x)ui + β(x)∂νui)
∣∣
∂Ω

= 0
(2.4)

(i = 1, . . . , r) on a bounded domain Ω ⊂ RN with the following conditions:
(C1) ∂Ω ∈ C2, ai ∈ C1(Ω), fi ∈ C1(Ω× Rr), gi ∈ L2(Ω).
(C2) α, β ∈ C1(∂Ω), α, β ≥ 0, α2 + β2 > 0 almost everywhere on ∂Ω.
(C3) There are constants m,m′ > 0 such that 0 < m ≤ ai(x) ≤ m′ (x ∈ Ω),

further, η ≡ supΓβ

α
β < +∞ where

Γβ ≡ {x ∈ ∂Ω : β(x) > 0}.

(C4) Let 2 ≤ p ≤ 2N
N−2 (if N > 2), 2 ≤ p (if N = 2). There exist constants κ′ ≥

κ ≥ 0 and γ ≥ 0 such that for any (x, ξ) ∈ Ω×Rr the Jacobians ∂ξf(x, ξ) =
{∂ξk

fj(x, ξ1, . . . , ξr)}r
j,k=1 ∈ Rr×r are symmetric and their eigenvalues µ

fulfil

κ ≤ µ ≤ κ′ + γ
r∑

j=1

|ξj |p−2.

Moreover, in the case α ≡ 0 we assume κ > 0, otherwise κ = 0.
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Let
DQ ≡ {u ∈ H2(Ω) : Qu

∣∣
∂Ω

= 0 in trace sense}. (2.5)
We define

D(Ti) = Dr
Q

as the domain of Ti (i = 1, . . . , r).
An essential special case of (2.4) is that with polynomial nonlinearity

fi(x, u1, . . . , ur) =
∑
|j|≤si

c
(i)
j1,...,jr

(x)uj1
1 . . . ujr

r (2.6)

that fulfils condition (C4), where si ∈ N+, si ≤ p−1, c
(i)
j1,...,jr

∈ C(Ω) and |j| ≡ j1+
. . . jr for j = (j1, . . . , jr) ∈ Nr. This occurs in steady states or in time discretization
of autocatalytic reaction-diffusion systems. (Then ai and c

(i)
j1,...,jr

are generally
constant).

(a) Energy spaces. The construction of the gradient method requires the intro-
duction and the study of some properties of energy spaces of the Laplacian.

Definition 2.7. Let
Bu ≡ −∆u + cu,

defined for u ∈ D(B) = DQ (see (2.5)), where c = κ
m (≥ 0) with m and κ from

conditions (C3)-(C4) (i.e. B = −∆ except the case α ≡ 0).

Remark 2.8. It can be seen in the usual way that B is symmetric and strictly
positive in the real Hilbert space L2(Ω).

Corollary 2.9. (a) The eigenvalues λi (i ∈ N+) of B are positive.
(b) We have

∫
Ω
(Bu)u ≥ λ1

∫
Ω

u2 (u ∈ DQ) where λ1 > 0 is the smallest
eigenvalue of B.

Definition 2.10. Denote by H1
Q(Ω) the energy space of B, i.e. H1

Q(Ω) = HB (cf.
Definition 2.4). Due to the divergence theorem we have

〈u, v〉H1
Q
≡ 〈u, v〉B =

∫
Ω

(
∇u · ∇v + cuv

)
dx +

∫
Γβ

α

β
uv dσ (u, v ∈ D). (2.7)

Remark 2.11. Using Corollary 2.9, we can deduce the following properties:
(a) (1 + λ−1)‖u‖2

H1
Q
≥ ‖u‖H1(Ω) ≡

∫
Ω

(
|∇u|2 + u2

)
dx (u ∈ H1

Q(Ω)).

(b) H1
Q(Ω) ⊂ H1(Ω).

(c) (2.7) holds for all u, v ∈ H1
Q(Ω).

Remark 2.12. Remark 2.11 (b) implies that the Sobolev embedding theorem [1]
holds for H1

Q(Ω) in the place of H1(Ω). Namely, for any p ≥ 2 if N = 2, and for
2 ≤ p ≤ 2N

N−2 if N > 2, there exists Kp,Ω > 0 such that

H1
Q(Ω) ⊂ Lp(Ω), ‖u‖Lp(Ω) ≤ Kp,Ω‖u‖H1

Q
(u ∈ H1

Q(Ω)). (2.8)

Definition 2.13. The product spaces L2(Ω)r and H1
Q(Ω)r are endowed with the

norms

‖u‖L2(Ω)r ≡
( r∑

i=1

‖ui‖2
L2(Ω)

)1/2 and ‖u‖H1
Q(Ω)r ≡

( r∑
i=1

‖ui‖2
H1

Q

)1/2
,

respectively, where u = (u1, . . . , ur) and ‖ · ‖H1
Q

= ‖ · ‖H1
Q(Ω) for brevity as in Def.

2.3.
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(b) The convergence result.

Theorem 2.14. Under the conditions (C1)-(C4) the following results hold.
(1) The system (2.4) has a unique weak solution u∗ = (u∗1, . . . , u

∗
r) ∈ H1

Q(Ω)r.
(2) Let u0

i ∈ DQ (i = 1, . . . , r) and

M = max{1, η}m′ + κ′λ−1
1

+ γKp
p,Ωµp

(
‖u0‖H1

Q(Ω)r + m−1λ
−1/2
1 ‖T (u0)− g‖L2(Ω)r

)p−2 (2.9)

(with m, m′, η from condition (C3), p, κ′, γ from (C4), Kp,Ω from Remark 2.12,
λ1 from Corollary 2.9 and µp = max{1, r(4−p)/2}).
Let

uk+1
i = uk

i −
2

M + m
zk
i (k ∈ N, i = 1, . . . , r) (2.10)

where
gk

i = Ti(uk)− gi (k ∈ N, i = 1, . . . , r) (2.11)
and zk

i ∈ DQ is the solution of the auxiliary problem

(−∆ + c)zk
i = gk

i

α(x)zk
i + β(x)∂νzk

i

∣∣
∂Ω

= 0 .
(2.12)

(We solve Poisson equations −∆zk
i = gk

i , owing to c = 0, except the case of the
Neumann problem.)
Then the sequence (uk) = (uk

1 , . . . , uk
r ) ⊂ Dr

Q converges to u∗ according to the
linear estimate

‖uk − u∗‖H1
Q(Ω)r ≤

1
m
√

λ1

‖T (u0)− g‖L2(Ω)r

(M −m

M + m

)k (k ∈ N+).

(Owing to Remark 2.11 this also means convergence in the usual H1(Ω) norm.)

Proof. (a) First we remark the following facts: condition (C4) implies that for all
i, k = 1, . . . , r and (x, ξ) ∈ Ω× Rr

|∂ξk
fi(x, ξ)| ≤ κ′ + γ

r∑
j=1

|ξj |p−2 .

Hence from Lagrange’s inequality we have for all i = 1, . . . , r, (x, ξ) ∈ Ω×Rr

|fi(x, ξ)| ≤ |fi(x, 0)|+
(
κ′ + γ

r∑
j=1

|ξj |p−2
) r∑

k=1

|ξk| ≤ κ′′ + γ′
r∑

j=1

|ξj |p−1 (2.13)

with suitable constants κ′′, γ′ > 0.
(b) To prove our theorem, we have to check conditions (i)-(iv) of Theorem 2.2 and
(v)’ of Corollary 2.6 in our setting in the real Hilbert space H = L2(Ω).

(i) For any u ∈ Dr
Q we have

|Ti(u)| ≤
N∑

k=1

(
|∂kai ∂kui|+ |ai ∂2

kui|
)

+ |fi(x, u1, . . . , ur)| .

