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STANDING WAVES TO CHERN-SIMONS-SCHRODINGER
SYSTEMS WITH CRITICAL EXPONENTIAL GROWTH

YOUYAN WAN, JINGGANG TAN

ABSTRACT. In this article we study the existence of standing waves to nonlin-
ear Chern-Simons-Schrédinger systems with critical exponential growth.

1. INTRODUCTION AND MAIN RESULT

We study the existence of ground state to the Chern-Simons-Schrodinger system
(CSS system) involving a nonlinearity f(u) in the case of critical exponential growth

2
—Au+u+ Agu + ZA?U = f(u),
j=1

Ao = Aslul?,  DsAo = —Asful?, (L.1)

81A2 - 82A1 = —%’LLQ, 81A1 + BgAg = 0,
-
ox’
0y = 8%2' This system arises in the study of the standing wave of Chern-Simons-
Schréodinger system that describes the dynamics of large number of particles in a
electromagnetic field. Chern-Simons terms in CSS system are necessary ingredi-
ents in various anyon models describing many fermimion systems such as electron
paring in the high-temperature superconductor, fractional quantum Hall effect and
Aharovnov-Bohm scattering, see [28] 29] and references therein.
Since the gauge field A, is coupled to complex field ¢ € C, the Euler-Lagrange
equations of the energy which are given by

iDop + (D1D1 + D2 Do) = f(¢),
doA1 — 014y = —Im(¢D2),
80A2 — 82140 = Im(qBDl(b), (12)

where 4, € R, = 0,1,2, is vector potential of the gauge fields, dy = %, 01

1
0142 — 02 A1 = *§|¢|2-

Here D¢ = (0, +iA,)¢, p=0,1,2. The CSS system (1.2)) is invariant under the
following gauge transformation ¢ — ¢eX, A, — A, — 0, x where x : R1™2 - R
is an arbitrary C'°° function. We assume that the gauge field satisfies the Coulomb
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gauge condition 9y Ag + 1 A1 + 2 A3 = 0. Then the standing wave 9 (x,t) = e™?t u
satisfies
—Au 4 wu + Agu + A?u+ AZu = f(u),

O Ao = Agu®,  0yA¢ = — A0, (1.3)
1
81142 — 82141 = —§‘U|2, 81A1 + 32142 =0.
We say that f(s) has subcritical growth at +oo if for all « > 0,
lim 1(s)

2
s—+4o00 XS

=0 (1.4)
and f(s) has critical growth at +oo if there exists ag > 0 such that

. f(s) 0, if a > ag,
lim > = )
s—+4o0 s 400, if a < ap.

We assume f(u) satisfies the following conditions:

(A1) f € C(R,R) and f(0) = 0, lims_,o F(s)/s? = 0;
(A2) There exist § > 6 and s; > 0 such that for all |s| > s;

0.< OF(s) = 9/ £t dE < s(s);
0
(A3) There exists Sy > 0 such that

lim sf(s)e_o‘os2 > Bo.

s——+oo

We remark that the condition (A2) can be replaced by
0 < F(s) < Mof(s), if[s|= R,

for some constants Ry, My > 0.

The standing waves of have been investigated by Byeon, Huh and Seok [2].
They were seeking the radial solutions when f(u) = Aju[P~tu, A > 0 and p > 2 by
variational methods, see also [I1],[12]. A series of existence and nonexistence results
of solitary waves has been established in [4, [5 17, 24] 25 26] B0]. We studied
the existence, non-existence, and multiplicity of standing waves to the nonlinear
CSS systems with an external potential V' (z) without the Ambrosetti-Rabinowitz
condition in [27]. Sign-changing solutions and Nodal standing waves to a gauged
nonlinear Schrédinger equation have been established by [7, 18 [19, 20]. Sign-
changing multi-bump solutions were found in [3].

Moreover, we have shown the existence of nontrivial solutions to Chern-Simons-
Schrédinger systems by using the concentration compactness principle with
V() is a constant and the argument of global compactness with V € C(R?) and
0 < Vo < V() < Vi under the condition p > 4 in [28]. We also have obtained the
concentration behavior of the solutions to system with p > 6 in [29]. The main
characteristic of system is that the non-local term A,, u = 0,1,2 depends on
u and there is a lack of compactness in R%2. By using the variational method we
can obtain the following result.

