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WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY
HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II

MANAS RANJAN SAHOO, HARENDRA SINGH

Abstract. In this article we introduce a concept of entropy weak asymptotic

solution for a system of conservation laws and construct the same for a pro-
longed system of conservation laws which is highly non-strictly hyperbolic.

This is first done for Riemann type initial data by introducing δ, δ′ and δ′′

waves along a discontinuity curve and then for general initial data by piecing
together the Riemann solutions.

1. Introduction

The general theory of systems of conservation laws assumes systems to be strictly
hyperbolic, see; Lax [10], Glimm [3] and Bressan [1]. In general for non-strictly hy-
perbolic system, the solution does not lie in the class Lp, 1 ≤ p <∞. For existence
and uniqueness result for a particular system which is not strictly hyperbolic we
refer Floch [9]. In general one has to admit solution space as the space of dis-
tributions. Then due to the appearance of product of distributions, it is difficult
to define the notion of product. One way to overcome this is to work with the
generalized space of Colmbeau, for details see [2, 12].

Recently a new notion of solution is introduced by Panov and Shelkovich [13],
called weak asymptotic solution. We would also like to cite another concept of
solution by Marko Nedelkjov [11], called shadow wave solution. This is same as
the solution in the sense of association introduced by Colombeau but author also
allows non smooth functions.

We study the following system of conservation laws which is studied in [6, 11,
14, 15, 16]; for different values of n, namely;

(uj)t +
j∑
i=1

(
uiuj−i+1

2
)x = 0, j = 1, 2, . . . , n. (1.1)

For n = 1, system (1.1) is Burger’s equation, which is well studied by Hopf [4]. For
n = 2 case, (1.1) is a one dimensional model for the large scale structure formation
of universe, see [17]. Using vanishing viscosity approach it is observed by Joseph
[5] that the second component contain δ measure concentrated along the line of
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discontinuity. The case n = 3 is studied in [7] in Colombeau setting. If u1 = u,
u2 = v, u3 = w, (1.1) becomes

ut + (
u2

2
)x = 0, vt + (uv)x = 0, wt + (

v2

2
+ uw)x = 0. (1.2)

A system similar to the one above, namely

ut + (u2)x = 0, vt + (2uv)x = 0, wt + 2(v2 + uw)x = 0. (1.3)

is studied in [14]. There, a concept of weak asymptotic solution is introduced and
using this a generalized integral formulation is given. Note that the system (1.3)
can be obtained from (1.2) using the transformation (u, v, w) → (2u, v, w2 ). The
case n = 4 is studied by Joseph and Sahoo [8], using vanishing viscosity approach.
In that paper a solution is constructed for Riemann type initial data and based
on this a weak integral formulation is given. In [16], weak asymptotic solution
is constructed for the case n = 4 when u develops shock and initial data are of
Riemann type. Using this, weak asymptotic solution is constructed for the case
n = 4 when the initial data for the first component is monotonic increasing and
initial data for the other components are of general type.

In this paper we define entropy weak asymptotic solution for a general conserva-
tion law and construct the same for the case n = 4, for Riemann type initial data.
Using Riemann type solutions we construct entropy weak asymptotic solution for
some special general initial data.

For n = 4, u1 = u, u2 = v, u3 = w, u4 = z and followed by a linear transforma-
tion, the system (1.1) leads to the system

ut + (u2)x = 0, vt + (2uv)x = 0

wt + 2(v2 + uw)x = 0, zt + 2((3vw + uz)x) = 0.
(1.4)

We take initial conditions as

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x). (1.5)

The contents of this article is as follows. We define entropy weak asymptotic so-
lution for any general system of conservation laws. For Riemann type data we
construct the same for the system (1.4) by using asymptotic analysis of the prod-
uct of regularized singular waves, namely δ, δ′ and δ′′. Then we construct a weak
asymptotic solution when the initial data for u is a monotonic function and initial
data for v, w and z are bounded measurable functions.

2. Weak asymptotic solution for Riemann type initial data

First of all we define weak asymptotic solution [14, 15] and entropy weak asymp-
totic solution as follows.

Definition 2.1. A sequence of smooth functions uεj(x, t), j = 1, 2, dotsn; is said to
be weak asymptotic solution to the system of conservation laws

(uj)t + (fj(u1, u2...un))x = 0

uj(x, 0) = u0j(x)
(2.1)
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if the following identity hold

lim
ε→0

∫ ∞
−∞

[
(uεj)t + (fj(uε1, u

ε
2, . . . , u

ε
n))x

]
ψ(x)dx = 0

lim
ε→0

∫ ∞
−∞

[
uj(x, 0)− u0j(x)

]
ψ(x)dx = 0

(2.2)

uniformly in the variable t lying in any compact subset of (0,∞) and for all test
function ψ ∈ C∞c (R).

