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ON THE DECAY RATE OF SOLUTIONS OF

NON-AUTONOMOUS DIFFERENTIAL SYSTEMS

TOMÁS CARABALLO

Abstract. Some results on the asymptotic behaviour of solutions of differ-
ential equations concerning general decay rate are proved. We prove general
criteria on the exponential, polynomial, and more general decay properties of
solutions by using suitable Lyapunov’s functions. We also present a detailed
analysis of the perturbed linear and nonlinear differential systems. The theory
is illustrated with several examples.

1. Introduction

The asymptotic behaviour of systems described by differential equations is a very
important topic as the vast literature on this field shows. To study the stability
of a nonlinear system one can, on the one hand, analyze its linear approximation
(see Brauer and Nohel [1], Yoshizawa [9] among others); on the other hand, one
can use another method which relies in the technique discovered by Lyapunov (see
Yoshizawa [9]). This is called the direct method (or Lyapunov’s Second Method)
because it can be applied directly to the differential equation without any knowledge
of its solutions, provided one is clever enough to construct the suitable auxiliary
functions (called Lyapunov’s functions). But, a major limitation of this procedure
is that there are no general methods to construct such auxiliary functions, much
more in the nonautonomous case in which we are most interested.
In this respect, there exist some interesting results due to Yoshizawa (see [9]-

[10]) and LaSalle (see [7]-[8]), among others, which ensure asymptotic approach
of trajectories to some closed attracting sets for the differential system (see also
Kloeden [6] for another approach). However, apart from the usual exponential
stability results obtained by the first approximation technique, in general, almost
nothing is said about how fast is the convergence of solutions in dealing with the
Lyapunov SecondMethod. Motivated by this fact, we shall first establish a sufficient
condition for the exponential decay of solutions which allows the derivative of the
Lyapunov function along the trajectories of the system to be bounded by a definite
negative function plus an additional nonnegative function with exponential decay.
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Another interesting problem arises when one is not able to prove exponential
stability but knows that the null solution is asymptotically stable. In this case, an
interesting question concerns the possibility of deciding the decay rate of solutions
(to zero or to other solution). As far as we know, most stability results related
to the Lyapunov method are devoted to provide results that ensure stability, as-
ymptotic stability, etc. but, in general, do not give any further information about
the decay rate of solutions (see Haraux [4, pp. 45-47] for a study of the energy
decay of a particular second order equation). We shall partially cover this gap by
providing some conditions which permit us to estimate the decay rates related to
certain general functions (e.g. polynomials, logarithmics, etc.), by introducing a
generalization of the concept of Lyapunov exponents. Another interesting fact is
that, although our main interest will concern sub-exponential decay of solutions,
our treatment also includes the case of super-exponential decay.
This paper is organized as follows. In Section 2, we prove a sufficient condition

ensuring exponential decay of solutions, and another one concerning asymptotic
polynomial behaviour. Next, we introduce in Section 3 the concepts of generalized
Lyapunov exponent with respect to a positive general function and the general
decay rate of solutions, give some criteria for the asymptotic decay of solutions, and
illustrate the results by showing some examples. Section 4 is devoted to the analysis
of perturbed systems. In fact, we analyze the perturbations of linear and nonlinear
differential systems. Finally, we include some remarks and ideas concerning the
possibility of extending the results to the infinite dimensional framework and the
functional one.

2. Exponential and polynomial asymptotic behaviour

Consider the following initial-value problem for a system of differential equations
in Rn:

d

dt
X(t) = f(t,X(t)), t > t0

X(t0) = X0 ∈ R
n,

(2.1)

where f : R × D → Rn is a continuous function, and D ⊂ Rn is an open set
such that 0 ∈ D. It is well known (see, e.g., Coddington and Levinson [2]) that,
given t0 ∈ R and X0 ∈ Rn, there exists at least a solution to this problem defined
in an open maximal interval. As we are interested in the stability or asymptotic
behaviour of solutions, we assume that every solution to (2.1) is defined for t ≥ t0.
When we deal with the stability analysis, we will also assume that f(t, 0) = 0, so
that we consider the stability of the zero solution. Otherwise, we will not assume
this and, we will therefore analyze the asymptotic behaviour of such solutions.
Associated to the differential system in (2.1), we consider the derivative of a

function along the system, i.e., for a continuously differentiable function V (·, ·) :
R×D → R we define the function V̇ (·, ·) : R×D → R as follows

V̇ (t, x) =
∂V (t, x)

∂t
+

n∑
i=1

∂V (t, x)

∂xi
fi(t, x).

Remark. Observe that if X(t) is a solution to (2.1), then it holds

d

dt
V (t,X(t)) = V̇ (t,X(t)).
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Now we state a result which, in particular, ensures exponential decay to zero
of solutions to (2.1). It is worth mentioning that V̇ does not need to be definite
negative.

Theorem 2.1. Assume V : R ×D → R is a continuously differentiable function
satisfying:

∃c1 > 0 and p > 0 such that c1|x|
p ≤ V (t, x), for all (t, x) ∈ R×D,

∃c2 > 0 such that V̇ (t, x) ≤ −c2V (t, x) + λ(t), for all (t, x) ∈ R×D,

where λ(·) is a nonnegative continuous function such that there exist M ≥ 0, γ > 0
satisfying

λ(t) ≤Me−γt, for all t ∈ R+.

