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EXISTENCE OF AXISYMMETRIC WEAK

SOLUTIONS OF THE 3-D EULER EQUATIONS

FOR NEAR-VORTEX-SHEET INITIAL DATA

Dongho Chae & Oleg Yu Imanuvilov

Abstract. We study the initial value problem for the 3-D Euler equation when the

fluid is inviscid and incompressible, and flows with axisymmetry and without swirl.

On the initial vorticity ω0, we assumed that ω0/r belongs to L(logL(R3))α with
α > 1/2, where r is the distance to an axis of symmetry. To prove the existence of

weak global solutions, we prove first a new a priori estimate for the solution.

Introduction

We consider the Euler equations for homogeneous inviscid incompressible fluid
flow in R3

∂v

∂t
+ (v · ∇)v = −∇p , div v = 0 in R+ × R

3 , (1)

v(0, ·) = v0 , (2)

where v(t, x) = (v1(t, x), v2(t, x), v3(t, x)) is the velocity of the fluid flow and p(t, x)
is the pressure. The problem of finite-time breakdown of smooth solutions to (1)-
(2) for smooth initial data is a longstanding open problem in mathematical fluid
mechanics. (See [6,13,14] for a detailed discussion of this problem.) The situation
is similar even for the case of axisymmetry (see e.g.[11], [4]). In the case of axisym-
metry without swirl velocity (θ-component of velocity), however, we have a global
unique smooth solution for smooth initial data [14,17]. In this case a crucial role

is played by the fact that ωθ(t, x)/r (where ω = curl v, r =
√
x21 + x

2
2) is preserved

along the flow, and the problem looks similar to that of the 2-D Euler equations.
This apparent similarity between the axisymmetric 3-D flow without swirl and

the 2-D flow for smooth initial data breaks down for nonsmooth initial data. In
particular, Delort [8] found the very interesting phenomenon that for a sequence of
approximate solutions to the axisymmetric 3-D Euler equations with nonnegative
vortex-sheet initial data, either the sequence converges strongly in L2loc([0,∞)×R

3),
or the weak limit of the sequence is not a weak solution of the equations. This
is in contrast with Delort’s proof of the existence of weak solutions for the 2-D
Euler equations with the single-signed vortex-sheet initial data, where we have weak
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convergence for the approximate solution sequence. Due to the subtle concentration
cancellation type of phenomena in the nonlinear term, the weak limit itself becomes
a weak solution [7,10,15]. We refer to [13, Section 4.3] for an illuminating discussion
on the differences between the the quasi 2-D Euler equations and the “pure” 2-D
Euler equations for weak initial data.
In this paper we prove existence of weak solutions to (1)-(2) for the axisymmetric

initial data without swirl in which the vorticity satisfies

∣∣∣ω0
r

∣∣∣ [1 + (log+ ∣∣∣ω0
r

∣∣∣)α] ∈ L1(R3), α >
1

2
,

where log+ t = max{0, log t}. The idea of proof is as follows. We divide R3 into
two parts: the region near the axis of symmetry, and the region away from the
axis. For the latter region, using the 2-D structure of the equations expressed in
cylindrical coordinate system, we obtain strong compactness for the approximate
solution sequence using arguments previously used in the 2-D problem in [3]. For
the region near axis, we could not adapt the previous 2-D arguments. See the next
section for explicit comparison between the nonlinear terms in the pure 2-D Euler
case and our case. Here we use a new a priori estimate for the axisymmetric flow,
combined with Delort’s argument in [8] to overcome these difficulties.
To the authors’ knowledge this a priori estimate (See Lemma 2.1) is completely

new for the 3-D Euler equations with axisymmetry. On the other hand, the results
obtained in this paper improve substantially the results in [5], where the authors
proved existence of weak solutions for

∣∣∣ω0
r

∣∣∣ ∈ L1(R3) ∩ Lp(R3), p >
6

5
.

It would be very interesting to study (1)-(2) with initial data in L1(R3).

1. Preliminaries

By a weak solution of the Euler equations with an initial data v0, we mean the
vector field v ∈ L∞([0, T ]; (L2loc(R

3))3) with div v = 0 such that

∫ T

0

∫
R3

[v · ϕt + v ⊗ v : ∇ϕ] dx dt +

∫
R3

v0 · ϕ(0, x) dx = 0 ,

for all ϕ ∈ C∞([0, T ]; [C∞0 (R
3)]3) with divϕ ≡ 0 and ϕ(T, x) ≡ 0 Here we have

used the notation v ⊗ v : ∇ϕ =
∑3
i,j=1 vivj(ϕi)xj .

We are concerned with the axisymmetric solutions to the Euler equations. By
an axisymmetric solution of equations (1)-(2) we mean a solution of the form

v(t, x) = vr(r, x3, t)er + vθ(r, x3, t)eθ + v3(r, x3, t)e3

in the cylindrical coordinate system, using the canonical basis

er = (
x1
r
,
x2
r
, 0), eθ = (

x2
r
,−

x1
r
, 0), e3 = (0, 0, 1), r =

√
x21 + x

2
2 .



EJDE–1998/26 Existence of axisymmetric weak solutions 3

For such flows the first equation in (1) can be written as

D̃vr
Dt
−
(vθ)

2

r
= −

∂p

∂r
, (3)

D̃

Dt
(rvθ) = 0 , (4)

D̃v3
∂t
= −

∂p

∂x3
, (5)

for each component of velocity in the cylindrical coordinate system, where

D̃

Dt
=

∂

∂t
+ vr

∂

∂r
+ v3

∂

∂x3
.