Here ∂kai and ai are in C(Ω), ∂kui and ∂2
kui are in L2(Ω), hence the

sum term is in L2(Ω). Further, assumption (C4) implies 2p − 2 < 2N
N−4 ,

hence H2(Ω) ⊂ L2p−2(Ω) [1]. Thus (2.13) yields |fi(x, u1, . . . , ur)| ≤
κ′′+γ′

∑r
j=1 |uj |p−1 ∈ L2(Ω). That is, Ti maps indeed into L2(Ω). Further,
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assumption s (C1)-(C2) imply that for any g ∈ L2(Ω) the weak solution of
−∆z+cz = g with αz+β∂νz

∣∣
∂Ω

= 0 is in H2(Ω) [11], i.e. R(B) = L2(Ω).
Hence R(B) ⊃ R(Ti) holds.

(ii) For any u ∈ Dr
Q, v ∈ DQ and i = 1, . . . , r the divergence theorem yields

(similarly to (2.7))

〈B−1Ti(u), v〉H1
Q

=
∫

Ω

Ti(u)v

=
∫

Ω

(
ai∇ui · ∇v + fi(x, u)v

)
dx +

∫
Γβ

ai
α

β
uiv dσ .

(2.14)

Let us put arbitrary u ∈ H1
Q(Ω)r, v ∈ H1

Q(Ω) in (2.14). Setting Q(u) ≡
γ′

∑r
j=1 |uj |p−1 = γ′

∑r
j=1 |uj |p/q, where p−1+q−1 = 1, we have |fi(x, u)| ≤

κ′′ + Q(u) from (2.13) where Q(u) ∈ Lq(Ω). Then (2.14) can be estimated
by the expression

max
Ω

ai ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + κ′′|Ω|1/2‖v‖L2(Ω)

+‖Q(u)‖Lq(Ω)‖v‖Lp(Ω) + η max
Γβ

ai ‖u‖L2(∂Ω)‖v‖L2(∂Ω),

where |Ω| is the measure of Ω. Using (2.8) and the continuity of the trace
operator, we see that for any fixed u ∈ H1

Q(Ω)r the expression (2.14) defines
a bounded linear functional on H1

Q(Ω)r. Hence (using Riesz’s theorem) we
define the operator Fi : H1

Q(Ω)r → H1
Q(Ω) by the formula

〈Fi(u), v〉H1
Q

=
∫

Ω

(
ai∇ui · ∇v + fi(x, u)v

)
dx +

∫
Γβ

ai
α

β
uiv dσ ,

u ∈ H1
Q(Ω)r, v ∈ H1

Q(Ω).

For u ∈ H1
Q(Ω)r let Si(u) ∈ B

(
H1

Q(Ω)r,H1
Q(Ω)

)
be the bounded linear operator

defined by

〈Si(u)h, v〉H1
Q

=
∫

Ω

(
ai∇hi · ∇v +

r∑
k=1

∂ξk
fi(x, u)hkv

)
dx +

∫
Γβ

ai
α

β
hiv dσ (2.15)

u ∈ H1
Q(Ω)r, v ∈ H1

Q(Ω). The existence of Si(u) is provided by Riesz’s theorem
similarly as above. Now having the estimate∫

Ω

|∂ξk
fi(x, u)hkv| dx

≤ κ′‖hk‖L2(Ω)‖v‖L2(Ω) + γ
∥∥ r∑

k=1

|uj |p−2
∥∥

L
p

p−2 (Ω)
‖hk‖Lp(Ω)‖v‖Lp(Ω)

for the terms with fi, using ( p
p−2 )−1 + p−1 + p−1 = 1. We will prove that Fi is

Gâteaux differentiable (i = 1, . . . , r), namely,

F ′
i (u) = Si(u)

(
u ∈ H1

Q(Ω)r
)

.
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Let u, h ∈ H1
Q(Ω)r, further, E ≡ {v ∈ H1

Q(Ω) : ‖v‖H1
Q(Ω) = 1} and

δi
u,h(t) ≡ 1

t
‖Fi(u + th)− Fi(u)− tSi(u)h‖H1

Q(Ω)

=
1
t

sup
v∈E

〈Fi(u + th)− Fi(u)− tSi(u)h, v〉H1
Q(Ω) .

Then, using linearity, we have

δi
u,h(t) =

1
t

sup
v∈E

∫
Ω

(
fi(x, u + th)− fi(x, u)− t

r∑
k=1

∂ξk
fi(x, u)hk

)
v dx

= sup
v∈E

∫
Ω

r∑
k=1

(∂ξk
fi(x, u + θth)− ∂ξk

fi(x, u))hkv dx

≤ sup
v∈E

r∑
k=1

( ∫
Ω

|∂ξk
fi(x, u + θth)− ∂ξk

fi(x, u)|
p

p−2 dx
) p−2

p

× ‖hk‖Lp(Ω)‖v‖Lp(Ω) .

Here ‖v‖Lp(Ω) ≤ Kp,Ω from (2.8), further, |θth| ≤ |th| → 0 a.e. on Ω, hence the
continuity of ∂ξk

fi implies that the integrands converge a.e. to 0 when t → 0. The
integrands are majorized for t ≤ t0 by∣∣∣2(κ′ + γ

r∑
j=1

|uj + t0hj |p−2)
∣∣∣ p

p−2 ≤ κ̃ + γ̃
r∑

j=1

|uj + t0hj |p

in L1(Ω), hence, by Lebesgue’s theorem, the obtained expression tends to 0 when
t → 0. Thus

lim
t→0

δi
u,h(t) = 0 .

(iii) It is proved similarly to (ii) that for fixed functions u, k, w ∈ H1
Q(Ω)r, h ∈

H1
Q(Ω) the mapping s, t 7→ F ′

i (u + sk + tw)h is continuous from R2 to
H1

Q(Ω). Namely,

ωu,k,w,h(s, t) ≡ ‖F ′
i (u + sk + tw)h− F ′

i (u)h‖H1
Q(Ω)

= sup
v∈E

〈F ′
i (u + sk + tw)h− F ′

i (u)h, v〉H1
Q(Ω)

= sup
v∈E

∫
Ω

r∑
k=1

(∂ξk
fi(x, u + sk + tw)− ∂ξk

fi(x, u))hkv dx .

Then we obtain just as above (from the continuity of ∂ξk
fi and Lebesgue’s

theorem) that

lim
s,t→0

ωu,k,w,h(s, t) = 0 .

(iv) It follows from F ′
i (u) = Si(u) in (2.15) and from the assumed symmetry of

the Jacobians ∂ξf(x, ξ) that for any u, h, v ∈ H1
Q(Ω)r

r∑
i=1

〈F ′
i (u)h, vi〉H1

Q(Ω) =
r∑

i=1

〈hi, F
′
i (u)v〉H1

Q(Ω).
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(v) For any u, h ∈ H1
Q(Ω)r we have

r∑
i=1

〈F ′
i (u)h, hi〉H1

Q(Ω)

=
∫

Ω

( r∑
i=1

ai|∇hi|2 +
r∑

i,k=1

∂ξk
fi(x, u)hkhi

)
dx +

∫
Γβ

α

β

r∑
i=1

aih
2
i dσ .

