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ABSTRACT

The need for well understood, commercially available p-type transparent conducting

oxides for incorporation into basic transparent semiconducting devices alongside

their already well understood and available n-type counterparts for application in

technologies such as solar cells and capacitive touchscreens motivates this first

principles study on the effects of Cu and O vacancies and Mg doping on the

intrinsically poor p-type character of CuAlO2, AgAlO2, CuCrO2, and AgCrO2.

Density functional theory based calculations using the projector augmented-wave

functions along with the generalized gradient approximation to the exchange and

correlation energy as implemented by the Vienna Ab Initio Simulation Package are

used to study the total crystal energy of the three known polymorphs of CuAlO2

and AgAlO2 in order to determine the most stable polymorph in the ground state.

Additionally, three simple magnetic configurations are considered for CuCrO2 and

AgCrO2 in the context of total energy of the ground state for the purpose of

choosing a specific polymorph and magnetic configuration to be the framework

within which the doped and defect systems will be studied. Different functional

approaches to the exchange and correlation energies are also considered in order to

accurately reproduce the structural properties and the band gap. The 2H delafossite

polymorph is determined to be one of the most stable polymorphs and is the focus of

this work as it is the least studied of the delafossites. The simple antiferromagnetic

configuration is chosen to model magnetic effects in CuCrO2 and AgCrO2 due to it

having one of the lowest ground state total energies and also containing the most

semiconductor like behavior of the magnetic configurations considered. A 2× 2× 2

supercell scheme is employed to model 6.25% Cu and Ag vacancies, 3.13% O

xvii



vacancies, and 6.25% Mg doping replacing Al and Cr, from which structural

properties, electronic properties, hole effective masses, and optical properties are

obtained and compared to the pristine crystal in order to offer predictions on the

effectiveness of the mentioned native defects and dopant on increasing the

conductivity and maintaining transparency in all transparent conducting oxides

studied in this work. Comparisons between the results obtained in this work and

previous experimental and other theoretical results are made, when available. Many

of the properties predicted here are immediately testable via experimentation.
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1. INTRODUCTION AND MOTIVATION

Transparent conducting oxides (TCOs) are an exciting class of materials for solid

state physicists and materials scientists due to their semiconducting nature and

large direct band gaps of more than 3.0 eV. The applicability of TCOs to

technologies such as flat panel displays, capacitive touch screens, and photovoltaic

cells establishes the need for complementarity between the well documented and

commercially available n-type TCOs and poorly-understood p-type TCOs.

Furthermore, the demand for viable p-type TCOs motivates the search for a means

to delocalize the O-2p states which result in poor electrical conductivity in p-type

TCOs by limiting shallow acceptors and causing large hole effective masses.

CuAlO2, AgAlO2, CuCrO2, and AgCrO2 (XTO, X = Cu, Ag, T = Al, Cr) show

promise as p-type TCOs due to the presence of X-3d/4d states, which hybridize

with O-2p states and delocalize valence states close to the valence band maximum

(VBM) [1].

XTO is fabricated as small crystals using either solid-state reactions [2–5]

or pulsed laser deposition [6, 7] and as thin films using spin-coating via sol-gel [8, 9]

or by sputtering techniques [10,11]. Such techniques can introduce native defects in

the crystal structure, such as copper and oxygen vacancies, interstitials, or on-site

replacements, which can lead to significant modifications to the electronic structure

(and by extension, other material properties) [12]. X vacancies are believed to be

the source of p-type conductivity in XTO, as they act as hole donors and introduce

shallow acceptor states [13]. However, the mechanisms of their formation and the

full impact of these defects is still not well understood.

XTO is known to exist as three polymorphs: two delafossites (α-2H with

space group symmetry P63/mmc and α-3R with space group symmetry R3̄m)

characterized by planes of T atoms separated by XO2 dumbbells in a hexagonal

crystal structure with an ABAB(ABCABC) staking order for the 2H(3R)
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phase [2–9,11,14,15], and one orthorhombic (β) crystal structure characterized by

tetrahedral XO4 and TO4 with O commonly shared between X and T and space

group symmetry [16] Pna21. Of these three polymorphs, illustrated [17] in Fig. 1.1,

the delafossites − 3R specifically − are the most thoroughly studied. First principles

calculations predict the 3R polymorph to have a lower formation enthalpy than the