Then, there exists ε > 0 such that for any solution X(t) to (2.1) defined for t ≥
t0 ≥ 0, there exists a constant C = C(X0) (which may depend on X0) such that

|X(t)| ≤ C(X0)e
−ε(t−t0)/p, for all t ≥ t0.

Proof. Let us fix a positive number ε satisfying 0 < ε < min{c2, γ}, and estimate
the following derivative for X(t), a solution to (2.1) defined for t ≥ t0,

d

dt

[
eεtV (t,X(t))

]
= εeεtV (t,X(t)) + eεtV̇ (t,X(t))

≤ eεt (εV (t,X(t))− c2V (t,X(t)) + λ(t))

≤ eεtλ(t),

and thus

eεtV (t,X(t)) ≤ eεt0V (t0, X0) +

∫ t
t0

eεsλ(s) ds

≤ eεt0V (t0, X0) +
Me(ε−γ)t0

γ − ε

≤ eεt0
(
V (t0, X0) +

M

γ − ε

)
.

Therefore

|X(t)|p ≤
1

c1

(
V (t0, X0) +

M

γ − ε

)
e−ε(t−t0), for all t ≥ t0,

and the proof is complete.

Example 1. Let us exhibit a simple example to illustrate this result. Consider
the differential equation

dX

dt
= −4X + e−tX1/3, (2.2)

and take the usual auxiliary function V (x) = 1
2x
2. Then

V̇ (x) =
dV (x)

dx
·
(
−4x+ e−tx1/3

)
= −4x2 + e−tx4/3, (2.3)

which is not definite negative. However, it follows by Young’s inequality (ab ≤
l a
p

p +
1
qlq/p
bq with 1p +

1
q = 1) for suitable l > 0, p = 3/2 and q = 3,

V̇ (x) = −4x2 + e−tx4/3 ≤ (−4 +
2

3
l)x2 +

1

3l2
e−3t,
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and, for l = 3/2 we have −4 + 23 l = −3, and therefore

V̇ (x) ≤ −3x2 + λ(t),

where λ(t) = 4
27e
−3t. Now, the theorem ensures that solutions decrease towards

zero with exponential decay.

Remark. The exponential decay of λ is essential to guarantee the same decay of
solutions. Indeed, consider the following one dimensional equation

dX

dt
= −X +

1

1 + t
.

It is clear that the null solution to the autonomous equation Ẋ = −X is exponen-
tially stable. Moreover, every solution to this equation converges exponentially to
zero (i.e. the global attractor for this equation is the set {0}). However, as far as
we consider the perturbed nonautonomous version, the solutions do not converge
to zero, in general, with the same rate. To see this, notice that the solution to the
problem

dX

dt
= −X +

1

1 + t
X(t0) = X0,

is given by

X(t) = X(t; t0, X0) = e
−(t−t0)X0 +

∫ t
t0

e−(t−s)(1 + s)−1 ds .

One can easily check that

lim
t→+∞

log |X(t)|

t
= 0,

so that we do not have exponential decay to zero. However, as a consequence of
the theory we shall develop, we will be able to ensure that the solutions decay to
zero with polynomial rate (see Example 3 below).

This fact motivates our interest in analyzing the decay rate of solutions, that is,
if we cannot prove exponential convergence of solutions and know that those are
asymptotically stable, is it possible to ensure at least polynomial decrease?. The
typical example related to nonexponential convergence of solutions to an equilib-
rium is given by the following simple ordinary differential equation (see Haraux [4,
pp. 45-46]):

Ẋ(t) = −X(t) |X(t)|p−1 , t ≥ 0, p > 1.

The solution starting in X0 at time t = 0 is given by

X(t) =
sgn(X0){

(p− 1) t+ |X0|
1−p
}1/(p−1) ,

so that |X(t)| behaves as {1/ [(p− 1) t]}1/(p−1) as time t goes to ∞, and therefore
it decreases polynomially to the equilibrium.

Owing to this fact, in the following result we provide a sufficient condition guar-
anteeing polynomial convergence of solutions and, in the next Section, we will state
a more general result concerning more general decay rates.
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Theorem 2.2. Assume that there exists a continuously differentiable function V :
R×D → R satisfying

∃c1 > 0 and p > 0 such that c1|x|
p ≤ V (t, x), for all (t, x) ∈ R×D,

∃q > 1 such that V̇ (t, x) ≤ −α(t) [V (t, x)]q , for all (t, x) ∈ R×D,

where α(·) is a nonnegative continuous function such that

lim inf
t→∞

1

t

∫ t
t0

α(s) ds ≥ ν > 0 (2.4)

Then, there exists δ > 0 such that for any solution X(t) to (2.1) defined for t ≥ t0,
there exists a constant C = C(X0) (which may depend on X0) such that

|X(t)| ≤ C(X0)t
−δ, for all t ≥ t0.