Hence from assumptions (C3)-(C4) we have

r∑
i=1

〈F ′
i (u)h, hi〉H1

Q(Ω)

≥ m

∫
Ω

r∑
i=1

|∇hi|2 dx + κ

∫
Ω

r∑
i=1

h2
i dx + m

∫
Γβ

α

β

r∑
i=1

h2
i dσ

= m‖h‖2
H1

Q(Ω)r

using κ = cm (see Def.2.2). Further,

r∑
i=1

〈F ′
i (u)h, hi〉H1

Q(Ω) ≤ m′
r∑

i=1

∫
Ω

|∇hi|2 dx + ηm′
r∑

i=1

∫
Γβ

h2
i dσ

+
∫

Ω

(
κ′ + γ

r∑
j=1

|uj |p−2
) r∑

k=1

h2
k dx .

(2.16)

Here

κ′
r∑

k=1

∫
Ω

h2
k dx ≤ κ′

λ1
‖h‖2

H1
Q(Ω)r

from Corollary 2.9 (b). Further, from Hölder’s inequality, using p−2
p + 2

p = 1, we
obtain

r∑
j,k=1

∫
Ω

|uj |p−2h2
k dx ≤

r∑
j,k=1

[ ∫
Ω

(
|uj |p−2

) p
p−2

] p−2
p

[ ∫
Ω

(
h2

k

)p/2
]2/p

=
r∑

j,k=1

‖uj‖p−2
Lp(Ω)‖hk‖2

Lp(Ω)

=
( r∑

j=1

‖uj‖p−2
Lp(Ω)

)( r∑
k=1

‖hk‖2
Lp(Ω)

)
.

An elementary extreme value calculation shows that for x ∈ Rr,
∑r

j=1 x2
j = R2 the

values of
(∑r

j=1 |xj |p−2
) 2

p−2
lie between R2 and r

4−p
p−2 R2, i.e.

r∑
j=1

|xj |p−2 ≤ µp

( r∑
j=1

|xj |2
) p−2

2
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where µp = max{1, r
4−p
p−2 }. Hence

r∑
j,k=1

∫
Ω

|uj |p−2h2
k dx ≤ µp

( r∑
j=1

‖uj‖2
Lp(Ω)

) p−2
2

( r∑
k=1

‖hk‖2
Lp(Ω)

)
≤ µpK

p
p,Ω

( r∑
j=1

‖uj‖2
H1

Q

) p−2
2

( r∑
k=1

‖hk‖2
H1

Q

)
= µpK

p
p,Ω‖u‖

p−2
H1

Q(Ω)r‖h‖2
H1

Q(Ω)r .

Summing up, (2.16) yields
r∑

i=1

〈F ′
i (u)h, hi〉H1

Q(Ω) ≤ M(u)‖h‖2
H1

Q(Ω)r (u, h ∈ H1
Q(Ω)r)

with
M(u) = max{1, η}m′ + κ′λ−1

1 + γKp
p (Ω)µp‖u‖p−2

H1
Q(Ω)r .

Since Corollary 2.9 (b) implies ‖u‖H1
Q
≤ λ

−1/2
1 ‖Bu‖L2(Ω) (u ∈ DQ), therefore the

radius r0 = m−1‖F (u0)− b‖H1
Q(Ω)r (defined in Corollary 2.6) fulfils

r0 ≤ m−1λ
−1/2
1

( r∑
i=1

‖Ti(u0)− gi‖2
L2(Ω)

)1/2
,

using BFi|D = Ti. Hence for u ∈ B(u0, r0) = {u ∈ H1
Q(Ω)r : ‖u− u0‖H1

Q(Ω)r ≤ r0}
we have

r∑
i=1

〈F ′
i (u)h, hi〉H1

Q(Ω) ≤ M‖h‖2
H1

Q(Ω)r (u ∈ B(u0, r0), h ∈ H1
Q(Ω)r)

with M defined in (2.9). �

Remark 2.15. Theorem 2.14 holds similarly in the following cases:
(a) with other smoothness assumption s on ∂Ω and the coefficients of T , when the
inclusion R(Ti) ⊂ R(B) is fulfilled with suitable domain D(Ti) of Ti instead of Dr

Q

(cf. (2.5)).
(b) with more general linear part −div(Ai(x)∇ui) of Ti, where Ai ∈ C1(Ω, RN×N ),
in the case of Dirichlet boundary condition.

The above theorem is the extension of the cited earlier results on the gradient
method to system (2.4). We note that the conjugate gradient method might be
similarly extended to (2.4), following its application in [18] for a single Dirichlet
problem. As mentioned earlier, the CGM constructs two simultaneous sequences,
and it improves the convergence ratio of the gradient method to (

√
M−

√
m)(

√
M +√

m) at the price of an extra work which comprises the calculation of required
integrals and numerical root finding for the stepsize.

Compared to Newton-like methods (which can provide higher order convergence
than linear), we emphasize that in the iteration of Theorem 2.3 the auxiliary prob-
lems are of fixed (Poisson) type, whereas Newton-like methods involve stepwise
different linearized problems with variable coefficients. Hence in our iteration one
can exploit the efficient solution methods that exist for the Poisson equation. (More
discussion on this will be given in subsection 4.2.)
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2.3. Sobolev embedding properties. The construction of the sequence (2.10)
in Theorem 2.3 needs an explicit value of the constant M in (2.9). The parameters
involved in M are defined in conditions (C3)-(C4) only with the exception of the
embedding constants Kp,Ω in (2.8). (The eigenvalue λ1 fulfils λ1 = K−2

2,Ω by virtue
of Corollary 2.9 (b).) Consequently, in order to define the value of M , the exact
value or at least a suitable estimate is required for the constants Kp,Ω.

Although most of the exact constant problems have been solved in Rn, even in the
critical exponent case (see [32, 34]), for bounded domains there is not yet complete
answer. For n ≥ 3 and for small square in the case n = 2, the embedding constants
of H1(Ω) to Lp(Ω) are given in [7, 8]; an estimate is given for functions partly
vanishing on the boundary for the critical exponent case in [24]. Consequently, a
brief study of the embeddings is worth wile to obtain estimates of the embedding
constants which are valid for n = 2. Our estimates, presented in two dimensions,
take into account the boundary values of the functions.

Besides the constants Kp,Ω in (2.8), for any set Γ ⊂ ∂Ω we denote by Kp,Γ the
embedding constant in the estimate

‖u
∣∣
Γ
‖Lp(Γ) ≤ Kp,Γ‖u‖H1

Q
(u ∈ H1

Q(Ω)).

Lemma 2.16. Let I = [a, b] × [c, d] ⊂ R2, pi ≥ 1 (i = 1, 2). The boundary ∂I is
decomposed into Γ1 = {a, b} × [c, d] and Γ2 = [a, b]× {c, d}. Then

Kp1+p2
p1+p2,I ≤

1
2
(
Kp1

p1,Γ1
+ p1K

p1−1
2(p1−1),I

)(
Kp2

p2,Γ2
+ p2K

p2−1
2(p2−1),I

)
.

Proof. Let u ∈ H1(I). We define the function ua(y) ≡ u(a, y), and similarly ub, uc

and ud. Then for any x, y ∈ I we have

|u(x, y)|p1 = |ua(y)|p1 + p1

∫ x

a

|u(ξ, y)|p1−2u(ξ, y)∂1u(ξ, y) dξ

≤ |ua(y)|p1 + p1

∫ b

a

|u|p1−1|∂1u| dx .

(2.17)

Similarly, we obtain

|u(x, y)|p2 ≤ |uc(y)|p2 + p2

∫ d

c

|u|p2−1|∂2u| dy . (2.18)

Multiplying (2.17) and (2.18) and then integrating over I, we obtain∫
I

|u|p1+p2 ≤
( ∫ d

c

|ua|p1 + p1

∫
I

|u|p1−1|∂1u|
)( ∫ b

a

|uc|p2 + p2

∫
I

|u|p2−1|∂2u|
)

≤
( ∫ d

c

|ua|p1 + p1‖u‖p1−1

L2(p1−1)(I)
‖∂1u‖L2(I)

)
×

( ∫ b

a

|uc|p2 + p2‖u‖p2−1

L2(p2−1)(I)
‖∂2u‖L2(I)

)
.

