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beginning of a saccade with the objective of providing target selection in almost constant amount of time 

regardless of the distance to the target. The second method selects a target at the end of a saccade. The third is a 

hybrid method combining the speed of the saccade-driven selection with the accuracy of the conventional 

Dwell-Time selection. Theoretical evaluation of the proposed methods conducted via characteristics of the 

Human Visual System and a mathematical model of the human eye indicates that the objective is tenable. 

Practical evaluation of the proposed methods is conducted with the Multi-Directional Fitts' Law task and with a 
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1. INTRODUCTION 

The aim of this study is to investigate the performance capabilities of the saccade-

driven target selection methods. Saccades are the fastest eye movements that the HVS 

can exhibit, with eye ball rotation velocities achieving the speeds of up to 700º/s 

[Duchowski 2007]. Saccades are already parts of the target selection sequence for the 

conventional mouse and Dwell-Time (DT) selection methods, where an eye 

dwells/fixates on the target before it is selected. For example, a mouse user looks at the 

target first using a sequence of saccades and fixations and then drags and clicks the target 

with the mouse in hand [Jacob 1990]. In the DT selection, the mouse dragging is 

eliminated, however, the duration of the fixation to trigger the selection prolongs the 

overall selection time. Therefore, the saccade-driven selection has the potential to 

eliminate the delays from target selection. We envision that the saccade-driven target 

selection methods will be applicable widely in action-oriented video games. 

Today's immersive gaming environments are pioneering sophisticated interaction 

techniques that give users more exciting and engaged gaming experiences. The Nintendo 

Wii game console has gained immense popularity with its novel motion-based remote 

controller. Recently, Sony Computer Entertainment introduced a prototype motion 

controller called a “motion-sensing wand” for the Playstation 3 [E3 2009]. In addition, 

Microsoft presented a controller-free interface Kinect for the Xbox 360 game console [E3 

2009]. Project Kinect aims to provide controller-free, full body motion capture, voice 

recognition, and facial recognition for gaming and entertainment. However, the use of 

eye-movement-based control has not been applied to consumer-oriented video games. 

In the HCI research community, eye-guided interfaces and their interaction 

techniques have existed for several decades [Majaranta and Räihä 2002], but recently 

have attracted a significant research interest [Istance et al. 2008; Koh et al. 2009; 

Komogortsev and Khan 2007; MacKenzie and Zhang 2008; Nakayama and Takahasi 

2008; Tien and Atkins 2008]. Eye-tracking devices serve as input devices for users with 

disabilities, or as additional interaction channels for other users [Douglas et al. 1999]. In 

our previous work, we have explored the use of eye movements for video game control 

[Komogortsev and Khan 2007], with users reporting that the “game environment feels 

more alive” and immersive.  

Eye movements are already considered as a more natural tool for target selection than 

conventional pointing devices such as mouse because users look at a target before they 

actually "click" it [Jacob 1990]. The DT selection methods were estimated to be faster 

than the mouse-based selection [Zhang and MacKenzie 2007]. However, the DT method 



requires data buffering for at least 100 ms, which introduces delays [Kumar et al. 2007; 

Sibert and Jacob 2000; Zhai et al. 1999]. The two saccade-driven target selection 

methods we are proposing can eliminate the delays. The first method, called Saccade 

Offset (SO), selects a target at the offset (end) of the saccade. Essentially, the SO is 

similar to the DT without the dwell time period following after the saccade.  The second 

method, called Instantaneous Saccade (IS), selects the target at the onset (beginning) of a 

saccade. The ultimate goal of the IS method is to provide an almost constant selection 

time regardless of the distance to the target. In addition, we introduce a target selection 

scheme called Hybrid Saccade (HS) that combines the IS and DT. The HS overcomes 

practical challenges associated with the IS, such as direction and amplitude prediction of 

future saccades, so that it still allows accurate target selection when the IS selection fails.  

It must be mentioned that saccade-driven target selection methods proposed here do not 

attempt to solve the Midas Touch problem [Istance, Bates, Hyrskykari and Vickers 

2008], necessitating special interface design techniques where erroneous selection is not 

detrimental to a user’s experience. Such design can be noticed in games similar to World 

of Warcraft [Blizzard 2009] where erroneous selection of a friendly target does not 

produce negative consequences.   

Significant research has employed the DT selection in the eye-gaze guided interfaces 

[Jacob 1990; Kumar, Paepcke and Winograd 2007; Zhai, Morimoto and Ihde 1999]. 