Definition 2.2. A sequence of smooth functions uεj(x, t), j = 1, 2, . . . , n is said to
be entropy admissible weak asymptotic solution to the following system of conser-
vation laws

(uj)t + (fj(u1, u2, . . . , un))x = 0

uj(x, 0) = u0j(x)
(2.3)

if it is a weak asymptotic solution with the following extra condition: For any
η, q ∈ C2(Rn; R), with η convex and Dη(u)DF (u) = Dq(u),

lim sup
ε→0

∫ ∞
−∞

[
η((U ε)t + (q(U ε))x

]
ψ(x)dx ≤ 0, (2.4)

for all test functions 0 ≤ ψ ∈ C∞c (R). Here U ε = (uε1, u
ε
2, . . . , u

ε
n) and F (u) =

(f1(u), . . . , fn(u)).

In accordance with the above definition, let us define

L1(u) = ut + (u2)x, L2(u, v) = vt + (2uv)x

L3(u, v, w) = wt + 2(v2 + uw)x, L4(u, v, w, z) = zt + 2((3vw + uz)x).

The expression (uε, vε, wε, zε) is said to be weak asymptotic solution to (1.4)
with initial data (1.5) if∫

L1[u(x, t, ε)]ψ(x)dx = o(1)
∫
L2[u(x, t, ε), v(x, t, ε)]ψ(x)dx = o(1)∫

L3[u(x, t, ε), v(x, t, ε), w(x, t, ε)]ψ(x)dx = o(1)∫
L4[u(x, t, ε), v(x, t, ε), w(x, t, ε), z(x, t, ε)]ψ(x)dx = o(1),

(2.5)

and initial conditions satisfy∫ (
u(x, 0, ε)− u0(x)

)
ψ(x)dx = o(1),

∫ (
v(x, 0, ε)− v0(x)

)
ψ(x)dx = o(1)∫ (

w(x, 0, ε)− w0(x)
)
ψ(x)dx = o(1),

∫ (
z(x, 0, ε)− z0(x)

)
ψ(x)dx = o(1),

for all ψ ∈ D(R).
With the similar lines we can have entropy weak asymptotic solution. To study

weak asymptotic analysis first we need the following Lemma as in [14], regarding
the superpositions of singular waves; δ, δ′, δ′′ and δ′′′.

Lemma 2.3. Let {wi}i∈I is an indexed family of Friedrich mollifiers satisfying

wi(x) = wi(−x) and
∫
wi = 1.
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Define Hi(x, ε) = w0i(xε ) =
∫ x
ε

−∞ wi(y)dy, δi(x, ε) = 1
εwi(

x
ε ) and δ′′...(k times)

i (x, ε) =
1

εk+1w
′′...(k times)
i (xε ). The above assumptions implies the following asymptotic ex-

pansions, in the sense of distribution.

(Hi(x, ε))r = H(x) +OD′(ε), (Hi(x, ε)(Hj(x, ε)) = H(x) +OD′(ε)

(Hi(x, ε))rδj(x, ε) = δ(x)
∫
wr0i(y)wj(y)dy +OD′(ε)

(δi(x, ε))2 =
1
ε
δ(x)

∫
w2
i (y)dy +OD′(ε)

Hi(x, ε)δ′j(x, ε) = −1
ε
δ(x)

∫
wi(y)wj(y)dy + δ′(x)

∫
w0i(y)wj(y)dy +OD′(ε)

Hi(x, ε)ε2δ′′′j (x, ε) =
1
ε
δ(x)

∫
w′i(y)δ′j(y)dy +OD′(ε),

δi(x, ε).δj(x, ε) =
1
ε
δ(x)

∫
wi(y)wj(y)dy +OD′(ε)

δi(x, ε)δ′j(x, ε) =
1
ε
δ′(x)

∫
ywi(y)w′j(y)dy +OD′(ε),

Hi(x, ε)δ′′j (x, ε) =
1
ε
δ(x)

∫
w0i(y)wj(y)dy +

1
2
δ′′(x)

∫
y2w0i(y)wj(y)dy +OD′(ε)

δi(x, ε))ε2δ′′′j (x, ε) =
1
ε
δ′(x)

∫
ywi(y)w′′′j (y)dy +OD′(ε)

Hi(x, ε)ε2δ′′′′j (x, ε) =
1
ε
δ′(x)

∫
yw0i(y)w′′′′j (y)dy +OD′(ε),

where OD′(ε) is the error term satisfying limε→0〈OD′(ε), ψ(x)〉 = 0, for any test
function ψ.