The same holds with ub and ud instead of ua and ub. Using the elementary inequal-
ity

(α1 + r1γ1)(α2 + r2γ2) + (β1 + r1γ1)(β2 + r2γ2)

≤ (α1 + β1 + r1

√
γ2
1 + γ2

2)(α2 + β2 + r2

√
γ2
1 + γ2

2)
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for αi, βi, ri, γi ≥ 0 (i = 1, 2), we obtain

2
∫

I

|u|p1+p2 ≤
( ∫ d

c

(|ua|p1 + |ub|p1) + p1‖u‖p1−1

L2(p1−1)(I)
‖∇u‖L2(I)

)
×

( ∫ b

a

(|uc|p2 + |ud|p2) + p2‖u‖p2−1

L2(p2−1)(I)
‖∇u‖L2(I)

)
≤

(
Kp1

p1,Γ1
+ p1K

p1−1
2(p1−1),I

) (
Kp2

p2,Γ2
+ p2K

p2−1
2(p2−1),I

)
‖u‖p1+p2

H1
Q

.

�

Corollary 2.17. Let Ω ⊂ R2 with ∂Ω ∈ C1 and let us consider Dirichlet boundary
condition s in (2.4), i.e. Qu ≡ u and H1

Q(Ω) = H1
0 (Ω). Then

Kp1+p2
p1+p2,Ω ≤ p1p2

2
Kp1−1

2(p1−1),ΩKp2−1
2(p2−1),Ω . (2.19)

Proof. Ω is included in some I = [a, b]× [c, d], and for any u ∈ H1
0 (Ω) its extension

ũ ∈ H1
0 (I) is defined as zero on I \ Ω. Then for any p ≥ 1 we have Kp,Γi = 0 and

Kp,Ω = Kp,I . �

The case when p is an even integer is of particular importance since we have this
situation in the case of (2.6) owing to (C4). Then the functional inequality (2.19)
leads directly to an estimate:

Corollary 2.18. Let λ1 > 0 be the smallest eigenvalue of −∆ on H1
0 (Ω). Then

(a) K2n,Ω ≤ 2−1/2
(

2
λ1

)1/2n

(n!)1/n (n ∈ N+);

(b) K2n,Ω ≤ 0.63bnn (n ∈ N+, n ≥ 2) where bn = (2/λ1)1/2n (and thus
lim bn = 1).

Proof. (a) Let h(p) = Kp
p,Ω (p ≥ 1). Then for n ∈ N+ (2.19) implies the recurrence

h(2n) ≤ h(2n− 2)
n2

2
,

hence

h(2n) ≤ h(2)
(n!)2

2n−1
=

2
λ1

(n!)2

2n
,

since Corollary 2.9 gives K2,Ω = λ
−1/2
1 .

(b) The estimate (n!)1/n ≤ 0.891 n (n ≥ 2) is used. �

The boundary embedding constants Kp,Γi
can be estimated in terms of suitable

Kp′(I) as follows.

Lemma 2.19. Let I and Γi (i = 1, 2) be as in Lemma 2.16, p ≥ 1. Then

Kp
p,Γi

≤ 2
b− a

Kp
p,I + p

√
2Kp−1

2(p−1),I .

Proof. We prove the lemma for Γ1. Similarly to Lemma 2.16 we have

|ua(y)|p ≤ |u(x, y)|p + p

∫ b

a

|u|p−1|∂1u| dx (x, y ∈ I).
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Integrating over I, we obtain

(b− a)
∫ d

c

|ua|p ≤
∫

I

|u|p + p(b− a)
∫

I

|u|p−1|∂1u|

≤ ‖u‖p
Lp(Ω) + p(b− a)‖u‖p−1

L2(p−1)(Ω)
‖∂1u‖L2(Ω) ,

and similarly for ub. Hence, summing up and using ‖∂1u‖L2(Ω) + ‖∂2u‖L2(Ω) ≤√
2‖∇u‖L2(Ω) ≤

√
2‖u‖H1

Q
, we have

‖u‖p
Lp(Γ1)

≤
( 2
b− a

Kp
p,I + p

√
2Kp−1

2(p−1),I

)
‖u‖p

H1
Q

.

�

Corollary 2.20. For any n ∈ N+ we have

K2n,Γi
≤ 1.26cnn ,

where cn = 1
2

(
4

λ1(b−a) + 4n+1
√

2λ1

)1/2n

(and thus lim cn = 1).

The proof of this corollary follow using Corollary 2.18 (a) and again n! <
(0.891n)n.

Remark 2.21. Lemmas 2.1 and 2.2 may be extended from the interval case to other
domains, depending on the actual shape of Ω, if portions Γ of ∂Ω are parametrized
as e.g. t 7→ (t, ϕ(t)) and inequalities of the type

∫ β

α
|u|p dx ≤

∫ β

α
|u(t, ϕ(t))|p(1 +

ϕ′(t))1/2 dt =
∫
Γ
|u|p are used. Then estimates can be derived depending on the

portions Γi of ∂Ω where u
∣∣
Γi

= 0 (i.e. Kp,Γi
= 0). The detailed investigation is out

of the scope of this paper. (For a model problem a calculation of the corresponding
estimate for mixed boundary condition s will be given in section 6.)

3. Implementation of the method

In Section 2, the Sobolev space gradient method was developed for systems of
the form (2.4). Thereby a theoretical iteration is executed directly for the original
boundary-value problem in the Sobolev space, and it is shown that the iteration
converges in the corresponding energy norm.

One of the main features of this approach is the reduction of computational
questions to those arising for the auxiliary linear Poisson problems. Namely, in the
application to a given system of boundary-value problems one’s task is to choose
a numerical method for the Poisson problems and solve the latter to some suitable
accuracy. This means that from now on two issues have to be handled: from
the aspect of convergence, error control for the stepwise solution of the auxiliary
problems, and from the aspect of cost, the efficient solution of the Poisson equations.

Section 4 is devoted to these topics. First a discussion of corresponding error
estimates is given for the numerically constructed sequences. Then we will refer
very briefly to some efficient Poisson solvers. Here we note that the efficiency of
the whole iteration much relies on the fact that all the linear problems are of the
same Poisson type, for which efficient solvers are available.

In Sections 5–6 we consider the simplest case of realization as an elementary illus-
tration of the theoretical results. This suits the semilinear setting of this paper and
involves the case of polynomial nonlinearity (2.6), connected to reaction-diffusion
systems. Namely, on some special domains the GM is applied in effect directly to
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the BVP itself since the Poisson equations are solved exactly. This is due to keeping
the iteration in special function classes. We give a brief summary of some cases of
such special domains. Then the paper is closed with an example that illustrates
the convergence result.

4. Error control and efficiency

4.1. Error estimates for the numerical iterations. The theoretical iteration
(uk) = (uk

1 , . . . , uk
r ) (k ∈ N), defined in Theorem 2.1, can be written as

uk+1 = uk − 2
M + m

zk

where zk = B−1(T (uk)− g),

using the notation

B : Dr
Q → L2(Ω)r, B(w1, . . . , wr) ≡ (Bw1, . . . , Bwr).

Recall that B is defined on DQ (see (2.5)), containing the boundary conditions,
and we have Bu ≡ −∆u if α 6≡ 0 and Bu ≡ −∆u + cu if α ≡ 0 (i.e. for Neumann
BC).