However, very little research has been done using saccade-driven selection. Huckauf and 

Urbina employed saccade-driven selection, similar to the SO, to select the pieces of a pie-

like menu for typing and multiple-choice selection tasks [Huckauf and Urbina 2008; 

Urbina and Huckauf 2010]. They concentrated on the typing performance of the pie-

menu representation and did not evaluate the characteristics of their saccade-driven 

method for target selection explicitly. The performance of the DT in 2D was evaluated 

previously by using Multi-Directional Fitts’ Law (MD-FL) task [Zhang and MacKenzie 

2007], but no such evaluation was conducted for the saccade-driven target selection 

methods. In our previous work [Komogortsev et al. 2009 ], we have explored the 

performance of the SO and IS for target selection with horizontal saccades only. The 

results indicated that the IS provided 57% faster target selection with 1.9 higher 

throughput than DT did. Current study investigates the performance of saccade-driven 

target selection methods on a 2D plane (viz. computer monitor). The results indicate that 

the proposed methods show an increased throughput and task completion performance 

compared to the conventional DT selection method.  



In summary, this paper presents two major themes: 1) theoretical design and 

evaluation of the proposed saccade-driven methods and 2) practical evaluation results 

from a MD-FL task and a real-time eye-gaze-guided video game.  

2. THEORETICAL DESIGN & EVALUATION 

2.1 Target Selection Methods 

2.1.1 Dwell Time 

The DT is designed to select a target when a user fixates on a target (Figure 1.a), for a 

specified period of time which is usually 100ms. or greater (the value of 100 ms. is 

employed in our work) [Zhai, Morimoto and Ihde 1999; Zhang and MacKenzie 2007].  

2.1.2 Saccade Offset 

The SO is designed to select a target at the coordinates of the end of a saccade (Figure 

1.b), which makes it faster than the DT. 

2.1.3 Instantaneous Saccade 

The design goal of the IS method is to select a target at the very beginning of a 

saccade (Figure 1.c). Theoretical design of the IS requires two components: amplitude 

and direction prediction at the onset of a saccade. Following two subsections provide the 

details of both. 

Saccade Amplitude Prediction 

Two Dimensional Linear Homeomorphic Oculomotor Plant Model (2D-OP) and Two 

State Kalman filter (TSKF) were employed for saccades’ amplitude prediction.  

The 2D-OP models Oculomotor Plant (mechanics of the eyeball, surrounding tissues, 

and extraocular muscles) as a set of linear components representing major anatomical 

structures of the plant. The 2D-OP is driven by a neuronal control signal which is sent to 

each muscle individually. As a result the 2D-OP is capable of simulating accurate 

saccadic signal on a 2D plane, given the onset and the offset coordinates of a saccade. 

Figure 1. Eye movement driven target selections a) Dwell Time b) Saccade Offset c) Instantaneous Saccade 



The details of the model are published elsewhere [Komogortsev and Khan 2008; 

Komogortsev and Jayarathna 2008].  

The TSKF is a Kalman filter with two states - position and velocity – where 

acceleration of the eye is approximated by white noise. A chi-square test monitors the 

difference between predicted and observed eye-velocity, providing the mechanism for the 

amplitude prediction described below. The details of the TSKF and chi-square test 

calculation are presented in [Koh, Gowda and Komogortsev 2009; Komogortsev and 

Khan 2008]. 

Saccadic signal properties were investigated by simulating 3640 saccades via the 2D-

OP at 1000Hz with amplitudes ranging from 1-40º and tilted to 0-90º. Each saccade 

trajectory was processed by the TSKF deriving a sequence of the chi-square test values.  

The resulting chi-square test signal had a distinct shape represented by two peaks that 

existed for every saccade (Figure 2.a).  The occurrence of the first peak, counting from 

the beginning of a saccade, remained in the range of 9-13ms (M=11.89ms, SD=1.01) for 

the saccade amplitude range of 1-40º. The second peak occurred closer to the end of a 

saccade. Employing linear regression, a formula was derived connecting the amplitude of 

the future saccade (    ) to the first peak in the chi-square test signal (      
 ), resulting in 

R2=0.98 fit to the simulated data. 
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It is possible to construct a relationship between saccade’s amplitude and the time of 

the first peak occurrence using regression as:                          , providing 

R2=0.68 and indicating that the IS provides almost constant selection time regardless of 

the distance to the target. 

Saccade Direction Prediction 

In the Cartesian coordinate system, the direction between two points can be obtained 

by finding the direction of the vector (    )  (    ) , computed as  

          (
    

    
) 2 

In our tests, the same approach is employed where     is the saccade direction 

measured in degrees, (   ) is the coordinates of the saccade onset, and (     ) is the 

coordinates of the point at which saccade direction has to be determined. The direction 

prediction by the IS occurs when the first peak of the chi-square test signal is detected. 