On the other hand, the second equation of (1) becomes

∂

∂r
(rvr) +

∂

∂x3
(rv3) = 0 . (6)

We observe that θ-component of the vorticity equation is written as

D̃

Dt

(ωθ
r

)
=
1

r4
∂

∂x3
(rvθ)

2 , (7)

where

ωθ =
∂vr
∂x3
−
∂v3
∂r

(8)

is the θ−component of the vorticity vector ω. If we assume that the initial velocity

v0 ∈ V
m = {v ∈ [ Hm(R3)]3 : div v = 0}

with m ≥ 4 is axisymmetric, then due to the symmetry properties of the Euler
equations, and by the existence of local unique classical solutions [12], the solution
remains axisymmetric during its existence. Here we used the standard Sobolev
space

Hm(R3) = {u ∈ L2(R3) : Dαu ∈ L2(R3), |α| ≤ m} .

Furthermore, if v0 has no “swirl” component, i.e. v0,θ=0, then (4) and (7) imply
that

D̃

Dt

(ωθ
r

)
= 0 ∀t > 0 . (9)

We observe that in this case the vorticity becomes ω(t, x) = ωθ(t, r, x3)eθ. Thus,
we have, in particular,

|ω(t, x)| = |ωθ(t, r, x3)| ,

where | · | denotes the Euclidean norm in R3 in the left hand side, and the absolute
value in the right hand side of the equation. In [17] Saint-Raymond proved existence
of a global unique smooth solution for smooth v0 without swirl.
Below we show explicitly the difference between the nonlinear terms for the 2-D

Euler equations and those for 3-D Euler equations with axisymmetry and without
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swirl. In the weak formulation of the 2-D Euler equations, if we use a test function
of the form ϕ = (− ∂ψ

∂x2
, ∂ψ
∂x1
) in order to satisfy divϕ = 0, then∫ T

0

∫
R2

[v⊗ v : ∇ϕ] dx dt =

∫ T

0

∫
R2

[
(v21 − v

2
2)

∂2ψ

∂x1∂x2
− v1v2

(
∂2ψ

∂x21
−
∂2ψ

∂x22

)]
dx dt .

On the other hand, in the axisymmetric 3-D Euler equation without swirl, if we
use as a test function ϕ(t, x) = ϕr(t, r, x3)er + ϕ3(t, r, x3)e3 with

ϕr =
1

r

∂ψ

∂x3
, ϕ3 = −

1

r

∂ψ

∂r

to satisfy ∂(rϕr)
∂r
+ ∂(rϕ3)

∂x3
= 0, then∫ T

0

∫
R3

[v ⊗ v : ∇ϕ] dx dt = 2π

∫ T

0

∫
R×R+

[
(v2r − v

2
3)

∂2ψ

∂r∂x3
− vrv3

(
∂2ψ

∂r2
−
∂2ψ

∂x23

)

+
vrv3
r

∂ψ

∂r
−
v2r
r

∂ψ

∂x3

]
dr dx3 dt .

Here we have extra two nonlinear terms compared to the 2-D case, which have
apparent singularities on the axis of symmetry.
Before closing this section, we provide a brief introduction to the Orlicz spaces.

For more details see [1,9], and for applications to the 2-D Euler equations, see [3,16].
By an N-function we mean a real valued function A(t), t ≥ 0 which is continuous,
increasing, convex, and satisfies

lim
t→0

A(t)

t
= 0, lim

t→∞

A(t)

t
= +∞ .

We say that A(t) satisfies ∆2-condition near infinity if there exist k > 0, t0 ≥ 0
such that

A(2t) ≤ kA(t) ∀t ≥ t0 .

We denote A(t) � B(t) if for every k > 0

lim
t→∞

A(kt)

B(t)
=∞ .

Let Ω be a domain in Rn. Then the Orlicz class KA(Ω) is defined as the set all
functions u such that

∫
Ω
A(|u(x)|) dx < ∞. On the other hand, the Orlicz space

LA(Ω) is defined as the linear hull of the Orlicz class KA(Ω). The set LA(Ω) is a
Banach space equipped with the Luxembourg norm

‖u‖A = inf
{
k :

∫
Ω

A(
u

k
) dx ≤ 1

}
.

In general KA(Ω) ⊂ LA(Ω), but in case the domain Ω is bounded in R
n, and the

N-function A satisfies the ∆2-condition near infinity we have KA(Ω) = LA(Ω) (see
[1]). For example Lp(Ω), 1 < p < ∞ is an Orlicz space with N-functions given by
A(t) = tp.
Recall that for a bounded domain Ω we have the continuous imbedding, [1],

LA(Ω) ↪→ LB(Ω) if A(t) � B(t).

Also recall the following duality relations [3, Lemma 4]. (Below X∗ denotes the
dual of X)
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Lemma 1.1. Let Ω be a bounded domain in Rn, and α > 0. Let A(·), B(·) be
N-functions given by A(t) = t(log+ t)α, B(t) = exp(tq/α) − 1, where t ≥ 0. Then,
we have

LB(Ω) = L
∗
A(Ω) .

By the Orlicz-Sobolev space WmLA(Ω) we mean a subspace of the Orlicz space
LA(Ω) consisting of functions u such that the distributional derivatives D

αu are
contained in LA(Ω) for all multi-index α’ with |α| ≤ m, equipped with a Banach
space norm

‖u‖m,A = max
|α|≤m

‖Dαu‖A .

The following lemma corresponds to a special case of the general result by Don-
aldson and Trudinger [9].