Any kind of numerical implementation of the GM in the Sobolev space H1
Q(Ω)r

defines a sequence (uk), constructed as follows:

u0 = u0 ∈ D;

for k ∈ N : uk+1 = uk − 2
M + m

zk ,

where zk ≈ zk
∗ ≡ B−1(T (uk)− g)

such that ‖zk − zk
∗‖H1

Q(Ω)r ≤ δk

(4.1)

where (δk) ⊂ R+ is a real sequence. Then our task is to estimate ‖uk−u∗‖H1
Q(Ω)r in

terms of the sequence (δk), where u∗ = (u∗1, . . . , u
∗
r) ∈ H1

Q(Ω)r is the weak solution
of the system (2.4).

We define
Ek ≡ ‖uk − uk‖H1

Q(Ω)r .

By Theorem 2.1 we have

‖uk − u∗‖H1
Q(Ω)r ≤ Ek +

R0

m
√

λ1

(
M −m

M + m

)k

(k ∈ N+)

where R0 = ‖T (u0)−g‖L2(Ω)r denotes the initial residual. Hence the required error
estimates depend on the behaviour of (Ek).

We have proved the following two results in [13] for a single Dirichlet problem.
Since they are entirely based on the bounds m and M of the generalized differ-
ential operator (which is also the background for our Theorem 2.1), they can be
immediately formulated in our setting, too.

Proposition 4.1 ([13]). For all k ∈ N

Ek+1 ≤
M −m

M + m
Ek +

2
M + m

δk.

Corollary 4.2 ([13]). Let 0 < q < 1 and c1 > 0 be fixed, δk ≤ c1q
k (k ∈ N). Then

the following estimates hold for all k ∈ N+:
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(a) if q > M−m
M+m then ‖uk − u∗‖H1

Q(Ω)r ≤ c2q
k;

(b) if q < M−m
M+m then ‖uk − u∗‖H1

Q(Ω)r ≤ c3

(
M−m
M+m

)k

where c2 = αc1
q−Q + R0

m
√

λ1
, c3 = αc1

Q−q + R0
m
√

λ1
, Q = M−m

M+m .

Besides these convergence results, it is also of practical interest to ensure that
we arrive only in a prescribed neighbourhood of the solution.

Proposition 4.3. Let ε > 0 be fixed, let δk ≡ mε. Then we have for all k ∈ N+

Ek < ε . (4.2)

Proof. By definition E0 = ‖u0 − u0‖H1
Q(Ω)r = 0. Assume that (4.2) holds for fixed

k ∈ N+. Then Proposition 4.1 yields

Ek+1 <
M −m

M + m
ε +

2
M + m

mε = ε .

�

Corollary 4.4. If (δk) is chosen as in Proposition 4.3, then for (k ∈ N+),

‖uk − u∗‖H1
Q(Ω)r ≤ ε +

R0

m
√

λ1

(M −m

M + m

)k

.

4.2. Discretization and efficient Poisson solvers. The numerical solution of
the Poisson equations is generally achieved by using some discretization, which is
a finite difference method or a finite element method. In this respect we note two
facts concerning the whole iteration. First, if we use one and the same fixed grid for
each linear problem, then (4.1) is equivalent to a suitably precondition ed nonlinear
FEM iteration such that the precondition er is the discrete Laplacian corresponding
to the grid. On the other hand, the use of variable grids provide a multilevel type
iteration.

We emphasize that for such iterations the convergence ratio in Theorem 2.1
yields an asymptotic value for those of the discretized problems, hence the nu-
merical iterations using different grids (or grid sequences) exhibit mesh uniform
convergence.

The numerical efficiency of the iteration (4.1) relies on the fact that all the linear
problems are of the same Poisson type. Namely, various fast Poisson solvers are
available that have been developed in the past decades. Many of these solvers were
originally developed on rectangular domains and later extended to other domains
via the fictitious domain approach. The fast direct solvers include the method of
cyclic reduction, the fast Fourier transform and the FACR algorithm: comprehen-
sive summaries on the solution of the Poisson equation with these methods are
found in [10, 33]. Another family of fast solvers which has undergone recent devel-
opment is formed by spectral methods [14]. The parallel implementation of these
algorithms is also feasible. For the fictitious domain approach for general domains
see [6].
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5. Direct realization on special domains

We now consider the system (2.4) with polynomial nonlinearity (2.6). That is,
we investigate the system

Ti(u1, . . . , ur) ≡ −div(ai(x)∇ui) +
∑
|j|≤si

c
(i)
j (x)uj1

1 . . . ujr
r = gi(x)

Qui ≡ (α(x)ui + β(x)∂νui)
∣∣
∂Ω

= 0
(5.1)

that fulfils conditions (C1)-(C4) (given in Section 2), where the moving index is
j = (j1, . . . , jr) ∈ Nr with |j| = j1 + . . . jr and we have c

(i)
j ∈ C(Ω), si ∈ N+,

si ≤ p−1. (This type of equations occurs e.g. in steady states or in time discretiza-
tion of reaction-diffusion systems. Condition (C4) expresses that the reaction is of
autocatalytic type.)

The main idea is the following: on special domains, first approximating the coeffi-
cients and right-sides of (5.1) by appropriate algebraic /trigonometric polynomials,
the iteration (2.10) can also be kept in a suitable class of algebraic /trigonometric
polynomials. Hence the solution of the auxiliary Poisson equations can be achieved
directly by executing a linear combination (or, in the case of a ball, by solving a
simply structured linear system of algebraic equations).

The solution of the approximate system (in which the coefficients and right-
sides are approximated by polynomials) remains appropriately close to the solution
of (5.1), depending on the accuracy of approximation. This can be formulated
immediately in the case when the coefficients ai and ci

j are unchanged. (We typically
have this situation with the operators Ti occurring in reaction-diffusion systems,
wherein ai and ci

j are generally constant.) The evident but lengthy calculation for
the variable coefficient case is left to the reader.

Proposition 5.1. Let ε > 0. Let δi > 0 (i = 1, . . . , r) such that (
∑r

i=1 δ2
i )1/2 <

λ
1/2
1 mε, and let ‖gi − g̃i‖L2(Ω) < δi (i = 1, . . . , r). Denote by u∗ = (u∗1, . . . , u

∗
r) and

ũ = (ũ1, . . . , ũr) the solution s of the systems

Ti(u) = gi(x) and Ti(u) = g̃i(x)

(both with boundary condition Qui

∣∣
∂Ω

= 0), respectively. Then ‖ũ−u∗‖H1
Q(Ω)r < ε.

Proof. Note that

m‖u∗ − ũ‖2
H1

Q(Ω)r ≤
r∑

i=1

∫
Ω

(
Ti(u∗)− Ti(ũ)

)
(u∗i − ũi)

≤
r∑

i=1

‖gi − g̃i‖L2(Ω)‖u∗i − ũi‖L2(Ω)

≤ λ
−1/2
1

r∑
i=1

δi‖u∗i − ũi‖H1
Q

≤ λ
−1/2
1 (

r∑
i=1

δ2
i )1/2‖u∗i − ũi‖H1

Q(Ω)r < mε‖u∗i − ũi‖H1
Q(Ω)r .

�
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In the sequel we consider (5.1) as having polynomial coefficients, i.e. being re-
placed by the approximate system. For simplicity of presentation, we only consider
the two-dimension al case (the analogies being straightforward).

(a) Rectangle. We investigate the case when Ω ⊂ R2 is a rectangle. It can be
assumed that Ω = I ≡ [0, π]2 (if not, a linear transformation is done).

