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ABSTRACT 

METHOD AND APPLICATION OF SPATIAL PROBIT MODEL TO THE 

BUSINESS RETURN TO NEW ORLEANS AFTER HURRICANE KATRINA 

by 

Xingjian Liu, M.S. 

Texas State University-San Marcos 

May 2010 

SUPERVISING PROFESOR: F. Benjamin Zhan 

This study employs a theoretical framework from micro-scale retail location studies 

and implements a spatial autoregressive probit model to account for spatial 

dependence among firms' decisions and thus identify determinants of business return 

to New Orleans after Hurricane Katrina. The spatial probit approach allows for 

interdependence between decisions to reopen by one establishment and those of its 

neighbors. There is a large literature on the role played by spatial dependence in firm 

location decisions, and we find evidence of strong dependence in firm's decisions to 

reopen in the aftermath of a natural disaster such as Katrina. This interdependence has 

X 



important statistical implications for how we analyze business recovery after disasters, 

as well as government aid programs. In order to determine the right model 

specification, a Monte Carlo experiment is conducted to extends information criteria 

for selecting alternative model specifications in spatial econometric modeling, and 

provides some insight about performance of different ~odel selection tools for 

choosing a spatial weight matrix. 

xi 



Chapter 1 

INTRODUCTION 

1.1 Brief background 

Hurricane Katrina struck New Orleans, Louisiana, on August 29, 2005. The 

city suffered severe damage from the hurricane and associated floods caused by levees 

failures. The city's population, estimated at 485,000 in 2000, declined to fewer than 

several thousand by the end of the first week of September 2005 (McCarthy, Peterson, 

Sastry, and Pollard 2006). The city of New Orleans suffers financially as well with 

only two thirds of the city's original businesses in New Orleans parish reopened even 

two years after the catastrophe (Arenas and Lam 2009). In the aftermath of a disaster 

such as Hurricane Katrina, individual firms must make decisions about either investing 

in repairs necessary to restore operations or going out of the old business, i.e., these 

firms' decisions are binary. Research about determinants of business return after a 

disaster, and factors influencing business recovery can produce insights for 

post-disaster management. Both empirical and theoretical analyses suggest 

inter-dependence among businesses' decision-making. 

Casual observation of how businesses operate suggest that decisions made by 

an individual business would likely influence decisions of neighboring establishments, 

and vice versa (Holloway, Shankara, and Rahman 2002, 383-402; Zhou and 

Kockelman 2009, 321-40). In the case of retail or entertainment firms, traffic 

generated by neighboring establishments can be an important factor in generating 

spatial spillover business. In other words, customer traffic on a street may depend on 

the number of neighboring establishments in operation. Businesses may benefit from 

1 
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goods, marketing activities, promotions, and ultimately customer traffic in the 

neighborhood. For example, patrons of a restaurant may also patronize neighboring 

entertainment venues, art galleries, or retail shopping establishments. Spatial spillover 

business can arise from neighboring establishments that offer competing 9r 

complementary products and services. For example, neighboring restaurants 

( competing businesses) located on the same street may generate spatial spillover 

business because this clustering attracts patrons to the area. In the meantime, retail 

shops in the neighborhood ( complementary businesses) may also help to attract 

potential patrons. Moreover, a commercial street may decline when several businesses 

are closed and a consumer traffic threshold is not sustained. This phenomenon is 

common in the central business districts of old industrial cities, where decline of 

population and business closures form a vicious cycle (Keeble 1978). As for business 

return to New Orleans after Hurricane Katrina, this empirical observation could lead to 

an extreme question: Would a single firm located on a street decide to re-open 

knowing that all neighboring firms on the street have decided not to re-open? 

From a theoretical perspective, the specific economic mechanism at work here 

is that some part of the unobserved net profitability associated with the decision to 

re-open derives from spatial spillover business. The commodity price, sales quantity, 

and variable costs of operations generally depend on the customer flow, which are 

affected by spatial spillovers generated by customer traffic from neighboring firms 

(Ozmen-Ertekin 2005, 293-331). Therefore, the latent unobservable net profitability 

will depend on neighboring establishments' decisions. If a firm has positive 

profitability, some sales revenue may reflect spillover traffic and revenue from 

neighboring firms. The conventional econometric models used for analyzing these 

binary decision outcomes are probit models (Anselin et al. 2004, 169-92). These 

models attempt to explain variation in the set of decision outcomes as the dependent 
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variable, where returning to business is indicated by a dependent variable value of one 

and a decision to go out_ of business is indicated as a zero value. The independent 

variables in these models would be a cross-sectional sample of firm and neighborhood 

characteristics. These probit models can explain the dependent outcomes in terms of 

independent variables and test the relative strength of relationships among m0del 

variables. Still, as the location of firms may exert influences on their decisions, spatial 

effects needs to be integrated into the probit model. Therefore I will therefore employ 

spatial econometric models (Anselin 1988) to characterize the relationships between 

business recovery and the factors. 

1.2 Significance of research 

This study focuses on some methodological and applied issues on devising a 

spatial econometrics model to quantify determinants of business return after a disaster. 

The results can generate significant implications for management, planning, and the 

recovery of business in New Orleans. More specifically, my study will: (1) solve 

methodological issues such as model selections among alternative specifications; (2) 

implement spatial econometric models to characterize the relationships between 

business recovery and the factors; (3) generate meaningful insights about post-disaster 

business recovery and management. 

1.3 Statement of research problem 

This research project aims at implementing a spatial probit model to account 

for spatial dependence among firms' decisions when exploring determinants of 

business return to New Orleans after Hurricane Katrina. 



Chapter 2 

LITERATURE REVIEW 

2.1 Critical review of relevant literature 

I will review two groups of literature for my research study: studies of retail 

location at micro-scale, and econometric modeling and estimation of spatial 

interdependence. The former literature argues for considering spatial effects in retail 

locations and provides a conceptual framework for econometric modeling, while the 

latter literature discusses how to incorporate spatial effects into econometric models, 

including specification of spatial models, estimation of model parameters, as well as 

model comparisons. 

2.1.1 Review of micro-scale retail location studies 

Researchers have conducted various studies on business decision-making 

regarding location in space at various spatial scales. For example, scholars have 

performed macro-scale studies about regional specialization, meso-scale analysis 

about urban economics, and micro-scale decision-making about retailer's location. 

Researchers have also analyzed business location from different perspectives, for 

example, geography, marketing, economics, and management (Simon 1959; Simon 

1979; Bartik 1985; Malmberg 1997; Porter 2000; Krugman 2001, 69-98). However, 

little research on business decision-making exists after a catastrophic event such as 

Hurricane Katrina (Birkland and Nath 2000; Runyan 2006). Few studies have 

attempted to formally model the role of business connectivity and interdependence at 

the individual firm level in general and after Hurricane Katrina in New Orleans in 
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particular. Most studies regarding economic aspects of disasters focus primarily on 

understanding the regional and macroeconomic impacts, rather t~an the street or 

firm-level economics (Guimaraes, Hefner and Woodward 1992; Tierney and Webb 

2001). Understanding spatial dynamics and linkage among individual business 

decisions in the aftermath of a disaster is critical to planning for redevelopment, city 

management with both local and regional concerns, and ultimately the recovery of 

business for sites that have experienced or will experience disasters (Berke, Kartez and 

Wenger 1993). However, such studies are mainly constrained by limited data -

availability, the uncertain environment after disasters, and a lack of proper statistical 

models (McCarthy et al. 2006). 

Studies of businesses return to their former locations after a disaster can be 

treated as special type of retail location study at the micro-scale, because individual 

firms can only make binary decisions on their former locations: (1) investing in repairs 

necessary to restore business operations or (2) going out of business. Thus, a research 

study may draw upon those theoretical and empirical studies on retail location and 

outlets' interactions. Literature on street-level retail location has produced a consensus 

on the economic agglomeration of similar or related shop types and dispersal of 

various types of spatial clusterings throughout the retail districts (Brown 1994; Carter 

and Haloupek 2000; Ottaviano and Thisse 2002). Various theories and models also 

identify the interactions between a business, its neighborhood, and nearby businesses, 

which underpin the observed spatial arrangement of businesses and ultimately affect, 

if not determine, the location choices of individual businesses. These theories and 

models follow three major approaches: theoretical, demand-side, and supply-side 

approaches (Brown 1994). 

Literature on street-level retail location (in non-disaster situations) has long 

emphasized the importance of spatial interaction in firm-level decisions. For example, 
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Reilly ( 1931) set forth a "law of retail gravitation", drawing on an analogy with 

Newton's gravitational law as it related to retail shopping behavior and store location 

decisions. Meanwhile, the principle of minimum differentiation and its modifications 

are capable of explaining the observed clustering of competitive and compatible retail 

outlets within shopping districts (Hotelling 1929; Rhee 1989; Fujita and Smith 1990; 

Hinloopena and van Marrewijk 1999; Brown 2002, 450-67; Liang and Mai 2006). 

This group of models starts with assumptions concerning market conditions and 

retailer behaviors and demonstrates that individual firms make location decisions 

based on other firms' locations to maximize its profit. While the principle of minimum 

differentiation and models based on 'externalities' account for existence of clustering, 

the bid-rent theory helps to explain how clusters of different types of businesses 

spread over space (Alonso 1960; Craig, Ghosh, and McLafferty 1984; Guy 1995; 

Fujita and Thisse 1996). This theory contends that the need for a more accessible 

location differs between various types of retail activity that, in tum, affects the rent 

differential retailers are willing to bid for a location. In bid-rent theory the individual 

firm's choice on location is the result of interactions between the businesses, e.g., the 

bid-rent curve of an individual firm and that of neighboring businesses, because 

competitive bidding among firms takes place for locations with superior market 

accessibility (O'Roarty, McGreal, and Adair 1997; Carter and Vandell 2005). Another 

related theoretical framework would be 'Central Place Theory' (Christaller 1963), 

which describes the distribution and hierarchy of retail locations based on the range 

and the threshold of a good. Although it is usually applied to national and regional 

retail patterns, the spatial interaction between clusters discussed in Central Place 

Theory is still valid for street-level retail. Although these theoretical approaches were 

initially designed to explain economics of agglomeration, all of them incorporate 

spatial interaction and interdependence among firms as their core. 



Most aforementioned studies explain the observed firms clustering and 

interaction deductively from a top-down perspective. Approaches that directly 

generalize street-level market participants' spatial behavior via a 'bottom-up' design 
-

also exist (Brown 1994). Analyses from both demand and supply ends suggest that 
' 
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street-level retail location decisions should consider neighboring firms' decisions, and 

there is evidence that some retail location decisions are made explicitly with 

consideration of interactions among neighboring competitive or complementary 

establishments. As for demand-side analysis, general consumer behaviors at 

street-level retail are investigated. For example, Reilly ( 1931) set forth a "law of retail 

gravitation", drawing on an analogy with Newton's gravitational law as it related to 

retail shopping behavior and store location decisions. Other studies on consumer 

movement and behavior include analysis of consumer interchange between retail 

outlets (Nelson 1958), gravitational effects of distances (Reilly 1931; McGoldrick and 

Thompson 1992) and pedestrian-distance minimization (Garling and Garling 1987), 

evaluation of spatial convenience in shopping districts (Reimers and Clulow 2004 ), 

mental mapping of retail locations (Golledge and Timmermans 1990; Golledge and 

Stimson 1996), econometric analysis of retail demand regarding the geographic 

distribution of consumers (Davis 2006) and more recently, computer simulation of 

grocery shopping behavior (Hanaoka and Clarke 2007; Schenk, Loffler, and Rauh 

2007). These analyses arrive at some consensus about consumer behaviors, that can be 

used to motivate spatial interactions among retail outlets from another perspective: 

Nelson's 'rule of retail compatibility' and 'theory of cumulative attraction' (Nelson 

1958) state that both compatible businesses (those selling related types of goods) and 

competitive businesses (those selling the same products) in close proximity benefit 

from customer flows and interchanges drawn by each other. This is becoming 

increasingly true with customers' preference on multi-purpose or one-stop shopping 



and customers' increasing desire for comparative shopping prior to making a 

purchase. It has also been empirically justified that increased market size from 

agglomeration may offset the fierce competition from clustering (Konishi 2005). 

8 

Analysis from the other side the market empirically investigated retailers' 

spatial strategies finding that micro-scale location decisions often take into account 

location of competitive or complementary establishments (Berry and Garrison 1958; 

Berman and Evans 1~91; Borchert 1998), and agglomerated retailers are well disposed 

towards cumulated attraction from clustering (Brown 1987). Although consumer 

behaviors exert great influence on the extant pattern of retail clustering, it is also true 

that supply side decision makers, be they in public or private sectors, can affect 

consumers' behavior via spatial choices of retail locations (Craig, Ghosh, and 

McLafferty 1984). For example, researches have demonstrated that the location of 

magnet stores and marketplace entrance/exit affects customer movements (Brown 

1994). Therefore, it has also been documented that spatial tools, such as central places 

theory, spatial interaction theory, and cumulative attraction analysis, have been 

adopted as pragmatic methods in retail planning (Hernandez, Bennison and Cornelius 

1998). Additionally, models in operations research have been implemented to 

optimally allocate resources over space from a supply side stakeholder's perspective, 

which explicitly consider spatial interaction among firms (Drezner and Guyse 1999; 

Drezner and Drezner 2002). Although it has been argued that the extant retail pattern 

may stem from other non-market spatial processes, for example, historical events and 

inertia to relocate (Krugman 1992), and local preference (Brown 1989), all of these 

spatial processes emphasizes the importance of spatial interaction. 