Lemma 1.2. Let Ω ⊂ R2 be a bounded domain, and B(t) = exp(t2) − 1, then we
have a continuous imbedding

H10 (Ω) ↪→ LB(Ω).

Moreover, for any N-function A(t) with A(t) ≺ B(t) we have a compact imbedding

H10 (Ω) ↪→↪→ LA(Ω).

Combining dual of the compact imbedding in Lemma 1.2, and Lemma 1.1 we
have

Corollary 1.1. Let Ω ⊂ R2 be a bounded domain and A(t) = t(log+ t)α with
α > 1

2 . Then we have the compact imbedding

LA(Ω) ↪→↪→ H
−1(Ω).

2. Main Results

Our main result is as follows:

Theorem 2.1. Suppose α > 1
2 is given. Let v0 ∈ V

0 be an axisymmetric initial

data with v0,θ ≡ 0, and |
ω0
r
|
[
1 + (log+ |ω0

r
|)α
]
∈ L1(R3). Then there exists a weak

solution of problem (1)-(2). Moreover, the solution satisfies

‖v(t, ·)‖V 0 ≤ ‖v0‖V 0 ,

and ∫
R3

∣∣∣∣ω(t, ·)r

∣∣∣∣
[
1 +

(
log+

∣∣∣∣ω(t, ·)r

∣∣∣∣
)α]

dx ≤

∫
R3

∣∣∣ω0
r

∣∣∣ [1 + (log+ ∣∣∣ω0
r

∣∣∣)α] dx
for almost every t ∈ [0,∞).

In this section our aim is to prove the above theorem. Below we denote

Q = [0, T ]× R3, G = {(r, x3) ∈ R
2 | r > 0, x3 ∈ R}.

We start from establishment of the following a priori estimate.
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Lemma 2.1. Let v(t, x) ∈ C([0, T ]; [C1(R3)
⋂
H1(R3)]3)

⋂
C([0, T ];V 0) be the

classical solution of the Euler equations for the axisymmetric initial data v0 with-
out the swirl component, and with the vorticity satisfying ω0

r
∈ L1(R3). Then the

following estimate holds:

∫ T

0

∫
R3

1

1 + x23

(vr
r

)2
dx dt ≤ C

(
‖v0‖

2
V 0 +

∥∥∥ω0
r

∥∥∥
L1(R3)

)
. (10)

Proof. The velocity conservation law for the Euler equations implies the estimate

‖
√
rvr‖L∞(0,T ;L2(G)) + ‖

√
rv3‖L∞(0,T ;L2(G)) ≤ C‖v0‖V 0 . (11)

Moreover, (9) immediately yields the estimate for L1-norm of vorticity

‖ω(t, ·)‖L1(G) ≤ ‖ω0‖L1(G).

We set ρ(x3) =
∫ x3
−∞ 1/(1 + τ

2) dτ . Multiplying (9) by 2πrρ(x3) scalarly in

L2(0, T ;L2(G)) and integrating by parts, we obtain

0 =

∫
R3

ρωθ
r

dx

∣∣∣∣
T

0

−

∫ T

0

∫
G

2πρ′v3ωθ dr dx3 dt

=

∫
R3

ρωθ
r
dx

∣∣∣∣
T

0

+

∫ T

0

∫
G

2πρ′v3

(
∂v3
∂r
−
∂vr
∂x3

)
dr dx3 dt

=

∫
R3

ρωθ
r
dx

∣∣∣∣
T

0

−

∫ T

0

∫ +∞
−∞

πρ′v23(t, 0, x3) dx3 dt

+

∫ T

0

∫
G

2π

(
ρ′′v3vr + ρ

′vr
∂v3
∂x3

)
dr dx3 dt ,

(12)

where we used the regularity assumption of solution v, and the integration by parts
used above can be justified easily. Indeed,

∫ T

0

∫
G

2πρ′v3

(
∂v3
∂r
−
∂vr
∂x3

)
dr dx3 dt

= lim
rk→+∞

2π

∫ T

0

∫ +∞
−∞

∫ rk

0

ρ′v3
∂v3
∂r

dr dx3 dt

− lim
bk→+∞

2π

∫ T

0

∫ bk

−bk

∫ ∞
0

ρ′v3
∂vr
∂x3

dr dx3 dt

=−

∫ T

0

∫ +∞
−∞

πρ′v23(t, 0, x3) dx dt+ lim
rk→+∞

∫ T

0

∫ +∞
−∞

πρ′v23(t, rk, x3) dx3 dt

− lim
bk→+∞

∫ T

0

∫ ∞
0

2πρ′v3vrdrdt

∣∣∣∣
bk

−bk

+ lim
bk→+∞

∫ T

0

∫ bk

−bk

∫ ∞
0

2π

(
ρ′′v3vr + ρ

′vr
∂v3
∂x3

)
dr dx3 dt .
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for all sequence rk → +∞. Since v ∈ C([0, T ]; (C1(R3))3),

∫
(0,T )×R3

|v|2 dx dt =2π

∫ +∞
0

(∫ T

0

∫ +∞
−∞

|v|2 dx3 dt

)
r dr

=2π

∫ ∞
−∞

(∫ T

0

∫ +∞
0

|v|2r dr dt

)
dx3 <∞ ,

and limx3→∞ ρ′(x3) = 0 one can find a sequence rk → +∞ and bk → +∞ such
that∫ T

0

∫ ∞
−∞

ρ′v23(t, rk, x3) dx3 dt→ 0, lim
bk→+∞

∫ T

0

∫ ∞
0

2πρv3vr dt dr

∣∣∣∣
bk

−bk

→ 0 .