2H at pressures lower than 15.4 GPa, at which point the 2H polymorph has a lower

formation enthalpy, indicating a possible phase transition from the 3R to the 2H

polymorph at that pressure, with mechanical instability predicted at 26.2(27.8) GPa

for the 3R(2H) polymorph [18]. An irreversible phase transition from the 3R

polymorph at a pressure of 35± 2 GPa at room temperature has been observed

experimentally, however, the identity of the new phase could not be determined and

the 2H polymorph is not supported by the data [14]. X-ray diffraction measurements

have been used to report that 3R is the most common polymorph grown during

fabrication, at times with traces of the 2H polymorph in crystals as well [3].

delafossites

a) 𝛼-2H b) 𝛼-3R c) 𝛽

Figure 1.1: XTO crystal structures for the a) α-2H, b) α-3R, and c) β polymorphs.
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3R CuAlO2 is the most well understood of the mentioned TCOs, with an

indirect band gap ranging from 1.65 − 2.99 eV [7,10,13,19–22], a direct (optical)

band gap of 3.01 − 3.9 eV [7,10,13,19–22], hole mobility of 3 cm2 V−1 s−1 in the

a− b plane and 0.11 − 0.12 cm2 V−1 s−1 perpendicular to the plane [13], a Seebeck

coefficient [7, 19] of 2.14× 10−6 − 6.7× 10−4 V K−1, and a Hall coefficient of

0.23 cm3 C−1, which gives a hole concentration [7] of 2.7× 1019 cm−3. Although Liu

et al. report a lower hole concentration of 3.52× 1016 cm−3 for 3R CuAlO2, that

concentration increases to 1.79× 1018 cm−3 upon 6.25% Mg doping (replacing Al),

and gives a conductivity of 8.0× 10−2 Ω−1 cm−1. It has also been predicted using

first principles calculations that in-plane tensile strain can enhance hole mobility

and transparency of 3R CuAlO2 [23]. Additionally, predictions have been made for

2H CuAlO2 concerning thermal conductivity and the figure of merit as functions of

temperature [24].

Studies concerning α AgAlO2 report a higher direct band gap (3.6 eV) and

lower optical absorption than α CuAlO2 within the visible portion of the spectrum,

but similar or lower conductivity and predict through first principles calculations

that this behavior is due to fewer Ag-4d states near the valence band maximum

compared to Cu-3d states in CuAlO2 [25]. Additionally, it has been demonstrated

by measuring the photocatalytic properties of AgMO2 (M = Al, Ga, In) and

performing first principles calculations that α AgAlO2 resulted in a more dispersed

valence band and higher photocatalytic activity as compared to the orthorhombic

polymorph [26]. A first principles study predicts that Ag vacancies in 3R AgAlO2

have a lower formation enthalpy than Cu vacancies in 3R CuAlO2 [27]. First

principles studies also predict the optical properties of 2H CuAlO2 and AgAlO2,

including the dielectric functions, refractive index, extinction coefficient, optical

conductivity and absorption coefficient [24,28]. The band gap of β AgAlO2 has

been measured as 2.83 eV and has been determined to be an indirect gap [29].
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The experimental direct band gap of α CuCrO2 has been reported as 2.95

− 3.3 eV [30–34]. Studies involving Mg doping have shown the effectiveness of

stacking layers of α CuCr0.93Mg0.07O2 (CCMO) and Ag using magnetron sputtering

to optimize the optoelectronic properties dependent on shorter Ag deposition times

and thicker CCMO layers [11]. One first principles study of co-doping N on O-site

and Mg on Cr-site 2H CuCrO2 predicts enhanced p-type conductivity over single

doping N or Mg separately, due to more hole states existing above the Fermi

level [35]. An experimental indirect band gap of 2.58 eV and direct band gap of

3.11 eV has been reported by Lim, Desu, and Rastogi for CuCr0.93Mg0.07O2 thin

films [36]. Additionally, they report a range in conductivity of 0.6 − 1 Ω−1 cm−1,

and an approximate hole concentration of 2× 1019 cm−3. Frontzek report an

antiferromagnetic helical spin structure in a single crystal of CuCrO2 below 23.6 K

by means of a neutron diffraction study, in which each Cr atom spin is rotated by

2π/3 with respect to the nearest neighboring Cr atom spin [37].

Finally, a study on 3R AgCr1−xMgxO2 (x = 0.04− 0.20) has determined a

band gap of 3.41 − 3.66 eV, which increases as x increases, and that hole

concentration and mobility increase as x increases from 0.04 to 0.12, giving values

for conductivity of 3.1× 10−3 − 67.7× 10−3 Ω−1 cm−1 [15].

