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Abstract. In this article we prove the existence of solutions to the integrod-

ifferential equation of mixed type

x∆(t) = f
(
t, x(t),

∫ t

0
k1(t, s)g(s, x(s))∆s,

∫ a

0
k2(t, s)h(s, x(s))∆s

)
,

x(0) = x0, x0 ∈ E, t ∈ Ia = [0, a] ∩ T, a > 0,

where T denotes a time scale (nonempty closed subset of real numbers R),
Ia is a time scale interval. In the first part of this paper functions f, g, h

are Carathéodory functions with values in a Banach space E and integrals
are taken in the sense of Henstock-Kurzweil delta integrals, which general-

izes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-

weakly sequentially continuous functions and integrals are taken in the sense
of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h sat-

isfy some boundary conditions and conditions expressed in terms of measures

of noncompactness.

1. Introduction

A time scale T is a nonempty closed subset of real numbers R, with the subspace
topology inherited from the standard topology of R. Thus, R,Z,N and the Cantor
set are the examples of time scales, while Q and (0; 1) are not time scales. Time
scales (or a measure chain) was introduced by Hilger in his Ph.D. thesis in 1988,
[25]. It was met with big interest of scientists from various disciplines, including
pure and applied mathematics, biology, economics, engineering and physics. It is
applicable in any field that requires simultaneous modeling of discrete and continu-
ous data. For example standard economic models are continuous models (described
by differential equations) and discrete models (described by difference equations).
These two types of models require different techniques of proofs. An example might
be the Ramsey model-macroeconomic growth model that explores the relationship
between consumption and capital. In a discrete model, a consumer receives some
income in a time period and decides how much to consume and save during the
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same period. All decisions are assumed to be made at evenly spaced intervals.
Discrete model is

T−1∑
t=0

(1 + p)tU(Ct)→ max, Ct = Wt −
Wt+1

1 + r
,

where Ct is consumption, p(t) is the discount rate, Wt is production function, Ut
is instantaneous product. The corresponding continuous model can be written in
the form ∫ T

0

e−ptU(C(t))dt→ max, C(t) = rW (t)−W ′(t)

But there are economic situations, which these models do not include. For example,
if the income is not regular (consumer receives income sometimes once a month,
sometimes once a quarter or more per week). The introduction of the time scale
R enables description these three situations with a single model [7]. The most
important advantage of a time scale is that it provides not only a unified approach
to study the discrete intervals with uniform step size the lattice hZ, continuous
intervals and discrete intervals with non-uniform (variable) step size (for instance
X-numbers), but also, more interestingly, it gives an opportunity to extend the
approach to study the combination of continuous and discrete intervals. Therefore,
the concept of time scale can be build bridges between the continuous, discrete
and X-discrete analysis. While some of the results for difference equations move
quite easily to the corresponding results for differential equations, others seem to be
completely different for their continuous counterparts. We consider the differential
equation

y′′(x) + y(x) = 0

whose solution has a form y(x) = c1 cosx + c2 sinx. Each specific solution is a
continuous periodic function, so bounded.

The corresponding difference equation is

∆2yn + yn = 0

whose solution is a class of sequences

yn = c12n/2 cos (nπ/4 + c2).

Putting c1 = −1, c2 = π/2, we obtain the specific solution

yn = 2n/2 cos (nπ/4).

For n = 8k + 1 we have y8k+1 = 2k → ∞, if k → ∞. This solution is not periodic
and is not bounded.

In a study of dynamic equations on time scale we do not have to prove some
theorems twice, once for differential equations, and again for difference equations.
The general idea is to prove results for the dynamic equation, where the domain
of unknown function is called time scale, i.e. any nonempty closed subset of real
numbers. The dynamic equations on time scale have numerous applications in
many fields of science, such as mechanics, electrical engineering, neural networks
and combinatorics [15, 27]. In particular, dynamic equations on a time scale have an
enormous potential for applications such as in population dynamics. For example,
it can model insect populations that are continuous while in season, die out in,
say, winter, while their eggs are incubating or dormant, and then hatch in a new
season, giving rise to a nonoverlapping population [9]. There are applications of
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dynamic equations on time scales to quantum mechanics, electrical engineering,
neural networks, heat transfer, and combinatorics. A recent cover story article
in New Scientist [49] discusses several possible applications. Since then several
authors have expounded on various aspects of this new theory [10]. The book on the
subject of time scale, i.e., measure chain, by Bohner and Peterson [9] summarizes
and organizes much of time scale calculus.

This article is divided into two main sections. In Section 1, we prove some
existence theorem for the integrodifferential equation of mixed type

x∆(t) = f
(
t, x(t),

∫ t

0

k1(t, s)g(s, x(s))∆s,

∫ a

0

k2(t, s)h(s, x(s))∆s
)
,

x(0) = x0, x0 ∈ E, t ∈ Ia = [0, a] ∩ T, a > 0,

(1.1)

where E is a Banach space with the norm ‖ · ‖,T denotes a time scale, 0 ∈ T, Ia
denotes a time scale interval and integrals are taken in the sense of HL ∆ integral.
Moreover f, g, h, x are functions with values in a Banach space E, and kj , j = 1, 2
are real-valued functions.

In Section 2, we prove some existence theorems for problem (1.1), where f, g, h, x
are functions with values in a Banach space E, weakly-weakly sequentially continu-
ous, and kj , j = 1, 2 are real-valued functions. The integrals are taken in the sense
of Henstock-Kurzweil-Pettis ∆-integrals.

As it is know, ordinary integrodifferential equations, an extreme case of integrod-
ifferential equations on time scales, find many applications in various mathematical
problems: see Corduneanu’s book [15] and references therein for details. In addi-
tion, the existence of extremal solutions of ordinary integrodifferential equations
and impulsive integrodifferential equations have been studied extensively in [4],
[17]-[21], [35]-[37], [40, 41, 45, 46, 48],[53]-[56]. In [56] the authors extended such
results to the integrodifferential equations on time scales and therefore obtained
corresponding criteria which can be employed to study the difference equation of
Volterra type [28, 54], q difference equations of Volterra type, etc. In [57] the authors
proved a new comparison result and developed the monotone iterative technique to
show the existence of extremal solutions of the periodic boundary value problems
of nonlinear integrodifferential equation on time scales. In [45] authors prove the
existence theorem of solution for integrodifferential equation

x′(t) = f
(
t, x(t),

∫ t

0

k1(t, s)g(s, x(s))ds,

∫ a

0

k2(t, s)h(s, x(s))ds
)
,

x(0) = x0, x0 ∈ E, t ∈ Ia = [0, a], a > 0,

with Henstock-Kurzweil type of integrals which encompasses the Newton, Riemann
and Lebesgue integrals [24, 34]. Additionally functions satisfy some conditions
expressed in terms of the measure of noncompactness.