The foregoing theories and models arrive at the conclusion that extant patterns 

of retail activity influence choices of consumers ( or patrons) and location decisions by 
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retailers. The decision of a business establishment to re-open after a natural disaster 

such as Katrina could be viewed as similar to the original location decision made by 

the firm when it entered business. If the surrounding environment was important for 

the original decision, it should be equally influential in the decision to re-open in the 

same or another location after the disaster. This consensus provides a strong 

motivation for adopting an empirical modeling method that allows one firm's decision 

to re-open to depend on similar decisions made by neighboring firms. 

2.1.2 Review of econometric modeling of spatial interdependence 

2.1.2.1 Spatial Probit Model and its estimation 

Econometric analysis relies heavily on regression models, which test economic 

relationships between dependent and explanatory variables in general. In my case, 

such analysis will quantify the relations among various factors contributing to business 

return decisions in the aftermath of the Katrina disaster (Kennedy 2001, 1-5; ;c<oop 

2003, 15). The ordinary linear squares (OLS) model, which is commonly used in 

econometrics, is not suitable for analyzing data with spatial dependence. The 

peculiarities caused by space, e.g., spatial interactions between neighboring 

businesses' decisions violate the Gauss-Markov assumption underlying OLS: all 

observations are independent (Anselin 1988, 5). 

Researchers, therefore, have developed a group of spatial econometrics models 

to deal with spatial dependence in a regression context (Anselin 1988, 1-51; Anselin 

and Bera 1998; LeSage and Pace 2009, 25-42). These models explicitly incorporate 

spatial dependence using a weight matrix and spatial autoregressive processes 

allowing investigators to capture the global and local spatial externalities (Anselin 

2003). However, many of these models deal only with continuous dependent variables 

and cannot interpret binary choice outcomes. Consequently, much attention in the 
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spatial econometric literature has been given to models that analyze limited-dependent 

variables. The common rationale behind the developed approaches considers treating 

the observed binary or categorical outcomes as indicators or reflections that relate to 

underlying unobserved and continuous latent variable (Franzese and Hays 2008). For 

example, the unobserved latent variable is the profitability or net utility of individual 
' 

firms in my case. The models developed for limited dependent variables include 

spatial tobit model (McMillen 1995), spatial probit model (Smith and LeSage 2000), 

spatial multinomial-probit model (Bolduc, Fortin, and Gordon 1997), and spatial 

zero-inflated Poisson model (Rathbun and Fei 2006), each of which focuses on 

analyzing different types of dependent variables, e.g., binary, categorical, and 

censored data. 

Among these models, the spatial probit model is suitable for analyzing binary 

outcomes. Many studies have demonstrated the usefulness of spatial probit model in a 

wide range of applied research. Scholars have devised spatial probit models to study 

the spatial dependence among various natural, social, and economic phenomena 

including spatial dependence in adoption of agricultural programs (Hollowy, 

Shankara, and Rahman 2002); influence of public services and neighborhood 

characteristics on relocation decisions of home-buyers (Ozturk and Irwin 2001); 

landuse conversion regarding neighboring property ownership status (Irwin and 

Bockstael 2004; Zhou and Kockelman, 2008); regeneration of trees in neighboring 

areas (Rathbun and Fei 2006); spatial externalities in voting preferences in the 

"political-economy-of-agriculture" (Holloway, Lacombe, and Shaughnessy 2005); 

geographic patterns in state lotteries (Coughlin, Garrett, and Hernndez-Murillo 2004). 

Still, rare studies produce empirical models that quantify the determinants of business 

decisions in the highly uncertain and spatial interactive environment after a disaster. 
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Estimating spatial probit model is complicated because of colinearity and 

heteroskedasticity introduced by spatial interdependence. More specifically, the 

difference between estimating the nonspatial regression model and the spatial probit 

model with a spatial autoregressive progress is that the spatial dependence leads to the -

problem of an n-dimensional integration involving truncated multivariate normal 

distribution (TMVN) (LeSage and Pace 2009, 283-85). Scholars have proposed 

several methods to estimate spatial probit model (Flemming 2004); however, most of 

these efforts do not address the n-dimensional integration problem directly. Methods 

focus on treating heteroskedasticity induced by spatial dependence produce consistent 

parameter estimation by grouping elements in the variance-covariance matrix into 

independent blocks (Case 1992) and Generalized Method of Moments (Pinkse and 

Slade 1998). These methods do not utilize information in the off-diagonal terms of the 

variance-covariance matrix and leave the problem of multidimensional integration of 

the variance-covariance matrix unaddressed. The Expectation Maximimization (EM) 

algorithm utilizes the complete variance-covariance matrix, and attempts a solution to 

this n-dimensional integral problem (McMillen 1992). The EM algorithm, however, 

requires a large sample size to justify the validity of its underlying asymptotic 

properties and still produces biased estimates (LeSage 2000). Moreover, the EM 

method focuses on the Spatial Error Model (SEM) instead of the Spatial 

Autoregressive Model (SAR). The Bayesian method for nonspatial probit model 

(Albert and Chib 1993) is extended to a spatial probit model using Bayesian Markov 

Chain Monte Carlo (MCMC) methods (LeSage and Pace 2009, 288-300). Smith and 

LeSage (2000) have proposed another Bayesian MCMC method for spatial probit 

models that introduces an additive error specification. The Bayesian methods provide 

consistent model estimates and combine all relevant information regarding the 

estimation process including both objective sample data information as well as prior or 
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subjective information about model parameters (Zellner 1971, 35-60; Koop 2003, 

16-25). The Bayesian MCMC framework solves the problem of n-dimensional 

integration and is more flexible and able to work with small samples. Many scholars 

have argued that the Bayesian MCMC is currently the only feasible approach to 

estimate spatial probit models with a spatial autoregressive process (Smith and LeSage 

2000; Flemming 2004; Franzese and Hays 2008). Beron and Vijverberg (2004) 

provided an alternative approach to solve this n-dimensional integration problem 

based on Maximum Likelihood Estimation, which is extremely time-consuming. The 

computation time increases quadratically when the sample size is doubled, and 

estimation with moderate sample sizes take a substantial amount of time. 

2.1.2.2 Specifications and comparisons of spatial econometrics models 

As for model specifications, there is a great deal of published research that 

compares competing model specifications that model dependence in the error structure 

versus the dependent variable. The former are referred to as spatial error models 

(SEM) taking the form: y = X /3 + µ, µ = pW µ + c. The latter have been labelled 

spatial autoregressive models (SAR): y = pWy + X/3 + c. As pointed out by LeSage 

and Pace (2009), a linear combination of the SEM and SAR models will lead to the 

spatial Durbin model specification, which subsumes models that incorporate spatial 

dependence in the dependent variable and error terms, y = p W y + X /31 + W X /32 + c. 

The choice of spatial regression model specification, and more specifically, 

specification of the spatial connectivity structure used, plays an important role in 

applied work, since changes in these choices lead to differences in estimates and 

inferences (Anselin and Rey 1991; Florax and Rey 1995; Smith 2008). Spatial 

connectivity structure, usually reflected in the spatial weight matrix provides a formal 

expression of connectivity or dependence in space (Anselin 1988). Spatial weight 
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matrices are generated from the locations of observations, and can be generally 

constructed in three ways (Stakhovych and Bijmolt 2008): (1) as completely 

exogenous primarily according to the geographical pattern of observations (Cliff and 

Ord 1981; Anselin 1988; LeSage and Pace 2009); (2) based on existing data and in 

accordance with the nature of underlying spatial association (Getis and Aldstadt 

2004); (3) by treating weigh-matrix as model coefficients (Bhattacharjee and 

Jensen-Butler 2006). Research has shown that matrix specification issues relating to 

different aspects of constructing weight matrices (Anselin and Rey 1991; Florax and 

Rey 1995), mis-specified weight matrices (Griffith and Lagona 1998), and strongly or 

weakly connected weight matrices (Smith 2008), can impact statistical tests and model 

estimation. 

Identifying the appropriate model specification in general and spatial 

connectivity structure in particular can be viewed as the selection of model that is 

"closest" to the underlying data generating process. In conventional econometrics, 

information criteria such as the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Deviance Information Criterion (DIC) are widely 

used in model selection, along with other approaches such as RMSE, Mallows' Gp, the 
' -

coefficient of determination, and Bayesian model comparison approaches. However, 

few studies have evaluated the performance of various information criterion for 

selecting spatial weight matrices, and even fewer have evaluated these in the context 

of spatial econometric modeling. For example, Hoeting et al. (2006), and Lee and 

Ghosh (2009) have discussed the performance of information criteria for geostatistical 

models, while discussions on information-based model selection is prevalent for 

ecological models (Ward 2008; Kissling and Carl 2008; Diniz-Filho et al. 2008; 

Murtaugh 2009). As for application in spatial econometrics, Stakhovych and Bijmolt 

(2008) have evaluated the ability of both AIC and a consistent AIC measure to discern 
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different spatial weight matrices, though their results seem to contradict Bayesian 

model comparison results (LeSage and Pace 2009). Even fewer studies have focused 

on selection of spatial models in binary or categorical cases, as it is difficult to 

implement model selection tools, such as the log-marginal likelihood, in situations 

where the dependent variable is not normally distributed, does not exhibit constant 

variance, or is discrete rather than continuous. The exact log-marginal likelihood 

which forms the basis of formal Bayesian inference regarding model comparison has 

been derived for simple spatial econometric models that involve continuous dependent 

variables (LeSage and Parent 2007). However, the log marginal likelihood approach 

requires integration over all model parameters, making this approach difficult to apply 

in a spatial probit setting. Asymptotically the AIC, BIC, DIC and log marginal 

likelihood model comparison criteria should produce identical results. 

2.2 Theoretical framework 

As mentioned above, my research study tries to formally model spatial 

interdependence in the decision-making process after a disaster at a firm level. 

Because studies of businesses return to their former locations after a disaster are a 

special type of retail location study at a micro-scale, my study will be built upon the 

principle of minimum differentiation. 

The modified principle of minimum differentiation with the incorporation of 

spatial externalities and agglomeration economics from spatial proximity among 

businesses can model the spatial interdependence among the decision-making of 

individual firms (Hotelling 1929; Rhee 1989; Fujita and Smith 1990; Liang and Mai 

2006). This theory begins with the situation that "two profit maximizing firms, selling 

identical products from fixed locations in a bounded linear market where transport 
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costs are constant, demand is completely inelastic and identical, utility maximizing 

consumers are evenly distributed, bear the costs of distribution and patronize outlets 

solely on the basis of delivery prices" (Hotelling 1929). This basic economic theory 

then incorporates more assumption including mvltiple firms, competitive and 

complementary products, customer interchanges, random utility, customer behavior, 

and economic externalities (Rhee 1989; Fujita and Smith 1990; Liang and Mai 2006). 

After mathematical modeling, the complete set of these assumptions arrives at the 

conclusion that firms selling competitive and complementary products would cluster 

over space to achieve an economic equilibrium among all firms. During progress 

toward this equilibrium, the current distribution of retail activity influences choices of 

consumers and location decisions by retailers. 

The principle of minimum differentiation provides a strong motivation in my 

research study for adopting an empirical modeling method that allows one firm's 

decision to re-open to depend on similar decisions made by neighboring firms. The 

decision of one firm may affect the utilities of neighboring firms through a group of 

interrelated spatial externalities; for example, the total customer flow and interchange 

in the neighborhood, the competition for local market shares, the investment on 

restoring the shop front. This interdependence in utilities can ultimately determine 

firms' choices on returning. 

2.3 Specific connections with problem statement 

Little research exists about business decision-making after a catastrophic 

event. In other words, studies on modeling and measuring determinants of the 

decisions by businesses to return to their former locations after disasters are rare. 

Spatial relations between a business, its neighborhood, and businesses located nearby 
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can generate significant implications for management, planning, and the recovery of 

business in New Orleans as well as in other sites of future disasters. To conduct such 

research, appropriate data observations as well as suitable statistical models are 

necessary. Theories and models about micro-scale retail location arrive at the 

conclusion that existing patterns of retail activity exert influence on cheices of 

consumers and location decisions by retailers. This consensus provides a strong 

motivation and theoretical justification for adopting an empirical modeling method 

that allows one firm's decision to re-open to depend on similar decisions made by 

neighboring firms. A spatial probit model with spatial autoregressive processes is most 

suitable for analyzing binary choice outcomes, like the re-opening decisions of 

individual firms. More specifically, the Bayesian Markov Chain Monte Carlo approach 

is currently the only feasible method to estimate a spatial probit model with a spatial 

autoregressive process (Flemming 2004). 