Equations 1 and 2 create the basis for the IS in the case of a 1000Hz eye position 

signal. However, the actual signal from the eye tracker is frequently produced at a lower 



sampling rate and is susceptible to noise [Duchowski 2007]. This necessitates an 

investigation into the lower frequency scenario and the effect of the noise on the 

prediction accuracy. 

Lower Sampling Rate and Noisy Signal 

To test the lower sampling case, we decided to consider a sampling frequency of 

120Hz – the de-facto frequency today for major vendors [SMI 2010; Tobii 2009]. The 

equation to predict future saccade is amplitude using regression based on the chi-square 

test with 120Hz sampling frequency is:  
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with R2=0.98. It is important to note that only one chi-square test peak exists with 120Hz 

sampling frequency. The time of the peak, counting from the onset of a saccade, stays in 

the range of 48-64ms (M=56 ms, SD=8) for the saccade’s amplitude range of 1-40º, 

indicating that it would take 5.3-5.8 times longer to predict saccade’s offset coordinates 

when compared to the case with 1000Hz sampling frequency.  

 The noise present in the eye tracker can be approximated via precision of the 

equipment, i.e., minimum amount of the rotation of the eye globe that the eye tracker can 

recognize. In our test, value of 0.1° was selected, which is equivalent to the equipment 

with precision of 0.1°. Figure 2 illustrates the cases where saccadic signal was generated 

via the 2D-OP with the sampling frequency of 1000Hz and 120Hz with and without 

added noise. Simulation results that discuss the magnitude of the prediction error are 

presented in Section 7. 

2.1.1 Hybrid Saccade 
 

The Hybrid Saccade (HS) is the method that is targeted to combine the speed of the IS 

and the stability of the DT selection. The HS tries to select a target very quickly using the 

IS on the initial attempt and tries to stabilize the performance in case of failure by 

Figure 2. a) Chi-square test behavior during a saccade simulated at 1000Hz with no added noise  b) Same as a) 

but with white noise added c) Chi-square test behavior during a saccade simulated at 120Hz with no added noise 

d) Same as c with white noise added. 
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switching to the DT until the target is successfully selected. Such factors as noise, low 

accuracy and the sampling frequency of the eye tracker or individual characteristics of 

the human visual system such as large number of overshoots/undershoots (see section 6.4 

for more details) might contribute to the failure of the initial attempt. If such challenges 

are present on the initial selection attempt, they are likely to continue to exist. Therefore, 

to provide a more stable selection performance on the subsequent chain of attempts, the 

DT method was selected. The alternative choice of using the SO method after the failure 

of IS was not implemented, because our previous research indicated that the DT is more 

accurate than the SO [Komogortsev, Ryu, Do and Gowda 2009 ], therefore providing a 

better opportunity to stabilize the selection performance. 

2.2 Selection Time 

The general formula for the estimation of the amount of time saved by a faster 

selection method over a slower one is given by the following equation: 

           (  
   

   

) 4 

where     is the selection time of a faster method (S1) and     is the selection time of a 

slower method (S2). 

Target selection time of the DT is given by: 

                                  5 

In this equation, target acquisition (        ) is defined as a time interval between the 

appearance of a target and the onset of the saccade leading to that target1.          is the 

duration of a saccade that lands the eye on the target, and is approximated by [Carpenter 

1977]: [Leigh and Zee 2006] 

         (           )      6 

where      is the saccade amplitude measured in degrees. 

The SO target selection time is:  

                      7 

The IS target selection time can be estimated as: 

             
 

 
 8 

where   is the sampling frequency of the eye tracker, and k is the number of eye position 

samples needed for a saccade’s amplitude prediction. Therefore, 
 

 
 is the amount of time 

                                                           
1 This time interval is also called saccadic latency [Leigh and Zee 2006]. The name 

target acquisition is selected to represent its logical meaning for target selection research. 

Average saccadic latency for jumping targets was reported as 200ms [Leigh and Zee 

2006], therefore 200 ms value is employed in this work. 



in seconds required to predict the amplitude of a saccade. The results of time saving for 

all methods are reported in Section 5. 

3. PRACTICAL EVALUATION 

This section provides the description of the MD-FL Test and the eye-gaze-driven 

game “Balura” designed to conduct practical evaluation of the target selection methods.  

3.1 Multi-Directional Fitts’ Law Test  

The MD-FL provides a framework for measuring performance of a target selection 

method [Zhang and MacKenzie 2007]. The MD-FL presents a sequence of targets 

displayed at the various eccentricities from the center of the screen initialing each 

subsequent selection from the center (see supporting video file for an illustration).    