Proof. Let us consider X(t), a solution to (2.1) defined for t ≥ t0. Then

d

dt
[V (t,X(t))] = V̇ (t,X(t)) ≤ −α(t) [V (t,X(t))]q .

Denoting u(t) = V (t,X(t)), we have that this function satisfies the following dif-
ferential inequality

u̇(t) ≤ −α(t) [u(t)]q ,

and, therefore its positive solutions satisfy

u̇(t)

[u(t)]
q ≤ −α(t).

By a direct integration we easily obtain

u(t) ≤

[
u(t0)

1−q + (q − 1)

∫ t
t0

α(s) ds

]−1/(q−1)
.

Taking into account assumption (2.4), and given ε > 0, we can ensure for t0 large
enough that ∫ t

t0

α(s) ds ≥ (ν − ε) t, for all t ≥ t0,

and, consequently,

u(t) ≤ C0(X0)t
−1/(q−1), for all t ≥ t0.

Noticing now the expression of u(t), it is clear that the result holds by setting
δ = 1/p(q − 1) and a suitable C(X0).

Example 2. We consider the following two dimensional system in order to apply
the previous result.

ẏ1 = y2 − y1 |y1|

ẏ2 = −y1 − y2 |y2| .
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It is easy to check that the unique stationary solution is the zero solution. Let us
take V (t, y1, y2) =

1
2 (y

2
1 + y

2
2). Then

V̇ (t, y1, y2) = −y
2
1 |y1| − y

2
2 |y2|

= −
(
|y1|

3
+ |y2|

3
)

≤ −c
(
|y1|

2
+ |y2|

2
)3/2

= −c [V (t, y1, y2)]
3/2
,

where c > 0 is a suitable constant (notice that we have used the inequality
(
a+b
2

)p
≤

ap

2 +
bp

2 , a, b > 0, p > 1). Therefore, every solution to the system decays to zero

with at least decay rate t−1.

3. General decay rate of solutions

Firstly, we will introduce the concept of generalized Lyapunov exponent with re-
spect to a positive function λ(·) which will enable us to establish a precise definition
of stability or asymptotic behaviour with general decay function λ(·).

Definition 3.1. Let the positive function λ(t) ↑ +∞ be defined for all sufficiently
large t > 0, say t ≥ T > 0. Let X(t) be a solution to (2.1). The number

lim sup
t→∞

log |X(t)|

logλ(t)

is called the generalized Lyapunov exponent of X(t) with respect to λ(t). The
solution X(t) is said to decay to zero with decay function λ(t) of order at least
γ > 0, if its generalized Lyapunov exponent is less than or equal to −γ, i.e.,

lim sup
t→∞

log |X(t)|

logλ(t)
≤ −γ.

If, in addition f(t, 0) = 0 for all t ∈ R, the zero solution is said to be globally
asymptotically stable with decay function λ(t) of order at least γ > 0, if every
solution to (2.1) defined in the future decays to zero with decay function λ(t) of
order at least γ > 0.

Remark. Clearly, replacing in the above definition the decay function λ(t) by et

leads to the usual Lyapunov exponents concept and exponential decay rate.
Also, we point out that this definition includes both the case of sub-exponential

decay functions (polynomials, logarithms) and the situation of super-exponential
decay (e.g. λ(t) = exp{exp t}).

Now, we can prove a sufficient condition ensuring almost sure stability of the
solution of (2.1) with a general decay rate.

Theorem 3.2. Let ϕ1(t), ϕ2(t) be two continuous functions with ϕ1 nonnegative.
Assume there exist a continuously differentiable function V : R+ × D → R, and
constants p > 0, m ≥ 0, ν ≥ 0, θ ∈ R such that

(a): |x|pλ(t)m ≤ V (t, x), (t, x) ∈ R+ ×D.
(b): V̇ (t, x) ≤ ϕ1(t) + ϕ2(t)V (t, x), (t, x) ∈ R+ ×D.



EJDE–2001/05 ON THE DECAY RATE OF SOLUTIONS 7

(c): ∃T > 0 large enough such that for t0 ≥ T ,

lim sup
t→∞

log
∫ t
t0
ϕ1(s) exp

{
−
∫ s
t0
ϕ2(r)dr

}
ds

logλ(t)
≤ ν,

lim sup
t→∞

∫ t
t0
ϕ2(s) ds

logλ(t)
≤ θ

Then, if X(t) is a solution to (2.1) defined in the future (i.e. for t ≥ t0), then

lim sup
t→∞

log |X(t)|

logλ(t)
≤ −
m− (θ + ν)

p
.

In particular, if m > θ+ν and f(t, 0) = 0, the null solution is globally asymptotically
stable with decay function λ(t) of order at least (m− (θ + ν)) /p.