From (6) we have
∂v3
∂x3

= −
vr
r
−
∂vr
∂r

. (13)

Therefore (12) and (13) imply

0 =

∫
R3

ρ
ωθ
r
dx

∣∣∣∣
T

0

−

∫ T

0

∫ +∞
−∞

πρ′v23(t, 0, x3) dx3 dt

+

∫ T

0

∫
G

2π

(
ρ′′v3vr − ρ

′ (vr)
2

r
− ρ′vr

∂vr
∂r

)
dr dx3 dt . (14)

Since, by assumption, v(t, x) is a smooth and axisymmetric vector field

vr(t, 0, x3) = 0 ∀ t ∈ R
1
+, x3 ∈ R

1.

Thus integration by parts in (14), which can be justified similarly to the above,
implies

∫ T

0

∫ +∞
−∞

πρ′v23(t, 0, x3) dx3 dt+

∫ T

0

∫
G

2πρ′(x3)
(vr)

2

r
dr dx3 dt

=

∫ T

0

∫
G

2πρ′′v3vr dr dx3 dt+

∫
R3

ρ
ωθ
r
dx

∣∣∣∣
T

0

.

Since ρ′(x3) > 0, |ρ(x3)| < C for all x3 ∈ R1 we obtain the inequality

2π

∫ T

0

∫
G

∣∣∣∣ρ′ (vr)2r
∣∣∣∣ drdx3dt ≤ 2π

∫ T

0

∫
G

|ρ′′v3vr| dr dx3 dt+ C
∥∥∥ω0
r

∥∥∥
L1(R3)

≤ 2π

(∫ T

0

∫
G

ρ′
(vr)

2

r
dr dx3 dt

) 1
2
(∫ T

0

∫
G

rv23
(ρ′′)2

ρ′
dr dx3 dt

) 1
2

+C
∥∥∥ω0
r

∥∥∥
L1(R3)

.

Hence by the Cauchy-Bunyakovskii inequality we have

∫ T

0

∫
G

|ρ′|
(vr)

2

r
dr dx3 dt ≤ C

(∫ T

0

∫
R3

v23
|ρ′′|2

ρ′
dx dt+

∥∥∥ω0,θ
r

∥∥∥
L1(R3)

)
. (15)
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Since supx3∈R |ρ
′′(x3)|2/|ρ′(x3)| ≤ C, inequalities (11) and (15) imply the estimate

(10). �
Now, let vε0 be an axisymmetric initial datum without the swirl component such

that

vε0 → v0 in V
0, vε0 ∈ (C

∞(R3))3 ,
ωε0,θ

r
→

ω0,θ
r
in L1(R3) . (16)

Such an approximation vε0 for any axisymmetric function, v0 ∈ V 0 without swirl
was constructed in [17] for example. In [17] also, it was proved that in this case
there exists a unique solution of the problem (1)-(2), vε(t, ·) ∈ C([0, T ]; [C2(R3)]3)∩
L2(0, T ;H1(R3)). Without loss of generality, passing to a subsequence if it is nec-
essary, we may assume that

vε → v weakly in [L2((0, T ) × R3)]3 . (17)

We have

Lemma 2.2. Let {vε(x, t)}ε∈(0,1) be a sequence of smooth solutions of (1)-(2) as-
sociated with the initial datum {vε0} with axisymmetry and without swirl, and sat-
isfying (16) and (17). Then, for each ϕ ∈ C([0, T ];C0(R3)), we have∫

Q

[(vεr)
2 − (vε3)

2]ϕdxdt→

∫
Q

[(vr)
2 − (v3)

2]ϕdxdt as ε→ +0 . (18)

Remark. The above lemma is very similar to Delort’s in [8], where he proved it
in particular under the assumptions on the sequence {vε(x, t)} that

ωεθ(x, t) ≥ 0 almost everywhere in (0, T ) × R
3, and

{ωεθ} is uniformly bounded in L
∞(0,∞;L1(R+ × R, (1 + r

2) dr dx3)) .

In our case, however, we only need to assume ω0
r
∈ L1(R3), and {vε} is the associ-

ated sequence of approximated solutions.

Proof of Lemma 2.2. We follow Delort’s arguments. Denote

(∆−1f)(x) = −
1

4π

∫
R3

f(y)

|x− y|
dy .

Relation vε = −∆−1curlωε implies

vε1 = ∆
−1∂3ω

ε
2 ,

vε2 = −∆
−1∂3ω

ε
1 ,

vε3 = ∆
−1(∂2ω

ε
1 − ∂1ω

ε
2) .

Let Φ ∈ C∞0 (R
3), in Φ ≥ 0,Φ ≡ 1 for all (t, x) ∈ suppϕ. Set

ϕvε1 = ϕ∆
−1∂3(Φω

ε
2) + w

ε
1 ,

ϕvε2 = −ϕ∆
−1∂3(Φω

ε
2) +w

ε
2 ,

ϕvε3 = ϕ∆
−1(∂2(Φω

ε
1)− ∂1(Φω

ε
2)) + w

ε
3 ,
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where

wε1 = ϕ[Φ,∆
−1 ∂

∂x3
]ωε2 ,

wε2 = −ϕ[Φ,∆
−1 ∂

∂x3
]ωε1 ,

wε3 = ϕ([Φ,∆
−1 ∂

∂x2
]ωε1 − [Φ,∆

−1 ∂

∂x1
]ωε2) ,

where [A,B] = AB − BA is the commutator of operators A,B, and ∂i = ∂/∂xi .