I will therefore utilize a unique survey dataset and undertake the study on 

method and application of spatial probit models to analyze business return in New 

Orleans after Hurricane Katrina. This research project uses a theoretical framework 

from micro-scale retail location studies and can help to answer the overarching 

problem: how to model and measure determinants of and spatial interdependence 

between the decisions by businesses to return to their prior location after a disaster, 

and is the spatial probit model with a spatial autoregressive process suitable for 

explaining business return to New Orleans after Hurricane Katrina? 



Chapter3 

RESEARCH DESIGN 

3.1 Working hypotheses 

To answer the research question "Can a spatial probit model account for spatial 

dependence among firms' decisions and thus identify the determinants of business 

return to New Orleans after Hurricane Katrina?" I will develop a set of working 

hypotheses to guide the formal modeling of business connectivity and interdependence 

in decision-making at the individual firm level. 

1. The existing distribution of retail activity at a micro-scale influences choices 

of consumers and location decisions by retailers. 

2. Studies of businesses return to their former locations after a disaster are 

special types of retail location decision at the micro-scale, and therefore exhibit spatial 

interdependence among returning decisions of neighboring firms. 

3. The spatial probit model with spatial autoregressive specification (SAR) is 

capable of capturing and quantifying the spatial interdependence among binary 

outcomes in the neighborhood and, therefore, more consistent with the survey data. 

4. Model comparison tools can identify the model, closet to the true underlying 

data generating process, among alternative spatial probit specifications. 

3.2 Study area 

New Orleans is located on the banks of the Mississippi River, approximately 

105 miles upriver from the Gulf of Mexico. The majority of the metropolitan area 
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spreads along the land between the Mississippi River on the south and Lake 

Pontchartrain on the north. The city's elevation ranges from 5 feet below mean sea 

level (MSL) to 15 feet above mean sea level, with 49 percent of the terrestrial surface 

of the metropolitan area lying below sea level. New Orleans has a humid and 

subtropical climate with average temperature of 68.1 Fahrenheit degrees and average 

annual precipitation of 61.88 inches. The city's geographical locations, which is 

surrounded by large water bodies, and its climate makes it vulnerable to Atlantic 

hurricanes and accompanying floods (Campanella 2006). 

Businesses in New Orleans, as well as the city as a whole, suffered severely 

from Hurricane Katrina and the consequent drainage failures in late August 2005. 

Only 26 percent of the city's original businesses were open in December 2005, 

approximately four months after Hurricane Katrina. In June 2006, the percentage of 

returned businesses increased to 39 percent; In October 2007, more than two years 

after Katrina, only about 66 percent of the businesses reopened (Arenas and Lam 

2009). More specifically, my research will analyze the reopening statuses of 673 

businesses along three commercial streets in New Orleans: St. Claude Avenue, 

Magazine Street, and Carrollton Avenue. These streets are important commercial 

corridors in New Orleans, and all of them lie on the north bank of the Mississippi 

River and south of Lake Pontchartrain. I constrain my analysis to these three streets 

due to data availability. I will use a survey dataset that reports only about the 

reopening statuses of businesses on these three streets. Moreover, these streets are 

representative in terms of flood conditions in the aftermath of Hurricane Katrina, and 

surveyors believe that the data collected are appropriate for analyzing businesses 

reopening decisions. 
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3.3 Study period 

I will analyze the reopened status of all firms located on three 

previously-mentioned streets during the periods from O to 3 months, 0 to 6 months and 

0 to 12 months after Katrina. While the availabiJity of survey data pre-determined the 

study period, the length of study period is sufficient for revealing spatial dynamics of 

businesses reopening decisions. 

3.4 Data sources 

I will use a unique first-hand survey data set collected by Mr. Richard 

Campanella, Assistant Research Professor of Earth and Environmental Science at 

Tulane University, Louisiana. Prof. Campanella is a New Orleans based researcher 

and has authored several books on physical, human, and environmental geography of 

New Orleans. Prof. Campanella began surveying businesses open/closed status on the 

selected streets from October 9, 2005, approximately one month after Hurricane 

Katrina until November 21, 2006. Prof. Campanella reported the business open/closed 

status for 673 businesses along three commercial corridors: St. Claude Avenue, 

Magazine Street, and Carrollton Avenue. He collected the data on a weekly basis 

during the year following Hurricane Katrina, then seasonally and annually in 

subsequent years. 

Prof. Campanella selected the streets under investigation as representative of 

streets in the Orleans parish after Hurricane Katrina. Magazine Street is a prosperous 

commercial corridor. This street lies above the Mean Sea Level and, therefore, did not 

flood after Hurricane Katrina. Carrollton Avenue is a middle-class avenue that was 

flooded deeply in many areas and less so in others. With a lower socioeconomic group 

of residents, St. Claude Avenue was consistently lightly flooded. All 16 miles of the 



20 

three corridors were surveyed by bicycle weekly starting on October 9, 2005, six 

weeks after Hurricane Katrina and about two weeks after un-flooded neighborhoods 

began to repopulate. Businesses of all types that were visible from the street were 

recorded by (1) address, (2) name, (3) description and category, (4) ownership, (5) 

general economic status, and (6) size. Finally, and most importantly, the business' 

status as "still closed," "open,""partially open" (limited hours, by appoint1!1ent only, 

etc.), "new"(a new post-Katrina business) or "moved" was recor~ed and re-recorded 

with each weekly visit. The weekly pace of surveys was reduced to biweekly in 

autumn 2006, because the number of reopenings or new businesses did not warrant a 

weekly revisit. By 2007-2008, conditions had stabilized to the point that only 

seasonaVannual visits were made (Lam, et al. 2009). The temporal and attribute depth 

of the original dataset was reduced for the purposes of this exploration. 

Furthermore, Dr. Nina Lam, Professor of Geography, and Dr. R. Kelley Pace, 

Professor of Real Estate, from Louisiana State University add value to the original 

survey data with follow-up phone calls and local inquiries, integration with external 

data from the Census Bureau, FEMA, State of Louisiana, and Army Corps of 

Engineers. The combined street survey and GIS data can thus provide additional 

information such as block number and street address for individual firms, 1999 median 

household income of the neighboring census tracts, topographic elevation of the 

business site, maximum flood depth during Katrina. 

3.5 Variables 

The specific dependent variable and independent variables in the econometric 

analysis are listed as follpws. Furthermore, the locations of firms will be used to 

, construct spatial weights matrices, and serve as a control variable. 
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3.5.1 Dependent variable 

Opening statuses. Models based on three different dependent variable vectors 

were estimated, each having the same explanatory variables. One dependent variable 

vector was constructed to represent the very short period of 0-3 months after Katrina, 

another reflecting the 0-6 month horizon and a final model for the 0-12 month time 

period. For each period, firms that had reopened were assigned a dependent variable 

value of 1 and those not reopened a value of 0. During the 0-3 month time horizon we 

had 300 of the 673 firms opened, during the 0-6 month period 425 firms were open 

and in the 0-12 month interval 478 firms. The latter number reflects a re-opening rate 

of 71 % at the 12-month horizon which matches well to the 66% re-opening rate 

derived from larger samples taken of firms that re-opened. 

3.5.2 Independent variable 

Median household income. I use logged 1999 median household income of 

neighboring census tracts to model the neighborhood's socioeconomic statuses. I 

hypothesize that a decline in income of the neighboring census tracts would 

correspond to a decrease in business reopening rates. 

Flood depth. The maximum flood depth of individual businesses' location was 

measured in the aftermath of Hurricane Katrina. Zero indicates a site without flood 

effects, while smaller negative numbers indicate greater flood damage. I hypothesize 

that flood depth exerts a negative influence on a business' choice of reopening; in 

other words, stores with deeper maximum flood depth would have a smaller chance of 

returning. 

Ownership. Business can be classified according to its ownership: as 

belonging to a national chain (labeled as "1"), belonging to a regional chain (labeled 
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as "2"), or locally-owned store (labeled as "3"). Accordingly, I hypothesize that 

locally-owned, independent businesses reopened faster, compared to regional chains 

and national chains. These three different categories of ownerships are modeled as two 

dummy variables for store ownership type in the econometric model, one reflecting 

sole proprietorships and the other representing national chains with regional chains 

representing the excluded class. 

Economic status. Businesses are classified according to their clientele types: 

serving functional purpose, serving middle-range customers, and providing high-end 

and luxury products. I hypothesize that businesses serving middle- to high-end 

clientele would reopen in the largest numbers. In order to enter economic status into 

econometric analysis, two dummy variables are used to indicate low and high 

socioeconomic class of the store clientele with the middle socioeconomic class 

excluded. 

Category. Business codes represent different business categories. The North 

American Industry Classification System (NAICS) classify individual firms into 

different business types. Main business types in the study area are hotel, professional 

service, restaurant, wholesale, and retail. 

Size. The survey data contain a categorical variable representing the scale of 

the business. This variable takes a value "1" for sole proprietorship with five or fewer 

employees, e.g., a typical restaurant, "2" for a firm with 6-15 employees, e.g., a 

wholesale store, and "3" for a business with scores of employees, e.g., a hotel. I 

hypothesize that a business with more employees would have a greater chance of 

returning. In the econometric modeling, two dummy variables will be used to reflect 

small and large size firms, with medium size firms representing the omitted class. 
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3.5.3 Controlling variable 

Differing from non-spatial models, spatial models explicitly incorporate spatial 

processes in their specifications. I will use businesses' geographic locations to 

construct a spatial weight matrix to account for the spatial dependence. This spatial 

weight matrix specifies the strength of interactions between observations at different 

locations, transforms a non-spatial model into a spatial model, and impacts the overall 

model fitting between dependent and independent variables. I will use pair-wise 

discrete distances between businesses based on k-nearest neighbors criteria to build 

the spatial weight matrix. 

3.6 Operational definitions 

Busi'}ess. I will confine "businesses" in my discussion to the 673 commercial 

or industrial enterprisers visible from the St. Claude Avenue, Magazine Street, and 

Carrollton Avenue in New Orleans. I will use "business" interchangeably with "firm," 

"store," and "retails." 

Spatial interdependence. "Spatial interdependence" in my research refers to 

the situation that one firm's choice regarding returning to its prior location in the 

aftermath of Hurricane Katrina can exert influence on its neighboring firms, and the 

firm is in turn affected by the choice of its neighbors. The reason for spatial 

interdependence is that one firm's decision can influence, if not determine, the 

decisions of neighboring firms through various spatial externalities, and vice versa. 

Spatial probit model. A probit model is an econometric model that explains the 

relationship between a binary dependent variable and continuous independent 

variables. Spatial interdependence among observations of dependent variables violates 

the Gauss-Markov assumption underlying nonspatial probit models. Consequently, 



researchers develop probit models with explicit consideration of this spatial 

interdependence and label this group of probit models a "spatial probit model". 
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Bayesian Markov Chain Monte Carlo (MCMC) method. Bayesian methods 

involve combining the data distribution embodied in the likelihood function with prior 

distribution for the parameters assigned by the practitioner, to produce a posterior 

distribution for parameters. Bayesian inference for model parameters can be 

summarized as: 

prob(0ID) ex prob(Dl0) x prob(0) (3.1) 

Where prob stands for probability density, 0 represents model parameters, and D 

denotes model data, including dependent and independent variables. prob(0ID), the 

posterior distribution of model parameters, is of fundamental interest in econometrics 

to learn about model parameters using data. prob(0), the prior distribution, contains 

any non-data information available about model parameters, and prob(Dl0), the 

likelihood function, is often referred as the data generating process, which specifies 

the density of the data conditional on model parameters. By combining the prior 

distribution and the likelihood function, the posterior distribution contains both sample 

data information as well as subjective information before looking at the data (Koop 

2003, 1-11). 

The basic idea of Monte Carlo simulation methods is straightforward: if one 

can characterize the joint distribution of the quantities of interest, then one can simply 

sample from that distribution and calculate the desired statistics in those samples. 

With a sufficiently large number of samples, the sample statistics will converge and 

approximate the corresponding population parameters. The consecutive draws are 

independent and the target distribution is specified directly in typical Monte Carlo 

simulation. In MCMC, each draw is dependent on the previous one in a manner that 
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generates samples with properties mirroring those of the joint population, using just 

the conditional distribution of each parameter. This procedure is suitable for my case, 

because the joint distribution of parameters for the spatial probit model is not 

expressible directly, and the complexity makes direct sampling from the joint 

distribution prohibitively difficult (LeSage and Pace 2009, 123-52; Franzese and Hays 

2008). 