Denote by Ps and Pc the set of sine- and cosine-polynomials

Ps = {
l∑

n,m=1

σnm sinnx sinmy : l ∈ N+, σnm ∈ R (n, m = 1, . . . , l)},

Pc = {
l∑

n,m=0

σnm cos nx cos my : l ∈ N, σnm ∈ R (n, m = 0, . . . , l)},

respectively. The coefficients ai and ci
j of (5.1) can be approximated by cosine-

polynomials to any prescribed accuracy, hence (as suggested above) we assume
that (5.1) already fulfils ai, c

i
j ∈ Pc (i = 1, . . . , r; |j| ≤ si).

Dirichlet boundary conditions. We consider the case when |j| is odd in each term
in (5.1) and assume gi ∈ Ps. Then the operators Ti are invariant on Ps. Further,
for any h ∈ Ps the solution of

−∆z = h, z
∣∣
∂I

= 0

fulfils z ∈ Ps, namely, if h(x, y) =
∑l

n,m=1 σnm sinnx sinmy, then

z(x, y) =
l∑

n,m=1

σnm

n2 + m2
sinnx sinmy . (5.2)

These imply that if (2.10) starts with u0
i ∈ Ps then we have uk

i ∈ Ps throughout
the iteration, and the auxiliary problems are solved in the trivial way (5.2).

Neumann boundary conditions. Similar to the Dirichlet case, now letting gi ∈
Pc. Here Ti are invariant on Pc. Further, for h ∈ Pc, the solution h(x, y) =∑l

n,m=0 σnm cos nx cos my, of

−∆z + cz = h, ∂νz
∣∣
∂I

= 0

fulfils z ∈ Pc, namely, z(x, y) =
∑l

n,m=0
σnm

n2+m2+c cos nx cos my.
Mixed boundary conditions. Denote by Γi (i = 1, . . . , 4) the boundary portions

[0, π) × {0}, {π} × [0, π), (0, π] × {π}, {0} × (0, π], respectively. First, let α(x) ≡
χ{Γ2∪Γ4}, β(x) ≡ χ{Γ1∪Γ3}, i.e. we have u

∣∣
Γ2∪Γ4

≡ 0, ∂νu
∣∣
Γ1∪Γ3

≡ 0. Then the

above method works on Psc = {
∑l

n=1

∑l
m=0 σnm sinnx cos my }.

We can proceed similarly for other edgewise complementary characteristic func-
tions α and β, using sin(n + 1

2 )x type terms for mixed endpoint conditions.

(b) Disc. We investigate the case when Ω ⊂ R2 is the unit disc B = B1(0). Now
ai, ci

j and gi are assumed to be algebraic polynomials. (Notation: ai, c
i
j , gi ∈ Palg).

Then Ti are invariant on Palg.
Dirichlet boundary conditions. If h ∈ Palg, then the solution of

−∆z = h, z
∣∣
∂B

= 0
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can be found by looking for z in the form

z(x, y) = (x2 + y2 − 1)q(x, y),

where q ∈ Palg has the same degree as h (cf. [22]). Then the coefficients of q can
be determined by solving a a simply structured linear system of algebraic equations
(obtained from equating the coefficients of −∆z and h). The matrix of this system
has three diagonals and two other non-zero elements in each row.
3rd boundary conditions. We examine the case α(x) ≡ α > 0, β(x) ≡ β > 0. If
h ∈ Palg then the solution of

−∆z = h, (αz + β∂νz)
∣∣
∂B

= 0

can be determined similarly to the Dirichlet case. Namely, let q(x, y) be a polyno-
mial with unknown coefficients {anm} and of the same degree as h. Let

p(x, y) ≡ (x2 + y2 − 1)q(x, y) =
l∑

s=0

∑
n+m=s

bnmxnym,

here the bnm’s are linear combination s of the anm’s. We look for z as

z(x, y) =
l∑

s=0

∑
n+m=s

bnm

α + βs
xnym .

Equating the coefficients of −∆z and h leads again to a linear system of algebraic
equations for {anm}, from which we then determine {bnm}. Then z fulfils the
boundary condition, since on ∂B we have ∂νz = x∂xz + y∂yz and

αz + β(x∂xz + y∂yz) =
l∑

s=0

∑
n+m=s

bnm

α + βs
(α + β(n + m))xnym = p(x, y) = 0 .

(c) Annulus. Let A = {(x, y) ∈ R2 : R2
1 < x2+y2 < R2

2 } with given R2 > R1 > 0.
Let Γm = C(0, Rm) (m = 1, 2) be the boundary circles. We investigate the system
with radially symmetric coefficients, written in the form

Ti(u) ≡ −∇
(
ai(x2 + y2)∇ui

)
+

∑
|j|≤si

c
(i)
j (x2 + y2)uj1

1 . . . ujn
n = gi(x2 + y2)

Qui ≡ (αui + β∂νui)
∣∣
Γm

= 0 (m = 1, 2)
(5.3)

(i = 1, . . . , n), with the notation ∇u = ∂xu + ∂yu, ∂xu = x∂xu, ∂yu = y∂yu.
The functions ai ∈ C1[R1, R2], c

(i)
j ∈ C[R1, R2], gi ∈ L2[R1, R2] and the numbers

α, β ≥ 0 are such that the positivity and monotonicity conditions (C2)-(C4) are
fulfilled.

Introducing the notations

r = (x2 + y2)
1
2 , âi(r) = rai(r2), ĉ

(i)
j (r) =

1
r
c
(i)
j (r2), ĝi(r) =

1
r
gi(r2)

and using ∇u = r∂ru, the system (5.3) is written as

T̂i(u) ≡ − 1
2πr

(
∂r(âi(r)∂rui) +

∑
|j|≤si

ĉ
(i)
j (r)uj1

1 . . . ujn
n

)
=

1
2πr

ĝi(r)

Q̂mui ≡ (αui + (−1)mβ∂rui)
∣∣
r=Rm

= 0 (m = 1, 2).
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Let

Bu ≡ 1
2πr

(−∂2
ru + cu) on D(B) = D(Ti) = H2

rad(A)

where H2
rad(A) = {u ∈ H2(A) : u is radially symmetric and Qu

∣∣
∂A

= 0 in trace
sense}, and c = κ/m as in Section 2. Then there holds∫

A

(Bu)v dx dy =
∫ R2

R1

(
∂ru ∂rv + cuv

)
dr + βQ (u, v ∈ H2

rad(A)),

where βQ = 0 if β = 0 and βQ = α
β

∑2
i=1 u(Rm)v(Rm) if β > 0. Hence HB =

H1
Q(A) ⊂{ u ∈ H1

0 (A): u is radially symmetric }. Further, we have∫
A

T̂i(u)v dxdy =
∫ R2

R1

(
âi∂ru∂rv +

∑
|j|≤si

ĉ
(i)
j uj1

1 . . . ujn
n v

)
dr + τ

(i)
Q ,

where τ
(i)
Q = 0 if β = 0 and τ

(i)
Q = α

β

∑2
i=1 âi(Rm)u(Rm)v(Rm) if β > 0.

Consequently, Theorem 2.1 applies in the setting N = 1 on (R1, R2). That is,
(5.3) has a unique weak solution which is radial: u∗ = (u∗1, . . . , u

∗
n) ∈ H1

Q(A)n.
Further, for any u0 ∈ H2

rad(A)n the sequence (2.12) converges linearly to u∗. The
auxiliary problem (2.12) is equivalent to

−∂2
rzk

i = ĝk
i , (Q̂mui)

∣∣
r=Rm

= 0

where ĝk
i ≡ −∂r(âi∂ru

k
i ) +

∑
|j|≤si

ĉ
(i)
j (uk

1)j1 . . . (uk
n)jn − ĝi.