Proof. Given (t0, X0) ∈ (T,+∞) × D, and X(t) a solution to the problem (2.1)
defined in the future, let us compute

d

dt
V (t,X(t)) = V̇ (t,X(t)) ≤ ϕ1(t) + ϕ2(t)V (t,X(t)),

which implies

d

dt

[
exp

{
−

∫ t
t0

ϕ2(s) ds

}
V (t,X(t))

]
≤ ϕ1(t) exp

{
−

∫ t
t0

ϕ2(s) ds

}
,

whence

V (t,X(t)) ≤
(
V (t0, X0) +

∫ t
t0

ϕ1(s) exp
{
−

∫ s
t0

ϕ2(r)dr
}
ds
)
exp

( ∫ t
t0

ϕ2(s) ds
)
.

Given ε > 0, there exists t1(ε) such that for all t ≥ max{t1(ε), t0} we have∫ t
t0

ϕ1(s) exp

{
−

∫ s
t0

ϕ2(r)dr

}
ds ≤ λ(t)ν+ε,

∫ t
t0

ϕ2(s) ds ≤ logλ(t)
(θ+ε).

Consequently, it follows that

logV (X(t), t) ≤ log((V (t0, X0)) + λ(t)
ν+ε) + (θ + ε) log λ(t)

for all t ≥ min{t1(ε), t0}, which immediately implies that

lim sup
t→∞

logV (X(t), t)

logλ(t)
≤ ν + ε+ θ + ε.

As this holds for every ε > 0, then

lim sup
t→∞

logV (X(t), t)

logλ(t)
≤ ν + θ,

and, therefore

lim sup
t→∞

log |X(t)|

logλ(t)
≤ −
m− (θ + ν)

p
,

which completes the proof.

Remarks. a) Observe that, if ϕ2(t) ≥ 0, the result follows by replacing condition
(c) by

lim supt→∞
log
∫ t
t0
ϕ1(s) ds

logλ(t)
≤ ν, lim supt→∞

∫ t
t0
ϕ2(s) ds

logλ(t)
≤ θ.
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b) On the other hand, when m− (θ + ν) > 0 it can be proved in the theorem that
every solution to problem (2.1) is defined for all t ≥ t0, so that the limit makes
sense for every solution.

The next result is an improvement of theorem 2.2 to the more general case of
considering a general decay function λ(t) instead of t.

Theorem 3.3. Assume V : R × D → R is a continuously differentiable function
satisfying

∃c1 > 0 and p > 0 such that c1|x|
p ≤ V (t, x), for all (t, x) ∈ R×D,

∃q > 1 such that V̇ (t, x) ≤ −α(t) [V (t, x)]q , for all (t, x) ∈ R×D,

where α(·) is a nonnegative continuous function such that

lim inf
t→∞

log
∫ t
t0
α(s) ds

logλ(t)
≥ ν > 0 (3.1)

Then, for any solution X(t) to (2.1) defined for t ≥ t0 it holds

lim sup
t→∞

log |X(t)|

logλ(t)
≤ −

ν

p(q − 1)
.

Proof. This follows the same lines as the proof of theorem 2.2, taking into account
the new assumption (3.1).

Now, we shall consider some examples in order to illustrate the results. Of
course, as we are going to consider simple linear examples, the conclusions can be
obtained by solving directly the equations, and the theory to be developed in the
next Section can also be applied. However, our interest right now is to show the
different situations which can appear in more complex systems.

Example 3. Consider again the equation

dX

dt
= −X +

1

1 + t
.

We know that every solution X(t) satisfies limt→+∞ log |X(t)| /t = 0. But, taking
V (t, x) = (1 + t)x2, it is easy to check that

V̇ (t, x) = x2 + 2x(1 + t)

(
−x+

1

1 + t

)
≤ x2 (−1− 2t) +

2x(1 + t)1/2

(1 + t)
1/2

≤ x2 (−1− 2t) + x2 (1 + t) +
1

1 + t

≤
1

1 + t
,

so that setting ϕ1(t) =
1
1+t and ϕ2(t) = 0, we immediately obtain ν = θ = 0 in

theorem 3.2, what implies that

lim
t→+∞

log |X(t)|

log (1 + t)
≤ −
1

2
.

In other words, although the solutions do not approach zero exponentially, we can
assure that their decay rate is at least t−1/2.
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Example 4. Now we include an example which does not contain any term causing
exponential decay (as −X in the previous one). Consider the following situation
for p > 1/2 and q > 0,

dX

dt
=
−p

1 + t
X +

1

(1 + t)q
.

First, we take the function V (t, x) = (1 + t)2px2, and evaluate

V̇ (t, x) = 2p(1 + t)2p−1x2 + 2(1 + t)2px

(
−p

1 + t
x+

1

(1 + t)
q

)
≤
2(1 + t)2px

(1 + t)
q

≤
2x(1 + t)p−

1
2 (1 + t)p+

1
2

(1 + t)q

≤ (1 + t)2p−1x2 + (1 + t)2(p−q)+1.

Now, observe that we can set ϕ1(t) = (1 + t)
2(p−q)+1

and ϕ2(t) = (1+ t)
−1 yielding

lim
t→+∞

∫ t
0 ϕ2(s) ds

log(1 + t)
= 1,

and

lim
t→+∞

log
∫ t
0
ϕ1(s) ds

log(1 + t)
=

{
2(p− q) + 2 if 2(p− q) + 2 > 0 ,
0 otherwise.