3. 7 Data processing and analysis 

Data analysis consists of three parts, and begins with data pre-processing: 

Because information regarding reopening statuses in the survey data is in text fonp., I 

will quantify this information before conducting statistical analysis. There are seven 

different re-opening statuses in the original survey data, and these seven opening 

status will be re-classified into two general categories: (1) Open, including reopen ,and 

partially reopen; (2) Closed, including open in another location, still closed, 

permanently closed. The former category is labeled with "1" and the latter case is 

labeled with "O". Moreover, I will geocode individual firms' locations. The location of 

an individual firm is represented by a combination of street name, block number, and 

street address. I will transform these locations into geographic coordinates, i.e., 

longitude and latitude, which are essential for constructing a spatial weight matrix in 

the spatial probit model. Because the geographic coordinates for each street is known 

and each street is attributed with address ranges, I interpolate the positions of 

businesses' addresses within the range of address along the corresponding streets. 

Furthermme, I will treat locations of businesses with the same address carefully. For 

example, both Martin Wine Cellar and Village Shoe Repair are located at Magazine 

Street 3502, and they would have the same geographic coordinates after geocoding. 

The inverse distance between these two stores will be equal to infinity, which will lead 
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to an erroneous spatial weight matrix. Therefore, I introduce a small amount of 

random errors into locations of businesses with the same address to differentiate these 

identical locations. In such cases, the inverse distances among stores at the same 

address would be large numbers instead of infinity. 

The second part of data analysis focuses on the performance of model 

comparison tools in the context of spatial models. In this study, it is important to 

determine the appropriate number of neighbors to use when forming the spatial weight 

matrix W used in our model based on the locations of stores. As previously discussed, 

this involves model comparison tools, which aim at selecting the model that is 

"closest" to the underlying data generating process. Traditional model comparison 

tools are not designed for situations where the dependent variable is not normally 

distributed, does not exhibit constant variance, or is discrete rather than continuous, 

for example, spatial econometric models. Thus I will conduct a Monte Carlo study to 

evaluate the performance of different model comparisons tools in the context of spatial 

models. 

The rest of the data analysis will ( 1) implement a spatial pro bit model within 

the Bayesian MCMC framework using data pre-processed in the first step, (2) 

determine an appropriate model specification based on conclusions drawn in the 

previous Monte Carlo study, (3) interpret the model estimates to identify the 

determinants of business return in New Orleans after Hurricane Katrina, and (4) 

summarize the direct, indirect, and total spatial interactions among firms' decisions 

regarding re-opening. 
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INFORMATION CRITERION FOR COMPARING SPATIAL WEIGHT 
MATRICES 

The choice of spatial regression model specification, and more specifically, 

specification of the spatial connectivity structure used, plays an important role in 

applied work, since changes in these choices lead to differences in estimates and 

inferences (Anselin and Rey 1991; Florax and Rey 1995; Smith 2008). Identifying the 

appropriate model specification in general and spatial connectivity structure in 

particular can be viewed as the selection of model that is "closest" to the underlying 

data generating process. In conventional econometrics, information criteria such as the 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and 

Deviance Information Criterion (DIC) are widely used in model selection, along with 

other approaches such as RMSE, Mallows' Gp, the coefficient of determination, and 

Bayesian model comparison approaches. However, few studies have evaluated the 

performance of various information criterion for selecting spatial weight matrices, and 

even fewer have evaluated these in the context of spatial econometric modeling. Even 

fewer studies have focused on selection of spatial models in binary or categorical 

cases, as it is difficult to implement model selection tools, such as the log-marginal 

likelihood, in situations where the dependent variable is not normally distributed, does 

not exhibit constant variance, or is discrete rather than continuous. 

The exact log-marginal likelihood which forms the basis of formal Bayesian 

inference regarding model comparison has been derived for simple spatial 

econometric models that involve continuous dependent variables (LeSage and Parent 
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2007). However, the log marginal likelihood approach requires integration over all 

model parameters, making this approach difficult to apply in a spatial probit setting. 

Asymptotically the AIC, BIC, DIC and log marginal likelihood model comparison 

criteria should produce identical results. Therefore, the aim of this chapter is threefold: 

(1) to extend information criteria, such as AIC, BIC, and DIC, for application in a 

wider range of applied modeling situations; (2) to compare the ability of log-marginal 

likelihood and alternative information criteria to identify appropriate spatial weight 

matrices in a continuous dependent variable spatial model setting; and (3) to assess 

these model comparison critera in a discrete dependent variable spatial probit setting. 

All of the model selection procedures described in this study were implemented in 

Matlab using the Spatial Econometrics Toolbox for MATLAB (LeSage 1999). 

4.1 Information criteria for spatial models 

Information criteria are rooted in the concept of entropy, and involve measures 

of prediction accuracy and complexity of alternative statistical models. The model that 

minimizes the information criterion is deemed the best model or the one most 

consistent with the underlying data generating process among all models under 

investigation. Three most widely used information criteria are considered in this 

study: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

and Deviance Information C[iterion (DIC). The definition of these information 

criterion and their formulation is as follows. 
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4.1.1 Akaike Information Criterion (AIC) 

Akaike Information Criterion (AIC) (Akaike, 1973) is one of the most applied 

information criteria, calculated using: 

AIC = -2log[L(0)] + p (4.1) 

Where log L( 0) represents the log-likelihood function of the maximum likelihood 

estimator (MLE) based on the observed data, and p is the size of the parameter vector 

0. In the Bayesian setting, the log L(0) is evaluated using the posterior mean value for 

0, and viewed as a measure of model fit. The second term, p, is a "penalty function" so 

complex mpdels with many parameters will be penalized resulting in a larger 

information criterion. This is needed since more complex models will frequently 

result in better model fit by over-fitting the sample data. Competing models are ranked 

according to their AIC values, with the one having the lowest value deemed as best 

model. 

AIC is well known for its inability to work with small samples, and Hurvich 

and Tsai (1989) proposed a consistent AIC (labeled as AICc here) for work with small 

samples. AICc takes both sample size and number of model parameters into 

consideration, and is formally defined as: 

AICc = AIC + 2p(p + l) 
n-p-l 

4.1.2 Bayesian Information Criterion (BIC) 

(4.2) 

Bayesian Information Criterion (BIC) (also called the Schwarz Information 

Criterion (Schwarz, 1978)) is similar to AIC. It is usually viewed as an approximation 

to standard Bayesian model selection tool: the Bayes Factor (BF). BIC is defined as: 

BIG= -2log[L(0)] + plog(n) (4.3) 
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Where log L( 0) represents the log-likelihood function of the Bayesian ( or maximum 

likelihood) estimator based on the observed data, pis the size the parameter vector 0, 

and n is the sample size. The only difference between AIC and BIC lies in the degree' 

to which they penalize models with large numbers of parameters relative to the sample 

size. As usual, the model with minimum BIC value is deemed as the "best" model. We 

use the Bayesian posterior mean value of 0 in place of the MLE estimates to calculate 

log L(0). 

4.1.3 AIC and BIC for spatial probit model 

As discussed in LeSage and Pace (2009), the spatial autoregressive probit 

model can be summarized as: 

Yi = 1, if y; ~ 0 

Yi= 0,if y; ::s; 0 

y; = pWy; +X,B + E 

(4.4) 

(4.5) 

(4.6) 

Where the continuous latent variable y* links the binary observation y and underlying 

spatial process f (Xi,B). Because that there is spatial dependence in these latent y* by 

definition, they are treated as additional set of parameters in the estimation (LeSage 

and Pace 2009). This means that it is difficult to calculate the effective number of 

parameter in a spatial probit model setting. For example, if there is perfect spatial 

dependence (the spatial autocorrelation coefficient is unity), we only need one 

observation y; to determine all other values in the vector y*, so the effective number of 

observations in y* -is one. In contrast, if there is no dependence ( a zero spatial 

autocorrelation coeffici,ent), we will have the conventional sample size of n. This same 

issue arises with the AIC and BIC criterion making them unsuitable for models where 

the dependent variable exhibits spatial dependence (e.g., our spatial probit model 
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(Ward, 2008)). Based on this reasoning, I propose a modification to AIC and BIC for 

use with spatial probit models, which takes spatial dependence in the vector y* into 

consideration. The modified AIC and BIC are termed as AIC~ and BIC8 respectively. 

AIC8 = -2 log[L(0)] + (n - 1) x (1 - p) + l + p (4.7) 

BICs = -2log[L(0)] + ((n - 1) x (1 - p) + l + p) log(n) (4.8) 

where -2 log[L(0)] remains the log-likelihood (evaluated using MLE estimates), p* is 

the number of parameters not including the latent dependent variable vector, and p is 

the estimated spatial dependence parameter. The effective number of parameters in Y* 

is computed as ( n - l) x p + l, which equals the number of observations n when we 

have no spatial dependence (p = 0) and 1 when y* exhibit perfect dependence (p = 1). 

4.1.4 Deviance Information Criterion (DIC) 

Deviance Information Criterion (DIC) is developed as a Bayesian equivalent of 

AIC for models estimated using MCMC draws (Spiegelhalter et al. 2002). The DIC 

also involves a measure of model fit and a measure of complexity (penalty function). 

DIC= D(0) + 2pn 

D(0) = -2log[L(0)] + C 

PD = D(0) - D(0) 

(4.9) 

(4.10) 

(4.11) 

where -2 log[L(0] is the log-likelihood function, C is a constant that cancels out in 

model comparison, and D(0) refers to the deviance function. The expected value for 

the deviance D(0) is evaluated using sampled MCMC draws for (0), while D(0) is the 

deviance function evaluated at the posterior mean, mode, or median of the sample of 

MCMC draws for 0. DIC is easy to compute in a Bayesian Markov Chain Monte Carlo 
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(MCMC) framework, as D( 0) can be evaluated using each sample draw of the vector 

of parameters 0 during the MCMC sampling, and D( iJ) can be calculated using the 

posterior mean of the parameters 0. In the same spirit as AIC and BIC, the minimum 

DIC values indicates that the corresponding model is most consistent with the data. 

4.2 Experiment design 

To evaluate the performance of these different information criterion in a spatial 

econometric model setting with a focus on how these criterion work to identify 

specifications based on different spatial weight matrices, two Monte Carlo simulation 

experiments were carried out for models involving both continuous and binary 

dependent variables. 

4.2.1 - Monte Carlo simulations with continuous dependent variable 

The Monte Carlo experiment for the case of a continuous dependent variable 

involved the following. First, a spatial connectivity pattern based on one of three 

real-world datasets (having different sample sizes) was used to construct a spatial 

weight matrix based on six nearest neighbors (which we label W6 ) that was used to 

generate a dependent variable vector y using a Spatial Durbin model specification. 

The experiment considered eight alternative spatial weight matrices based on incorrect 

numbers of nearest neighbors as well as the true six nearest neighbors weight matrix 

W6• The experiment allowed for variation in the signal-to-noise ratio by using 

independent variables X with different variances relative to the disturbance term 

variance. The correct model based on W6 was estimated using the correct Spatial 

Durbin model specification via Bayesian Markov Chain Monte Carlo (MCMC) along 

with the nine candidate weight matrices. The different model selection criterion were 

calculated in order to identify the "best" model weight matrix. This process was 



replicated 100 times for each combination of design factors (i.e., sample size, 

variances of the signal in X versus the noise in the error term, spatial dependence 

parameters, and weight matrices). For reporting purposes, the probability of 

recovering the true weight matrix W6 was obtained for different scenarios by 

averaging over the 100 replications. 

In the following discussion each of these aspects of the Monte Carlo 

experimental setup are discussed in more detail. 

4.2.1.1 Alternative weight matrices 
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At the beginning of each replication, I generate spatial weight matrices based 

on real-world datasets. There are design considerations regarding construction of 

spatial weight matrices. One issue is whether a simulated regular lattice should be 

used or a real-world irregular tessellation. Researchers often use a simulated regular 

lattice, while applied work typically involves an irregular tessellation based on the 

spatial data sample being analyzed (Florax and Rey 1995; Farber et al. 2009). 

Although simulated spatial patterns have been prevalent in experimental designs used 

in spatial statistics, a recent study suggests that the randomness in simulated datasets 

may cause underestimation of the ability of information criterion to distinguish 

between different spatial weight matrices (Stakhovych and Bijmolt 2008). Therefore, I 

adopted three irregular tesellations based on actual spatial datasets in my experiments. 

These datasets contained latitude and longitude coordinates for: 49 census tracts from 

the Anselin's Columbus, Ohio dataset (Anselin 1988), 98 census tracts from the 

Toledo, Ohio dataset (LeSage 1999), and 506 Boston census tract observations from 

Harrison and Rubinfeld (1978). These dataset have been used in other econometric 

analyses (Belsley, Kuh and Welsch 1980; Gilley and Pace 1996), and will be used here 

to represent small, medium and large samples sizes respectively. The latitude and 



longitude coordinates were used to construct weight matrices based on varying 

numbers of nearest neighbors weight matrices. These were constructed using the 

latitude-longitude coordinates to calculate distances of each observation to all other 

observations from which nearest neighboring regions can be found. -
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Hence I have three different spatial patterns and sample sizes for use in the 

Monte Carlo experiments. There exist numerous ways of constructing spatial weight 

matrices in the spatial econometric literature, which range from simple contiguity of 

borders, inverse distances, k-nearest neighbors, to more complicated methods that 

combine measures of distance and contiguity. For model comparison purposes 

consideration of varying numbers of nearest neighbors weight matrices seems the 

most straightforward. Using each set of latitude-longitude coordinates, nine spatial 

weight matrices based on one to nine nearest neighbors was constructed, with the six 

nearest neighbor weight matrix (W6 ) used to generate the experimental dataset. We 

note that the commonly used contiguity-based weight matrix is typically equivalent to 

a six nearest-neighbor weight matrix when dealing with a regular lattice configuration 

(LeSage and Pace 2009). Inverse-distance based weight matrices are typically dense, 

which gives rise to heavier computational burdens. The generated spatial weight 

matrices were row-standardized to have row sums of unity. 