Theorem 1.1. If f(s) is critical growth and (A1)-(A3) hold, then Problem (1.1)
has a solution.
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We mention that Zhang and Wan also proved that if f(s) is subcritical growth
then Problem has a solution in [33]. On the other hand, radial solutions for the
Chern-Simons-Schrodinger equation with exponential growth can be found in [16].
To demonstrate the desired result, we employ the approach which was developed
by do O, Medeiros and Severo [8]. Here we mention that Pan, Li, Tang [23] studied
CSS system with critical growth; see also [6, 21]. Sign-changing solutions have been
found for the nonlinear Chern-Simons-Schrédinger equations in [31] Normalized
solutions of Chern-Simons-Schréodinger system are studied by [10, 22, [32].

This article is organized as follows. In Section 2 we introduce the framework and
prove some technical lemmas. In Section 3 we prove Theorem [1.1

2. MATHEMATICAL FRAMEWORK

In this section, we outline the variational framework for a future study. We
consider the functions which belong to the usual Sobolev space H'(R?) with

1/2
Jull = ( [, 19 +1uf? o)

Define the functional

1
J(u):§/Rz (IVul? + ul? + A2Jul? + A3Jul?) d:c—/RQ Fluyde,  (21)

where F(u) = ;' f(s)ds. We have the derivative of J in H'(R?) as follows
) = [ (FuTn+ = flm+ (AF) + A3(w)un + Agun) do
+ 2 /11%2 Aqu? - Koz, y)u(y)n(y) dy dz (2.2)
w2 [ A [ K@ utuint) dydo
for all n € C§°(R?). Especially, from (2.4), we have
(I (u), u) = /R (IVul? + [ul? + 3(A3 () + A3() [ul® = flu)u) do. (23)

Substituting 0; Ag = Asu?, 8,49 = —Aju? in the Coulomb gauge condition 0, 41 +
02 A = 0, we obtain

0= 050140 — 10249
= 82(14211,2) —+ 51(A1u2)
= 2u(A181u + Agagu) + u2(81A1 + 82142).

This implies

2
Z A]@ju =0.
j=1

This also implies the imaginary part of the CSS system vanishes.
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Again we can derive from 9 Ay — 9y A; = —3u? that
/ A0|U|2 dxr = —2/ A0(81A2 - 82A1) dx
R2 R2

= 2/ (A281A0 - A182A0) dx (24)
R2

= 2/ (A3 + Ad)|ul? da.
R2

Combining the equation 9; Ay — 92 A1 = —u?/2 and the Coulomb gauge condition
0141 4+ 0245 = 0 provides that the components A; can be determined from w by
solving elliptic system

|ul?

2
u u
AA; = 52(7), AAy = —31(u

2)'

That are equivalent to

[ul®
2

ful®
2

—&2 &1
F(A) = —=F( ==
€1 €17
where F denotes the Fourier transform of an integrable function.
Then we have the following representation of (Aj, As),

), F(A2) F(=-)

|ul? 1 x2 — y2 |ul*(y)
A= Ar(u) = Ko+ () = - = d 2.5
1=Aiw) =Ko () = — o e Te =P 2 ; (2.5)
\“|2 1 / T1— Y1 |u|2(2/)
Ay = Ag(u) = — K1+ (1) = = d 2.
2 2(“) 1% ( 9 ) o1 2 ‘.T — y|2 2 Y, ( 6)

T

where K; = Q;TJP for 7 = 1,2 and * denotes the convolution. Moreover, the system
81140 = A2U2, 82A0 = 7A1’LL2 implies that
AAg = 01 (Azful®) = By (Asful?),
which yields the following representation
A() = A()(’LL) = K1 * (A1|U‘2) — KQ * (AQ"LLF)
_ 25, 5 14 2, U
_Kl*(|u\ Ko * 5 )—|—K2>k(|u| K * 5 )

We know that J is well defined in H'(R?), J € C'(H'(R?)), and the weak solution
of (|1.1)) is the critical point of the functional J from the following properties, which
we refer to [28] 29].

(2.7)

Proposition 2.1. Let 1 < s <2 and % — % = %

(i) There is a constant C' depending only on s and q such that

(/Rz [Tuta)|"dr) " < 0(/@ ju(a)*dz) "

where the integral operator T is defined as

Tu(z) = /R u(y)

2 |z —yl
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(ii) If u € H*(R?), then we for j = 1,2,
143 ()| Lacrzy < Cllullfz: ge),
[Ao(u)l|Larzy < Cllullfe: ge)llullFsge)-
q

(ili) For ¢’ = ;47 and j = 1,2, we have

147 (W)l r2(re) < [11A; () | Lo qe) Ul 7 2 g2y -
We will need the following properties of the convergence for A;, see [29].