Proof. Let ψ ∈ D(R) be any test function. Relations from 1 − 6 can be found in
[14]. We prove the asymptotic expansions from the seventh onward.

Now we prove the seventh asymptotic expansion. Using change of variable for-
mula (x = εy), employing third order Taylor expansion, ψ(εy) = ψ(0) + εyψ′(0) +
ε2y2ψ′′(0) + ε3y3O(1) and the fact that

∫
ywi(y)wj(y)dy = 0, we have

〈δi(x, ε)δj(x, ε), ψ(x)〉 =
∫

1
ε
wi(

x

ε
)
1
ε
wj(

x

ε
)ψ(x)dx

=
1
ε

∫
wi(y)wj(y)ψ(εy)dy

=
1
ε
ψ(0)

∫
wi(y)wj(y)dy + ψ′(0)

∫
ywi(y)wj(y)dy +O(ε)

=
1
ε
δ(x)

∫
wi(y)wj(y)dy +O(ε).

Now we prove the eighth asymptotic expansion. Using change of variable for-
mula (x = εy), employing third order Taylor expansion, ψ(εy) = ψ(0) + εyψ′(0) +
ε2y2ψ′′(0) + ε3y3O(1) and the fact that

∫
ywi(y)wj(y)dy = 0, we have

〈δi(x, ε)δ′j(x, ε), ψ(x)〉 =
1
ε2

∫
wi(y)w′j(y)ψ(εy)dy

=
1
ε2
ψ(0)

∫
wi(y)w′j(y)dy +

1
ε
ψ′(0)

∫
ywi(y)w′j(y)dy
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+
1
2
ψ′′(0)

∫
y2wi(y)w′j(y)dy +O(ε)

=
1
ε
δ′(x)

∫
ywi(y)w′j(y)dy +O(ε).

In the above calculation we also used the identity∫
wi(y)w′j(y)dy =

∫
y2wi(y)w′j(y)dy = 0.

Following the analysis similar as above, we prove the remaining identities. Details
are as follows:

〈Hi(x, ε)δ′′j (x, ε), ψ(x)〉

=
∫
w0i(y)

1
ε2
w′′j (y)ψ(εy)dy

=
∫
w0i(y)

1
ε2
w′′j (y)(ψ(0) + εyψ′(0) +

ε2y2

2
ψ′′(0))dy +O(ε)

=
1
ε
δ′(x)

∫
yw0i(y)w′′j (y)dy +

1
2
δ′′(x)

∫
y2w0i(y)w′′j (y)dy +O(ε).

〈δi(x, ε))ε2w′′′j (x, ε), ψ(x)〉

=
1
ε2

∫
wi(y)w′′′j (y)ψ(εy)dy

=
1
ε2

∫
wi(y)w′′′j (y)(ψ(0) + εyψ′(0) +

ε2y2

2
ψ′′(0))dy +O(ε)

=
1
ε2
δ(x)

∫
wi(y)w′′′j (y)dy +

1
ε
δ′(x)

∫
ywi(y)w′′′j (y)dy

+
1
2
δ′′(x)

∫
y2wi(y)w′′′j (y)dy +O(ε)

=
1
ε
δ′(x)

∫
ywi(y)w′′′j (y)dy +O(ε).

〈Hi(x, ε)ε2δ′′′′j (x, ε), ψ(x)〉

=
∫
w0i(y)

1
ε2
w′′′′j (y)ψ(εy)(ψ(0) + εyψ′(0) +

ε2y2

2
ψ′′(0))dy +O(ε)

=
1
ε
δ′(x)

∫
yw0i(y)w′′′′j (y)dy +O(ε).