4.2.1.2 Alternative signal-to-noise ratios 

The second step involved generating random explanatory variables and error 

terms based on differing variances to control the signal versus noise in the model. Two 

explanatory variable vectors X 1, X 2 were drawn from a standard normal distribution 

N(O, 1), and another two spatially lagged explanatory variable vectors were 

constructed using W6X 1 , W6X 2 , where W6 is the six nearest neighbor weight matrix. 

The spatial lags of the explanatory variables are needed for the spatial Durb_in model 
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specification. The coefficients /31 = ( /31,1 /31,2 )' for X = ( X1 X2 ) and 

/32 = ( /32,1 /32,2 )' for W6X in the Spatial Durbin Model were both set to [l, -1]. In 

addition, an intercept vector with associated parameter of zero was used. In assessing 

the information-based model selection, the signal-noise ratio in the data becomes 

important. The signal-noise ratio can be varied using different ratios between the 

variance of the explanatory variables and the error term (for a given sample size). The 

error term c is drawn from a normal distribution N(O, e), with variances e set to 0.25, 

0.5, 1, 2, and 5.0 to produce varying signal-to-noise ratios. Smaller noise variances 

reflect larger signal-to-noise ratios which should produce more accurate inferences 

regarding the correct model. 

4.2.1.3 Alternative levels of spatial dependence 

The dependent variable vector y is constructed using the spatial Durbin model 

(SDM) specification: y = p W6y + X /31 + W X /32 + c in conjunction with the six 

nearest neighbors spatial weight matrix W6 • This is done for each of the varying 

signal-to-noise ratios described in the previous section. To control the degree of spatial 

dependence in the experiment, the dependent variable is generated using nine different 

values for p ranging from 0.1 to 0.9 in increments of 0.1. Low levels of spatial 

dependence are reflected by values near 0.1 and high levels of spatial dependence are 

associated with values near the 0.9 value. As noted previously, the Spatial Durbin 

Model can be viewed as a linear combination of the Spatial Autoregressive Model and 

Spatial Error Model. Thus I use only the Spatial Durbin Model specification in the 

Monte Carlo experiment, ignoring other types of spatial regression specifications 

developed to account for spatial dependence. 
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4.2.1.4 Estimation method 

The spatial Durbin model based on the various generated values for the vector 

y and matrices X and W X were estimated using a Bayesian Markov Chain Monte 

Carlo (MCMC) approach (LeSage 1997). The model estimation process is carried out 

for each of the nine alternative spatial weight matrices, including the "true" weight 

matrix used to generate the experiment data. The model estimates were based on 1,250 

draws with the first 250 omitted for the bum-in process required for MCMC sampling. 

Estimation relied on exact computation of the log-determinant term log I In - pWI. The 

information criteria discussed previously were calculated using posterior estimates, 

and the performance of these information criteria were judged according to their 

ability to discriminate between the true six nearest neighbor spatial weight matrix and 

the alternative matrices for varying levels of spatial dependence, signal-to-noise ratios, 

and sample sizes. The log-marginal likelihood criterion typically used for Bayesian 

model comparison purposes was also calculated for each experimental dataset as a 

benchmark against which to judge performance of the various information criterion. 

For each combination of experiment factors (5 levels of signal-noise ratio, 9 

different spatial dependence levels, and 3 different sample sizes), the entire data 

generation and model estimation process was repeated 100 times using the seven 

different weight matrices. The experiment thus consisted of 

5 x 9 x 3 x 100 x 9 = 121,500 simulations. Summarizing across these 121,500 

simulations, I evaluated the performance of different model selection criteria in terms 

of the probability of finding the true weight matrix in different model settings. 
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4.2.2 Monte Carlo experiments for the case of a binary dependent variable 

Aiming at assessing the performance of various model selection criterion in the 

discrete spatial probit model setting, I performed another set of Monte Carlo 

experiments based on a generated binary dependent variable. These Monte Carlo 

experiments mirror those for the continuous dependent variable case, but were 

simplified due to the heavy computational burden of estimating spatial probit models. 

The simplifications involved the following. Spatial weight matrices were based only 

on the 506 Boston census tract sample with only five alternative weight matrices 

constructed using five to nine nearest neighbors, with the six nearest neighbor weight 

matrix (W6 ) the "true" weight matrix used in the data generating process. The 

independent variables X were generated in the same manner as in the continuous 

model. Only three different levels of signal-to-noise ratio were employed based on 

setting the variance of the error term to 0.25, 1, and 5.0. As in the continuous 

dependent variable simulations, a continuous dependent variable y was generated 

using W6 and different spatial dependence levels and signal-to-noise ratios based on 

the spatial Durbin model specification. The simplification involved only three different 

p values: 0.3, 0.6, and 0.9, which correspond to weak, medium, and strong spatial 

dependence respectively. 

To maintain comparability of the information criterion performance 

comparison with results found for the continuous dependent variable and the spatial 

probit models, the continuous dependent variable y was truncated to,(0,1) values when 

the continuous y value was negative or positive, resulting in a binary dependent 

variable that we label Yb• 

Since the settings employed for the parameters, signal and noise variance and 

so on were devised to ensure a normal distribution of the continuous dependent 
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variable, that is centered on zero, truncation of the continuous dependent variable y 

based on negative and positive values to the (0, 1) values to produce a binary dependent 

variable Yb is consistent with the way we typically think of an idealized probit model 

data generating process. 

This truncation of a continuous dependent variable from the non-binary 

dependent variable experimental setting helps assess how information loss impacts the 

information criterion model selection performance in a ceteris paribus se!ting. 

4.2.3 Implementation of the binary dependent variable Monte Carlo experiments 

As noted, the spatial Durbin model for both continues and binary dependent 

variables were estimated using Bayesian MCMC based on the five weight matrices. 

For the case of the binary dependent variable based on the large sample of 506 

observations, the estimation of the spatial probit model used a one-step Gibbs sampler 

to construct the multivariate draws for the latent utility parameters (see LeSage and 

Pace 2009, chapter 10). Other estimation options such as number of draws and 

number of bum-ins remained the same as those in the case of the continuous 

dependent variable experiments. The experiment involved 100 replicated for each 

combination of design factors: 3 signal-to-noise ratios, 3 different spatial dependence 

levels, and 5 alternative spatial weight matrices, as in the case of the continuous model 

experiments. This experiment results in 3 x 3 x 100 x 10 = 9,000 replications. 

Finally, the probability of finding the true weight matrix for each data generated 

dependent variable vector was obtained for different scenarios by averaging over these 

100 replications, which allows us to compare the various information criterion 

performance with that found for the continuous models. The calculation of AIC, BIC, 

DIC, and log-marginal likelihood requires the exact closed-form log-likelihood of the 

corresponding model. It is possible to calculate this value for the case of models 
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involving a continuous dependent variable y, but we do not have an expression for the 

exact log-likelihood in the case of a binary dependent variable model such as the 

spatial Durin probit model, since the latent variable Yb has a multivariate truncated 

normal distribution. Therefore, computation of information criterion for the spatial 

probit model requires an approximation. One reasonable approach is to substitute 

latent Yb draws into the log-likelihood function during calculation of the DIC. 

Intuitively the Yb should be very close to the continuous y values if the MCMC 

sampling produces accurate draws reflecting these values which are treated ,as latent 

unobservable parameters in the spatial probit model. Following this reasoning, the 

posterior mean of the latent variable Yb draws were used in place of the binary values 

in the vector Yb to calculate AIC, BIC, and log-marginal likelihood values. 

4.3 Results and discussions 

It is important for researchers to know which model selection tool is most 

appropriate in a given modeling scenario. For example, given a certain sample size, 

level of spatial dependence, or type of dependent variable. The effects of varying these 

experimental factors in the Monte Carlo experiments on the ability of the various 

model selection criterion to find the true model can be summarized as follows. 

4.3.1 Weight matrix identification for the case of a continuous dependent variable 

Intuitively, different model comparison tools may have different power in 

identifying the true model, as their performance can be influenced by other design 

factors such as spatial dependence, signal-to-noise ratio, and sample size. In line with 

Stakhovych and Bijmolt (2008), I summarize the direction and strength of variation in 

these model design factors rather than present detailed parameter estimates. The 
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summary was constructed using analysis of variance (ANOVA) techniques. The main 

and interaction effects of these design factors on the probability of finding the true 

model are illustrated in Table 4.1. The ANOVA model fits the data well with an 

adjusted R2 = 0.918. All main and two-way interaction effects are significant at the 

0.01 level when the associated partial-772 is larger than 0.140. A plot of the probability 

of finding the true model specification with different model selection tools and design 

factors in shown in Figure 4.1. The analysis of Table 4.1 and Figure 4.1 point to the 

following conclusions. 

Table 4.1: Effects on the probability of identifying the true model with continuous 
dependent variable 

Source Df F Sig. 11; 
Intercept 1 68178.977 0.000 0.992 
Sample size (sample) 2 603.569 0.000 0.689 
Spatial dependency (rho) 8 146.293 0.000 0.683 
Variances of error term(var) 4 435.436 0.000 0.762 
Model selection tool (criteria) 4 489.354 0.000 0.783 
rho x criteria 32 21.712 0.000 0.561 
sample x criteria 8 11.056 0.000 0.140 
sige x criteria 16 5.685 0.000 0.143 
sample x rho 16 6.061 0.000 0.151 
rho x sige 32 4.583 0.000 0.212 
sample x sige 8 62.459 0.000 0.479 

Notes: R2 = 0.934 (Adjusted R2 = 0.918) 

First, model selection tools perform differently as the factor criteria in 

Table 4.1 is significant with 11; = 0.783. However, the differences lie mainly between 

the performance of the log-marginal likelihood and the various information criteria, 

while different information criterion reveal similar capabilities of identifying the true 

model. The similar performance of information criterion can be ascribed to their 

definitions. For example, AIC and BIC perform identically in terms of the 
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Figure 4.1: Probability of finding the true weight matrix 

probabilities of finding the true weight matrix in the continues dependent variable 

setting. The reason for this is that the difference between their definitions is in the 

"penalty function", which involves sample and parameter sizes, which do not relate to 

the spatial weight matrix. 

Second, the level of the spatial dependence (reflected in the parameter p) has a 

substantial effect on the probability of identifying the true weight matrix, as suggested 

by the significance of the factor rho and associated r;; of 0.683. For all models 

selection tools, the probability of selecting the true weight matrix among alternative 

_ matrices is higher with larger values of p, and the converse is also true. Although the 

performances of all model selection tools under investigation converge with strong 
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spatial dependence, the information criterion outperform the log-marginal likelihood 

with weak spatial dependence. The log-marginal likelihood's inability to identify the 

true weight matrix for small values of p is consistent with findings reported in LeSage 

and Pace (2009). 

Third, the sample size and signal-to-noise ratio also significantly impact the 

probability of finding the true weight matrix with substantial effects sizes reflected in 

rJ; of 0.689 and 0.762. Both sample size and different signal-to-noise ratio act 

similarly in the experiments as we would expect. As the signal-to-noise ratio 

increases, i.e., with larger sample size and/or smaller variances of the error terms, the 

performance of all models selection tools improve. This type of impact for the 

signal-to-noise ratio confirms previous studies by Stakhovych and Bijmolt (2008). 

Even with a large signal-to-noise ratio, the log-marginal likelihood remains incapable 

of identifying the true weight matrix with low spatial dependence levels. In contrast, 

the information criterion recover the true weight matrix nearly 100% of the time when 

the signal-to-noise ratio is high (for example, sample size = 500 and/or a variance of 

the error term c = 0.25), for all levels of spatial dependence in the experiment. In these 

cases, the signal-to-noise ratio is so large, i.e., so much information, that low spatial 

dependence no longer hinders performance of the information-based model selection 

tools. 

Researchers may be interested in the probability of recovering the true model 

as well as the discriminating power of the various model selection tools. That is, how 

substantial is the difference between the "true" model" and competing models in terms 

of AIC, AICc, BIC, DIC and log-marginal likelihood values? For example, a DIC 

difference of more than 7-10 units is regarded as "strong evidence" in favor of the 

model with the smaller DIC, while a different of 1.5 between log-marginal likelihoods 
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provides only "substantial support" for model with a smaller value. A plot of the 

minimum differences between the true model and alternative models is shown for the 

various model selection criterion as we vary spatial dependence levels, signal-to-noise 

ratios, and sample size in (Figure 4.2). This figure illustrates that the discriminating 

power of all model selection tools increases with larger sample size and 

signal-to-noise ratios as we would expect. It also p(1ints out that stronger spatial 

dependence is associated with larger differences in AIC, BIC, DIC and log-marginal 

likelihood values. 