If α 6≡ 0 then âi, ĉ
(i)
j and ĝi are replaced by approximating algebraic polynomials.

Then T̂i are invariant on Prad ≡{ algebraic polynomials of r}. For any h ∈ Prad

the solution of
−∂2

rz = h, (Q̂mz)
∣∣
r=Rm

= 0

also fulfils z ∈ Prad and is elementary to determine. Namely, if h(r) =
∑l

j=0 aj(r−
R1)j , then

z(r) = −
l∑

j=0

aj

(j + 1)(j + 2)
(r −R1)j+2 + c(r −R1) + d

where the constants c and d are determined from the boundary condition. In the
case α ≡ 0 the iteration is kept in the class of cosine-polynomials of r on (R1, R2)
and the auxiliary problems are solved as in subsection (a) with Neumann conditions.

(d) Other domains. The methods given in paragraph (a) for a rectangle can be
extended for other domains where the eigenfunctions of the Laplacian are known
explicitly. Then the terms of the polynomials in Ps, Pc and Psc have to be replaced
by the actual eigenfunctions. These are known e.g. for rectangular triangles and
regular hexagons [25, 31].

(e) Domain transformation. If two domains are diffeomorphic, then (5.1) can
be transformed from one to the other such that uniform monotonicity is preserved.
The formulation of this property is restricted to the Dirichlet problem. Further, for
simplicity of notation it is done for a single equation.
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Proposition 5.2. Let S, Ω ⊂ RN be bounded domains, Φ ∈ C1(S,Ω), det Φ′(x) 6=
0 (x ∈ S). Let F : H1

0 (Ω) → H1
0 (Ω) be given by

〈F (u), v〉H1
0 (Ω) =

∫
Ω

(
a(x)∇u · ∇v +

s∑
j=0

cj(x)ujv
)
dx (u, v ∈ H1

0 (Ω))

where a and cj fulfil conditions (C1)-(C4), which means here that a ∈ C1(Ω),
cj ∈ C(Ω), a(x) ≥ m > 0, 0 ≤

∑s
j=0 jcj(x)uj−1, s ≤ p − 1 with p in (C4). (That

is, F is the generalized operator corresponding to some differential operator T of the
studied kind.) Let ũ ≡ u ◦ Φ (u ∈ L2(Ω)). Then the operator F̃ : H1

0 (S) → H1
0 (S),

defined by
〈F̃ (ũ), ṽ〉H1

0 (S) = 〈F (u), v〉H1
0 (Ω) (u, v ∈ H1

0 (Ω)),

fulfils

m1‖h̃‖2
H1

0 (S) ≤ 〈F̃ ′(ũ)h̃, h̃〉H1
0 (S) ≤ M1(ũ)‖h̃‖2

H1
0 (S) (ũ, h̃ ∈ H1

0 (S))

with suitable constants m1 and M1(ũ), the latter depending on ũ.

Proof. Setting ã = (a ◦ Φ) detΦ′ and c̃j = (cj ◦ Φ)detΦ′, we have

〈F̃ (ũ), ṽ〉H1
0 (S) =

∫
S

(
ã ∇̃u · ∇̃v +

s∑
j=0

c̃j ũ
j ṽ

)
dx .

Then there holds

〈F̃ ′(ũ)h̃, h̃〉H1
0 (S) =

∫
S

(
ã|∇̃h|2 +

s∑
j=0

jc̃j ũ
j−1h̃2

)
dx .

Using 0 < minΩ detΦ′ and maxΩ detΦ′ < +∞, it is easy to verify that F̃ ′(ũ) inherits
uniform ellipticity from F ′(u). The details of calculations are left to the reader. �

If Φ ∈ C2, then, due to the smoothness conditions and the ellipticity result of
Proposition 5.2, the differential operator T̃ that the generalized operator F̃ corre-
sponds to inherits the properties of the original operator T . Consequently, if Ω is
C2-diffeomorphic to one of the above special domains (say S), then transforming
the equation T (u) = g from Ω to S via Φ leads to the described direct realization.

Finally, we note that the method described in this section also works for the
general form of our system (2.4) if the nonlinearity f(x, u) can be suitably approx-
imated by polynomials, leading to the form (5.1).

6. Examples

We consider two model problems on the domain I = [0, π]2 ⊂ R2: (1) a single
equation with Dirichlet boundary conditions; (2) a system of two equations with
mixed boundary conditions.

According to section 5 (a), the operations required for the numerical realization
are elementary. Namely, the terms of the iteration are trigonometric polynomi-
als. The iteration simply consists of executing multiplications and additions of the
polynomials, further (for −∆−1), linear combination of the form (5.2). Storing the
polynomials as matrices of the coefficients, the algorithmization is straightforward.
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General considerations and the algorithm. There is one more step to be
inserted in the realization. Namely, the exact execution of the iteration yields
exponentially growing degree of the polynomials. Trying to avoid this for obvious
memory reasons, it turns out that the amount of terms which would cause the
storing problem consists of essentially useless (almost 0) terms (the high-index
coefficients of the stored polynomials), and most of them can be neglected with small
prescribed change of accuracy. We formulate this below generally and conclude at
the final algorithm for our example using a simple truncation procedure. (The idea
may be put through to the other special domains.)

Definition 6.1. Let λkl and ukl (k, l ∈ N+) be the eigenvalues and eigenfunctions
(normed in L2(Ω)) of the auxiliary problem

−∆u + cu = λu, Qu
∣∣
∂Ω

= 0 .

Let u ∈ H1
Q(Ω) be fixed, u =

∑∞
k,l=1 aklukl. Then

(a) for any s ∈ N+ we define u[s] ≡
∑

k+l≤s aklukl;
(b) for any 0 < ω < ‖u‖H1

Q
the index ku,ω ∈ N+ is defined by the inequalities∑

k+l>ku,ω

λkla
2
kl ≤ ω2,

∑
k+l≥ku,ω

λkla
2
kl > ω2. (6.1)

Since ‖u‖2
H1

Q
=

∑
k+l≥1 λkla

2
kl, the index ku,ω ∈ N+ is the smallest one for

which

‖u− u[ku,ω ]‖H1
Q
≤ ω . (6.2)

If the series of u consists of finitely many terms itself, then we can also
define ku,ω via (6.1) for ω = 0.

Remark 6.2. In the considered examples we have λkl = k2 + l2.

Proposition 6.3. Let 0 < ω < ‖u‖H1
Q

be fixed, u ∈ H1
Q(Ω), (un)n∈N ⊂ H1

Q(Ω). If
un → u in H1

Q(Ω) then the sequence (kun,ω) is bounded.

Proof. Let n0 ∈ N+ such that ‖un−u‖H1
Q(Ω) ≤ ω

2 (n ≥ n0). Let u =
∑∞

k,l=1 aklukl,
un =

∑∞
k,l=1 an

klukl, and k2 = ku,ω/2. Then for n ≥ n0 we have∑
k+l>k2

λkl(an
kl)

2 ≤ 2
( ∑

k+l>k2

λkl(an
kl − akl)2 +

∑
k+l>k2

λkla
2
kl

)
≤ 2

(
(ω/2)2 + (ω/2)2

)
= ω2.

Hence kun,ω ≤ k2 (n ≥ n0). �

Note that the property holds similarly in product space. This proposition means
that we can consider bounded number of terms in the series of un to attain u
within a prescribed error. This motivates the following truncation procedure in the
realization of the gradient method for our model problems on I.