�

In [8], it is observed that the vanishing viscosity limit for the component z
admits combinations of δ and δ′ waves when u develops rarefaction. So we choose
ansatz as the combination of the above singular waves along the discontinuity curve.
But this is not enough as it is clear in the construction of w, see [14]. In [14], a
correction term is added in the component w to construct weak asymptotic solution
for the shock case. Here in this rarefaction case we will add correction terms in the
component z, but no correction terms in the third component w. Note that this
correction term is required to balance the unexpected term coming in the product
of singular waves.
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Theorem 2.4. The ansatz

u(x, t, ε) = u1Hu(−x+ 2u1t, ε) +
x

2t
{Hu(−x+ 2u2t, ε)

−Hu(−x+ 2u1t, ε)}+ u2{1−Hu(−x+ 2u2t, ε)}.
v(x, t, ε) = v1Hv(−x+ 2u1t, ε) + v2{1−Hv(−x+ 2u2t, ε)}.
w(x, t, ε) = w1Hw(−x+ 2u1t, ε) + w2{1−Hw(−x+ 2u2t, ε)}

+ e1(t)δe(−x+ 2u1t, ε) + e2(t)δe(−x+ 2u2t, ε).

z(x, t, ε) = z1Hz(−x+ 2u1t, ε) + z2{1−Hz(−x+ 2u2t, ε)}
+ g1(t)δe(−x+ 2u1t, ε) + g2(t)δe(−x+ 2u2t, ε)

+ h1(t)δ′g(−x+ 2u1t, ε) + h2(t)δ′g(−x+ 2u2t, ε)

+R1(−x+ 2u1t, ε) +R2(−x+ 2u2t, ε),

(2.6)

where

R1(−x+ 2u1t, ε) = ε2P1(t)δ′′′P (−x+ 2u1t, ε),

R2(−x+ 2u2t, ε) = ε2P2(t)δ′′′P (−x+ 2u2t, ε).

is entropy weak asymptotic solution to the problem (1.4) if the following relations
hold.

ė1(t) = 2v2
1 , ė2(t) = −2v2

2 ,∫
w0u(y)we(y)dy =

∫
w0v(y)we(y)dy =

∫
w0u(y)wg(y)dy = 1,

ġ1(t) = 6v1w1, ġ2(t) = −6v2w2,

ḣ1(t) = 6v1e1(t), ḣ2(t) = 6v2e2(t),∫
wu(y)wg(y)dy = 1,

∫
w′u(y)w′P (y)dy = 1

P1(t) = h1(t), P2(t) = h2(t).

(2.7)

Remark 2.5. In Theorem 2.4, R1 and R2 are called correction terms which is
needed to adjust the odd terms appearing in the asymptotic expansion of the prod-
uct of regularized singular waves.

Proof of Theorem 2.4. Using lemma 2.3, we obtain

u2(x, t, ε)

≈ u2
1H(−x+ 2u1t, ε) +

x2

4t2
{H(−x+ 2u2t, ε)−H(−x+ 2u1t, ε)}

+ u2
2{1−H(−x+ 2u2t, ε)}.

(2.8)

Taking the distributional derivative of u with respect to t, we obtain

ut(x, t, ε) ≈
x

2t2
{H(−x+ 2u1t, ε)−H(−x+ 2u2t, ε)}

+ {2u2
1 −

u1x

t
}δ(−x+ 2u1t, ε)− {2u2

2 −
u2x

t
}δ(−x+ 2u2t, ε).

(2.9)

Putting (2.8) and (2.9) in the first equation of (1.4), we obtain

ut(x, t, ε) + (u2)x(x, t, ε)

≈ {u2
1 −

u1x

t
+
x2

4t2
}δ(−x+ 2u1t, ε)− {u2

2 −
u2x

t
+
x2

4t2
}δ(−x+ 2u2t, ε) = 0.
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Now we find the asymptotic expansion of terms appearing in the second equation
of (1.4). Applying lemma 2.3,

u(x, t, ε)v(x, t, ε) ≈ u1v1H(−x+ 2u1t, ε) + u2v2{1−H(−x+ 2u2t, ε)}.
vt(x, t, ε) ≈ 2u1v1δ(−x+ 2u1t, ε)− 2u2v2δ(−x+ 2u2t, ε).