In this article we extend this result proving some existence theorem for this
problem on time scales. In this paper we will use a new type of integrals on
time scales (the Henstock-Kurzweil delta integral, HL delta integral, Henstock-
Kurzweil-Pettis delta integral), which lets us consider the wider class of the function
than so far. The Henstock-Kurzweil delta integral contains the Riemann delta, the
Lebesgue delta and the Bochner delta integrals as special cases. These integrals will
enable time scale researchers to study more general dynamic equations. Petterson
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and Thomson [42] showed that there are highly oscillatory functions that are not
delta integrable on a time scale, but are the Henstock-Kurzweil delta integrable.

Let us remark that the existence of the Henstock-Kurzweil integral over [a, b]
implies the existence of such integrals over all subintervals of [a, b] but not for all
measurable subsets of this interval, so the theory of such integrals on T does not
follow from general theory on R.

Cichoń [13] introduced a definition of the Henstock-Kurzweil delta integral (∆-
HK integral) and HL delta integral (∆-HL integral) on Banach spaces for checking
the existence of solutions of differential (or: dynamic) equations in Banach spaces.
He presented also a new definition of the Henstock-Kurzweil-Pettis delta integral on
time scales. The study for weak solutions of Cauchy differential equations in Banach
spaces was initiated by Szep [50] and theorems on the existence of weak solutions
of this problem were proved by Cramer et al. [16], Kubiaczyk [30], Kubiaczyk
and Szufla [31], Mitchell and Smith [38], Szufla [52], and Cichoń and Kubiaczyk
[14]. There are also some existence theorems for the Volterra and Urysohn integral
equations [32] on time scales. Similar methods for solving existence problems for
difference equations in Banach spaces equipped with its weak topology were studied,
for instance, in [3]. We will unify both cases and using the weak topology, we will
obtain the result for pseudosolutions of an integrodifferential dynamic problem.
(This is new also for q-difference equations). Our result extends the existence of
pseudosolutions not only to the discrete intervals with uniform step size (hZ) but
also to the discrete intervals with nonuniform step size (Kq).

2. Preliminaries

Let (E, ‖ · ‖) be a Banach space and let E∗ be the dual space. Denote, by
C(Ia, E), the set of all continuous bounded functions from Ia to E endowed with
the topology of almost uniform convergence (i.e. uniform convergence on each closed
bounded subsets of Ia). Moreover, let (C(Ia, E), ω) denote the space of all continu-
ous functions from Ia to E endowed with the topology σ(C(Ia, E), C(Ia, E)∗) and
by Crd(Ia, E) denote the space of all rd-continuous functions from the time scale
interval Ia to E. By µ∆ we denote the Lebesgue measure on T. For a precise
definition and basic properties of this measure we refer the reader to [11]. This
part is divided into three sections.

(I) To let the reader understand the so-called dynamic equations and follow this
paper easily, we present some preliminary definitions and notations of time scales
which are very common in the literature (see [1, 2, 9, 10], [22]-[26], [33, 34, 44] and
references therein). A time scale T is a nonempty closed subset of real numbers
R, with the subspace topology inherited from the standard topology of R. By an
interval we mean the time scale interval

Definition 2.1. The forward jump operator σ : T → T and the backward jump
operator ρ : T → T as σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t},
respectively.

We put inf ∅ = inf T (i.e. ρ(m) = m if T has a minimum m). The jump operators
σ and ρ allow the classification of points in time scale in the following way: t is
called right dense, right scattered, left dense, left scatered, dense and isolated if
σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) <= t, ρ(t) = t = σ(t), ρ(t) < t < σ(t) respectively.
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Definition 2.2. We say that is right-dense continuous (rd - continuous) if k is
continuous at every right-dense point t ∈ T and lims→t− k(s) exists and is finite at
every left-dense point t ∈ T. Next, we define the so-called ∆-derivative.

Definition 2.3. Fix t ∈ T. Let f : Ia → E. Then we define ∆-derivative of f by

lim
s→t

f(σ(t))− f(s)

σ(t)− s
.

The function f is called ∆-differentiable on T, if for each t ∈ T there exists f∆(t).
Note that

(1) f∆ = f ′ is the usual derivative if T = R,
(2) f∆ = ∆f , is the usual forward difference operator if T = Z,
(3) f∆ = Dqf is the q-derivative if T = qN0 = {qt : t ∈ N0, 0 < q ≤ 1}.

Hence, the time scale allows us to consider the unification of differential, differ-
ence and q-difference equations as particular cases (but our results hold also for
more exotic time scales which appear in mathematical biology or economics cf.
[9, 10], for instance).

(II) As in classical case ([12] and [47] for real valued functions), we need to in-
troduce of vector valued Henstock-Kurzweil ∆-integrals and HL ∆-integrals. Def-
initions and basic properties of non absolute integrals (HK ∆-integral and HL ∆-
integral) were presented in [13]. We will use the notation η(t) = σ(t) − t(t) where
η is called the graininess function and v(t) = t − ρ(t), where v is called the left -
graininess function.

We say that δ = (δL, δR) is a ∆-gauge for time scale interval [a, b] provided
δL(t) > 0 on (a, b], δR(t) > 0 on [a, b), δL(t) ≥ 0, δR(t) ≥ 0 and δR(t) ≥ η(t) for all
t ∈ [a, b).

We say that a partition D for a time scale interval [a, b] given by

D = {a = t0 ≤ ξ1 ≤ t1 ≤ · · · ≤ tn−1 ≤ ξn ≤ tn = b}
with ti > ti−1, for 1 ≤ i ≤ n and ti, ξi ∈ T is δ-fine if ξi − δL(ξi) ≤ ti−1 < ti ≤
ξi + δR(ξi), for 1 ≤ i ≤ n.