Proposition 2.2. Suppose that u, converges to u a.e. in R? and u, converges
weakly to u in H*(R?). Let A, ,, :== Au(un(z)), p=0,1,2. Then

(i) A, n converges to A, (u(z)) a.e. in R2.

(il) fgo A% Junude, [po A% |ul?dz, and [po A3, |un|? do converge to [, A3|ul? du,
Jor j =1,2; [oo Agpupudz and [oo Ao plun|?® da converge to [o, Aolul?® da.

(1) fio 1At — 0) Pl — w2 do = o |A3 () Plua[> do — Jy | A5 () Pl dor +
On(l)’ fOT’j =1,2.

To prove the mountain pass construction, we need the following results from [g].

Proposition 2.3. (i) If a > 0 and u € H'(R?), then

/ (e"‘“2 — 1) dr < 0o.
R2

Moreover, if |[Vul|3 <1, |[ull2 £ M < 0o and a < 47 then there erists a constant
C = C(M, «), which depends only on M and «, such that

/ (e"‘“2 —1)dz < C(M, o).
RQ

(ii) Let {wy} in HY(R?) satisfy |w,| = 1. Suppose that w, weakly converges to wy
in H'(R?) with ||wo| < 1. Then for all 0 < B < 3~

1—]Jwo|?”

sup/ (eBIw”|2 — 1) dx < oo.
R2

n

(i) Let B > 0 and r > 1. Then for each o > r there exists a positive constant
C = C(a) such that for all s € R,

(7 —1)" < (e —1).

In particular, if u € H(R2) then (e#** — 1) belongs to L*(R2).
(iv) If v e HY(R?), 8> 0, ¢ > 0 and |jv|]| < M with BM? < 4x, then there exists
C=C(B8,M,q) >0 such that

/R2 (¢ — 1)o]?dz < C|o]". (2.8)

Next, we prove that the energy functional J has the mountain pass structure.

Lemma 2.4. Assume (Al), (A2), and (1.5) hold. Then there exists p > 0 such
that J(u) > 0 if ||u|| = p.

Proof. From (A1), (A2), and (L.5)), there exists € < \/2, where A is the best constant
of L?(R?) — H'(R?), such that

|F(s)] < €]s]? + Cy|s|?(e™” — 1), (2.9)
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for all s € R and ¢ > 2. By (iv) of Proposition [2.3] and the Sobolev embeddings,
we obtain

1 e
J(w) = (5 = Plull® = Cillu]”. (2.10)
Consequently, by using € < %)\ and ¢ > 2, we can choose p > 0 such that for
lull = p
1 e
> - _
J(w) 2 [lulll(z = 5
Lemma 2.5. Assume that f satisfies (A2). Then there exists e € E with |le|| > p
such that I(e) < infy, =, I(u).

Mull = llul*~1] > 0. 0

Proof. Let u € H'(R?) such that u = s1 in By, v = 0 in BS and v > 0. Denoting
k = supp(u). From (A2), for all s € R we have

F(S) Z 01|8|6 — 02. (211)

Then, for ¢ > 1 we have

t2
I(tu) < —Hu||2+ct6||u||ﬁfct0/ u? da + C1 k).
2 {@: t]u(z)>s1}

Since 6 > 6, we obtain I(tu) — —oo as t — +o0o0. Setting e = tu with ¢ large
enough, the proof is complete. O

We need the following result to prove the (PS) condition.

Lemma 2.6. Assume (A2) and (1.5). Let (up) in E such that J(u,) — ¢ and
J'(un) — 0. Then, |lun|| < co, [po fun)unda < co, and [5, F(uy,)de < c.