(2.10)

Using expansions (2.10) in the second equation of (1.4), we obtain

vt(x, t, ε) + (2u(x, t, ε)v(x, t, ε))x
≈ {2u1v1 − 2u1v1}δ(−x+ 2u1t, ε) + {2u2v2 − 2u2v2}δ(−x+ 2u2t, ε) = 0

Now we find the asymptotic expansion of terms appearing in the third equation of
(1.4). Applying lemma 2.3,

v2(x, t, ε) ≈ v2
1H(−x+ 2u1t, ε) + v2

2{1−H(−x+ 2u2t, ε)}. (2.11)

u(x, t, ε)w(x, t, ε)

≈ u1w1H(−x+ 2u1t, ε) + u2w2{1−H(−x+ 2u2t, ε)}

+ u1e1(t)
∫
w0u(y)we(y)dyδ(−x+ 2u1t, ε)

+ u2e2(t)
∫
w0u(y)we(y)dyδ(−x+ 2u2t, ε),

(2.12)

Using (2.11) and (2.12), we obtain

2(v2(x, t, ε) + u(x, t, ε)w(x, t, ε))

≈ (2v2
1 + 2u1w1)H(−x+ 2u1t, ε)

+ (2v2
2 + 2u2w2){1−H(−x+ 2u2t, ε)}

+ 2u1e1(t)
∫
w0u(y)we(y)dyδ(−x+ 2u1t, ε)

+ 2u2e2(t)
∫
w0u(y)we(y)dyδ(−x+ 2u2t, ε).

(2.13)

Taking the distributional derivative of w with respect to t, we obtain

wt(x, t, ε)

≈ {ė1(t) + 2u1w1}δ(−x+ 2u1t, ε)

+ {ė2(t)− 2u2w2}δ(−x+ 2u2t, ε) + 2u1e1(t)δ′(−x+ 2u1t, ε)

+ 2u2e2(t)δ′(−x+ 2u2t, ε).

(2.14)

Taking the distributional derivative of the expression in (2.13), with respect to x,
we obtain

2(v2(x, t, ε) + u(x, t, ε)w(x, t, ε))x

≈ −(2v2
1 + 2u1w1)δ(−x+ 2u1t, ε)

+ (2v2
2 + 2u2w2)δ(−x+ 2u2t, ε)

− 2u1e1(t)
∫
w0u(y)we(y)dyδ′(−x+ 2u1t, ε)

− 2u2e2(t)
∫
w0u(y)we(y)dyδ′(−x+ 2u2t, ε).

(2.15)
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Using expansions (2.14) and (2.15) in the third equation of (1.4), we obtain

wt(x, t, ε) + 2(v2(x, t, ε) + u(x, t, ε)w(x, t, ε))x

≈ {ė1(t)− 2v2
1}δ(−x+ 2u1t) + {ė2(t) + 2v2

2}δ(−x+ 2u2t)

+ 2u1e1(t){1−
∫
w0u(y)we(y)dy}δ′(−x+ 2u1t)

+ 2u2e2(t){1−
∫
w0u(y)we(y)dy}δ′(−x+ 2u2t).

(2.16)

So expression (2.16) is zero, if the coefficients of δ(−x + 2u1t) and δ′(−x + 2u1t)
are zero. Which implies∫

w0u(y)we(y)dy = 1, ė1(t) = 2v2
1 ė2(t) = −2v2

2 . (2.17)

Now we find the asymptotic expansion of terms appearing in the fourth equation
of (1.4). Applying lemma 2.3,

v(x, t, ε)w(x, t, ε) ≈ v1w1H(−x+ 2u1t, ε) + v2w2{1−H(−x+ 2u2t, ε)}

+ v1e1(t)
∫
w0v(y)we(y)dyδ(−x+ 2u1t, ε)

+ v2e2(t)
∫
w0v(y)we(y)dyδ(−x+ 2u2t, ε).

(2.18)

u(x, t, ε)z(x, t, ε)

≈ u1z1H(−x+ 2u1t, ε) + u2z2{1−H(−x+ 2u2t, ε)}

+ u1g1(t)
∫
w0u(y)wg(y)dyδ(−x+ 2u1t, ε)

+ u2g2(t)
∫
w0u(y)wg(y)dyδ(−x+ 2u2t, ε)

+ u1h1(t)
∫
w0u(y)wg(y)dyδ′(−x+ 2u1t, ε)

+ u2h2(t)
∫
w0u(y)wg(y)dyδ′(−x+ 2u2t, ε)

+ {u1P1(t)
∫
w′u(y)w′P (y)dy − u1h1(t)

∫
wu(y)wg(y)dy}1

ε
δ(−x+ 2u1t, ε)

+ {u2P2(t)
∫
w′u(y)w′P (y)dy − u2h2(t)

∫
wu(y)wg(y)dy}1

ε
δ(−x+ 2u2t, ε).