Definition 2.4 ([13]). A function f ∈ [a, b] → E is the Henstock-Kurzweil ∆-
integrable on [a, b] (HK ∆-integrable in short) if there exists a function F ∈ [a, b]→
E, defined on the subintervals of [a, b], satisfying the following property: given ε > 0
there exists a positive function δ on [a, b] such that D = {[u, v], ξ} is δ-fine division
of a [a, b], we have

‖
∑
D

f(ξ)(v − u)− (F (v)− F (u))‖ < ε

Definition 2.5 ([13]). A function f ∈ [a, b] → E is the Henstock-Lebesgue ∆-
integrable on [a, b] (HL ∆-integrable in short) if there exists a function F ∈ [a, b]→
E, defined on the subintervals of [a, b], satisfying the following property: given ε > 0
there exists a positive function δ on [a, b] such that D = {[u, v], ξ} is δ-fine division
of a [a, b], we have ∑

D

‖f(ξ)(v − u)− (F (v)− F (u))‖ < ε

Definition 2.6. The function f ∈ [a, b] → E is Henstock-Kurzweil-Pettis ∆-
integrable (HKP ∆-integrable for short) if
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(1) ∀x∗ ∈ E∗, x∗f is Henstock-Kurzweil ∆-integrable on Ia,

(2) ∀t ∈ Ia∀x∗ ∈ E∗, x∗g(t) = (∆−HK)
∫ t

0
x∗f(s)∆s.

The function g will be called a primitive of f and by g(t) = (∆ −HK)
∫ t

0
f(s)∆s

we will denote the Henstock-Kurzweil-Pettis ∆-integral of f on the interval Ia.

In [14] the author give examples of Henstock-Kurzweil-Pettis ∆-integrable func-
tions which are not integrable in the sense of Pettis and Henstock-Kurzweil on time
scales.

Remark 2.7. We note that by the triangle inequality if f is HL δ-integrable, it is
also HK δ- integrable. In general, the converse is not true. For real-valued functions
the two integrals are equivalent. It is well known that Henstock’s Lemma plays an
important role in the theory of the Henstock-Kurzweil integral in the real-valued
case. On the other hand, in connection with the Henstock-Kurzweil integral for
Banach space valued functions, Cao [12] pointed out that Henstock’s Lemma holds
for the case of finite dimension, but it does not always hold for the case of infinite
dimension. In this paper we will use the definition of HL δ-integral which satisfies
Henstock’s Lemma.

Theorem 2.8 (Henstock’s Lemma). If f is the Henstock-Kurzweil δ-integrable on
[a, b] with primitive F , then for every ε > 0 there exists δ > 0 such that for any
δ-fine division of [a, b] we have∑

D

|f(ξ)(v − u)− (F (v)− F (u))| < ε.

Theorem (2.8) says that in the definition of the Henstock-Kurzweil delta integral
for real valued functions [47], we may put the absolute value sign | · | inside the
summation sign

∑
. We know from [12] that this is no longer true if we replace | · |

with ‖ · ‖, i.e., Henstock’s Lemma is not satisfied by Henstock-Kurzweil integrable
Banach valued functions. By the definition of HL integral, an HL integrable function
with primitive F satisfies Henstock’s Lemma with | · | replaced with ‖ · ‖.

Theorem 2.9 ([13]). If f : [a, b] → E is HL ∆-integrable, then function F (t) =

(∆−HL)
∫ t

0
f(s)∆s is continuous at each point t ∈ T. Moreover, for every point t

of the continuity of f we have F∆(t) = f(t).

Theorem 2.10 ([13]). Suppose that fn : [a, b] → E, n = 1, 2, . . . is a sequence of
HL ∆-integrable functions satisfying the following conditions:

(1) fn(x)→ f(x)µ∆ almost everywhere in [a, b], as n→∞;

(2) the set of primitives {Fn(t)}, of fn, where Fn(t) =
∫ t
a
fn(s)∆s is uniformly

ACG∗ in n;
(3) the primitives Fn are equicontinuous on [a, b];

then, f is HL ∆-integrable on [a, b] and
∫ t
a
fn →

∫ t
a
f , µ∆ uniformly on [a, b], as

n→∞.

The proof is similar to that of [34, Theorem 7.6], see also [47, Theorem 4].

Theorem 2.11. Suppose that f, fn : [a, b]→ E,n = 1, 2, . . . are HKP ∆-integrable
functions. Let Fn be a primitive of fn. If one assumes that:

(1) ∀x∗ ∈ E∗, x∗fn(x)→ x∗f(x) µ∆ almost everywhere on Ia
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(2) ∀x∗ ∈ E∗ the family G = {x∗Fn : n = 1, 2, . . . } is uniformly ACG∗ on Ia
(i.e., weakly uniformly ACG∗ on Ia),

(3) ∀x∗ ∈ E∗ the set G is equicontinuous on Ia

then f is ∆-HKP integrable on Ia and
∫ t

0
fn(s)∆s tends weakly in E to

∫ t
0
f(s)∆s

for each t ∈ Ia.

Theorem 2.12 (Mean Value Theorem [13]). For each ∆-subinterval [c, d] ⊂ [a, b],

if the integral
∫ d
c
y(s)∆s, exists, then we have∫ d

c

y(s)∆s ∈ µ∆([c, d])convy([c, d]),

where convy([c, d]) denotes the close convex hull of the set y([c, d]), and integral is
taken in the sense of ∆-HK or ∆-HKP.

Theorem 2.13 (Gronwall’s inequality [5]). Suppose that u, g, h ∈ Crd(Ia, E) and
h ≥ 0. Then

u(t) ≤ g(t) +

∫ t

0

h(τ)u(τ)∆τ, for each t ∈ Ia

implies

u(t) ≤ (g(t) +

∫ t

0

h(τ)u(τ)∆τ) exp
(∫ t

0

h(τ)∆τ
)
, for each t ∈ Ia

(III) Our fundamental tools are the Kuratowski measure of noncompactness α(A)
and the deBlasi measure of weak noncompactness β(A).