4.3.2 Weight matrix identification for the case of a binary dependent variable 

The spatial dependence, signal-to-noise ratio, and sample size are also 

influential factors for performance of the various model selection tools in the case of 

the spatial probit model. For example, with a binary dependent variable, the main and 

interaction effects of the various de,sign factors on the probability of finding the true 

model are shown in Table 4.2 using the ANOVA model, which fits the data with an 

adjusted R2 of 0.984, and all main and two-way interaction effects are significant at 

the 0.01 level except the factor var which is significant at the 0.05 level. These effects 

are also substantial with associated partial-172 larger than 0.140. In order to compare 

performance of the information criteria in the case of continuous and probit models, a 

plot of the probability of finding the true model specification in both cases for different 

model selection tools and experimental design factors is shown in Figure 4.3. 

Model selection tools have a distinctly different level of performance for the 

case of a binary dependent variable, as indicated by the fact that the factor criteria is 

significant with 11; close to 1 at 0.993. Again, AIC and BIC perform identically in 

terms of the probabilities of finding the true weight matrix, consistent with the fact 

that the difference in their definitions does not include the weight matrix. The AIC, 
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Table 4.2: Effects on the probability of identifying the true model with binary 
dependent variable 

Source Df F Sig. rJ; 
Intercept 1 3293.250 0.000 0.993 
Spatial dependency (rho) 2 13.136 0.000 0.523 
Variances (var) 2 3.598 0.043 0.231 
Model selection tool (criteria) 6 591.924 0.000 0.993 
rho x .criteria 12 16.331 0.000 0.891 
var x criteria 12 10.700 0.000 0.843 
rho x var 4 5.468 0.000 0.477 

Notes: R 2 = 0.994 (Adjusted R 2 = 0.984) 

BIC and log-marginal likelihood have better performance than DIC. This can be 

ascribed to the fact that the model estimation procedure produced very accurate draws 

for the latent variable Yb (the correlation coefficient between Yb and Yb is around 0.9) 

and the posterior mean of Yb was used in place of the binary values in the vector Yb for 

calculating the AIC, BIC, and log-marginal likelihood. 

As suggested by Figure 4.3, AIC, BIC, and DIC perform worse in the spatial 

probit model than in the case of a continuous dependent variable, while the 

performance of the log-marginal likelihood is similar in both cases. Even within the 

group of information criteria, AIC and BIC perform significantly better than DIC, as 

the latter select the true weight matrix with very low probability in the spatial probit 

model setting. The degradation of performance in the information criterion is 

consistent with the notion that truncation of a continuous dependent variable should 

lead to a significant loss of information. 

A second finding is that the level of the spatial dependence (p) has a significant 

and substantial effect (rJ; = 0.523) on the probability of identifying the true weight 

matrix. As for AIC, the probability of being correct decreases when the spatial 
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dependence increases. Correlation, such as spatial dependence in this case, will cause 

a decrease in effective sample size, and become problematic when calculating 

statistics in the presence of missing data values. One can view this as the case, since 

we use latent variable parameter estimates arising during the estimation procedure to 

construct the information criterion measures for the spatial probit model. In addition, 

the probability of selecting the correct weight matrix using DIC remains very low 

under all conditions. In both binary and continuous cases, the performance of the 

log-marginal likelihood improves for larger p values (more spatial dependence). 

A third result pertains to the impact of the signal-to-noise ratio. The variance 

of error term var exerts a significant and substantial impact on the probability of 

finding the true weight matrix. However, the size of this effect is smaller than in the 

previous analysis involving the continuous dependent variable. This is because a large 

data sample containing 506 observations was used for this probit model test. A larger 

sample of course leads to a higher signal-noise ratio, so changing the variance of the 

error term in this case is less influential. 

Table 4.3: Model selection tool performances averaging out all experiment factors 

,Weight matrices W4 Ws w6 W1 Ws 

AIC 0.0000 0.0078 0.6933 0.2000 0.0989 
BIC 0.0000 0.0078 0.6933 0.2000 0.0989 
DIC 0.0389 0.0045 0.0111 0.0977 0.8478 
Log-marginal 0.0167 0.0233 0.8933 0.0445 0.0222 

Considering the overall probability of finding the correct weight matrix across 

all experimental factors for the model selection tools in the case of the probit test 

provides some interesting results (Table 4.3). First, as previously discussed, the 

log-marginal likelihood performed best as it identified the true weight matrix nearly 
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90% of the time. AIC and BIC are second best, with a 0.69 probability of recovering 

the true model. The worst criterion is the DIC which selected the true weight matrix 

with a probability of only 1 %. Second, all model selection tools tended to select a 

weight matrix with more nearest neighbors than the true number. Even though the 

log-marginal likelihood chose a weight matrix with six nearest neighbors (the true 

model in the experiments) 90% of the time, it selected weight matrices with seven and 

eight nearest neighbors more frequently (these having a 0.06 probability) than weight 

matrices with four and five nearest neighbors (where we see a 0.04 probability). The 

performance of AIC and BIC are slightly biased upwards as they identify weight 

matrices with seven or more nearest neighbors around 30% of the time. DIC is severly 

biased as it "hits the boundary" of the experimental range of weight matrices and 

suggests a weight matrix with eight nearest neighbors to be the true weight matrix 
,, 

with a probability of 0.85. 

I do not include AIC and BIC for the spatial probit model (AIC8 and BIC8 ) in 

the following analysis as they consistently produced poor model selection results. As 

simple modifications in "penalty function" do not improve the information criterion 

performance, other approaches needs to be derived with a more solid statistical basis. 

A possible solution would be the incorporation of the log-determinant term 

logJin - pWJ. Raftery (1996) suggested that the calculation for BIC should include 

the expected information matrix, which in our case involves the log-determinant term. 

4.4 Summary and implications 

This Monte Carlo study extended the AIC, BIC, and DIC information criterion 

for application to spatial econometric modeling situations where the dependent 

variable exhibits spatial dependence. Several experiments were used to provide 
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insights regarding performance of these different model selection tools for the task of 

selecting the appropriate spatial weight matrix. Performance of course varied 

depending on a host of factors used in the experimental design such as: continuous 

versus discrete dependent variables, the level of spatial dependence, and 

signal-to-noise ratio. The results indicate that the information criterion and 

log-marginal likelihood do not perform uniformly under different conditions. 

As for selection of the correct spatial weight matrix in the case of a model 

involving a continuous dependent variable, all model selection tools were capable of 

recovering the model based on the true weight matrix and the power to discriminate 

between models increased with larger sample sizes, increased signal-to-noise ratios, 

and stronger spatial dependence. The AIC, BIC and DIC information criteria produced 

similar model results in the continuous model setting. Although performance of all 

model selection tools under investigation converged in the presence of high levels of 

spatial dependence, the information criteria outperformed the log-marginal likelihood 

in cases involving weak spatial dependence. Therefore, information-based model 

selection criteria seem suitable for selecting the appropriate spatial weight matrix in 

spatial econometric models involving a continuous dependent variable. In contrast, for 

the case of the spatial probit model where the dependent variable was discrete, the 

log-marginal likelihood would be the best method for choice of the appropriate spatial 

weight matrix. The log-marginal likelihood perfqrmed similarly in both continuous 

and discrete dependent variable models. Performance of the information-based model 

selection criterion was worse in the discrete/spatial probit model setting. Moreover, 

DIC consistently produced the worst weight matrix selection results. Another finding 

was that all model selections tools were biased upwards in terms of selecting weight 

matrices with a larger number of nearest neighbors than used to generate the 

experimental dependent variable vector. The DIC had the largest upward bias with 
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AIC/BIC second. Another finding was that adjustments to the degrees of freedom used 

in the AIC and BIC criterion to take into account spatial dependence that arises in 

spatial models did not produce fruitful results. 

Therefore, I will use the log-marginal likelihood to determine the appropriate 

number of neighbors to use when forming the spatial weight matrix W used in 

analyzing the business re-opening decisions where the dependent variable was binary. 



Chapter 5 

MODEL SPECIFICATIONS 

Another Monte Carlo study which is similar to those in last chapter is 

conducted to compare the SAR versus spatial Durbin (SDM) model specifications 

over varying numbers of neighbors. Some initial results suggest that the SAR model 

specification to be more consistent with the sample data. Therefore, I will start 

elaborating on the spatial autoregressive probit model, then analyze the dependent and 

independent variables with a SAR probit model, and finally interpret the model 

estimates. 

5.1 A spatial autoregressive probit model 

Let the n _x 1 vector y be a 0, 1 binary vector reflecting the closed/open status 

of then firms at some point in time (say three months after Katrina). A conventional 

probit model would attempt to explain variation in the binary vector y using an n x k 

matrix of firm-specific explanatory variables X and associated k x 1 vector of 

parameters /3, under the assumption that each observed decision is independent from 

all others. LeSage and Pace (2009) set forth a spatial autoregressive (SAR) variant of 

the conventional probit mod,el that rakes the form shown in (5.1). 

--·- . (5.1) 

The spatial lag of the dependent variable W y involves the n x n spatial weight 

matrix W that contains elements consisting of either 1 / m or 0, where m is some 

number of nearest-neighbors. If observation/firm j represents one of the m-nearest 
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neighboring establishments to firm i, then the i, ;th element of W contains the value 

1/m. All elements in the ith row of the matrix W that are not associated with 

neighboring observations take values of 0. By construction, W is row-stochastic 

(non-negative and each row sums to 1). This results in then x 1 vector Wy consisting 

of an average of the m neighboring firms closed/open status, creating a mechanism for 

modeling interdependence in firm decisions to reopen in the aftermath of a disaster. 

The scalar parameter p measures the strength of dependence, with a value of zero 

indicating independence. It should be clear that when p = 0, we have a conventional 

non-spatial probit model. 

As previously mentioned, the common rationale behind the developed 

approaches considers treating the observed binary outcomes as indicators or 

, reflections that relate to underlying unobserved and continuous latent variable 

(Franzese and Hays 2008). The Bayesian estimation approach to these models is to 

replace the unobserved latent profit with parameters that are estimated. For the case of 

a SAR probit model, given estimates of the n x 1 vector of missing or unobserved 

(parameter) values that we denote as y*, we can proceed to estimate the remaining 

model parameters j3, p by sampling from the same conditional distributions that are 

used in the continuous dependent variable Bayesian SAR models (see Chapter IO in 

LeSage and Pace, 2009). More formally, the unobserved profits in this study can be 

modeled as: (1r1i - 7roi), i = 1, ... , n, where 1r1i represents profits (of firm i) in the 

open state and 7roi in the closed state. The probit model assumes this difference, 

y; = 1r1i - 1r0i, follows,a normal distribution. Because we do not ob.seJ:Ye y;, only the 

choices made, i.e., re-opening decisions, which are reflected in: 

Yi - 1, if y; > 0 

Yi 0, if y; < 0 
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If the vector of latent profits y* were known, we would also know y, which led 

.Albert and Chib (1993) to conclude: p(/3, a;ly*) = p(/3, a;ly*, y). The insight here is 

that if we view y* as an additional set of parameters to be estimated, then the (joint) 

conditional posterior distribution for the model parameters (3, a; (conditioning on both 

y*, y) takes the same form as a Bayesian regression problem involving a continuous 

dependent variable rather than the prnblem involving the discrete-valued vector y. 

This approach was used by LeSage and Pace (2009) to implement a Bayesian Markov 

Chain Monte Carlo estimation procedure for the SAR model in (5.1). 

5.2 Interpreting the model estimates 

Interpreting the way in which changes in the explanatory variables in the 

matrix X impact the probability of a firm reopening in the spatial autoregressive 

(SAR) probit model requires some care. The expressions in (5.2) make it clear that the 

probability (of a 0, 1 event outcome) is a non-linear function F() (the probability rule) 

of a function Un+ pW + p2W 2 + .. . )X/3 of the explanatory variables in the model X. 

y - pWy+Xf3+c: (5.2) 

y - S(p)X/3 + S(p)c: 

X/3 - X(1)f31 + X(2)f32 + · · · + X(k)f3k 

S(p) - Un -pw)-1 =Un+ pW + p2W 2 + ... ) 

Pr(S(p)X/3) F(S(p)X/3) 
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We first consider the simpler case of a non-probit spatial autoregressive model shown 

in (5.3), where z denotes a continuous n x 1 dependent variable vector. 

z - aln+pWz+X,B+c 

8z/8x~ - (In-pW)- 1In,8k 

- S(p),Bk 

(5.3) 

LeSage and Pace (2009) proposed using an average of the diagonal elements 

from the n x n matrix: 8 z / 8xk to produce a scalar summary of the direct effects, 

which are derived from the own partial derivatives: 8zi/ 8xk,i· 

They also use an average of the (cumulated) off-diagonal elements from the 

n x n matrix: 8 z / 8xk to produce a scalar summary of the (cumulative) indirect effects 

associated with the cross-partial derivatives: 8zi/8xk,J· This scalar summary measure 

cumulates the spatial spillovers falling on neighboring establishments as well as 

neighbors to these neighbors, and so on. 