(2.19)
Using (2.18) and (2.19), we have

3v(x, t, ε)w(x, t, ε) + u(x, t, ε)z(x, t, ε)

≈ {3v1w1 + u1z1}H(−x+ 2u1t, ε) + {3v2w2 + u2z2}{1−H(−x+ 2u2t, ε)}

+ {3v1e1(t)
∫
w0v(y)we(y)dy + u1g1(t)

∫
w0u(y)wg(y)dy}δ(−x+ 2u1t, ε)

+ {3v2e2(t)
∫
w0v(y)we(y)dy + u2g2(t)

∫
w0u(y)wg(y)dy}δ(−x+ 2u2t, ε)

+ u1h1(t)
∫
w0u(y)wg(y)dyδ′(−x+ 2u1t, ε)
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+ u2h2(t)
∫
w0u(y)wg(y)dyδ′(−x+ 2u2t, ε)

+ {u1P1(t)
∫
w′u(y)w′P (y)dy − u1h1(t)

∫
wu(y)wg(y)dy}

× 1
ε
δ(−x+ 2u1t, ε)

+ {u2P2(t)
∫
w′u(y)w′P (y)dy − u2h2(t)

∫
wu(y)wg(y)dy}

× 1
ε
δ(−x+ 2u2t, ε). (2.20)

Taking the distributional derivative of the expression in (2.20), with respect to x,
we obtain

2((3v(x, t, ε)w(x, t, ε) + u(x, t, ε)z(x, t, ε))x)

≈ −2{3v1w1 + u1z1}δ(−x+ 2u1t, ε) + 2{3v2w2 + u2z2}δ(−x+ 2u2t, ε)

− 2{3v1e1(t)
∫
w0v(y)we(y)dy + u1g1(t)

∫
w0u(y)wg(y)dy}δ′(−x+ 2u1t, ε)

− 2{3v2e2(t)
∫
w0v(y)we(y)dy + u2g2(t)

∫
w0u(y)wg(y)dy}δ′(−x+ 2u2t, ε)

− 2u1h1(t)
∫
w0u(y)wg(y)dyδ′′(−x+ 2u1t, ε)

− 2u2h2(t)
∫
w0u(y)wg(y)dyδ′′(−x+ 2u2t, ε)

− 2{u1P1(t)
∫
w′u(y)w′P (y)dy − u1h1(t)

∫
wu(y)wg(y)dy}1

ε
δ′(−x+ 2u1t, ε)

− 2{u2P2(t)
∫
w′u(y)w′P (y)dy − u2h2(t)

∫
wu(y)wg(y)dy}1

ε
δ′(−x+ 2u2t, ε).

(2.21)
Taking the distributional derivative of z with respect to t, we obtain

zt(x, t, ε) ≈ {ġ1(t) + 2u1z1}δ(−x+ 2u1t, ε){ġ2(t)− 2u2z2}δ(−x+ 2u2t, ε)

+ {ḣ1(t) + 2u1g1(t)}δ′(−x+ 2u1t, ε)

+ {ḣ2(t) + 2u2g2(t)}δ′(−x+ 2u2t, ε)

+ 2u1h1(t)δ′′(−x+ 2u1t, ε) + 2u2h2(t)δ′′(−x+ 2u2t, ε).

(2.22)

Using expansions (2.21) and (2.22) in the fourth equation of (1.4), we obtain

zt(x, t, ε) + 2((3v(x, t, ε)w(x, t, ε) + u(x, t, ε)z(x, t, ε))x)

≈ {ġ1(t) + 2u1z1 − 2(3v1w1 + u1z1)}δ(−x+ 2u1t, ε)

+ {ġ2(t)− 2u2z2 + 2(3v2w2 + u2z2)}δ(−x+ 2u2t, ε)

+ {ḣ1(t)2u1g1(t)− 2(3v1e1(t)
∫
w0v(y)we(y)dy

+ u1g1(t)
∫
w0u(y)wg(y)dy)}δ′(−x+ 2u1t, ε)

+ {ḣ2(t)2u2g2(t)− 2(3v2e2(t)
∫
w0v(y)we(y)dy
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+ u2g2(t)
∫
w0u(y)wg(y)dy)}δ′(−x+ 2u2t, ε)

+ 2u1h1(t){1−
∫
w0u(y)wg(y)dy}δ′′(−x+ 2u1t, ε)

+ 2u2h2(t){1−
∫
w0u(y)wg(y)dy}δ′′(−x+ 2u2t, ε)

− 2{u1P1(t)
∫
w′u(y)w′P (y)dy − u1h1(t)