General implementation guidelines for the MD-FL, presented by Zhang and 

MacKenzie [2007] were followed. The target width was fixed to 64 pixels (1.52°) and 

only distance to the target was varied following recommendation by Guiard who argued 

for necessity of reducing the number of degrees of freedom in the Fitts’ Law task by 

either fixing the target’s width or the distance [Guiard 2009]. The MD-FL was conducted 

with target distances that started in the most commonly exhibited range of saccade 

amplitudes (~6-8º [Foulsham et al. 2008; Tatler and Vincent 2009]) and extended to the 

screen’s periphery where the performance gains of saccade driven-selection are to be 

more pronounced due to larger saccade amplitudes. Specifically, three eccentricity levels 

were tested a) short (300 pixels or 7.12º), b) medium (375 or 8.93°), and c) long 450 

(10.71°). Each eccentric target distance level consisted of 16 possible selections. Each 

trial started with an initial target appearing at the center of the screen. As soon as the 

initial target was selected (the initial selection was always done by the DT method to 

ensure same baseline for all methods), a target appeared on the screen at a new location 

and the timer for the selection time was initiated. Participants were instructed to select the 

new target as soon as possible by looking at the target. The target was available for the 

selection until it was selected successfully, i.e., sometimes participants had to make 

several selection attempts to achieve this. Once participants selected the target, the target 

at the center of the screen appeared again, initiating a new target selection sequence. This 

sequence was repeated until participants successfully selected 8 targets for each distance 

level. For each trial, the coordinates of the initial selection attempt and the successful 

selection together with selection times were recorded. Section 5 provides the performance 

results. 



3.2 Balura Game 

Balura is a real-time eye-gaze-guided video game designed to simulate massive 

battlegrounds where two teams of players compete to achieve a given objective. Balura 

follows the guidelines suggested for the development of the eye gaze guided applications 

by Koh and colleagues [Koh, Gowda and Komogortsev 2009] including individual 

component size and the visual feedback. Visual feedback was provided in the form of a 

highlighted border when the onset of a fixation was detected to help the user to dwell on 

the target. Saccade-driven selection methods (except the HS) were not affected by the 

visual feedback (good discussion on the impact of the feedback on the eye-gaze-guided 

interfaces is provided by Majaranta et al. [Majaranta et al. 2006]). Balura presents 20 red 

and 20 blue balloons that are randomly moving throughout the screen. Blue balloons 

represent the players of the friendly team and red balloons represent the opposing team. 

The main objective is to pop all red balloons as quickly as possible. The selection of the 

“friendly” balloon does not induce any damage, but highlights the boundaries around the 

balloon for the visual feedback to the user. The selection of the opposing team’s balloon 

results in its elimination from the game. The target selection experience is designed to be 

similar to the game World of Warcraft® [Blizzard 2009], therefore to simulate World of 

Warcraft® player’s behavior, all balloons stop at random time intervals, then start 

moving again in random directions and with random velocity (see supporting video file 

for an illustration). Participants were instructed to pop the balloons of the opposing team 

as quickly as possible by looking at them.  

4. EXPERIMENT SETUP 

4.1 Apparatus 

The experiments were conducted with Tobii x120 eye tracker, which is represented 

by a standalone unit connected to a 19-inch flat panel screen with the resolution of 

1280x1024. The eye tracker performs binocular tracking with the following 

characteristics: accuracy 0.5°, spatial resolution 0.2°, drift 0.3° with eye position 

sampling frequency of 120Hz [Tobii 2009]. The Tobii x120 model allows 300x220x300 

mm freedom of head movement. Nevertheless, a chin rest was employed for higher 

accuracy and stability. 

4.2 Eye Movement Classification & Target Selection 

All targets selection methods require real-time eye movement classification 

performance. Specifically, the DT needs the computation of fixation duration and its 

coordinates, the SO method requires the detection of the offset of a saccade and its 

coordinates, and the IS method requires the detection of the onset of a saccade. These 



requirements were achieved with the help of the real-time eye movement identification 

protocol [Koh et al. 2010] and a classification algorithm based on a Kalman filter [Koh, 

Gowda and Komogortsev 2009]. As a result, each target selection method provided 

coordinates for the selection. If the provided coordinates were within target boundaries 

(no tolerance area was provided), a successful selection was made.  

4.3 Participants & Quality of the Eye Movement Data 

Students at Texas State University-San Marcos volunteered to participate in the 

experiments. The eye-movement data accuracy procedure described in [Koh, Gowda and 

Komogortsev 2009] was administered for each participant to ensure the quality data. 