Proof. First, we prove that ||u,|| < co. We have

1

1
f|\unu2+f/ (A%n|un|2+A§n|un|2>dx—/ Flup)de = ¢ + on(1)
2 2 ]R2 ’ ’ Rz

and for any ¢ € E,

/ (Vunch + unap) dx + / (A%n + A%yn + Ao’n)uncp dzr — / flup)pde
R2 R2 R2

= on([lelD)-
From (A2) and 6 > 6, we obtain

0 0
b+ enllunl > (5 = Dllun P+ (5 =3) | | (A lunl? + 43 ) do

7/ (HF(un) - f(un)un) dx
RQ

0
> (5~ Dl - | (OF () ~ F ot i)
{z:|un(z)|<s1}
where €, — 0 as n — oo. Using that |f(s)s — F(s)| < c1]s| for all |s| < s1, we
obtain

0
Oc+ enllunll = (5 = Dllunll* = crflunll,
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which implies [|u,|| < ¢o. Next, we show [oo f(un)u, dz < c¢o and [p, F(uy,) dz <
¢o. In fact, since |ju,|| < co, J(un) — ¢, and J'(u,,) — 0, we have
1 1
[ Bt = glunl 5 [ (Al 4 43 ) i = -+ 0,0,
R2 R?

[, fyunde = unl+3 [ | (4 + 43,2 do = e,

where €, — 0 as n — oo. By Proposition and Sobolev embedding theorem, we
obtain

[ Fun) < Gl 4l = e+ 0a(0),

[, £ do = e+ Clun | = 2 ]

From ||uy|| < co, we obtain [, f(tun)un dz < ¢g and [p, F(u,) dz < co. O

3. PROOF OF MAIN RESULTS

First we need prove the Palais-Smale condition. Using Moser’s function se-
quences, we can obtain the minimax level of the mountain pass solution. Let

(logn)'/ if [z] < ¢,

Yn(z) = Nor: % if ro/|n| < |z < 7o,

0 if |z| > ro.

Notice that 1, € H(R?), supp ¢, C By, for a fixed ro. By using the fact

1 1
1
/ Vlog |x| dx = 27 |Vlogr|2rd7“:27r/ —dr = 2w lnay,
{ao<|z|<1} o0 r

ao

we can prove that [, |V |2 dz: = 1. Moreover,
~ 1
/ a2 dz = O(——), asn — cc.
2 logn
Thus, we can conclude that [|¢),| — 1 as n — oc.
Considering ¥, = ¥, /||¥n]|, we can rewrite
V2 (x) = (2n) logn +d,, forall |z| < T—O,
n

where d,, = (21) (||| ' — 1) log n. Consequently

dn
logn
On the other hand, we know that

lim / |t |? dz = 0.

n—00

—0 asn— oo. (3.1)

By the Holder inequality, for 260 + ¢; (1 — ) = 4 we have

1-6
1nll T2y < l9n 3% @) [9n S 22
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Then we can deduce that

lim [T dz =0 for ¢4 > 2,
n—oo R2

lim [ Aj(¢n)*Y2 de = 0.
n—oo R2

Proposition 3.1. Assume that (A2)—(A4), hold. Then there exists n € N such
that

A 2 2 2 2 2m
max 5+ 5 [ (@l + ) do - [ Fiev) ] <2
Proof. Let us choose rg > 0 such that
2
3.2
BO > T%CM()’ ( )
where 3y has been fixed in (A3). Suppose by contradiction that for all n
2 6 9 9 9 27
2 2 R2 R2 Q)

1sl
From (A2), there exist positive constants Cy, C7 such that F(s) > Cie™o — Cj.
Consequently, if ¢t > 0 is sufficiently large and m > 2, we have

/ F(t,)de > —C4 —|—/ et¥n/Mo gy
R2 {tpn>s1}

>0+ 03/ ()™ da
{t¢n281}

2 —Cl + Cgtm/ (¢n)m dx.
{wnzsl}
Hence, for each n there exists unique maximum point ¢, such that

2o

5ty [, (ATWn) + A5(wn) il dar ~ /]R F(tntpn) dz = max J (t4),)

and

d
From which it follows that

2 +3t2/ (A2 (¥n) + A3(¢n)) [¥on|? dz —/ tntn f(tnthy) dz = 0.
]R2 R2

(3.4)
By (A3) for each € > 0 there exists R. > 0 such that
Unf(¥n) > (Bo — &) exp(aoyy) (3:5)
for all ¢,, > R, and |z| < rg. From (3.4) and (3.5)), we have
3t [ (AR0) + A3 6 do
k2 (3.6)

> (Bo — ) (22)” exp(2242 log n + 200t2dy).
n 2T
That is,

1388 [ (A30) + A0 0 do
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> (Bo — e)mra exp(;—oti logn + 2agt2d,, — 2logt, —2logn).
™
Since [po (AT (Vn) + A3(¢n))[Yn|>dz — 0, as n — oo, we obtain that {t,} is
bounded.
We claim that