Then, we can apply theorem 3.2 and obtain convergence to zero with decay rate at
least (1 + t)

−γ
in the following cases:

If 2(p− q)+2 > 0, i.e. if q < p+1 and, in addition, q > 3/2, then γ = (−3+2q)/2.
If 2(p− q) + 2 ≤ 0, then γ = p− 1/2.

Example 5. Finally, we exhibit a situation with a more general decay rate. To
this end, consider

dX

dt
=

−2X

(1 + t) log (1 + t)
+

1

(1 + t) [log (1 + t)]
2 .

By using the Lyapunov function V (t, x) = x2 log (1 + t) (notice that we are consid-
ering λ(t) = log (1 + t)), it holds

V̇ (t, x) =
1

1 + t
x2 + 2x log (t+ 1)

(
−2x

(1 + t) log (1 + t)
+

1

(1 + t) [log (1 + t)]2

)

≤
−3x2

1 + t
+

2x

(1 + t) log (1 + t)

≤
−2x2

1 + t
+

1

(1 + t) [log (1 + t)]
2 ,

and we can set ϕ1(t) =
1

(1+t)[log(1+t)]2
and ϕ2(t) = 0. Now, it is not difficult to

check that (c) in theorem 3.2 is fulfilled with θ = ν = 0 and, consequently, γ = 1/2.



10 TOMÁS CARABALLO EJDE–2001/05

4. Perturbed systems

In this Section, we shall investigate some stability properties of solutions of per-
turbed differential systems. Our aim is to prove some results which, in particular,
ensure the transference of some decay properties from the unperturbed systems to
the perturbed one. In other words, if we know that the solutions of a differen-
tial systems decay to zero with certain decay rate, under which conditions can we
guarantee that the perturbed one has a similar property?. Firstly, we will consider
the perturbed linear differential system, and then, we will treat a more general
nonlinear one.

4.1. The perturbed linear case. Consider the linear differential system

Ẋ = A(t)X, (4.1)

where A ∈ C(R;L(Rn)), i.e. is a n × n matrix whose elements are continuous
functions. Let λ(t) be a function satisfying the assumptions in the previous Section
and let 〈·, ·〉 denote the scalar product in Rn associated with the norm |·|. Let us
assume that the zero solution is globally asymptotically stable with decay rate λ(t)
of order γ > 0, what happens if, for instance, there exists a continuous function
α(t) such that

2 〈A(t)u, u〉 ≤ α(t)|u|2, for all t ∈ R, u ∈ Rn,

with

lim sup
t→+∞

∫ t
0
α(s) ds

logλ(t)
≤ −2γ.

Now, consider the perturbed problem

Ẋ = A(t)X + F (t,X), (4.2)

where F : R×Rn → Rn is a continuous function. We shall prove that under suitable
conditions, every solution to (4.2) decreases to zero with the same decay function
although possibly with a different order.
To start, consider the linear autonomous case Ẋ = AX . If we assume that

the trivial solution is asymptotically stable with some decay rate, as this is an
autonomous system, it must be uniformly asymptotically stable and henceforth,
exponentially stable. Thus, all the eigenvalues associate to the matrix A have
negative real parts and, if necessary, by a suitable change of norm and its associated
inner product (see Hirsch and Smale [5, p. 211]), we can ensure that there exists
γ > 0 such that |exp {(t− t0)A}| ≤ e−γ(t−t0) for all t0 and t ≥ t0. This immediately
implies (see again Hirsch and Smale [5, p. 259]) that

〈Ax, x〉 ≤ −γ |x|2 , for all x ∈ Rn.

Let us now consider the perturbed system

Ẋ = AX + F (t,X), (4.3)

where F : R×D → Rn is continuous (D ⊂ Rn is an open set containing 0 in its
interior) and satisfies

〈F (t, x), x〉 ≤ φ1(t) + φ2(t) |x|
2
, for all (t, x) ∈ R×D,
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being φ1 and φ2 continuous functions, φ1 ≥ 0, and fulfilling (for a decay function
λ(t) as in the previous section)

lim supt→∞

log
∫ t
t0
2φ1(s) exp

{
−
∫ s
t0
2 (φ2(r) − γ) dr

}
ds

logλ(t)
≤ ν,

lim supt→∞

∫ t
t0
2 (φ2(s)− γ) ds

logλ(t)
≤ θ.

Then, it is straightforward to check that assumptions in theorem 3.2 are satis-
fied with V (t, x) = |x|2 ,m = 0, p = 2, ϕ1(t) = 2φ1(t), ϕ2(t) = 2 (φ2(t)− γ) , and
therefore

lim sup
t→∞

log |X(t)|

log λ(t)
≤
(θ + ν)

2
. (4.4)

Now, if θ + ν < 0, asymptotic decay to zero with decay rate λ(t) of order at least
− (θ + ν) /2 holds.

Although this consequence can be seen as a trivial result, the most important
thing is that we can now give a very easy proof of two classical results concerning
stability in the first approximation and even weaken the assumptions. In fact, we
are referring here to the following general result (see, for instance Yoshizawa [9],
Brauer and Nohel [1], etc.).