For any bounded subset A of E, we denote by α(A) the Kuratowski measure of
noncompactness of A, that is, the infimum of all ε > 0, such that there exists a
finite covering of A by sets of diameter smaller than ε.

The deBlasi measure of weak noncompactness β(A) is defined by

β(A) = inf{t > 0 : there exists C ∈ Kω such that A ⊂ C + tB0}
where Kω is the set of weakly compact subsets of E and B0 is the norm unit ball
in E.

The properties of the measure of noncompactness α(A) are as follows:

(i) if A ⊂ B then α(A) ≤ α(B);
(ii) α(A) = α(A), where A denotes the closure of A;
(iii) α(A) = 0 if and only if A is relatively compact;
(iv) α(A ∪B) = max{α(A), α(B)};
(v) α(λA) = |λ|α(A), (λ ∈ R);
(vi) α(A+B) ≤ α(A) + α(B);

(vii) α(conv(A)) = α(A), where conv(A) denotes the convex extension of A.

The properties of the weak measure of noncompactness β are analogous to the
properties of the measure of noncompactness α(A) [8]. We now gather some well-
known definitions and results from the literature, which we will use throughout this
paper. The lemma below is an adaptation of the corresponding result of Ambrosetti
[6]

Theorem 2.14 ([29]). Let H ⊂ C(Ia, E) be a family of strongly equicontinuous
functions. Let H(t) = {h(t) ∈ E, h ∈ H}, for t ∈ Ia and H(Ia) = ∪t∈IaH(t). Then

αC(H) = sup
t∈Ia

α(H(t)) = α(H(Ia)),
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where αC(H) denotes the measure of noncompactness in C(Ia, E), and the function
t 7→ α(H(t)) is continuous.

Definition 2.15. A function f : Ia × E → E, where E is a Banach space, is
L1-Carathéodory, if the following conditions hold:

(i) the map s→ f(s, x) is µ∆-measurable for all x ∈ E;
(ii) the map x→ f(s, x) is continuous for almost all s ∈ Ia.

Definition 2.16. A function f : Ia×E×E×E → E, where E is a Banach space,
is L1- Carathéodory, if the following conditions hold:

(i) the map s→ f(s, x, y.z) is µ∆-measurable on Ia for all (x, y, z) ∈ E3;
(ii) the map (x, y, z)→ f(s, x, y, z) is continuous for almost all s ∈ Ia.

Definition 2.17. A function f : Ia → E is said to be weakly continuous if it is
continuous from Ia to E endowed with its weak topology. A function g : E →
E1 where E and E1 are Banach spaces, is said to be weakly-weakly sequentially
continuous if for each weakly convergent sequence (xn) in E, the sequence (g(xn))
is weakly convergent in E1. When the sequence xn tends weakly to x0 in E, we
will write xn →ω x0.

Definition 2.18 ([23]). A family F of functions F is said to be uniformly absolutely
continuous in the restricted sense on A or in short uniformy AC∗(A), if for every ε >
0 there is η > 0, such that for every F in F and for every finite or infinite sequence
of nonoverlapping intervals {[ai, bi]} with ai, bi ∈ A, and satisfying

∑
i |bi−ai| < η,

we have
∑
i ω(F, [ai, bi]) < ε where ω denotes the oscillation of F over [ai, bi] .

A family F of functions F is said to be uniformly generalized absolutely con-
tinuous in the restricted sense on [a, b] or uniformly ACG∗([a, b]) if is the union
of a sequence of closed sets Ai such that on each Ai the function F is uniformy
AC∗(Ai). In the proof of the main theorem we will apply the following fixed point
theorem.

Theorem 2.19 ([39]). Let D be a closed convex subset of E, and let F be a con-
tinuous map from D into itself. If for some x ∈ D the implication

V = conv({x} ∪ F (V ))⇒ V is relatively compact, (2.1)

holds for every countable subset V of D, then F has a fixed point.

In Section 2 we will apply the following theorem.

Theorem 2.20 ([35]). Let X be a metrizable locally convex topological vector space.
Let D be a closed convex subset of X, and let F be a weakly-weakly sequentially
continuous map from D into itself. If for some x ∈ D the implication that

V = conv({x} ∪ F (V ))⇒ V is relatively weakly compact, (2.2)

holds for every subset V of D, then F has a fixed point.

3. An existence result for integrodifferential equations

Now we will consider the equivalently integral problem

x(t)

= x0 +

∫ t

0

f(z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s)∆z,
(3.1)
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for t ∈ Ia, where f : Ia × E × E × E → E, h, g : Ia × E → E, kj , j = 1, 2
are real-valued functions, T denotes a time scale (nonempty closed subset of real
numbers R), 0 ∈ T, Ia denotes a time scale interval, (E, ‖ ·‖) is a Banach space and
integrals are taken in the sense of HL ∆-integrals. To obtain the existence result it
is necessary to define a notion of a solution.

Definition 3.1. An ACG∗ function x : Ia → E is said to be a Carathéodory
solution of the problem (1.1) if it satisfies the following conditions:

(i) x(0) = x0

(ii) x∆(t) = f
(
t, x(t),

∫ t
0
k1(t, s)g(s, x(s))∆s,

∫ a
0
k2(t, s)h(s, x(s))∆s

)
for µ∆ a.e.

t ∈ Ia

Definition 3.2. A continuous function x : Ia → E is said to be a solution of
problem (3.1) if it satisfies

x(t) = x0 +

∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z,

for every t ∈ Ia.