∫
wu(y)wg(y)dy}

× 1
ε
δ′(−x+ 2u1t, ε)

− 2{u2P2(t)
∫
w′u(y)w′P (y)dy − u2h2(t)

∫
wu(y)wg(y)dy}

× 1
ε
δ′(−x+ 2u2t, ε). (2.23)

Similarly equating the coefficients of δ(−x+ 2uit), δ′(−x+ 2uit), δ′′(−x+ 2uit)
, 1ε δ and 1

ε δ
′, for i = 1, 2 to zero in (2.23), we obtain∫

w0v(y)we(y)dy =
∫
w0u(y)wg(y)dy = 1,

ġ1(t) = 2(3v1w1 + u1z1)− 2u1z1, ġ2(t) = 2u2z2 − 2(3v2w2 + u2z2),

ḣ1(t) = 6v1e1(t), ḣ2(t) = 6v2e2(t)∫
wu(y)wg(y)dy = 1,

∫
w′u(y)w′P (y)dy = 1

P1(t) = h1(t), P2(t) = h2(t).

(2.24)

The conditions (2.17) and (2.24) together constitute the condition (2.7).
To prove it is entropy admissible. Let η be a convex entropy with entropy flux

q. For this general system it is of the form, see [13].

η(u, v, w, z) = η̄(u) + c1v + c2w + c3z

q(u, v, w, z) = q̄(u) + c1uv + c2(uw +
v2

2
) + c3(uz + vw),

(2.25)

where η̄(u) is a convex function in the variable u and satisfies 2uη̄′(u) = q̄′(u). So
entropy admissible condition is

lim sup
ε→0

∫ ∞
−∞

[
η(uε, vε, wε, zε)t + (q(uε, vε, wε, zε))x

]
ψ(x)dx ≤ 0.

for any positive test function ψ. This means

lim sup
ε→0

∫ ∞
−∞

[
η̄(uε)t + (q̄(uε))x

]
ψ(x)dx ≤ 0.

for any test function ψ ≥ 0. We know from the general theory of conservation laws,

lim sup
ε→0

∫ ∞
0

∫ ∞
−∞

[
η((uε)t + (q(uε))x

]
φ(x, t)dxdt

=
∫ ∞

0

∫ ∞
−∞

[
η((u)t + (q(u))x

]
φ(x, t)dxdt ≤ 0,
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where u is the limit of uε in the sense of distributions and φ ∈ D(R × (0,∞)).
The last inequality holds because u is an entropy solution for the conservation
law(Burgers equation).

For any ε0 > 0, there exists δ > 0 such that for 0 < ε < δ, we have∫ ∞
0

∫ ∞
−∞

[
η((uε)t + (q(uε))x

]
φ(x, t)dxdt ≤ ε0

Choose φ(x, t) = ψ(x) 1
ηk( t−t0η ),

∫
k(t)dt = 1 and k ≥ 0 is a smooth function. Then

∫ ∞
0

∫ ∞
−∞

[
η((uε)t + (q(uε))x

]
ψ(x)

1
η
k(
t− t0
η

)dxdt ≤ ε0, for all η > 0.

Passing to the limit as η → 0, we have∫ ∞
−∞

[
η((uε)t + (q(uε))x

]
ψ(x)dxdt ≤ ε0 for t = t0.

Hence

lim sup
ε→0

∫ ∞
−∞

[
η((uε)t + (q(uε))x

]
ψ(x)dx ≤ ε0.

for all t ≥ 0. Since ε0 is arbitrary, we have (uε, vε, wε, zε) is an entropy weak
asymptotic solution.

Same analysis as above can be used to prove (uε, vε, wε, zε) is an entropy weak
asymptotic solution when u develops shock; can be seen from the structure of the
solution given in [16, Theorem 2.3]. Hence the proof. �

Piecing together the Riemann problems we construct a weak asymptotic solution
for general type initial data under the assumption that u is a monotonic decreasing
function.

Theorem 2.6. If u0, v0, w0 and z0 are bounded measurable functions on R, and u0

is monotonic, then there exists entropy weak asymptotic solution (uε, vε, wε, zε) to
the system (1.4) in [−K,K]× [0,∞), for any K > 0.