The algorithm. Let the coefficients of Ti and the right sides gi be trigonometric
polynomials as in section 5 (a) (after suitable approximation). The sequence un =
(un

1 , . . . , un
r ) ∈ H1

Q(I)r is constructed as follows.
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Let u0 = (0, . . . , 0). If, for n ∈ N, un is obtained, then for i = 1, . . . , r we define

gn
i = Ti(un)− gi,

zn
i is the solution of −∆zn

i = gn
i , Qzn

i

∣∣
∂I

= 0;
we fix ωn > 0,

z̃n
i = (zn

i )[kzn
i

,ωn ] ,

un+1
i = un

i −
2

M + m
z̃n
i .

(6.3)

Proposition 6.4. Let ε > 0, ω = r−1/2mε (where m is the lower bound of T ),
(ωn) ⊂ R+, ωn = ω (n ≥ n0). Then there exists c > 0 such that

‖un − u∗‖H1
Q(I)r ≤ ε + c

(M −m

M + m

)n (n ∈ N). (6.4)

Proof. Estimate (6.2) implies ‖zn − z̃n‖H1
Q(I)r ≤ r1/2ω (n ≥ n0), hence we can

apply Corollary 4.4 with initial guess un0 . �

In each step we calculate the residual errors

rn
i = ‖Ti(un)− gi‖L2(I) .

Since Ti(un) and gi are trigonometric polynomials, this only requires square sum-
mation of the coefficients. Letting

en
i =

1
m
√

λ
rn
i ,

we then obtain

en ≡ ‖un − u∗‖H1
Q(I)r ≤

( r∑
i=1

(en
i )2

)1/2

. (6.5)

Remark 6.5. (a) Since zn
i is a trigonometric polynomial, therefore (writing zn

i =∑
k+l≤sn

ζklakl and kn = kzn
i ,ωn

) (6.1) means a condition on finite sums:∑
kn<k+l≤sn

(k2 + l2)ζ2
kl ≤ ω2,

∑
kn≤k+l≤sn

(k2 + l2)ζ2
kl > ω2,

i.e. z̃n
i is determined by calculating appropriate square sums of cross-diagonals in

the coefficient matrices.
(b) The choice of the constants ωn is influenced by the following factors. The
eventual values of ωn (i.e. for large n) are determined by the required accuracy in
virtue of Proposition 6.4. To keep the matrix sizes low, we choose ωn large as long
as possible. Based on (6.4), the necessity for decreasing ωn arises when the error en

(calculated by (6.5)) ceases to follow the theoretical linear convergence (M−m
M+m )n.

The truncation of the polynomials can be analoguously inserted in the algorithm
in the case of other special domains.

Example 6.6. We consider the single Dirichlet problem

−∆u + u3 = sinx sin y

u
∣∣
∂I

= 0.

Since g(x, y) = sinx sin y ∈ Ps, therefore, defining u0 = 0, we have (un) ⊂ Ps.
According to the previous sections, the realization of the gradient method means
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elementary matrix operations for the multiplication and addition of sine polynomi-
als (stored as matrices of coefficients), further, linear combination of the form (5.2)
for solving the auxiliary problems

−∆zn = gn

zn
∣∣
∂I

= 0

(with gn = −∆un + (un)3 − g).
The calculations are made up to accuracy 10−4. First the constants m and M

for (6.3) are determined from (2.9) in Theorem 2.1. We now have m = m′ = 1,
η = 0, p = 4, κ = κ′ = 0, γ = 3, λ1 = 12 + 12 = 2, K4,I ≤ 1 from Corollary 2.18
(a), µ4 = 1, and ‖g‖L2(I) = π

2 . Hence we have

M = 4.7011 and thus
2

M + m
= 0.3508.

The theoretical convergence quotient is
M −m

M + m
= 0.6492 .

The algorithm (6.3) has been performed in MATLAB, which is convenient for
the matrix operations. The following table contains the error en (see (6.5)) versus
the number of steps n. The truncation constant is ωn ≡ ω = 0.0005 throughout
the iteration.

step n 1 2 3 4 5 6 7 8
error en 1.1107 0.7186 0.4555 0.2821 0.1717 0.1034 0.0620 0.0375

step n 9 10 11 12 13 14 15 16
error en 0.0231 0.0149 0.0093 0.0058 0.0036 0.0022 0.0014 0.0009

step n 17 18 19 20 21 22
error en 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001

Example 6.7. We consider the system with mixed boundary conditions

−∆u + u− v + u3 = g1(x, y)

−∆v + v − u + v3 = 0

u
∣∣
Γ1

= v
∣∣
Γ1

= 0, ∂νu
∣∣
Γ2

= ∂νv
∣∣
Γ2

= 0

(6.6)

where
g1(x, y) =

sinx cos y

(2− 0.249 cos 2x)(2− 0.249 cos 2y)
and Γ1 = {0, π}×[0, π], Γ2 = [0, π]×{0, π}. Now the eigenfunctions are sin kx cos ly
which are in Psc; hence g1 is approximated by g̃1 ∈ Psc. Calculating up to accuracy
10−4, we define the Fourier partial sum

g̃1(x, y) =
∑

k,lareodd
k+l≤6

akl sin kx cos ly , akl = 4.0469 · 4−(k+l)

which fulfils ‖g1 − g̃1‖L2(I) ≤ 0.0001. Replacing g1 by g̃1 in (6.6), Proposition 5.1
yields

‖ũ− u∗‖H1
Q(I)2 ≤ 0.0001,
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where u∗ = (u∗1, u
∗
2) and ũ = (ũ1, ũ2) are the solution s of the original and approx-

imated systems, respectively.
Defining u0 = v0 = 0, we have (un) ⊂ Psc and (vn) ⊂ Psc. The iteration of the

gradient method is realized through elementary matrix operations in an analogous
way to Example 1. The calculations are made up to accuracy 10−4 again.

The constants for (2.9) are determined as follows. We have m = m′ = 1, η = 0,
p = 4, λ1 = 12+02 = 1, µ4 = 1 from the given functions. Further, the eigenvalue s of
the Jacobian of f(u, v) = (u− v + u3, v− u + v3) are between 0 and 2 + 3(u2 + v2),
hence κ′ = 2 and γ = 3. Besides, we can use Lemmas 2.1–2.2: the boundary
condition gives K2,Γ1 = 0 and Lemma 2.19 yields K2,Γ2 ≤ 2.1535, hence by Lemma
2.16 we have K4,I ≤ 1.6051. Finally, ‖g̃1‖L2(I) = 0.3988. Hence we have

M = 6.1420 and thus
2

M + m
= 0.2801,

the theoretical convergence quotient now being
M −m

M + m
= 0.7200 .

The following table presents the errors (first given for un and vn, resp.). The
truncation constant is ωn ≡ ω = 0.0005 up to step 10, then (observing that the
error quotient rises over 0.8) ωn ≡ ω = 0.0001 is chosen.

step n 1 2 3 4 5 6 7
en
1 0.2821 0.1219 0.0627 0.0358 0.0215 0.0132 0.0083

en
2 0 0.0532 0.0459 0.0316 0.0204 0.0129 0.0081

[(en
1 )2 + (en

2 )2]1/2 0.2821 0.1330 0.0776 0.0477 0.0297 0.0184 0.0116

step n 8 9 10 11 12 13 14
en
1 0.0053 0.0036 0.0027 0.0022 0.0014 0.0009 0.0005

en
2 0.0053 0.0038 0.0030 0.0025 0.0015 0.0010 0.0006

[(en
1 )2 + (en

2 )2]1/2 0.0075 0.0052 0.0041 0.0033 0.0020 0.0013 0.0008

step n 15 16 17 18
en
1 0.0003 0.0002 0.0001 0.0001

en
2 0.0003 0.0002 0.0001 0.0001

[(en
1 )2 + (en

2 )2]1/2 0.0005 0.0003 0.0002 0.0001
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