Now we prove that, each solution of the problem (1.1) is equivalent to the solu-
tions of the problem (3.1). Let x be a continuous solution of (1.1). By definition,
x is an ACG∗ function and x(0) = x0. Since, for µ∆ a.e. t ∈ Ia,

x∆(t) = f
(
t, x(t),

∫ t

0

k1(t, s)g(s, x(s))∆s,

∫ a

0

k2(t, s)h(s, x(s))∆s
)

and integrals are in the sense of HL ∆-integrals, so it is differentiable µ∆ a.e.
Moreover∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z

=

∫ t

0

x∆(s)∆s = x(t)− x(0)

Thus (3.1) is satisfied.
Now assume that y is an ACG∗ function and it is clear that y(0) = x0. By the

definition of HL ∆-integrals, there exists an ACG∗ function G such that G(0) = x0

and

G∆(t) = f
(
t, y(t),

∫ t

0

k1(t, s)g(s, y(s))∆s,

∫ a

0

k2(t, s)h(s, y(s))∆s
)
,

for µ∆ a.e. t ∈ Ia. Hence

y(t) = x0 +

∫ t

0

f
(
z, y(z),

∫ z

0

k1(z, s)g(s, y(s))∆s,

∫ a

0

k2(z, s)h(s, y(s))∆s
)

∆z

= x0 +

∫ t

0

G∆(s)∆s = x0 +G(t)−G(0) = G(t)

We obtain y = G and then

y∆(t) = f
(
t, y(t),

∫ t

0

k1(t, s)g(s, y(s))∆s,

∫ a

0

k2(t, s)h(s, y(s))∆s
)
.
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For x ∈ C(Ia, E), we define the norm of x by: ‖x‖C = sup{‖x(t), t ∈ Ia}. Let
B(p) = {x ∈ C(Ia, E) : ‖x‖C ≤ ‖x0‖C + p, p > 0}. Note that these sets are closed
and convex. Define the operator F : C(Ia, E)→ C(Ia, E) by

F (x)(t) =

∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z,

where t ∈ Ia, x ∈ B(p) and integrals are in the sense of HL ∆-integrals. Let

Γ(p) = {F (x) ∈ C(Ia, E) : x ∈ B(p)}, for each p > 0.

Let r(K) be the spectral radius of the integral operator K defined by

K(u)(t) =

∫ c

0

k(t, s)u(s)∆s,

where the kernel k ∈ C(Ia × Ia,R), u ∈ C(Ia;E) and c denotes any fixed value in
Ia, a > 0.

Theorem 3.3. Assume that for each uniformly ACG∗ function x : Ia → E, func-

tions g(·, x(·)),h(·, x(·)), f(·, x(·),
∫ (·)

0
k1(·, s)g(s, x(s))∆s,

∫ a
0
k2(·, s)h(s, x(s))∆s) are

HL ∆-integrable, f, g, h are Carathéodory functions. Let k1, k2 : Ia × Ia → R be
measurable functions such that k1(t, ·), k2(t, ·) are continuous. Assume that there
exist p0 > 0 and positive constants L,L1, d1 such that

α(g(I,X)) ≤ Lα(X), for I ⊂ Ia and every X ⊂ B(p0), (3.2)

α(h(I,X)) ≤ L1α(X), for I ⊂ Ia and every X ⊂ B(p0), (3.3)

α(f(t, A,C,D)) ≤ d1 max{α(A), α(C), α(D)},
for every A,C,D ⊂ B(p0), t ∈ Ia,

(3.4)

where

g(I,X) = {g(t, x(t)), t ∈ I, x ∈ X},
h(I,X) = {h(t, x(t)), t ∈ I, x ∈ X},

f(t, A,C,D) = {f(t, x1, x2, x3) : (x1, x2, x3) ∈ A× C ×D}

and α denotes the Kuratowski measure of noncompactness. Moreover, let Γ(p0) be
equicontinuous, equibounded, and uniformly ACG∗ on Ia. Then, there exist at least
one solution of the problem (1.1) on Ic for some 0 < c ≤ a, such that d1cLr(K) < 1
and d1c < 1.

Proof. Fix an arbitrary p ≥ 0. Put B(p) = {x ∈ C(Ic, E) : ‖x‖C ≤ ‖x0‖C + p, p >
0} where c will be given below. Recall that a set B(p) of continuous functions
F (x) ∈ Γ(p), defined on a time scale interval Ia is equicontinuous on Ia if for each
ε > 0 there exists δ > 0 such that

‖F (x)(t)− F (x)(τ)‖ < ε, for all x ∈ B(p),

whenever |t− τ | < δ, for each F (x) ∈ Γ(p). Thus, for each ε > 0 there exists δ > 0
such that

‖
∫ t

τ

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z‖ < ε,
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for all x ∈ B(p), whenever |t − τ | < δ and t, τ ∈ Ia. As a result, there exists a
number c, 0 < c ≤ a such that

‖
∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ c

0

k2(z, s)h(s, x(s))∆s
)

∆z‖ ≤ p0,

where t ∈ Ic, x ∈ B(p).
Now, we show that, the operator F is well defined and maps B(p) into B(p).

‖F (x)(t)‖

= ‖x0 +

∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z‖

≤ ‖x0‖+ ‖
∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z‖

≤ ‖x0‖+ p.

We will show, that the operator F is continuous. Let xn → x in B(p). Then

‖F (xn)− F (x)‖

= sup
t∈Ia
‖
∫ t

0

f
(
z, xn(z),

∫ z

0

k1(z, s)g(s, xn(s))∆s,

∫ c

0

k2(z, s)h(s, xn(s))∆s
)

∆z

−
∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ c

0

k2(z, s)h(s, x(s))∆s
)

∆z‖

= sup
t∈Ia
‖
∫ t

0

(
f
(
z, xn(z),

∫ z

0

k1(z, s)g(s, xn(s))∆s,

∫ c

0

k2(z, s)h(s, xn(s))∆s
)

− f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ c

0

k2(z, s)h(s, x(s))∆s
))

∆z‖

Since g and h are Carathéodory functions in B(p) we have that g(s, xn(s)) →
g(s, x(s))µ∆ a.e. on Ia, and h(s, xn(s))→ h(s, x(s)) µ∆ a.e. on Ia. Using theorem
(2.10) we obtain∫ z

0

k1(t, s)g(s, xn(s))∆s→
∫ z

0

k1(t, s)g(s, x(s))∆s µ∆ a.e. on Ia,∫ z

0

k2(t, s)h(s, xn(s))∆s→
∫ z

0

k2(t, s)h(s, x(s))∆s µ∆ a.e. on Ia.