Note that wεi are uniformly bounded in L
∞(0, T ; H1loc(R

3)) ∩ H1(0, T ;H−4loc (R
3))

for each i = 1, 2, 3. Really let us prove this claim for example for wε1. Denote
zε = ∆

−1 ∂
∂x3
(Φωε2). Then ∆zε =

∂
∂x3
(Φωε2), and

∆(Φvε1) = ∂3(Φω
ε
2)− ∂3Φω

ε
2 + 2

3∑
i=1

∂

∂xi
(vε1

∂Φ

∂xi
)− vε1∆Φ .

Denote uε = Φv
ε
1 − zε. Then

∆uε = −
∂(∂3Φv

ε
1)

∂x3
+
∂2Φ

∂x23
vε1 +

∂(∂3Φv
ε
3)

∂x1
−

∂2Φ

∂x1∂x3
vε3 + 2

3∑
i=1

∂

∂xi
(vε1

∂Φ

∂xi
)− vε1∆Φ

and

uε = ∆
−1

(
−
∂(∂3Φv

ε
1)

∂x3
+
∂(∂3Φv

ε
3)

∂x1
+ 2

3∑
i=1

∂

∂xi
(vε1

∂Φ

∂xi
)

)

+∆−1
(
∂2Φ

∂x23
vε1 −

∂2Φ

∂x1∂x3
vε3 − v

ε
1∆Φ

)
,

where the first component of uε is bounded in L
∞(0, T ;H1(R3)), and the second

one is bounded in L∞(0, T ;H1loc(R
3)) due to compactness of suppΦ in [0, T ]×R3.

Since the function ϕ also has a compact support in [0, T ]×R3, the first part of our

statement is proved. To prove the uniform boundness of
∂wε1
∂t
in L2(0, T ;H−4loc (R

3))
we first recall that for any smooth solution v of the 3-D Euler equations with initial
data v0, we have in general

‖v(t1)− v(t2)‖H−3(Br) ≤ C(r)‖v0‖
2
V 0 |t1 − t2|

for all t1, t2 with 0 < t1 ≤ t2 < T , where Br is a ball with the center 0 and radius
r (see e.g. [5]). This estimate implies immediately that∥∥∥∥∂vε∂t

∥∥∥∥
L∞(0,T ;H−3(Br))

≤ C(r), (19)

where C is independent of ε. Taking the time derivative of uε we have∥∥∥∥∂wε∂t
∥∥∥∥
L2(0,T ;H−4(Br))

≤ C(r)

(∥∥∥∥∂vε∂t
∥∥∥∥
L2(0,T ;H−3(Br))

+ ‖vε‖L2(0,T ;V 0)

)
≤ C(r).
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Hence to prove (18) we need only to pass to the limit in the following equation.

Aε =

∫
Q

[(∆−1∂3(Φω
ε
2))
2 + (∆−1∂3(Φω

ε
1))
2 − (∆−1∂2(Φω

ε
1))
2 − (∆−1∂1(Φω

ε
2))
2

+ 2(∆−1∂2(Φω
ε
1))(∆

−1∂1(Φω
ε
2))]ϕdxdt.

After simplifications we have:

Aε = (Φωε2, ϕ∆
−2(∂21 − ∂

2
3)(Φω

ε
2))L2(Q) + (Φω

ε
1, ϕ∆

−2(∂22 − ∂
2
3)(Φω

ε
1))L2(Q)

− 2(Φωε1, ϕ∆
−2∂1∂2(Φω

ε
2))L2(Q) +A

ε
0 = A

ε
1 +A

ε
0,

where

Aε0 = (Φω
ε
2, [∆

−1∂3, ϕ](∆
−1∂3(Φω

ε
2)))L2(Q)+(Φω

ε
1, [∆

−1∂3, ϕ](∆
−1∂3(Φω

ε
1)))L2(Q)

− (Φωε1, [∆
−1∂2, ϕ](∆

−1∂2(Φω
ε
1)))L2(Q) − (Φω

ε
2, [∆

−1∂1, ϕ](∆
−1∂1(Φω

ε
2)))L2(Q)

+ 2(Φωε1, [∆
−1∂2, ϕ](∆

−1∂1(Φω
ε
2)))L2(Q).

Since each sequence [∆−1∂j , ϕ](∆
−1∂k(Φω

ε
` )) belongs to a compact set in H

1
loc(R

3),
we obtain

Aε0 → A0 as ε→ 0

for a subsequence. In [8] Delort proved that the term Aε1 can be rewritten as follows

Aε1 =

∫ T

0

∫
G

∫
G

K(t, r, x3, r
′, x′3)(Φω

ε
θ)(t, r, x3)(Φω

ε
θ)(t, r

′, x′3) dr dx3 dr
′ dx′3 dt ,

where the function K(t, r, x3, r
′, x′3) satisfies

K ∈ C∞ on {(r, x3, r
′, x′3) ∈ R+ × R× R+ × R; (r, x3) 6= (r

′, x′3)}

and K is locally bounded on R+ × R× R+ × R.
Let η(τ) ∈ C∞0 (R

1), η(τ) ≥ 0 for any τ ∈ R1 and η ≡ 1 in some neighborhood
of 0. Set

Aε1 = I
ε,δ
1 + I

ε,δ
2 =

∫ T

0

∫
G

∫
G

K(t, r, x3, r
′, x′3)

(
1− η

(r
δ

))(
1− η

(
r′

δ

))
×(

1− η

(
|r′ − r|+ |x3 − x′3|

δ

))
(Φωεθ)(t, r, x3)(Φω

ε
θ)(t, r

′, x′3) dr dx3dr
′dx′3dt

+

∫ T

0

∫
G

∫
G

K(t, r, x3, r
′, x′3)