Theorem 4.1. Assume that all of the characteristic roots of the matrix A have
negative real parts. Assume that F (t, x) = G1(t, x)+G2(t, x) where G1 and G2 are
continuous functions satisfying G1(t, 0) = G2(t, 0) = 0 and

lim
|x|→0

|G1(t, x)|

|x|
= 0, uniformly in t; (4.5)

|G2(t, x)| ≤ g(t) |x| , with

∫ ∞
0

g(t)dt <∞. (4.6)

Then, the zero solution of

Ẋ = AX + F (t,X)

is exponentially asymptotically stable, i.e. there exists δ > 0,K > 0 and γ̃ > 0 such
that for every t0 ∈ R large enough and every X0 ∈ B(0; δ) := {x ∈ Rn : |x| < δ},
every solution X(t) to (4.3) such that X(t0) = X0, satisfies

|X(t)| ≤ K |X0| e
−γ̃(t−t0), for all t ≥ t0.

Proof. Thanks to assumption (4.5), we can deduce that there exists δ > 0 such that

|G1(t, x)| ≤
γ

2
|x| , for all x ∈ B(0; δ).

Now we can restrict ourselves to consider the problem in the domain Ω = R×B(0; δ).
Thus, given (t0, X0) ∈ Ω choose X(t) a solution of (4.3) such that X(t0) = X0.
Then, for all (t, x) ∈ Ω

〈F (t, x), x〉 = 〈G1(t, x) +G2(t, x), x〉

≤
γ

2
|x|2 + g(t) |x|2

≤
(γ
2
+ g(t)

)
|x|2 ,
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and taking λ(t) = et, φ1(t) = 0, φ2(t) =
γ
2 + g(t), we can easily check that

lim sup
t→∞

∫ t
t0
2(φ2(s)− γ) ds

t
= lim sup

t→∞

∫ t
t0
2(g(s)− γ2 ) ds

t

= −γ + lim sup
t→∞

∫ t
t0
2g(s) ds

t

≤ −γ,

and thanks to (4.4)

lim sup
t→∞

log |X(t)|

t
≤ −
γ

2
,

and the proof is complete.

Remark. Notice that we only need to assume

lim sup
t→∞

∫ t
t0
g(s) ds

t
= 0

instead of the integrability of g in the interval (0,+∞). Consequently, this condi-
tion can be weakened in the theorem. Moreover, by a slight modification at the
beginning of the proof, the stability result can be deduced by assuming only that

lim sup
t→∞

∫ t
t0
g(s) ds

t
= r < γ .

Now, let us consider the nonautonomous linear case and its perturbations. Namely,
consider the following differential systems:

Ẋ(t) = A(t)X(t) (4.7)

Ẏ (t) = A(t)Y (t) + f(t, Y (t)), (4.8)

where A ∈ C(R;L(Rn)) and f ∈ C(Rn+1;Rn). Let us denote X(t; t0, X0) the
unique solution to (4.7) starting in X0 at time t0, and by Y (t; t0, X0) the corre-
sponding one for (4.8) (maybe not unique). Assume that there exist λ(t) satisfying
the assumptions in Definition 3.1, T > 0, C > 0 and γ > 0, such that for all
t0 ≥ T, t ≥ t0 and X0 ∈ RN ,

|X(t; t0, X0)| ≤ C |X0|λ(t− t0)
−γ .

Then, we can prove the following result.

Theorem 4.2. In the preceding situation, assume that |f(t, x)| ≤ α(t), for all
(t, x) ∈ Rn+1, where

lim sup
t→∞

log
∫ t
t0
λ(t− s)−γα(s) ds

logλ(t − t0)
≤ −δ < 0 .

Then,

lim sup
t→∞

log |Y (t; t0, Y0)|

logλ(t− t0)
≤ −min{γ, δ}.
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Proof. Observe that if Φ(·) is a fundamental matrix for the linear system (4.7), it
follows that ∥∥Φ(t)Φ(t0)−1∥∥ ≤ Cλ(t − t0)−γ , ∀t ≥ t0 ≥ T.
Now, by the variation of constants formula, we can write

Y (t) := Y (t; t0, Y0) = Φ(t)Φ(t0)
−1Y0 +

∫ t
t0

Φ(t)Φ(s)−1f(s, Y (s)) ds,

and, consequently,

|Y (t)| ≤
∥∥Φ(t)Φ(t0)−1∥∥ |Y0|+ ∫ t

t0

∥∥Φ(t)Φ(s)−1∥∥ |f(s, Y (s))| ds
≤ Cλ(t − t0)

−γ |Y0|+

∫ t
t0

Cλ(t− s)−γα(s) ds.

Given 0 < ε < δ, we can get, for t large enough, that∫ t
t0

λ(t− s)−γα(s) ds ≤ λ(t− t0)
−(δ−ε),

and, thus

|Y (t)| ≤ C̃λ(t − t0)
−min{γ,(δ−ε)}, for t ≥ t0 large enough,

which immediately implies the result.