Moreover, because f is the Caretheodory function in B(p)

f
(
z, xn(z),

∫ z

0

k1(z, s)g(s, xn(s))∆s,

∫ c

0

k2(z, s)h(s, xn(s))∆s
)

→ f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ c

0

k2(z, s)h(s, x(s))∆s
)

µ∆ a.e. on Ia. Thus theorem (2.10) implies ‖F (xn)− F (x)‖ → 0.
Suppose that V ⊂ B(p0) satisfies the condition V = conv({x} ∪ F (V )). We

will prove that V is relatively compact and so (2.1) is satisfied. Since V ⊂ B(p),
F (V ) ⊂ Γ(p), then V ⊂ V = conv({x} ∪ F (V )) is equicontinuous. By theorem
(2.14), t 7→ v(t) = α(V (t)) is continuous on Ic.

For fixed t ∈ Ic we divide the interval [0, t] into m parts in following way:

t0 = 0, t1 = sup
t∈Ia
{s : s ≥ t0, s− t0 < δ},
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t2 = sup
t∈Ia
{s : s ≥ t1, s− t1 < δ}, . . . , tn = sup

t∈Ia
{s : s ≥ tn−1, s− tn−1 < δ}.

Since T is closed, it follows that ti ∈ Ia. If some ti+1 = ti, then ti+2 = inf{t ∈ T :
t > ti+1}.

Let V ([ti, ti+1] = {u(s) : u ∈ V, ti ≤ s ≤ ti+1, i = 0, 1, . . .m − 1}. By theorem
(2.14) and the continuity of v there exists si ∈ Ii = [ti, ti+1], such that

α(V ([ti, ti+1]) = sup{α(V (s)) : ti ≤ s ≤ ti+1} = v(si)

For fixed z ∈ [0, t] we divide the interval [0, z] into m parts as follows

z0 = 0, z1 = sup
t∈[0,t]

{s : s ≥ z0, s− z0 < δ},

z2 = sup
t∈[0,t]

{s : s ≥ z1, s− z1 < δ}, . . . , zn = sup
t∈[0,t]

{s : s ≥ zn−1, s− zn−1 < δ},

such that µ∆(Ij) = jz/m, j = 0, 1, . . . ,m, Ij = [zj , zj+1].
Let V ([zj , zj+1] = {u(s) : u ∈ V, zj ≤ s ≤ zj+1, j = 0, 1, . . .m− 1}. By theorem

(2.14) and the continuity of v there exists sj ∈ Ij = [zj , zj+1], such that

α(V ([zj , zj+1])) = sup{α(V (s)) : zj ≤ s ≤ zj+1} = v(sj).

Furthermore, we divide the interval [0, c] into m parts:

r0 = 0, r1 = sup
t∈[0,c]

{s : s ≥ r0, s− r0 < δ},

r2 = sup
t∈[0,c]

{s : s ≥ r1, s− r1 < δ}, . . . , rn = sup
t∈[0,c]

{s : s ≥ rn−1, s− rn−1 < δ}

such that µ∆(Ij) = kr/m, k = 0, 1, . . . ,m, Ik = [rk, rk+1].
Let V ([rk, rk+1] = {u(s) : u ∈ V, rk ≤ s ≤ rk+1, k = 0, 1, . . .m− 1}. By theorem

(2.14) and the continuity of v there exists sk ∈ Ik = [rk, zk+1], such that

α(V ([rk, rk+1]) = sup{α(V (s)) : rk ≤ s ≤ rk+1} = v(sk)

By theorem (2.12) and the properties of HL ∆-integral, for x ∈ V , we have

F (x) = x0 +

m−1∑
i=0

∫ ti+1

ti

f
(
z, x(z),

m−1∑
j=0

∫ zj+1

zj

k1(z, s)g(s, x(s))∆s,

m−1∑
r=0

∫ rk+1

rk

k2(z, s)h(s, x(s))∆s
)

∆z

∈ x0 +

m−1∑
i=0

µ∆(Ii)convf
(
Ii, V (Ii),

m−1∑
j=0

µ∆(Ij)conv
(
k1(Ii, Ij)g(Ij , V (Ij))

)
,

m−1∑
k=0

µ∆(Ik)conv(k2(Ii, Ik)g(Ik, V (Ik)))
)
,

where k(I, J) = {k(t, s) : t ∈ I, s ∈ J}, g(I, V (I)) = {g(t, x(t)) : t ∈ I, x ∈ V }.
Using (3.2), (3.3), (3.4), and properties of the measure of noncompactness we obtain

α(F (V )) ≤
m−1∑
i=0

µ∆(Ii)convα(f(Ii, V (Ii),

m−1∑
j=0

µ∆(Ij)conv(k1(Ii, Ij)g(Ij , V (Ij))),

m−1∑
k=0

µ∆(Ik)conv(k2(Ii, Ik)h(Ik, V (Ik)))
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≤
m−1∑
i=0

µ∆(Ii)d1 max
(
α(V (Ii)), α

(m−1∑
j=0

µ∆(Ij)conv(k1(Ii, Ij)g(Ij , V (Ij))),

α
(m−1∑
k=0

µ∆(Ik)conv(k2(Ii, Ik)h(Ik, V (Ik)))
))

Let us observe that if

α(V (Ii)) = maxBig{α(V (Ii)), α
(m−1∑
j=0

µ∆(Ij)conv(k1(Ii, Ij)g(Ij , V (Ij)))Big),

α
(m−1∑
k=0

µ∆(Ik)conv(k2(Ii, Ik)h(Ik, V (Ik)))
)}
,

then

α(V (t)) = α(conv({x(t)} ∪ F (V (t)))) ≤ α(F (V (t))) < d1cα(V (t)),

t ∈ Ic. Because d1c < 1, so α(V (t)) < α(V (t)) which is a contradiction. If

α
(m−1∑
j=0

µ∆(Ij)conv(k1(Ii, Ij)g(Ij , V (Ij)))
)

= max
{
α(V (Ii)), α

(m−1∑
j=0

µ∆(Ij)conv(k1(Ii, Ij)g(Ij , V (Ij)))
)
,

α
(m−1∑
k=0

µ∆(Ii)conv(k2(Ii, Ik)h(Ik, V (Ik)))
)}
,

then

α(F (V (t))) ≤
m−1∑
i=0

µ∆(Ii)d1

m−1∑
j=0

µ∆(Ij)(k1(Ii, Ij)α(g(Ij , V (Ij))))

≤
m−1∑
i=0

µ∆(Ii)d1L

m−1∑
j=0

µ∆(Ij)(k1(Ii, Ij)α(V ((Ij))))

≤ d1L(c/m)

m−1∑
j=0

µ∆(Ij)α(V (Ij))

m−1∑
i=0

k1(Ii, Ij)

For j = 0, 1, . . . ,m − 1 there exists qj , j = 0, 1, . . . ,m − 1 such that k1(Ii, Ij) ≤
k1(Iqj , Ij). So

α(F (V (t))) ≤ d1Lc

m−1∑
j=0

µ∆(Ij)k1(Iqj , Ij)v(sj), where sj ∈ Ij .