[
η
(r
δ

)(
1− η

(
r′

δ

))(
1− η

(
|r′ − r|+ |x3 − x′3|

δ

))

+ η

(
r′

δ

)(
1− η

(
|r − r′|+ |x3 − x′3|

δ

))

+ η

(
|r − r′|+ |x3 − x′3|

δ

)]
(Φωεθ)(t, r, x3)(Φω

ε
θ)(t, r

′, x′3) dr dx3 dr
′ dx′3dt. (20)

Our aim is to prove that for any κ > 0 there exist ε0 > 0 and δ0 > 0 such that

|Iε,δ2 | ≤ κ ∀ε ∈ (0, ε0), δ ∈ (0, δ0). (21)
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We start from the following estimate

|Iε,δ2 | ≤ Ĉ
[ ∫ T

0

∫
|r|≤cδ

∫ +∞
−∞

|Φωεθ|dx3drdt

(∥∥∥ω0
r

∥∥∥
L1(R3)

+ 1

)

+

∫ T

0

∫
(G×G)∩{|r−r′|+|x3−x′3|<cδ}

|(Φωεθ)(t, r, x3)(Φω
ε
θ)(t, r

′, x′3)| dr dx3 dr
′ dx′3dt

]
.

(22)

Let us consider the system of ordinary differential equations

dXε(t, α)

dt
= vε(t,Xε(t, α)), Xε(t, α)|t=0 = α . (23)

Using (23), one can write out the solution of (9) as(
ωεθ
r

)
(t,Xε(t, α)) =

(
ωε0,θ
r

)
(α), α ∈ R3 .

Or, equivalently
ωεθ
r
(t, α) =

(
ωε0,θ
r

)
(X−1ε (t, α)) . (24)

Let us denote

O
(t)
δ,ε = Xε

(
t, {(r, x3) ∈ G | r ≤ δ, (r, x3) ∈ suppΦ(t, ·)}

)
.

Since, by assumption, suppΦ is compact in [0, T ] × R3 and the mapping X−1ε (t, ·)
conserves a volumes, we have

sup
t∈[0,T ]

µ(O
(t)
δ,ε)→ 0 as δ → +0 , (25)

uniformly in ε.
Taking into account that det(∇Xε(t, α)) ≡ 1, one can estimate the first term of

the right hand side of (22) as follows:

∫ T

0

∫
|r|≤cδ

∫ +∞
−∞

2π|Φωεθ| dr dx3 dt ≤ C

∫ T

0

∫
O
(t)
δ,ε

∣∣∣∣
(
ωε0,θ

r

)
(t, x)

∣∣∣∣ dx dt = Bε,δ .
Note that

Bε,δ ≤ C sup
t∈(0,T )

∫
O
(t)
δ,ε

(∣∣∣ω0,θ
r

∣∣∣+
∣∣∣∣ω0,θr −

ωε0,θ

r

∣∣∣∣
)
dx .

Hence, by (16),(25) for any κ > 0 there exists ε0 > 0, δ0 > 0 such that

|Bε,δ| ≤
κ

4a
∀ε ∈ (0, ε0), δ ∈ (0, δ0) , (26)

where a = Ĉ(
∥∥ω0
r

∥∥
L1(R3)

+ 1). On other hand, from

∫
(G×G)∩{|r−r′|+|x3−x′3|≤cδ}

|(Φωεθ)(t, r, x3)(Φω
ε
θ)(t, r

′, x′3)| dr dx3 dr
′ dx′3 dt
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after the change of variables we obtain

∫ T

0

∫
G

|(Φωεθ)(t, r
′, x′3)|(

∫
{|r̃|+|x̃3|≤cδ}

|(Φωεθ)(t, r̃ + r
′, x̃3 + x

′
3)|dr̃dx̃3) dr

′ dx′3dt

≤ C

∥∥∥∥ωε0r
∥∥∥∥
L1(R3)

∫ T

0

( sup
(r′,x′3)∈G

∫
{|r̃|+|x̃3|≤cδ}

|(Φωεθ)(t, r̃ + r
′, x̃3 + x

′
3)| dr̃ dx̃3) dt

≤ C

∥∥∥∥ωε0r
∥∥∥∥
L1(R3)

∫ T

0

( sup
(r′,x′3)∈G

∫
{|r̃|+|x̃3|≤cδ}

|ωεθ(t, r̃ + r
′, x̃3 + x

′
3)| dr̃ dx̃3) dt

≤ C

∥∥∥∥ωε0r
∥∥∥∥
L1(R3)

∫ T

0

sup
(r′,x′3)∈G

∫
{(r,x3)∈G||r−r′|+|x3−x′3|≤cδ}

∣∣∣∣ω
ε
0,θ

r
(X−1ε (t, x))

∣∣∣∣ dx dt .
(27)

Set µ({x ∈ R3||r − r′|+ |x3 − x′3| ≤ cδ}) = γ(δ). Then∫
(G×G)∩{|r−r′|+|x3−x′3|≤cδ}

|(Φωεθ)(t, r, x3)||(Φω
ε
θ)(t, r

′, x′3)| dr dx3 dr
′ dx′3 dt

≤ ĈT

∥∥∥∥ωε0r
∥∥∥∥
L1(R3)

sup
B

µ(B)≤γ(δ)

∫
B

∣∣∣∣ωε0r
∣∣∣∣ dx . (28)

Since γ(δ) → 0 as δ → 0 for any κ > 0, one can find δ0 > 0 and ε0 > 0 such that
right hand side of (28) is less than or equal to κ

4
for all δ ∈ (0, δ0) and ε ∈ (0, ε0).