4.2. Perturbed nonlinear systems. We shall now prove a similar result but
considering the perturbations of a nonlinear differential system. However, for this
more general case, we need that the decay functions λ(t) satisfies the following
sub-exponential condition

λ(t+ s) ≤ λ(t)λ(s), ∀t, s ∈ R+. (4.9)

In this respect, consider the following differential systems

Ẋ = f(t,X), (4.10)

Ẏ = f(t, Y ) + g(t, Y ), (4.11)

where f, g are continuous functions from Rn+1 to Rn. Given (t0, x) ∈ Rn+1, let
us denote by X(t; t0, x) and Y (t; t0, x) solutions to (4.10) and (4.11) respectively,
starting in x at time t0. We also assume that all of the solutions to these systems
are defined in the future. We can now prove the following theorem.

Theorem 4.3. Assume that there exist positive constants C,M, δ and γ, and non-
negative functions α(·) and β(·) such that for all t0 large enough (say t0 ≥ T ), all
t ≥ t0, every X0 ∈ Rn and every solution X(t; t0, X0), it holds:

|X(t; t0, X0)| ≤ C |X0|λ(t− t0)
−γ , ∀t ≥ t0, (4.12a)

|f(t, x)− f(t, y)| ≤ α(t) |x− y| , ∀t ≥ t0, x, y ∈ R
n, (4.12b)

|g(t, x)| ≤ β(t), ∀t ≥ t0, (4.12c)∫ t+1
t

α(s) ds ≤M, ∀t ≥ t0, (4.12d)

lim sup
t→∞

log
∫ t+1
t
β(s) ds

logλ(t)
≤ −δ. (4.12e)
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Then, every solution to (4.11), Y (t; t0, Yt0), defined in the future satisfies

lim sup
t→∞

log |Y (t; t0, Yt0)|

logλ(t)
≤ −min{γ, δ}.

Proof. First of all, we can assume without loss of generality that C ≤ 1/4. Oth-

erwise, we consider the new decay function λ̃(t) = (4C)−1/γ λ(t) for which now
(4.12a) holds replacing C by 1/4 and also (4.12e) remains true with the same con-
stant. Once the theorem is proved for this function, it is clear that also holds for
λ.
Let us now take t0 ≥ T and Yt0 ∈ R

n (fixed), and denote tj = t0 + j, for j ∈ N,
Y (t) = Y (t; t0, Yt0) and Yj = Y (tj), j ∈ N. Firstly, we claim that given ε > 0
arbitrary, there exists j0(ε) ∈ N such that for all j ≥ j0(ε) it follows

|Y (t)−X(t; tj, Yj)| ≤
1

8
λ(tj)

−(δ−2ε), ∀t ∈ [tj , tj+1]. (4.13)

Indeed, notice that (4.12e) implies that given ε > 0, there exists j1(ε) ∈ N such
that ∫ tj+1

tj

β(s)ds ≤ λ(tj)
−(δ−ε), for all j ≥ j1(ε),

and, it is obvious that there exists j2(ε) ∈ N, such that

(1 + eM )λ(tj)
−ε <

1

8
for all j ≥ j2(ε).

Now, we can also write

X(t; tj, Yj) = Yj +

∫ t
tj

f(s,X(s; tj, Yj))ds, ∀t ∈ [tj , tj+1],

Y (t) = Y0 +

∫ t
t0

[f(s, Y (s)) + g(s, Y (s))] ds

= Yj +

∫ t
tj

[f(s, Y (s)) + g(s, Y (s))] ds, ∀t ∈ [tj , tj+1].

Thus, denoting j0(ε) = max{j1(ε), j2(ε)}, and for j ≥ j0(ε), and t ∈ [tj , tj+1], it
follows that∣∣Y (t)−X(t; tj, Yj)∣∣ = ∣∣∣ ∫ t

tj

[f(s,X(s; tj, Yj))− f(s, Y (s))− g(s, Y (s))] ds
∣∣∣

≤

∫ t
tj

α(s)
∣∣∣Y (s)−X(s; tj, Yj)∣∣∣ ds+ ∫ t

tj

β(s) ds,

and, by the Gronwall lemma,

|Y (t)−X(t; tj, Yj)| ≤

∫ tj+1
tj

β(s)ds

(
1 +

∫ t
tj

exp

(∫ t
s

α(r)dr

)
ds

)
≤ (1 + eM )λ(tj)

−(δ−ε)

≤
1

8
λ(tj)

−(δ−2ε),

which proves (4.13).
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Secondly, we claim that

|Y (t)−X(t; tj, Yj)| ≤
1

4
λ(tj)

−(δ−3ε), ∀t ∈ [tj+1, tj+2], ∀j ≥ j0(ε). (4.14)

Indeed, notice that for t ∈ [tj+1, tj+2], j ≥ j0 it follows

|Y (t)−X(t; tj , Yj)| ≤ |Y (t)−X(t; tj+1, Yj+1)|+ |X(t; tj+1, Yj+1)−X(t; tj, Yj)|

≤
1

8
λ(tj)

−(δ−2ε) + |X(t; tj+1, Yj+1)−X(t; tj, Yj)| . (4.15)