When we allow for dependence among observations/firms, changes in the 

explanatory variables associated with one firm, say firm J will influence the dependent 

variable value of firm j as well as other firms, say i. The spatial autoregressive model 

collapses to an independence model when the scalar spatial dependence parameter p 

takes a value of zero. In this case, the cross-partial derivatives are all zero. 

For the case of spatial dependence, the (non-zero) cross-partials represent what 

are commonly thought of as spatial spillover impacts. Changes in the value of a single 

observation j explanatory variable can (potentially) influence all n - l other 

observations. This is true for all j = 1, ... , n explanatory variable values leading to 

then x n matrix of own- and cross-partial derivatives. This'motivates the need for 

scalar summary measures that average across the sample of observations similar in 
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spirit to the way we interpret conventional least-squares regression estimates. An 

important point is that the scalar summary measure of indirect effects cumulates the 

spatial spillovers falling on all other observations, but the magnitude of impact will be 

greatest for nearby neighbors and decline in magnitude for higher order neighbors. 

The sum of the two effects (direct and indirect) represent the (cumulative) total 

effect associated with a change in an observation for that explanatory variable. As for 

the more complicated case of the spatial autoregressive probit model, LeSage et al. 

(2010) develop scalar summary measures of spatial effects in the case of the pro bit 

model developed by incorporating the normal Cumulative Probability Function Pr(), 

and devising a matrix version of own- and cross-partial derivatives. With this newly 

derived effects summary for the spatial probit model, I will be able to calculate how 

the direct, indirect, and total effects of changes in the explanatory variables at one firm 

location impact the probability of the firm's reopening and its neighbors' reopening. 

5.3 A simple illustration 

To provide a concrete illustration, let us consider the case of seven firms 

located in a line along ( one side of) a street. Figure 5.1 shows seven regions located 

from west to east along a single highway. We use a simple spatial weight matrix that 

identifies a single left- and right-neighbor to each observation. Let y be a 0,1 binary 

vector, and: 

Fl F2 F3 F4 F5 F6 F7 
Firms 

Street 

Figure 5 .1: Seven regions along a commercial street 



y - pWy+X,B+c: 

Pr(y = 0, 1) - F[S(p)(X,B + c:)] 

S(p) - (In - pW)-1 

56 

We generated the vectors of flood depth and firm size. Subsequently, we 

calculated the probability of reopening using a model based on two explanatory 

variables, flood depth and firm size, using a value of the spatial dependence parameter 

p = 0.8 and assumed that the parameters associated with flood depth and size equaled 

-0.25 and +0.5. 

Pr(Reopening) = F[S(p = 0.8)(-0.25 flood depth+ 0.5 firm size)) (5.4) 

We show with the resulting values shown in Table 5.1. We note that using the 

conventional practice of interpreting predicted probabilities less than 0.5 as implying 

y = 0 and greater than 0.5 as y = l, the model perfectly predicts the pattern of 

observed 0, 1 values. 

Table 5.1: Illustration based on n = 7 firms 
Firms y-value Pr(y = 1) flood depth firm size 

obs 1 0 0.0036 40 1 
obs 2 0 0.0231 30 2 
obs 3 0 0.1964 20 3 
obs4 1 0.5131 25 4 
obs 5 1 0.8569 20 4 
obs 6' 1 0.9907 20 8 
obs 7 1 0.9968 20 8 

To illustrate the effect of changing a single observation on the probabilities we 

increased the flood depth at the location of firm number 3 from 20 to 60, ceteris 



paribus. Table 5.2 shows the original predicted probabilities Pr(y = l), the new 

probabilities Pr(y' = l) and the change in probabilities/predictions implied by the 

spatial autoregressive probit model Pr(y = 1) - Pr(y' = 1). 
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The first point to note is that the change_ in flood depth at the location of firm 

number 3 leads to a decrease in the probability that this firm will reopen by 14.14%. 

However, neighboring firms number 4 and number 5 are also impacted by the higher 

level of flooding at firm number 3, leading to a lower probability that these firms will 

reopen. Specifically, the probability that the immediately neighboring firm number 4 

will reopen decreases by 9.28%, and-that for the neighbor to this neighboring firm 

number 5 by 1.9%. These represent an illustration of spatial spillover impacts that 

arise when we allow for interdependence of other firms decisions on firm number 3 ~s 

decision to open/close. 

Table 5.2: The impact of changing a single observation 

Firms y-value Pr(y = 1) Pr(y' = 1) Pr(y=l)-Pr(y' = 1) flood depth 

obs 1 0 0.0036 0.0098 0.0061 40 
obs 2 0 0.0231 0.0241 0.0010 30 
obs 3 0 0.1964 0.0550 -0.1414 60 
obs4 1 0.5131 0.4203 -0.0928 25 
obs 5 1 0.8569 0.8375 -0.0194 20 
obs 6 1 0.9907 0.9904 -0.0003 20 
obs7 1 0.9968 0.9968 0.0000 20 

The direct effect arising from the change in observation number 3's flood depth 

is -0.1414, whereas the cumulative indirect effect is -0.1054, the sum of all non-zero 

changes, with the (cumulative) total effect being -0.2468. We also note that the 

change in flood depth at firm number 3 location leads the model to predict that firm 

number 4 would not reopen, since the probability of reopening has fallen from 0.51 to 



58 

0.42 as a result of increased flooding at the neighboring location. This directly lowers 

the chances that firm numper 3 will reopen by 14% and indirectly influences the 

reopening decision of firm number 4 its neighbor (as well as firm number 5 the 

neighbor to its neighbor). 

The effects presented in Table 5.2 represent only the impact of changing a 

single observation number 3, whereas the scalar summary measures based on the 

expressions for own- and cross-partial derivatives ( described earlier) would average 

over changes in all observations (for each explanatory variable in the model). 



Chapter6 

MODELING RESULTS 

6.1 Model coefficients 

As already noted, we wish to determine the appropriate number of neighbors 

to use when forming the spatial weight matrix W used in our model. This model 

comparison can be done based on log-marginal likelihoods values, which is calculated 

by the continuous dependent variable log-likelihood in conjunction with the posterior 

mean of latent draws for y*. Models based on varying numbers of nearest neighbors 

were estimated and the log-marginal likelihood values were calculated, which reflects 

the posterior probability of a certain model specification. The log-marginal likelihoods 

are converted into posterior probabilities, which represent the chance of a certain 

model specification being identical with the "true" model. The results point to a model 

with 13 nearest neighbors for the 3 and 12 month horizons and 15 neighbors at the 6 

month horizon (Table 6.1). 

In addition to using log-marginal likelihood values to explore the number of 

nearest neighboring stores to employ when forming the spatial weight matrix, the 

same approach is used to compare the SAR versus spatial Durbin (SDM) model 

specifications over varying numbers of neighbors. The results pointed to the SAR 

model as more consistent with the sample data and justify the adoption of SAR pro bit 

model. 

The coefficient estimates (posterior means, standard deviations and Bayesian 

p-levels) for the model parameters /3, pare shown in Table 6.2 for the three different 

time horizons. As already noted, the coefficient estimates /3 from the spatial 

59 



_ 60 

Table 6.1: Posterior probabilities for varying neighbors and three time horizons 

# Neighbors/Probsc 3 month 6 month 12 month 

2 0.0007 0.0006 0.0959 
3 0.0026 0.0003 0.0397 
4 0.0061 0.0027 0.0229 

I 5 0.0014 0.002 0.0185 
6 0.0431 0.0017 0.0227 
7 0.0022 0.0014 0.0198 
8 0.0165 0.0024 0.03 
9 0.0471 0.004 0.0131 
10 0.0424 0.0203 0.0106 
11 0.0169 0.0198 0.031 
12 0.0871 0.0799 0.1452 
13 0.0434 0.0136 0.1476 
14 0.521 * 0.0882 0.3075* 
15 0.0158 0.0037 0.0234 
16 0.0565 0.4388* 0.0147 
17 0.0712 0.0299 0.0068 
18 0.0259 0.2908 0.0505 
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autoregressive probit model cannot be interpreted as representing how changes in the 

explanatory variables affect the probability of stores reopening. One point to note is 

that the coefficient p associated with the spatial lag of the dependent variable_ W y is 

more than four standard deviations away from zero in all three sets of results. The 

magnitudes ranging between 0.42 and 0.59 point to significant positive spatial 

dependence in firm decisions regarding open/close status so that firms located nearby 

exhibit similar decision outcomes regarding reopening. 

The coefficient of the flood depth variable are statistically significant at 99% 

level for all three time horizons, which suggests a long-time impact from Hurricane 

Katrina. Other statistically significant coefficients (99% confidence interval) for 0-3 

month horizon_ include those for logged median income, low socioeconomic status, 

_ and sole proprietorships. low socioeconomic status, and sole proprietorships are 

significant using the 95% confidence interval for the 0-6 month horizon, while the 

former remains statistically significant for 0-12 month horizon. 

The signs (negative/positive) of the reported estimates in Table 6.2 reflect the 

signs of the direct effects estimates as well as the indirect and total effects which have 

the same signs in our SAR probit model. The reported signs suggest that some 

variables exhibited consistent signs for all three time horizons. Specifically, flood 

depth has a negative influence on the probability of firms reopening, (logged) median 

household income has a positive impact, small and large firms relative to medium 

sized firms have a negative impact, low social economic status of customers has a 

negative effect (relative to middle social economic status), and sole proprietorships 

exhibited a positive effect on the probability of stores reopening. 

Two variables exhibited a change in sign between the first two time horizons 

and the last, high social economic status and ownership by national chains, which both 
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had a positive impact on reopening at the first two time horizons but a negative impact 
-

in the last time horizon. These changes of sign suggest the role played by high social 

economic status and ownership by national chains are different as time elapsed. 

6.2 Direct, indirect, and total spatial effects 

The effects estimates for models covering the three time horizons are shown in 

Tables 6.3 to 6.5. These are the basis for inference regarding the impact of changes in 

the various explanatory variables on the probability of stores reopening as well as the 

(cumulative) spatial spillover impacts on neighboring stores. Unless noted otherwise, 

the effects estimate discussed here are statistically significant based on the 99% 

confidential interval. 

In the 0-3 month horizon, the flood depth variable exert!> a negative direct and 

(cumulative) indirect effect on the probability of stores reopening implying a direct 

effect of 4.4% decrease in probability of reopening for every one foot of flood depth, 

an indirect effect around 3.1 %, combining for a total effect around 7.6%. Over time, 

the direct effects -of flooding decrease to 2.3% by the 0-12 month horizon, whereas the 

indirect or spillover impacts decline by a smaller amount to 3.0% by the 0-12 month 

horizon. Total effects decline from 7.6% to around 5.3% over time. This seems 

consistent with the notion that disaster assistance as well as market forces work over 

time to produce a move back towards equilibrium, ameliorating the impact of flooding 

with the passage of time. 

In the 0-3 month horizon, (logged) median household income of the Census 

block group in which the store was located had a positive and significant direct effect 

that would raise the probability of stores reopening by 19.7% for every 1 % increase in 

income, an indirect effect of 13.9% for a total effect of 0.34. Over the next two time 
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horizons the direct, indirect and total effect of income remained positive, but 

diminished in size to produce a total effect that was insignificant (using the 0.05 and 

0.95 credible intervals). 

In the 0-3 month period, small size stores (measured by employment) had a 

negative direct effect, reducing the probability of reopening by around - 7. 7% (relative 

to the omitted category of medium sized/employment stores) with an indirect/spillover 

effect around -5.6% for a total effect around -13.3%. As in the case of the income 

variable, this variable became insignificant at the 0-6 and 0-12 month horizons. In 

comparison, the large size stores had a slightly smaller but still negative direct effect 

of -0.09, an indirect effect of -0.07, and a total effect of -0.16 in the 0-3 month 

period. The effects estimates for the first period are significant with 0.1 a-level, and 

become insignificant as time elapses. 

Low social economic status of the store clientele had a negative and significant 

impact for all three time horizons. During the 0-3 month period, the direct effects were 

equal to -0.091, with indirect effects of -0.066 for a total effect of -0.157 

suggesting a decrease in probability of reopening relative to the omitted class of 

middle social economic status. Over time the direct effects remained about the same 

during the next two periods, while the indirect effects increased to -0.11 and -0.10 in 

these latter two periods. We note that high social economic status clientele had a 

positive but insignificant effect (relative to the omitted class of middle social economic 

status) for all three time horizons. 