4
2 — —ﬂ, as n — 0o. (3.7)
a0
In fact, by (3.3 @, (3.4), and (A2), we have
2 5 9 ) 9 2m
- T 5 (Al(@/}n) + AQ(wn)) W)n‘ dx > — 4+ F(tnwn) dz
2 2 R? Qo {tnwn<51}

Since {t,} is bounded, by ([2.9) and [|1/,||2 — 1 as n — oo, we obtain

1 ~
’/ F(tnwn)dx‘SC/ W2 de = C— 32 da = 0.
{tnn<s1} R2 ||’(/JTIH2 R2

Note that fR2 (A2 ) + A3 (Vn )|wn|2 dr — 0 as n — oco. Consequently,

2 > 0777 +o0,(1), asn— oo.
Suppose by contradiction that lim,, ., t2 > . From , we have
&t [ () +A§<wn>>|wn|2dx
R2

> (Bo — €)7rg exp ((%ti —1)2logn + 2a0tidn).

Since (3.1)), the last inequality contradicts the boundedness of {¢,,} and the claim
holds.
Let us denote

Oy :={x € By 1 tyhy, > Re}, and Qg = By \ Q1.
By (3.4) and (3.5)), we obtain
2438 [ (A3 + A300)) nf? da
RQ

Z (60 o E)/ eaotiwi +/Q tnwnf(tnwn) _ (60 _ 6)/Q eaotiwi.

B,

(3.8)

Since 9, (z) — 0 as n — oo and the characteristic functions xq,, — 1 for almost
every x such that || < r. By the Lebesgue dominated convergence theorem, we
have

/ tnn f(tnthn) de — 0 and etV dy — 2 as m — oo,
QQ n QZ,n

By t2 > i—’;, we obtain

/ etV > / AmVn dr
{lz[<ro} {lz|<ro}

(3.9)
= / AN dy + / AL dy.
<22} {7 <lzl<ro}
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A direct computation gives

2
lim ™ dr = lim e2logntdndn g
e le|< 52} e el <0}
g (logn)~'d
. 2+4nw(logn)” "dn __ 2
= nllr)rgo man =T7ry.

Set t = log(%)/(fn logn), where &, = |4, || > 1. We have

&t
/ ™ dp = 21, logn/ e2losn(t®~Ent) gy
{52 <zl <ro} 0

Since

—1
FRPPRG if0<t< b
Tlegt -t - F (62 -1) it S <<
we obtain

2
lim etV dy > 2777’(2,.
90 S ro /<@l <ro}

Taking n — oo in (3.8]) and using (3.7), we obtain

4
i > (BO - 5)271—7%7
@
which gives By < afrg. This contradicts (3.2]). The proof is complete. a

Assuming that

4
lim inf Ju, |2 < —,
n—oo 040

then there exists a subsequence of {u, } which converges to ug in H*(R?).

Proposition 3.2. J(ug) = c.

Proof. Since {uy,,} is bounded in H'(R?), there exists a subsequence denoted again
by {u,} such that

Up — ug  in H'Y(R?),
(R?), ¢ > 1,

up(z) = up(x) a.e. in R,

up — ug in L,

Moreover, for any R > 0,

lim (F(un) — F(up)) dz = 0.

n—oo BR
It is known that for u € L?(R?), the Schwartz symmetrization of u satisfies

[|w*[| 2 (®2)
Ju*| < ——=——.
Vx|

Since

J

F(u,) < Cl/

funl? + C3 / (unfel* ~1) da,
= By Bg
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where a > ag, and

Ly

for each 6 > 0, there exists R > 0 such that
max{ F(uy) dx,/ F(ug) d:c,/ (F(uy) — F(ug)) da} <
B¢, B

Br
from which it follows that

0 "LL* |2l+1
n

I

(unle®™* 1) de < / < %,

Bf =1

)

0
3

c
R

/ (F(up) — F(up)) da < 6.
R2

Hence by using J(u,) — ¢ we conclude that

1 1
Sl 45 [ (A3) + () uaPdo =+ [ Fluo)do+0,(1)
2 2 R2 R2
We observe that lim, o ||un|| > ||uol| > 0, so that we define
wn:ﬂ and wOZ,L.
[[wa] limy, o0 [ ta |