Although some properties may be well understood for CuAlO2, and

p-doping has been demonstrated to be effective for CuAlO2, CuCrO2 and AgCrO2,

the relation/dependence of materials’ properties − primarily electrical conductivity

− to native defects like vacancies and intersticials and p-doping both through cation

deficiency and replacement of T with Mg is still not well understood.

First-principles studies using density functional theory (DFT) are known

to be very reliable and powerful in predicting physical properties of semiconductor

materials. Here, a first principles study using DFT is conducted to investigate the

effects of Cu/Ag and O vacancies and Mg-doping on the structural, electronic, and

4



optical properties of CuAlO2, AgAlO2, CuCrO2, and AgCrO2.

What follows is a discussion of the theory on crystal structures, the

foundations of DFT and other necessary physics required for this work along with

the computational methodology in chapter 2. Then, in chapters 3 through 5, the

results of the investigation will be presented, including discussion of the XTO

crystals physical parameters, electronic band structure and density of states, and

the charge densities, hole effective masses, and optical properties of 2H-XTO in the

pristine, Mg-doped and O-vacant configurations. Lastly, in chapter 6, general

conclusions and summarizing remarks will be made and perspectives will be

discussed.
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2. THEORETICAL FUNDAMENTALS AND METHODS

2.1. Crystal Structures of XTO

In order to calculate the ground state electron density − which is the crux of first

principles calculations and will be thoroughly discussed in section 2.2 − the crystal

structure must be treated in an appropriate theoretical framework. For an idealized

crystal, there are some number of symmetry operations that may be performed on

the structure such that it is left invariant. For this reason, it is possible to construct

an atomic basis within a lattice such that replicating the chosen lattice and basis,

known as a unit cell, throughout space using only linear translations reproduces the

original crystal structure [38]. Translations of the unit cell, T, correspond to moving

from one point in the lattice to another via linear combinations of primitive lattice

vectors, a1, a2, and a3, such that

T = xa1 + ya2 + za3 (2.1.1)

where x, y, and z are integers and a1, a2, and a3 span R3. Thus,

{T | T ∈ (xa1 + ya2 + za3) ∧ x, y, z ∈ Z ∧ a1, a2, a3 ∈ span
(
R3
)
} (2.1.2)

represents all points in the crystal lattice. Expressed in the canonical basis for R3,

the lattice vectors are

a1 = a1xx̂ + a1yŷ + a1zẑ

a2 = a2xx̂ + a2yŷ + a2zẑ

a3 = a3xx̂ + a3yŷ + a3zẑ

(2.1.3)
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where all components are real numbers. The ith atomic position in the atomic basis

is constructed as a linear combination of the lattice vectors:

ri = ja1 + ka2 + la3 (2.1.4)

with 0 ≤ j, k, l ≤ 1.

α-2H XTO, one of the delafossite polymorphs, is modeled using an 8-atom

hexagonal primitive cell. The primitive lattice vectors for this cell are

a1 = ax̂

a2 = −1

2
ax̂ +

√
3

2
aŷ

a3 = cẑ

(2.1.5)

with |a1| = |a2|. The other delafossite polymorph, α-3R XTO, is modelled using

either a 12-atom hexagonal conventional cell with lattice vectors

a1 = ax̂

a2 = −1

2
ax̂ +

√
3

2
aŷ

a3 = c′ẑ

(2.1.6)

where |a1| = |a2| and c′ > c, or a 4-atom rhombohedral primitive cell, which when

expressed as a linear combination of the conventional cell lattice vectors takes the

form

a′1 =
2

3
a1 +

1

3
a2 +

1

3
a3

a′2 = −1

3
a1 +

1

3
a2 +

1

3
a3

a′3 = −1

3
a1 −

2

3
a2 +

1

3
a3

(2.1.7)
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and simplifies to

a′1 =
1

2
ax̂ +

√
3

6
aŷ +

1

3
c′ẑ

a′2 = −1

2
ax̂ +

√
3

6
aŷ +

1

3
c′ẑ

a′3 = −
√

3

3
aŷ +

1

3
c′ẑ

(2.1.8)

in the canonical basis, where |a′1| = |a′2| = |a′3|. Finally, the lattice vectors of the

unit cell for the orthorhombic β XTO polymorph are

a1 = ax̂

a2 = bŷ

a3 = cẑ,

(2.1.9)

with a 6= b 6= c, and the unit cell contains 16 atoms. The unit cells for α-2H, α-3R,

and β XTO are illustrated [17] in Fig. 2.1.