Then, taking into account (28) , we obtain (21).
On the other hand, we have

K(t, r, x3, r
′x′3)

(
1− η

(r
δ

))(
1− η

(
r′

δ

))(
1− η

(
|r − r′|+ |x3 − x′3|

δ

))
∈ C∞([0, T ] ×G×G).

Hence
Iε,δ1 → Iδ1 as ε→ 0. (29)

Thus by (21) and (29),
Aε1 → A1.

The proof of the lemma is complete. �
Let us introduce a class of axisymmetric vector fields without a swirl component,

L2a(R
3) = {v ∈ (L2(R3))3 | v = v(r, x3), vθ = 0}. For a given N-function A(t),

following [3], we introduce

QA(R
3) = {v ∈ L2a(R

3) ∩W 1LA(R
3) |div v = 0, curl v ∈ LA(R

3)}

equipped with the Banach space norm ‖v‖QA(R3) = (‖v‖
2
L2(R3)+‖curl v‖

2
L2A(R

3)
)1/2.

Here the derivatives are in the distribution sense. We can extend our definition to
QA(Ω) for any axisymmetric domain Ω in R3.
Now, we establish the following compactness lemma, which is an axisymmetric

analogue of Lemma 6. of [3].
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Lemma 2.3. Let A(t) be an N-function satisfying the ∆2−condition, and satisfies
A(t) � t(log+ t)

1
2 . Then for any bounded sequence {vε} in QA(R3) there exists a

subsequence, denoted by the same notation, {vε} and v ∈ QA(R3) such that

lim
ε→0

∫
R3

ρ|vε|2 dx =

∫
R3

ρ|v|2 dx

for any given axisymmetric test function ρ ∈ C∞0 (R
3) with supp ρ ⊂ {(r, x3) ∈

R
2 | r > 0}.

Proof. Let {vε} be a uniformly bounded sequence in QA(R3). Then, there exists
a subsequence, denoted by {vε}, and v in QA(R3) such that

vε → v weakly in L2(R3) . (30)

For such v(ε) we introduce stream functions ψ(ε) = ψ(ε)(r, x3) such that

v(ε)r = −
1

r

∂ψ(ε)

∂x3
, v

(ε)
3 =

1

r

∂ψ(ε)

∂r
.

Let a function ρ ∈ C∞0 (R
3) and a bounded domain W with suppρ ⊂ W ⊂ G be

given. Then, by integration by part we obtain∫
R3

ρ|v(ε)|2 dx =

∫
R3

ρ((v(ε)r )
2 + (v

(ε)
3 )

2)dx

= 2π

∫
R3

(
−ρv(ε)r

1

r

∂ψ(ε)

∂x3
+ ρv

(ε)
3

1

r

∂ψ(ε)

∂r

)
r dr dx3

= 2π

∫
R3

(
∂ρ

∂x3
v(ε)r ψ(ε) −

∂ρ

∂r
v
(ε)
3 ψ(ε)

+ρ
∂v
(ε)
r

∂x3
ψ(ε) − ρ

∂v
(ε)
3

∂r
ψ(ε)

)
dr dx3

= 2π

∫
G

(
∂ρ

∂x3
v(ε)r ψ(ε) −

∂ρ

∂r
v
(ε)
3 ψ(ε)

)
dr dx3

+ 2π

∫
G

ω
(ε)
θ ψ(ε)ρ dr dx3 = {1}

(ε) + {2}(ε) . (31)

Since

‖∇ψε‖L2(W ) ≤ C(W )

∥∥∥∥∇ψεr
∥∥∥∥
L2(W )

= C(W )‖vε‖L2(W ) ≤ C,

we obtain by Rellich’s compact imbedding lemma that

ρ1ψ
ε → ρ1ψ strongly in L2(W ) ∀ρ1 ∈ C

∞
0 (W )

after choosing a subsequence. This, combined with (30), provides easily that {1}ε →
{1} in (31) as ε→ 0.
To prove {2}ε → {2} we observe that

ρψε → ρψ , (32)
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and
‖ωεθ‖L

t(log+ t)
1
2
(W ) ≤ C‖ω

ε
θ‖LA(W ) ≤ C2 , (33)

where B(t) = exp(t2) − 1. Since A(t) = t(log+ t)α � t(log+ t)
1
2 by hypothesis,

applying Corollary 1.1, we find that there exists a subsequence {ωεθ} and ωθ in
H−1(W )←↩←↩ LA(W ) such that

ωεθ → ωθ in H−1(W ) . (34)

We decompose our estimate∣∣∣∣
∫
G

(ωεθψ
ε − ωθψ)ρ dr dx3

∣∣∣∣ ≤
∣∣∣∣
∫
W

(ωεθ − ωθ)ψ
ερ dr dx3

∣∣∣∣+
∣∣∣∣
∫
W

(ψε − ψ)ωθρ dr dx3

∣∣∣∣
= Jε1 + J

ε
2 .

From (32) and (34) we obtain

Jε1 ≤ C‖ψ
ε‖H1(W )‖ω

ε
θ − ωθ‖H−1(W ) → 0

after choosing a subsequence, if necessary. On the other hand, the convergence
Jε2 → 0 for another subsequence, if necessary, follows from (32). This completes
the proof of the lemma. �
Using Lemma 2.3 we establish the following

Lemma 2.4. Suppose a sequence {vε} and v be given as in (1.7), Lemma 2.2. Let
η(r) ∈ C∞(R+), η(r) ≥ 0, η(r) = 1, r ∈ [1,∞] and η(r) = 0 for r <

1
2 . Then for

any δ > 0 and ϕ ∈ C∞([0, T ];C∞0 (R
3)) we have∫

Q

η
(r
δ

)
|vε − v|2ϕdxdt→ 0 as ε→ +0 , (35)

after choosing a subsequence.