Hence

α(F (V (t))) ≤ d1Lc

m−1∑
j=0

µ∆(Ij)k1(Iqj , Ij)(v(sj)− v(pj))

+ d1Lc

m−1∑
j=0

µ∆(Ij)k1(Iqj , Ij)(v(pj))
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By the continuity of v we have v(sj)−v(pj) < ε1 and ε1 → 0 as m→∞. Therefore,

α(F (V )(t)) ≤ d1Lc

∫ c

0

k1(t, s)v(s)∆s, for t ∈ Ic

Since V = conv(x ∪ F (V )), by the property of the measure of noncompactness,
we have α(V (t)) ≤ α(F (V )(t)) ≤ d1Lc

∫ c
0
k1(t, s)v(s)∆s, for t ∈ Ic. Because this

inequality holds for every t ∈ Ic and Ld1cr(K) < 1, so by applying Gronwall’s
inequality, we conclude that α(V (t)) = 0 for t ∈ Ic. Hence Arzela-Ascoli’s theorem
implies that the set V is relatively compact. Consequently, by Theorem (2.19), F
has a fixed point which is a solution of the problem (1.1). Similarly, if

α
(m−1∑
k=0

µ∆(Ii)conv(k2(Ii, Ik)h(Ik, V (Ik)))
)

= max
{
α(V (Ii)), α

(m−1∑
j=0

µ∆(Ij)conv(k1(Ii, Ij)g(Ij , V (Ij))),

α
(m−1∑
k=0

µ∆(Ii)conv(k2(Ii, Ik)h(Ik, V (Ik)))
))}

then we prove that

α(F (V )(t)) ≤ d1L1c

∫ c

0

k2(t, s)v(s)∆s

and we conclude that the set V is relatively compact. By Theorem (2.19), F has a
fixed point which is a solution of problem (1.1). �

Remark 3.4. For discrete time scales the existence of solutions is trivially given
without imposing further compactness assumptions on the right-hand side of the
equation. If a time scale admits at least one right-dense point, then the continuity
assumption is not sufficient for the existence of (rd continuous) solutions of problem
(1.1). Nevertheless, we will not distinguish such a discrete case, because some con-
tinuity and compactness conditions are necessary to unify the continuous problems
and their discretization.

4. An existence result for integrodifferential equations in weak
sense

Now we consider the equivalently integral problem

x(t)

= x0 +

∫ t

0

f(z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s)∆z,
(4.1)

for t ∈ Ia, where f : Ia × E × E × E → E, h, g : Ia × E → E, kj , j = 1, 2 are real-
valued functions, T denotes a time scale (nonempty closed subset of real numbers
R), 0 ∈ T, Ia denotes a time scale interval, (E, ‖ ·‖) is a Banach space and integrals
are taken in the sense of HKP ∆-integrals. Fix x∗ ∈ E∗ and consider the problem

(x∗x)∆(t) = x∗
(
f
(
t, x(t),

∫ t

0

k1(t, s)g(s, x(s))∆s,

∫ a

0

k2(t, s)h(s, x(s))∆s
))

(4.2)

Let us introduce a definition.
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Definition 4.1. Let F : I → E and let A ⊂ I. The function f : A → E is
a pseudo ∆ -derivative of F on A if for each x∗ ∈ E∗ the real-valued function
x∗F is ∆-differentiable µ∆ almost everywhere on A and (x∗F )∆ = x∗f µ∆ almost
everywhere on A.

Regarding the above definition it is clear that the left-hand side of (4.2) can be
rewritten to the form x∗(x∆), where x∆ denotes the pseudo ∆-derivative.

To obtain the existence result for our problem it is necessary to define a notion
of a solution.

Definition 4.2. A function x : Ia → E is said to be a pseudosolution of problem
(1.1) if it satisfies the following conditions:

(1) x(·) is ACG∗ function,
(2) x(0) = x0

(3) for each x∗ ∈ E∗ there exists a set A(x∗) with µ∆ measure zero, such that
for each t /∈ A(x∗)

(x∗x)∆(t) = x∗
(
f
(
t, x(t),

∫ t

0

k1(t, s)g(s, x(s))∆s,

∫ a

0

k2(t, s)h(s, x(s))∆s
))
.

Definition 4.3. A continuous function x : Ia → E is said to be a solution of
problem (4.1) if it satisfies

x(t) = x0 +

∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z,

Because we consider a new type of integral and a new type of solutions is neces-
sary to prove that each solution x of problem (1.1) is the solution of problem (4.1).
Let x is a continuous solution of (4.1). Fix x∗ ∈ E∗. By definition, x is ACG∗

function and x(0) = x(0). Since, for each x∗ ∈ E∗ and µ∆ a.e. t ∈ Ia,

(x∗x)∆ = x∗(x∆(t))

= x∗
(
f
(
t, x(t),

∫ t

0

k1(t, s)g(s, x(s))∆s,

∫ a

0

k2(t, s)h(s, x(s))∆s
))

and the last are ∆-HK integrable, so is differentiable µ∆ a.e. Moreover∫ t

0

x∗
(
f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
))

∆z

=

∫ t

0

(x∗x(s))∆∆s = x∗(x(t)− x0)

Thus x(t) satisfies (4.1) Now assume that y is ACG∗ function and y(0) = x0. By
the definition of HKP ∆-integrals, there exists an ACG∗ function G such that
G(0) = x0 and

x∗(G∆(t)) = x∗
(

(f
(
t, y(t),

∫ t

0

k1(t, s)g(s, y(s))∆s,

∫ a

0

k2(t, s)h(s, y(s))∆s
))
,

for µ∆ a.e. t ∈ Ia. Hence

x∗(y(t)) = x0 +

∫ t

0

x∗
(
f
(
z, y(z),

∫ z

0

k1(z, s)g(s, y(s))∆s,∫ a

0

k2(z, s)h(s, y(s))∆s
))

∆z
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= x0 +

∫ t

0

x∗(G∆(s))∆s

= x0 + x∗(G(t))− x∗(G(0)) = x∗(G(t)).