Proof. If u0 is a monotonic increasing function, then the result of [16, Theorem
2.5] is an entropy solution as can be seen easily from the structure given in the
[16, Theorem 2.5]. Lets assume u0 is a monotonic decreasing function. Let φ be a
test function on R having support in [−K,K]. Given ε > 0, there exist piecewise
constant functions (u0ε, v0ε, w0ε, z0ε) such that∫

[−K,K]

|u0(x)− u0ε(x)|dx < ε,

∫
[−K,K]

|v0(x)− v0ε(x)|dx < ε∫
[−K,K]

|w0(x)− w0ε(x)|dx < ε,

∫
[−K,K]

|z0(x)− z0ε(x)|dx < ε.

(2.26)
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In addition to this we can take u0ε monotonic decreasing and all functions have
same points of discontinuities. (u0ε, v0ε, w0ε, z0ε) in [−K,K] can be represented as

u0ε =
n∑
i=1

u0i(H(x− ai−1)−H(x− ai))

v0ε =
n∑
i=1

v0i(H(x− ai−1)−H(x− ai))

w0ε =
n∑
i=1

w0i(H(x− ai−1)−H(x− ai))

z0ε =
n∑
i=1

z0i(H(x− ai−1)−H(x− ai)).

(2.27)

Since u0ε is a monotonic decreasing function, discontinuity curve arising in the
solution of (u, v, w, z) do not intersect for any time. So the following functions are
weak asymptotic solutions

u(x, t, ε) =
n−1∑
i=1

[
u0iHu(−x+ u0it+ xi, η)

+
x− xi
t

(Hu(−x+ u0i+1t+ xi, η)−Hu(−x+ (u0it+ xi), η))

+ u0i+1(1−Hu(−x+ u0i+1t+ xi, η))
]
,

v(x, t, ε) =
n−1∑
i=1

[
v0iHu(−x+ u0it+ xi, η) + v0i+1(1−Hu(−x+ u0i+1t+ xi, η))

]
,

w(x, t, ε) =
n−1∑
i=1

[
w0iHu(−x+ u0it+ xi, η) + w0i+1(1−Hu(−x+ u0i+1t+ xi, η)

]
+
n−1∑
i=1

[
e1i(t)δe(−x+ u0it, η) + e2i(t)δe(−x+ u0i+1t, η)

]
z(x, t, ε) =

n−1∑
i=1

[
z0iHu(−x+ u0it+ xi, η) + z0i+1(1−Hu(−x+ u0i+1t+ xi, η))

]
+
n−1∑
i=1

[
g1i(t)δe(−x+ u0it, η) + g2i(t)δe(−x+ u0i+1t, η)

]
+
n−1∑
i=1

[
h1i(t)δ′h(−x+ u0it, η) + h2i(t)δ′h(−x+ u0i+1t, η)

]
+
n−1∑
i=1

[R1i(−x+ 2u1t, ε) +R2i(−x+ 2u2t, ε)]

where e1i, e2i, g1i, g2i, h1i, h2i, R1i and R2i satisfy (2.7) with u1, u2, v1, v2, w1,
w2, z1, z2, e1, e2, g1, g2, h1, 1, h2, R1 and R2 replaced by ui−1, ui, vi−1, vi, wi−1,
wi, zi−1, zi, e1i, e2i, g1i, g2i, h1i, e2i, h1i, h2i, R1i and R2i respectively. In fact,
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given ε > 0, we have the following estimates.∣∣ ∫ L1[u(x, t, ε)]ψ(x)dx
∣∣ = O(ε),

∣∣ ∫ L2[u(x, t, ε), v(x, t, ε)]ψ(x)
∣∣ = O(ε)∣∣ ∫ L3[u(x, t, ε), v(x, t, η(ε)), w(x, t, ε)]ψ(x)dx

∣∣ = O(ε)∣∣ ∫ L4[u(x, t, ε), v(x, t, η(ε)), w(x, t, η(ε)), z(x, t, ε)]ψ(x)dx
∣∣ = O(ε)∣∣ ∫ (u(x, 0, ε)− u0(x)

)
ψ(x)dx

∣∣ = O(ε),
∣∣ ∫ (v(x, 0, ε)− v0(x)

)
ψ(x)dx

∣∣ = O(ε)∣∣ ∫ (w(x, 0, ε)− w0(x)
)
ψ(x)dx

∣∣ = O(ε),
∣∣ ∫ (z(x, 0, ε)− z0(x)

)
ψ(x)dx

∣∣ = O(ε),

Therefore (u, v, w, z) is a weak asymptotic solution to system (1.4)–(1.5). Similar
proof as in Theorem 2.4 gives (u, v, w, z) is an entropy weak asymptotic solution. �
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