The other variable exhibiting significant effects was the ownership dummy 

variable representing sole proprietorships (relative to the excluded class of regionally 

owned chains). This variable had a positive direct effect of 0.16 and indirect effects of 

0.11, suggesting a positive total effect around 0.27 on the probability o( reopening in 



the 0-3 month horizon relative to the excluded class of regionally owned chains (the 

total effects for national chains are 3% ). This estimate seems consistent with the 

notion that sole proprietorships would be more likely to reopen quickly since this 

likely represents their sole source of economic support. 
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Over time, the direct effect declined to 0.09 and 0.03, becoming insignificant 

during the 0-12 month period. The indirect effect remained high during the 0-6 month 

peri~d having a magnitude of 0.12, but declined to 0.05 and became insignificant in 

the 0-12 month period. This pattern of relationships lead to a total effect in the 0-3 

month- period of 0.27 declining to 0.21 at the 0-6 month horizon and an insignificant 

0.08 in the 0-12 month period. Again, the notion that as time passes the influence of 

this ownership type might diminish as recovery leads back to an equilibrium situation 

seems intuitively plausible. 

These scalar summary effects estimates produce a valid global inference 

regarding the direction and comparative magnitude of influence for the model 

variables on the probability of stores' re-opening decisions. Deeper flood, smaller 

business size, lower socioeconomic status of the store cliente, sole proprietorships, and 

higher median household income of the Census block group at a particular firm's 

location, would lead to a larger probabilities of reopening of that firm, as well as 

positive spatial spillover effects which increase neighboring firms' probability of 

re-opening. 
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Table 6.2: SAR Probit model estimates for three time horizons 
Part 1: 0-3 months time Q_orizon 

Variables Posterior Mean Std Deviation p-level 
constant -7.158531 2.677524 0.004000 
flood depth -0.155659 0.043976 0.000000 
log(median income) 0.686685 0.260414 0.004000 
small size -0.266117 0.143268 0.031000 
large size -0.323012 0.330496 0.161000 
low status customers -0.318269 0.165219 0.023000 
high status customers 0.097288 0.133581 0.227000 
sole proprietorship 0.548108 0.195808 0.003000 
national chain 0.063874 0.372836 0.435000 
Wy 0.417119 0.098652 0.000000 

Part 2: 0-6 months time horizon 
Variables Posterior Mean Std Deviation p-level 
constant -2.943112 2.587916 0.133000 
flood depth -0.110292 0.032870 0.000000 
log(median income) 0.306807 0.254534 0.116000 
small size -0.107887 0.146387 0.228000 
large size -0.356895 0.318280 0.126000 
low status customers -0.355684 0.165377 0.016000 
high status customers 0.027769 0.155180 0.442000 
sole proprietorship 0.375451 0.181157 0.020000 
national chain 0.286679 0.381303 0.232000 
Wy 0.577877 0.076106 0.000000 

Part 3: 0-12 months time horizon 
Variables Posterior Mean Std Deviation p-level 
constant -3.825662 2.999146 0.096000 
flood depth -0.101883 0.032870 0.000000 
log(median income) 0.433212 0.295146 0.068000 
small size -0.188510 0.159744 0.115000 
large size -0.269888 0.326356 0.198000 
low status customers -0.347205 0.162231 0.018000 
high status customers -0.103846 0.165248 0.248000 
sole proprietorship 0.155128 0.188673 0.212000 
national chain -0.123218 0.383073 0.365000 
Wy 0.586851 0.079149 0.000000 



Table 6.3: SAR Probit model effects estimates for 0-3 month time horizon 
Part 1: Direct effects 

Variables 
flood depth 
log(median income) 
small size 
large size 
low status customers 
high status customers 
sole proprietorship 
national chain 

flood depth 
log(median income) 
small size 
large size 
low status customers 
high status customers 
sole proprietorship 
national chain 

flood depth 
log(median income) 
small size 
large size 
low status customers 
high status customers 
sole proprietorship 
national chain 

Lower 0.05 Posterior Mean 
-0.069600 -0.044884 
0.053467 0.197126 

-0.160497 -0.076981 
-0.273167 -0.092907 
-0.184635 -0.091560 
-0.052098 0.028067 
0.051317 0.157991 

-0.190847 0.018582 

Part 2: Indirect effects 
-0.057033 -0.031440 
0.028678 0.139540 

-0.137540 -0.055895 
-0.228540 -0.069595 
-0.176937 -0.066379 
-0.036890 0.020239 
0.027357 0.115004 

-0.163904 0.012313 

Part 3: Total effects 
-0.116964 -0.076323 
0.091016 0.336666 

-0.282904 -0.132876 
-0.487373 -0.162502 
-0.333515 -0.157939 
-0.089262 0.048306 
0.083613 0.272995 

-0.345965 0.030895 

Upper0.95 
-0.021917 
0.332591 
0.004433 
0.094821 

-0.002830 
0.105184 
0.266298 
0.224714 

-0.012224 
0.291662 
0.004233 
0.069056 

-0.001096 
0.085859 
0.254768 
0.178825 

-0.040174 
0.571705 
0.008180 
0.155165 

-0.003922 
0.180701 
0.487063 
0.381417 
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Table 6.4: SAR Probit model effects estimates for 0-6 month time horizon 

Variables 
flood depth 
log(median income) 
small size 
large size 
low status customers 
high status customers 
sole proprietorship 
national chain 

flood depth 
log(median income) 
small size 
large size 
low status customers 
high status customers 
sole proprietorship 
national chain 

flood depth 
log(median income) 
small size 
large size 
low status customers 
high status customers 
sole proprietorship 
national chain 

Part 1: Direct effects 
Lower 0.05 Posterior Mean 
-0.043040 -0.027292 
-0.055334 0.076065 
-0.101645 -0.027560 
-0.249673 -0.089563 
-0.167701 -0.088025 
-0.068971 0.007314 
0.006258 0.094298 

-0.114009 0.071363 

Part 2: Indirect effects 
-0.057026 -0.034932 
-0.081650 0.095816 
-0.153473 -0.036527 
-0.355161 -0.116735 
-0.245362 -0.114874 
-0.096922 0.007633 
0.006338 0.124584 

-0.148355 0.094969 

Part 3: Total effects 
-0.092647 -0.062224 
-0.136406 0.171881 
-0.255375 -0.064088 
-0.598493 -0.206298 
-0.395030 -0.202899 
-0.163803 0.014947 
0.014259 0.218882 

-0.270969 0.166333 

Upper0.95 
-0.012419 
0.195196 
0.042505 
0.066283 

-0.007667 
0.091351 
0.191935 
0.263166 

-0.016612 
0.259106 
0.054500 
0.083706 

-0.013511 
0.112239 
0.280572 
0.383949 

-0.030839 
0.433592 
0.100316 
0.143543 

-0.020548 
0.200101 
0.459625 
0.625045 
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Table 6.5: SAR Probit model effects estimates for 0-12 month time horizon 
Part 1: Direct effects 

Variables Lower0.01 Posterior Mean Upper0.99 
fl9od depth -0.038171 -0.023219 -0.008507 
log(median income) -0.028286 0.098796 0.232998 
small size -0.118636 -0.043713 0.027404 
large size -0.234627 -0.062016 0.094639 
low status customers -0.158440 -0.079941 -0.006709 
high status customers -0.104160 -0.023621 0.054097 
sole proprietorship -0.049391 0.035359 0.122883 
national chain -0.198385 -0.029019 0.150640 

Part 2: Indirect effects 
flood depth -0.049707 -0.030394 -0.013516 
log(median income) -0.042144 0.128706 0.315660 
small size -0.185028 -0.059541 0.041219 
large size -0.323216 -0.083896 0.11303 
low status customers -0.226731 -0.105796 -0.008666 
high status customers -0.143146 -0.031171 0.074168 
sole proprietorship -0.066163 0.048810 0.179643 
national chain -0.279671 -0.038422 0.211160_ 

Part 3: Total effects 
flood depth -0.082558 -0.053613 -0.023535 
log(median income) -0.071296 0.227502 0.534166 
small size -0.298076 -0.103254 0.068205 
large size -0.525085 -0.145912 0.196055 
low status customers -0.368830 -0.185738 -0.015330 
high status customers -0.238708 -0.054792 0.125534 
sole proprietorship -0.112203 0.084169 0.291942 
national chain -0.466476 -0.067441 0.366107 



Chapter 7 

CONCLUSIONS 

This study employs a theoretical framework from micro-scale retail location 

studies and implements a spatial autoregressive probit model to account for spatial 

dependence among firms' decisions to study the determinants of business return to 

New Orleans after Hurricane Katrina. Spatial dependence of household or firm 

decisions when these economic agents are located nearby is likely to be a frequently 

encountered situation in applied spatial modeling. Existing literature on micro-scale 

retail locations suggest that extant patterns of retail activity influence choices of 

consumers ( or patrons) and location decisions by retailers. The decision of a business 

establishment to re-open after a natural disaster such as Katrina could be viewed as 

similar to the original location decision made by the firm when it entered business. If 

the surrounding environment was important for the original decision, it should be 

equally influential in the decision to re-open in the same or another location after the 

disaster. This consensus provides a strong motivation for adopting an spatial probit 

model which allows for interdependence among observations. 

Along with estimating the spatial probt model, the study adopts scalar 

summary measures for the total effects ( or impacts) associated with changing the 

explanatory vari;i.bles. This is analogous to the situation arising in non-spatial probit 

models where 'marginal effects' are calculated in an effort to consider the nonlinearity 

of response in decision probabilities with respect to changes in the magnitude of the 

explanatory variables. 
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The findings with regard to factors influencing business return in New Orleans 

after Katrina suggests a significant positive spatial dependence in firm decisions 

!egarding open/close status so that firms located nearby exhibit similar decision 

outcomes regarding reopening. This statistically significant spatial dependence 

justifies the adoption of a spatial probit model. As expected, flood depth plays a 

negative and significant role in affecting firms' decision regarding reopening, as the 

associated coefficients are significan~ for all three time horizons. A scalar summary of 

the spatial spillover effects among firms produces a valid global inference regarding 
( 

the direction and comparative magnitude of influence for the model variables on the 

probability of stores' re-opening decisions. Deeper flood, smaller business size, lower 

socioeconomic status of the store cliente, sole proprietorships, and higher median 

household income of the Census block group at a particular firm's location, would 

lead to larger probabilities of reopening for that particular firm, as well as positive 

spatial spillover effects which increase neighboring firms' probability of re-opening. 

The results also show that the effects of different variables change, in terms of 

both direction and magnitude, with passage of time after the disaster. For example, 

two variables exhibited a change in sign between the first two time horizons and the 

last, high social economic status and ownership by national chains, which both had a 

positive impact on reopening during the short time horizons but a negative impact in 

the longer time horizon. These changes of sign suggest the role played by associated 

variables are different as time elapsed. As for effects' magnitude, we found that in the 

short-term (0-3 months) the sole proprietorship ownership category had a positive 

impact on the probability of these firms reopening, as well as a positive impact on the 

probability that neighboring establishments reopened. With the passage of time (0-6 

months), the direct impact of this ownership type (relative to regional chains) 

diminished while the spatial spillover impacts on neighboring firms grew, with both 
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remaining positive and significant. As one might expect, very high levels of flooding 

at store locations tended to mitigate the positiye impacts associated with this type of 

ownership. In the longer-time (0-12 months) as the impact of disaster aid and other 

forces bringing the economic climate back towards normality, factors that influenced 

the probability of reopening in the short-term diminished to the point of insignificance 

in many cases. 

Another contribution was a Monte Carlo study of extended information 

criteria, such as the AIC, BIC, and DIC, for application in spatial econometric 

modeling. This provides some insights about performance of different model selection 

tools for choosing a spatial weight matrix, conditioning on the type of dependent 

variable, level of spatial dependence, and signal-noise ratio. The experiment indicated 

that different information criteria as well as log-marginal likelihood do not perform 

uniformly under different conditions. 

As for selection of the correct spatial weight matrix in the case of a model 

involving a continuous dependent variable, all model selection tools were capable of 

recovering the model based on the true weight matrix and the power to discriminate 

between models increased with larger sample sizes, increased signal-to-noise ratios, 

and stronger spatial dependence. The AIC, BIC and DIC information criteria produced 

similar model results in the continuous model setting. Although performance of all 

model selection tools under investigation converged in the presence of high levels of 

spatial dependence, the information criteria outperformed the log-marginal likelihood 

in cases involving weak spatial dependence. Therefore, information-based model 

selection criteria seem suitable for selecting the appropriate spatial weight matrix in 

spatial econometric models involving a continuous dependent variable. In contrast, for 

the case of the spatial probit model where the dependent variable was discrete, the 
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log-marginal likelihood would be the best method for choice of the appropriate spatial 

weight matrix. The log-marginal likelihood performed similarly in both continuous 

and discrete dependent variable models. Performance of the information-based model 

selection criterion was worse in the discrete/spatial probit model setting. Moreover, 

DIC consistently produced the worst weight matrix selection results. Another finding 

was that all model selections tools were biased upwards in terms of selecting weight 

matrices with a larger number of nearest neighbors than used to generate the 

experimental dependent variable vector. The DIC had the largest upward bias with 

AIC/BIC second. Another finding was that adjustments to the degrees of freedom used 

in the AIC and BIC criterion to take into account spatial dependence that arises in 

spatial models did not produce fruitful results. 
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