Participants with average positional error greater than 2° and/or data loss greater than 

20% did not participate in the experiment. Remaining 14 participants had the average 

positional error of 1.14° (SD=0.44) and the average data loss of 13.70% (SD=13.09). 

Participants' ages were from 19 to 45 (M = 27.5, SD=8.31).   

4.4 Sequence of Experiments 

First, participants performed the accuracy test. Those who passed the accuracy test 

executed the MD-FL task followed by the Balura game. Each participant was able to 

complete (i.e. all presented targets were successfully selected without any timeout errors) 

the MD-FL and Balura game by all target selection methods. The presentation order of 

the methods was randomized to reduce learning effects. 

4.5 Performance Metrics 

Completion time: For the MD-FL task completion time represents the time interval 

between the onset of a trial and the moment when a target is successfully selected. For 

Balura game completion time signifies the moment when the last opposing team’s 

balloon is eliminated. 

Throughput: Throughput is a measurement of performance that envelops both the 

speed and accuracy of a selection method by a user. The throughput was computed 

following the methodology described by Zhang & MacKenzie [2007] with movement 

time represented by completion time metric described above.  

Average Magnitude Error: To evaluate positional accuracy of the proposed 

methods, Average Magnitude Error (AME) computed by the following equation was 

employed  

    
∑ √(    ̅ )

  (    ̅ )
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where (  ,   ) and ( ̅   ̅ ) are actual and predicted targets coordinates correspondingly. 



Error Rate: The error rate is computed as the number of the initial target selection 

attempts that fail to land on the target divided by the total number of the initial target 

selection attempts.  

5. RESULTS 

5.1 Theoretical results 

5.1.1 Target’s Selection Time Savings 

Table I. Theoretical evaluation of time savings for the saccade amplitude range of 1-

40º, tilted 0-90º 

Method 
SO 

(Ideal) 

IS  

(Ideal) 

SO 

(1000Hz) 

IS  

(1000Hz) 

SO 

(120Hz) 

IS  

(120Hz) 

DT 31-25% 38-51% 31-25% 38-48% 31-25% 20-36% 

SO - 10-34% - 5-31% - 0.56-16%2 

Ideal presents the case where saccade’s amplitude prediction can be done at the first 

millisecond of its trajectory (k=1 in the equation (11)). Remaining cases represent 

sampling frequency of 1000Hz and 120Hz. Theoretical analysis assumes that the 

selection time for the SO and the DT is not affected by either sampling frequency or the 

eye movement classification algorithm. 

5.1.2 Accuracy of Saccade Prediction 

Table II shows theoretical accuracy of the IS method in case of the single saccade 

leading to the target, measured by the AME when saccades are simulated by the 2D-OP 

model at 1000Hz and 120Hz. Direction of a saccade is computed based on equation (2) 

and the amplitude is predicted based on equations (1) or (3) depending on the sampling 

frequency.  

Table II. Saccades’ landing point prediction error 
Sampling frequency, noise condition AME 

1000Hz, no noise 3.88º 

1000Hz,  white noise added 13.03º 

120Hz, no noise 5.71º 

120Hz, white noise added 6.4º 

A sampling frequency of 1000Hz with no noise allowed better prediction accuracy of 

saccade offset coordinates. The prediction accuracy decreased substantially when noise 

was added.  However, the amount of increase in the AME with 120Hz was smaller than 

with 1000Hz, indicating larger impact of noise on prediction accuracy in higher 

frequencies. It is important to note that the 120Hz case with noise, while yielding smaller 

AME than the 1000Hz case with noise, takes approximately 5.3-5.8 times longer to 

estimate the coordinates of the saccade’s landing point.  

                                                           
2 At 120Hz the IS starts outperforming the SO selection when saccade amplitude 

exceeds 18º. 



5.2 Practical Evaluation 

Practical implementation of the saccade-driven methods employed 120Hz amplitude 

prediction model by equation (3) and direction prediction model by equation (2) based on 

the acceptable performance of the simulated data with added noise. 

5.2.1 Multi-Directional Fitts’ Law Task 

Completion Time 

 Figure 3 presents the results. The difference in completion times between methods 

was statistically significant for each distance category: short - F(3,36)=5.78, p=0.0025, 

medium - F(3,36)=6.57, p=0.0012, and long - F(3,36)=8.91, p=0.0002. Post hoc analyses 

using the Scheffé post hoc criterion for significance indicated that DT completion times 

were significantly longer than HS and SO for all distance categories, p<0.05, but not 

significantly longer than IS, p>0.05. Among saccade-driven methods, the SO was the 

fastest and the IS was the slowest, however, there was no significant difference using 

Scheffé post hoc criterion for all distance categories, p>0.05. The large difference 

between the DT and SO can be explained, in part, by the challenge of an eye-fixation 

classification in real-time when parts of the signal contain invalid data (average data loss 

of 13.7% in our setup). 