Now, we denote v(t) = |X(t; tj+1, Yj+1)−X(t; tj, Yj)| and obtain an estimate for
this term. Observing that for t ∈ [tj+1, tj+2]

X(t; tj+1, Yj+1) = Yj+1 +

∫ t
tj+1

f(s,X(s; tj+1, Yj+1)) ds,

X(t; tj , Yj) = X(tj+1; tj , Yj) +

∫ t
tj+1

f(s,X(s; tj, Yj)) ds,

and, it is easy to get by the virtue of (4.13) and (4.12b)

v(t) ≤ |Yj+1 −X(tj+1; tj , Yj)|

+

∫ t
tj+1

|f(s,X(s; tj+1, Yj+1))− f(s,X(s; tj, Yj))| ds

≤
1

8
λ(tj)

−(δ−2ε) +

∫ t
tj+1

α(s)v(s) ds,

and the Gronwall lemma obviously implies

v(t) ≤
1

8
λ(tj)

−(δ−2ε)eM ≤
1

8
λ(tj)

−(δ−3ε).

Taking into account now this estimate with (4.15), we obtain (4.14).
Thirdly, we claim that

|Y (t)| ≤
1

2
(1 + |Yj0 |)λ(i)

−min{(δ−3ε),γ}, t ∈ [tj0+i, tj0+i+1], i = 1, 2, . . . (4.16)

Let us prove the assertion by induction. Indeed, take t ∈ [tj0+1, tj0+2]. Then, (4.14)
and (4.12a) yield to

|Y (t)| ≤ |Y (t)−X(t; tj0 , Yj0)|+ |X(t; tj0 , Yj0)|

≤
1

4
λ(tj0 )

−(δ−3ε) +
1

4
|Yj0 |λ(t− tj0)

−γ

≤
1

4
λ(1)−(δ−3ε) +

1

4
|Yj0 |λ(1)

−γ

≤
1

2
(1 + |Yj0 |)λ(1)

−min{(δ−3ε),γ},

and the assertion holds for i = 1. Assume now that it is true for i and let us prove
it for i+1. Thus, considering t ∈ [tj0+i+1, tj0+i+2], it follows by a similar argument
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as above and using (4.9)

|Y (t)| ≤ |Y (t)−X(t; tj0+i, Yj0+i)|+ |X(t; tj0+i, Yj0+i)|

≤
1

4
λ(tj0+i)

−(δ−3ε) +
1

4
|Yj0+i|λ(t− tj0+i)

−γ

≤
1

4
λ(tj0+i)

−(δ−3ε) +
1

4

(
1

2
(1 + |Yj0 |)λ(i)

−min{(δ−3ε),γ}

)
λ(1)−γ

≤
1

4
λ(i+ 1)−min{(δ−3ε),γ}

+
1

4

(
1

2
(1 + |Yj0 |)λ(i)

−min{(δ−3ε),γ}

)
λ(1)−min{(δ−3ε),γ}

≤
1

4
λ(i+ 1)−min{(δ−3ε),γ} +

1

4

(
1

2
(1 + |Yj0 |)

)
λ(i+ 1)−min{(δ−3ε),γ}

≤
1

2
[1 + |Yj0 |]λ(i+ 1)

−min{(δ−3ε),γ},

and our claim is proved.
Finally, (4.16) implies that, for t ∈ [tj0+i, tj0+i+1] and for all i ∈ N large enough,

log |Y (t)|

logλ(t)
≤
log 12 (1 + |Yj0 |)

logλ(t)
−min{(δ − 3ε), γ}

logλ(i)

logλ(t)
,

which allows us to ensure that

lim sup
t→∞

log |Y (t; t0, Yt0)|

logλ(t)
≤ −min{(δ − 3ε), γ},

and since ε > 0 is arbitrary, the proof is therefore complete.

Remark. Notice that a more general result can also be proved by a suitable
modification in the preceding proof. For instance, if g satisfies

|g(t, x)| ≤ β1(t) + β2(t) |x| , ∀(t, x) ∈ R
n+1,

instead of (4.12c) in the theorem, β1 satisfies (4.12e), and for β2 we assume that

lim
t→∞

∫ t+1
t

β2(s)ds = 0,

the assertion in the preceding theorem also holds.

5. Conclusions and final remarks

We have developed a theory on general decay properties of solutions of differen-
tial systems by using the Lyapunov Second Method and some kind of first approx-
imation results for perturbed systems. In particular, in order to prove our main
results, we also have introduced the generalized Lyapunov exponents with respect
to general positive functions which has permitted us to establish some criteria for
general decay of solutions.
However, a very interesting question is concerned with the possibility of deter-

mining how fast attract some closed set (e.g. attractors) the solutions of a dif-
ferential system. Some results on this topic have previously been proved by Eden
et al. [3] in the case of exponential attraction. But, to our knowledge, nothing
is known about a weaker kind of attraction (e.g. polynomial) or a stronger one
(super-exponential).
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On the other hand, our treatment could also be extended to the infinite-dimensional
context, i.e. for partial differential equations, and some similar results could be
proved for differential functional equations. We plan to investigate these in some
subsequent works.
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