We obtain y = G and then

y∆(t) = f
(
t, y(t),

∫ t

0

k1(t, s)g(s, y(s))∆s,

∫ a

0

k2(t, s)h(s, y(s))∆s
)
.

Lemma 4.4. Let H ⊂ C(Ia, E) be a family of strongly equicontinuous functions.
Let, for t ∈ Ia, H(t) = {h(t) ∈ E, h ∈ H}. Then β(H(Ia)) = supt∈Ia β(H(t)) and
the function t 7→ β(H(t)) is continuous.

Theorem 4.5. Assume that for each uniformly ACG∗ function x : Ia → E, func-

tions g(·, x(·)), h(·, x(·)), f(·, x(·),
∫ (·)

0
k1(·, s)g(s, x(s))∆s,

∫ a
0
k2(·, s)h(s, x(s))∆s)

are HKP ∆-integrable, f, g, h are weakly-weakly sequentially continuous functions.
Let k1, k2 : Ia × Ia → R be measurable functions such that k1(t, ·), k2(t, ·) are
continuous. Assume that there exist p0 > 0 and positive constants L,L1, d such
that

β(g(I,X)) ≤ Lβ(X), for I ⊂ Ia and every X ⊂ B(p0), (4.3)

β(h(I,X)) ≤ L1β(X), for I ⊂ Ia every X ⊂ B(p0), (4.4)

β(f(t, A,C,D)) ≤ dmax{β(A), β(C), β(D)},
for every A,C,D ⊂ B(p0), t ∈ Ia,

(4.5)

where

g(I,X) = {g(t, x(t)), t ∈ I, x ∈ X},
h(I,X) = {h(t, x(t)), t ∈ I, x ∈ X},

f(t, A,C,D) = {f(t, x1, x2, x3) : (x1, x2, x3) ∈ A× C ×D}

and β denotes the de Blasi measure of noncompactness. Moreover, let Γ(p0) be
equicontinuous, equibounded, and uniformly ACG∗ on Ia. Then, there exists at
least one pseudosolution of the problem (1.1) on Ic for some 0 < c ≤ a, such that
dcLr(K) < 1 and dc < 1.
Moreover, let Γ(p0) be equicontinuous and uniformly ACG∗ on Ia. Then there
exists at least one pseudosolution of the problem (1.1) on Ic, for some 0 < c ≤ a,
such that dcLr(K) < 1 and dc < 1.

Proof. By equicontinuity of Γ(p0), there exists a number c, 0 < c ≤ a, such that∥∥∫ t

0

f(z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ c

0

k2(z, s)h(s, x(s))∆s)∆z
∥∥ ≤ p0,

for t ∈ Ic and x ∈ B(p). Indeed, for any x∗ ∈ E∗, such that ‖x∗‖ ≤ 1 and for any
x ∈ B(p0), we have

|x∗F (x)(t)|

= |x∗x0|+
∣∣∣x∗ ∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s
)

∆z
∣∣∣

≤ ‖x∗‖‖x0‖+ ‖x∗‖‖
∫ t

0

f
(
z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,
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0

k2(z, s)h(s, x(s))∆s
)

∆z‖

≤ ‖x0‖+ p.

From here

sup{|x∗F (x)(t)| : x∗ ∈ E∗, ‖x∗‖ ≤ 1} ≤ ‖x0‖+ p, ‖F (x)(t)‖ ≤ ‖x0‖+ p,

so F (x)(t) ∈ B(p0). We will show, that the operator F is weakly-weakly sequen-
tially continuous. By [38], a sequence xn(·) is weakly convergent in C(Ic, E) to
x(·) if and only if xn(t) tends weakly to x(t) for each t ∈ Ic. Because g(s, ·) and
h(s, ·) are weakly- weakly sequentially continuous, so if xn →ω x in (C(Ic, E), ω),
then g(s, xn(s))→ω g(s, x(s)) and h(s, xn(s))→ω h(s, x(s)) in E for t ∈ Ic and by
Theorem (2.11) we have

lim
n→∞

∫ z

0

k1(z, s)g(s, xn(s))∆s =

∫ z

0

k1(z, s)g(s, x(s))∆s,

weakly in E for each t ∈ Ic, and

lim
n→∞

∫ z

0

k2(z, s)h(s, xn(s))∆s =

∫ z

0

k2(z, s)h(s, x(s))∆s,

weakly in E for each t ∈ Ic. Moreover, because f is weakly-weakly sequentially
continuous,∫ t

0

f(z, xn(z),

∫ z

0

k1(z, s)g(s, xn(s))∆s,

∫ a

0

k2(z, s)h(s, xn(s))∆s)∆z

tends to ∫ t

0

f(z, x(z),

∫ z

0

k1(z, s)g(s, x(s))∆s,

∫ a

0

k2(z, s)h(s, x(s))∆s)∆z

weakly in E for each t ∈ Ic.
Suppose that V ⊂ B(p0) satisfies the condition V = conv({x} ∪ F (V )). We will

prove that V is relatively compact and so (4.2) is satisfied. Since V ⊂ B(p), F (V ) ⊂
Γ(p), then V ⊂ V = conv({x} ∪ F (V )) is equicontinuous. By Lemma (4.4) t 7→
v(t) = β(V (t)) is continuous on Ic. Therefore, as in Theorem (3.3) we prove
that β(V (t)) = 0, for t ∈ Ic, so that the set V is relatively weakly compact.
Consequently, by Theorem (2.20) F has a fixed point which is a pseudosolution of
the problem (1.1). �

Remark 4.6. Conditions (3.2), (3.3), (3.4), (4.3), (4.4), and (4.5) in Theorems
(3.3), and (4.5) respectively can be also generalized to the Sadovskii condition [43].
Szufla condition [51] and others and α or β can be replaced by some axiomatic
measure of noncompactness.
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