 Table III provides comparative performance in terms of the selection time savings 

computed by equation (4) for short, medium, and long target distances respectively. 

Faster methods (second row) are compared to the slower methods (first column).  

Table III. MD-FL: completion time saving 
Distance Short Medium Long 

Method IS HS SO IS HS SO IS HS SO 

DT 39% 62% 62% 27% 55% 61% 35% 55% 60% 

IS - 52% 19% - 38% 46% - 30% 38% 

HS - - -1% - - 13% - - 11% 

The completion time savings provided by the IS over the DT method were similar to 

those reported in the theoretical evaluation results in Table I. The SO selection was faster 

than the IS, contrary to the theoretical evaluation. This phenomenon can be explained by 

the fact that each target was frequently selected not by a single saccade-fixation 

Figure 3. Average completion time for the successful 

individual target selection in the MD-FL task. 
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Figure 4. Average throughput of the target 

selection computed as the result of the MD-FL task 



movement, but by a sequence of such saccades and fixations due to the presence of 

complex oculomotor behavior such as undershoots/overshoots (see Section 6.4 for 

details), inaccuracies associated with amplitude/direction prediction, and the variability in 

the eye movement classification algorithms [Komogortsev et al. 2010]. Therefore, the SO 

method which is void of the prediction errors (but still susceptible to the eye movement 

classification inaccuracies) provided better performance. The HS performance was better 

than the IS, indicating the advantage of combining the IS and the DT methods together 

when prediction difficulties are present from the noise and/or sampling frequency. 

Throughput 

Figure 4 presents the results. The difference in throughput between methods was 

statistically significant for each distance category: short - F(3,36)=9.56, p<0.0001, 

medium - F(3,36)=9.89, p<0.0001, and long - F(3,36)=19.57, p<0.0001. Post hoc 

analyses using the Scheffé criterion indicated that DT throughput was significantly 

smaller than HS and SO for all distance categories, but not significantly smaller than IS, 

p<0.05. Among saccade-driven methods, the SO was the largest and the IS was the 

smallest, however, there was no significant difference in throughput using Scheffé post 

hoc criterion for all distance categories, p>0.05 

Table IV. MD-FL: comparative performance for throughput increase between target 

selection methods for short, medium, and long distances respectively 
Distance Short Medium Long 

Method IS HS SO IS HS SO IS HS SO 

DT 7% 53% 76% 5% 47% 80% 12% 67% 132% 

IS - 42% 64% - 40% 71% - 49% 106% 

HS - - 15% - - 22% - - 39% 

Initial Selection Attempt 

Information about initial attempt for target selection allows assessing the initial 

spatial accuracy of a target selection method and allows comparing actual performance of 

the IS selection to the theoretical estimation.  

Average Magnitude Error 

Table V presents spatial accuracy of the initial selection attempt via the AME metric. 

In general, the AME contains four possible types of errors a) calibration error of the eye 

tracking equipment for a given screen area, b) human error as a result of the complex 

oculomotor behavior such as undershoots, overshoots, and etc. (more discussion is 

provided in Section 6.4) c) prediction algorithm’s error, and d) eye movement 

classification error due to the selection of the eye movement classification algorithm and 



its parameters (for more details see [Komogortsev, Gobert, Jayarathna, Koh and Gowda 

2010]). 

Table V. Average magnitude error between the center of the target and the initial 

selection coordinates 
Method AME 

DT 3.14º 

IS 8.11º 

HS 8.22º 

SO 7.01º 

The DT selection yielded the lowest AME. The SO was the second most accurate, but 

the difference between the DT and SO was quite substantial (~132%). We hypothesize 

this difference was specifically due to the classification algorithm that selects accurate 

coordinates for the center of fixation based on a Kalman filter [Koh, Gowda and 

Komogortsev 2009], but can potentially dampen saccadic behavior [Komogortsev, 

Gobert, Jayarathna, Koh and Gowda 2010]. The increase in the AME for the IS method 

over the SO method was small (<15%). The AME for the IS was larger than the one by 

the theoretical evaluation (Table II, 120Hz, noise added) by 27%. This might be due to 

the difference in noise characteristics of the eye tracking equipment and the white noise 

used in the theoretical evaluation, which can allow prediction algorithm producing larger 

errors than expected. 

Error Rate 

The error rate was computed by taking into the account the number of the initial 

target selection attempts that failed to land on the target and the total number of the initial 

target selection attempts.  