Then |wy,|| =1 and w,, — wy in H'(R?). Suppose that ||wy|| < 1. By Proposition
we see that ag < #?UO) Let us choose g > 1 sufficiently close to 1 and § > 0
such that

o _ 2m|lunl?
a < Z0lTnl
B OHU”I’LH = I(Uo) 1)
<t + Jao F(ug) dz — & [oo (A3 (uo) + A3(uo))|uol? dz + on (1) s

¢ — J(up)
On the other hand, by using the formula for J(ug) and J(ug) < ¢ we deduce that

(1 — flwoll?) (e + /}R2 F(up) dx — %/]R? (A% (uo) + A3(uo))|uo|? dz + 0, (1))

1
<c +/ F(ug)dz — 5/ (A% (uo) + A3(uo))|uo® d
R2 R2
1
~lwolP( [ Flun)do— 5 [ (43 o) + A3w0)) o di + 0,(1)
R2 R2
1
=c+ (=J(uo) + 5”“0”2)
1
— [Jwol?(c +/ F(ug) dz — 5/ (A% (uo) + A3 (uo))|uo|® dz + 0, (1))
R2 R2
< c— J(up).
Therefore, there exists 6 > 0 such that
47
aol|un]|? € —— — 6.
ﬁ 0” || = 1_ ||w0||2

Thus, (8 + €)aol|un|? < 1_61750”2, which implies by (ii) of Proposition |2.3| that

/ <6<5+e>aonunn2w§ _ 1) dz < C.
R2
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‘We observe that
|/ F ) (un — ug) dar| < l/ | — o) el n | < C/ [t — 1|77 .
R2 R2 R2
Thus,
lim VuoV(un — up) + uo(un — ug) dz = 0.

n—00 fp2
Hence, {u,} converges to uy in H'(R?). O
Proof of Theorem[I_1]. Let {u,} satisfying J(u,) — co and J'(u,) — 0 as n — oo.
By Lemmal2.6] {u,} is bounded, up to a subsequence, we may assume that u,, — ug
in H'(R?), u,, = uo in L (R?) for all ¢ > 2 and u,, — uo almost everywhere in
R2, as n — oo. Then, if f(s) satisfies (1.5, we have for each o > aq there exist
b1,bs > 0 such that for all s € R, for all a > 0,
2
|f(s)] < bls| + ba(e™” —1). (3.10)

If the vanishing case occurs, then

lim [un | dz = 0. (3.11)

n— oo R2

Consequently, by (3.10)), , Holder’ inequality, and Proposition we have
lim / | f (un)un| dz
R2

n—oo

< lim <b1|un\2 + bg|un|(eo““"|2 - 1)) dx
2

v e (3.12)
<bp lim |, |2 dae
n—oo R2
1/2 1/2
n b2< lim / \un|2da;) ( lim / (eolunl® — 1)2d3;) —0.
n—00 [p2 n—00 Jp2
By Proposition we have
lim (A% (un) + A3(uy))ul dz = 0. (3.13)
n—oo R2
From (2.3), (3.12)), (3.13), and that {u,} is bounded, we have
[l
5 5 5 (3.14)
= (J (un), un) — 3/ ((A%(un) + A3(up))us da —l—/ flup)up dz — 0,
R2 R2
as n — oo. By (2.9), (3.12), (3.14), and Hélder’s inequality, we have
lim |/ F(un) da|
n—oo R2
(3.15)
2
< lim (e/ |un|2dx+01/ fun |2 — 1) dz) = 0.
n—o00 R2 R2

This implies that 0 < J(u,) — 0 as n — oo, which means that vanishing is
impossible.
Hence only the nonvanishing case happens. Since

[ e @dyw.ndo
R2
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For

= [ @ [ st Axu) dy

2 27|z — y|2u

‘/‘EZEwammmm@»@px
R

2 2wl — y|?

_ / As(u(y))uy)n(y) / LY ()2 dudy
Rz

re 2z — y?

- / Ay (u(y))uw)n(y) / Y2 e dy
R2 R

2 2m|a — y|2u
= /R2 | Az (u(y))Puy)n(y) + [Ar(u(y) Puly)n(y) dy,

each n € C§°(R?), we have

— 3 /
0= lim (J'(un), )
= ILm ) (VUnVU +upn + (Af(un) + Ag(un))unn + AO(un)unn - f(Un)U) dx
n o0 R
= <Jl(u0)7 77>
Hence ug is a week solution of Problem (1.1J). [l
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