Proof. Let W be any given bounded domain in G whose closure does not intersect
with the axis of symmetry. By conservation of L2(R3) norm of velocity we have

‖vε(t, ·)‖2L2(W ) ≤ C(W )‖v
ε(t, ·)‖2L2(R3) = C(W )‖v

ε
0‖
2
L2(R3) ≤ C(W,v0) . (36)

On the other hand, the conservation of
ωεθ(t,x)

r
along the flow, (9), implies

‖ωε(t, ·)‖LA(W ) ≤ C(W )

∥∥∥∥ωεr (t, ·)
∥∥∥∥
LA(R3)

= C(W )

∥∥∥∥ωε0r
∥∥∥∥
LA(R3)

≤ C(W,v0), (37)

where A = A(t) = t(log+ t)α. Combining (36) and (37), we find that

sup
t∈[0,T ]

‖vε(t, ·)‖QA(W ) ≤ C. (38)

From the estimate (38), combined with (19), together with Lemma 2.3, we deduce
by using the standard compactness lemma that there is a subsequence {vε(t, r, x3)}
such that

vε → v strongly in L2([0, T ] ×W ) .
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Now (35) follows from this immediately. The lemma is proved. �
Proof of Theorem 1.1 To prove the theorem we have only to show that

Iε =

∫
Q

vεi v
ε
jϕdxdt→ I =

∫
Q

vivjϕdxdt , (39)

for all i, j ∈ {1, 2, 3}, and ϕ ∈ C∞([0, T ];C∞0 (R
3)). Let η(τ) ∈ C∞(R1+), 0 ≤ η ≤

1, η(τ) = 1 for all τ ∈ [1,+∞) and η(τ) = 0 for τ ∈ [0, 12 ]. For any δ > 0 we set

Iε = Iε,δ1 + I
ε,δ
2 =

∫
Q

η
(r
δ

)
vεi v

ε
jϕdx+

∫
Q

(
1− η

(r
δ

))
vεi v

ε
jϕdx .

By Lemma 2.4

Iε,δ1 →

∫
Q

η
(r
δ

)
vivjϕdx as ε→ 0 . (40)

Hence the statement of theorem will be proved, if we show that for any κ > 0 there
exists δ0 > 0 such that for all δ ∈ (0, δ0) one can find ε0(δ) > 0 that

|Iε,δ2 | ≤ κ ∀ ε ∈ (0, ε0) . (41)

Indeed, in case either i or j equals 1 or 2, by Lemma 2.1 we have

∣∣∣∣
∫
Q

(
1− η

(r
δ

))
vεi v

ε
jϕdx

∣∣∣∣ ≤2π
∫ T

0

∫ +∞
−∞

∫ δ

0

r|vεrv
ε
jϕ| dr dx3 dt

≤Cδ

∫ T

0

∫ +∞
−∞

∫ δ

0

|ϕvεrv
ε
j | dr dx3 dt (42)

≤Cδ

(∫ T

0

∫ +∞
−∞

∫ +∞
0

1

1 + x23

|vεr |
2

r
dr dx3 dt

) 1
2

‖vε0‖V 0

≤Cδ

(
‖v0‖

2
V 0 +

∥∥∥ω0
r

∥∥∥
L1(R3)

+ 1

) 1
2

(‖v0‖V 0 + 1) .

Hence taking parameter ε0 = 1 and parameter δ0 sufficiently small, we obtain (41).
Let us consider the case i = j = 3. Then

|Iε,δ2 | ≤ Ĉ

∫
Q

∣∣∣1− η (r
δ

)∣∣∣ (vε3)2 dx dt. (43)

Set ρ(r) = 1− η(r). Let δ1 > 0 be such that∣∣∣∣
∫
Q

ρ
(r
δ

)
((vr)

2 − (v3)
2) dx dt

∣∣∣∣ ≤ κ

4Ĉ
∀ δ ∈ (0, δ1). (44)

In the above we also proved that for each κ > 0 there exists δ2 > 0 such that∫
Q

(vεr)
2ρ
(r
δ

)
dx dt ≤

κ

4Ĉ
∀ δ ∈ (0, δ2), ε ∈ (0, 1). (45)
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Let δ0 = min{δ1, δ2}.
Note that by Lemma 2.2 for δ ∈ (0, δ0)

∫
Q

[(vεr)
2 − (vε3)

2]ρ
(r
δ

)
dx dt→

∫
Q

[(vr)
2 − (v3)

2]ρ
(r
δ

)
dx dt ,

as ε→ +0.
Thus for every κ > 0 and δ ∈ (0, δ0) one can find ε0(δ) that

∣∣∣∣
∫
Q

[(vεr)
2 − (vε3)

2 − (vr)
2 + (v3)

2]ρ
(r
δ

)
dx dt

∣∣∣∣ ≤ κ

4Ĉ
∀ ε ∈ (0, ε0(δ)). (46)

Inequalities (43)-(46) imply (41). Since now (36) is proved for an arbitrary i, j ∈
{1, 2, 3}, the proof of the existence part of Theorem 2.1 is complete. The inequalities
for the energy and the vorticity follow immediately by the energy conservation for
velocity and the conservation of ωθ

r
for the smooth approximate solutions, and

taking limit for suitable subsequence. This completes the proof of the theorem. �
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