For the DT, error rates increased with the targets’ distance range (Figure 5), but did 

not exceed 14%. Both results are comparable to the study conducted by Zhang and 

MacKenzie [2007]. The IS yielded highest error rates peaking at 69% for the medium 

distance targets. The SO yielded lowest error rates peaking at 56% for the long distance 

targets. The highest error rate for the HS was 67% for the long distance targets. Large 
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differences in the error rates between the DT and saccade-driven methods can be 

attributed to the presence of complex oculomotor behavior discussed in more detail in 

Section 6.4. The linear relationship between distance to the target and error rates was less 

prominent for the saccade-driven methods than for the DT. 

The difference in error rates between methods was statistically significant for each 

distance category: short - F(3,36)=81.96, p<0.0001, medium - F(3,36)=65.25, p<0.0001, 

and long - F(3,36)=65.25, p<0.0001. Post hoc analyses using the Scheffé criterion 

indicated that DT error rates were significantly smaller than IS, HS and SO for all 

distance categories, p<0.05. Among saccade-driven methods, there was no significant 

difference in error rates using Scheffé post hoc criterion for all distance categories, 

p>0.05. 

5.2.2 Balura 

Table VI. Balura: completion time savings for various target selection methods 

Method IS HS SO 

DT 72% 75% 75% 

IS - 10% 13% 

HS - - 3% 

The DT required approximately 72-75% longer to complete the objectives of the 

Balura than saccade-driven methods (Figure 6, Table VI). Completion time savings were 

close to the short range targets during the MD-FL task, with saccade-driven methods 

showing even more advantage in the selection time savings. The performance of the 

saccade-driven methods was quite similar among each other. This can be explained by 

the fact that the average saccades’ amplitude for those methods was 3.91º while the 

amplitude for the DT was approximately twice as high. The differences between the 

amplitudes could be attributed to the quick selection of close by targets by saccade-driven 

methods, while selection attempts by the DT do not result in a fast selection (balloons are 

moving in random directions while randomly stopping), making the participant wander to 

the targets that are further away.  

The error rates for Balura indicate the failure of selecting an opposing team’s balloon 

on the initial attempt. The error rates were similar to the MD-FL task. The DT yielded 

slightly higher rates (20.1% vs. 14%), possibly due to the increased difficulty of selection 

caused by moving targets. The error rates between the saccade-driven methods were very 

similar (the difference did not exceed 6%) and close to the highest error rate of the SO in 

the MD-FL task.  

The difference in completion time was statistically significant, F(3,39)=10.81, 

p<0.0001. Post hoc analyses using the Scheffé criterion indicated that DT completion 



time was significantly longer than the others, p<0.05. The difference in error rate was 

statistically significant, F(3,39)=50.17, p<0.0001. Post hoc analyses using the Scheffé 

criterion indicated that DT error rate was significantly smaller than the others, p<0.05.  

6. DISCUSSION 

6.1 Target Selection Performance 2D vs. 1D 

The results from Komogortsev et al. [2009 ] that investigated saccade-driven methods 

for horizontal target selection using 1D Fitts’ Law (1D-FL) task were compared to that 

from the MD-FL of this study. Completion time: the MD-FL increased target selection 

time for all methods a) DT –125% b) IS –248% c) SO – 25%. Throughput: the MD-FL 

decreased throughput for all methods a) DT - 58%, b) IS - 76%, c) SO - 45%. Error 

rate: the MD-FL decreased error rates for all methods a) DT - 30.7%, b) IS - 39.04%, c) 

SO - 35%. Thus, target selection in a 2D plane, represented by MD-FL, seems to be more 

challenging than a horizontal (1D) selection, represented by 1D-FL, for both the HVS 

and target selection methods. Specifically, the MD-FL was more challenging to the HVS 

due to the random direction of target appearance and three possible distances to the 

target. Algorithmic saccade direction and amplitude prediction were more challenging 

due to the additional dimension, with its own noise characteristics. Prolonged selection 

time resulted in smaller error rates during the initial target selection attempt.  The results 

indicate better tolerance of the SO method to 2D plane transition which is indicated by 

smaller selection time increase, throughput decrease, and moderate decrease of the error 

rates as compared to the other methods. 

6.2 Fastest Saccade-driven Target Selection Method 

Practical results obtained in this work via MD-FL show overall faster selection times 

and higher throughput of the SO over the IS method. Theoretical evaluation results 

(Table I) indicate that for 120Hz eye tracker the IS will outperform the SO for selection 

amplitudes exceeding 18º. Practical tests involving Balura game allow analyzing such 

occurrences.  The results indicate that the initial selection attempt for the IS was on 

average 87% faster than the SO (the part of this substantial increase is attributed to 

shorter saccadic latencies among recorded during the IS selections at this amplitude). 

Therefore, the IS method would be the most beneficial in cases when the distance to the 

targets is going to be large, e.g., an action game where the targets are coming from the 

periphery. 

In general, theoretical evaluation results indicate that the IS has potential to 

outperform the SO in the cases of the higher sampling frequency and low noise. Two 

areas have to be investigated to make this possible from the implementation side: 1) 



software/hardware platform that allows performing both REMI and the Kalman filter 

processing of 1000Hz signal in real-time, and 2) noise reduction algorithms that do not 

break chi-square peak to saccade amplitude relationship illustrated by equation (1). In 

addition, models of oculomotor movement biases such as presented by Tatler and 

Vincent [2009] can be incorporated to improve prediction performance in most common 

saccadic movement directions. 

6.3 Applications of Saccade-driven Target Selection 

Proposed saccade-driven methods do not attempt to solve the Midas Touch problem 

[Istance, Bates, Hyrskykari and Vickers 2008; Jacob 1990]. The speed of the proposed 

saccade-driven selection makes it difficult to select an auxiliary input method that would 

allow effectively resolving problem. Previously proposed solutions such as Snap Clutch 

[Istance, Bates, Hyrskykari and Vickers 2008] and EyePoint [Kumar, Paepcke and 

Winograd 2007] would prolong the selection time by removing the speed benefit of the 

saccade-driven methods. The solution to Midas Touch problem lies in a careful interface 

design. One of the successful examples is Balura game where an erroneous selection is 

not detrimental to the interaction experience and practical evaluation indicates 

substantially faster task completion times (up to 132%).  We also hypothesize that 

hierarchical pie menus [Urbina and Huckauf 2010] would allow saccade driven methods 

to be applicable for the menu-driven navigation and typing. 

6.4 Impact of Complex Oculomotor Behavior on Presented Outcomes 

Complex oculomotor behavior (COB) which is represented in part by undershoots, 

overshoots, dynamic and express saccades [Komogortsev et al. 2010] can provide a 

substantial impact on overall completion times (Figure 3), spatial accuracy (Table V), and 

error rates (Figure 5). The COB results in a case where initial movement to the target, e.g. 

saccade, does not land within the boundaries of the target and subsequent correction 

occurs via a corrective small amplitude saccade or a glissade (post-saccadic drift). In 

cases when the amount of COB becomes large, the completion times for all target 

selection methods are extended due to the sequence of the initial and corrective 

movement leading to the target’s selection. Among the target selection methods 

considered in this work, the DT selection is affected the least by the COB, because of the 

filtering behavior represented by minimum fixation duration of 100ms and merging 

techniques employed by eye movement classification algorithms [Koh, Gowda and 

Komogortsev 2010; Komogortsev, Gobert, Jayarathna, Koh and Gowda 2010].  

 

 



10. CONCLUSION 

In this paper, we have proposed several saccade-driven target selection methods. The 

performance of the methods was compared to the conventional fixation-based selection 

method called Dwell-Time (DT) using the two tests - the Multi-Directional Fitts’ Law 

(MD-FL) Task and a real-time eye-gaze driven Balura application created to simulate 

interaction environments of the action oriented computer games.  

Theoretical evaluation results indicate that the Instantaneous Saccade (IS) method, 

designed to select a target at the very beginning of a saccade, is the fastest selection 

method, providing almost constant relationship between the distance to the target and the 

time of selection. 

The MD-FL task indicated that all saccade-driven methods outperformed the DT by 

35-62% in terms of the completion time savings and increased the throughput by 5-132%.  

Saccade Offset (SO) method, designed to select a target at the end of a saccade, was the 

best performer among saccade-driven methods. It was hypothesized that the performance 

of the IS method was degraded in this practical implementation due to the challenge of 

estimating saccade parameters in the cases of noisy signal and lower sampling frequency 

of the eye position signal.  

The Balura game indicated even higher time savings due to saccade-driven methods 

(72-75%) over the DT selection. Following results of the theoretical analysis, target 

selection performance with the IS and the saccade-driven methods was analyzed for 

target selection when the amplitudes exceeded 18º during Balura. The performance of the 

IS was superior to the SO by 87%, supporting the results of the theoretical evaluation. 

Saccade-driven methods deliver very fast completion times for target selection 

applications. Future work lies in the areas of (1) addressing the implementation 

challenges that arise at high sampling frequencies of the eye movement signal, where 

saccade-driven methods provide higher performance, and (2) developing interaction 

schemes where erroneous selection does not negatively impact user’s experience.  

Currently, saccade-driven methods would be beneficial to action-oriented video games. 
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