delafossites

a) 𝛼-2H b) 𝛼-3RCH c) 𝛼-3RR d) 𝛽

Figure 2.1: XTO unit cells.
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The above mathematical framework models the crystal structure in real

space. However, since the charge density that satisfies the Schrödinger equation

within the crystal is of interest, it is advantageous to transform the real space unit

cell into a reciprocal-space cell that exists within a reciprocal lattice with vectors

bp = 2π
aq × ar

a1 · a2 × a3

(2.1.10)

corresponding to a cyclic permutation acting on the indices p, q, and r [38]. The

domain of this new space − which is still R3 but is now spanned by b1, b2, and b3

− corresponds to the wave number, k, of the carriers in the charge density, and

allows for dispersion relations for material properties of the crystal to be determined

as a function of the wave number of the carriers in the crystal modeled in this space.

The reciprocal lattice of a hexagonal(orthorhombic) space lattice is also

hexagonal(orthorhombic), giving similar unit cells centered at the origin − Brillouin

zones (BZ) − in the reciprocal space, but the same cannot be said for a

rhombohedral lattice. In converting the rhombohedral space lattice into a reciprocal

space lattice, the BZ takes an appearance similar −but not identical − to a

body-centered cubic lattice with lattice vectors that are perpendicular to the three

hexagonal edges that run along one of the two largest hexagonal faces. Fig. 2.2

illustrates the BZs of α and β XTO [39,40].

Since the crystal structure is periodic in this way, so too is the potential

that arises from the nuclei in the atomic basis. The Bloch theorem guarantees that

for any periodic potential there exists a single-orbital wave function, φnk(r), such

that

φnk(r) = eik·runk(r) (2.1.11)

where n is the energy band number, k is a wave number in the band, and unk(r) is

the part of the Bloch function with the same periodicity of the crystal [38,41].
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b) 𝛼-3RR

c) 𝛽

b1

b2

b3

b1

b2

b3
b1

b2

b3

a) 𝛼-2H, 𝛼-3RCH

Figure 2.2: XTO Brillouin zones.

2.2. Density Functional Theory

The task of obtaining the ground state charge density of a crystal is formidable and

involves solving for the forces acting between the nuclei and electrons, but it is also

necessary in order to determine the crystal’s ground state energy and subsequently

all other physical properties [42]. For this reason, it is vital to understand the

nature of the problem, how it may be simplified, and how those simplifications allow

for the problem to be solved without loss of appreciable accuracy. What follows,

then, is a discussion of finding the charge density as viewed in the context of the

many body problem, the theorem that guarantees that a solution can be found, the

formalism used to find it, and the algorithm used to employ that formalism in

numerical calculations.

2.2.1. Many body problem. As stated, determining a crystal’s ground

state charge density can be treated as solving a many body problem. Classically,

the total energy of the crystal, E, is a sum of the crystal’s kinetic energy, T , and

potential energy, V ,

Etot = T + V. (2.2.1)
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For a system with N electrons and M nuclei, the kinetic energy of the crystal is the

sum of the individual kinetic energies of each electron and nuclei

T =
me

2

N∑
i=1

v2i +
1

2

M∑
j=1

mjv
2
j , (2.2.2)

where me and mj are the electron mass and the mass of the jth nuclei, and vi and vj

are the ith electron and jth nuclei speeds, respectively. Similarly, the crystal

potential energy is the sum of all the potentials arising from the presence of each

individual electron and nucleus. The total potential can be expressed as a sum of

the potentials arising from electron-electron interaction, Vee, nuclei-nuclei

interaction, Vnn, and nuclei-electron interaction,Vne, as

V = Vee + Vnn + Vne. (2.2.3)

Note that in this study potentials external to the crystal are not considered.

Treating the electrons and nuclei simply as point particles [43], an electron

with charge, e, separated from another electron by some distance, ree, interacts with

a Coulomb energy, written in the SI units as

Eee =
e2

4πε0ree
, (2.2.4)

identical nuclei in the crystal separated by a distance, rnn, experience a repulsion

with energy

Enn =
Z2e2

4πε0rnn
, (2.2.5)

where Z is the atomic number, and a nucleus and electron separated by distance rne

possess a potential energy

Ene =
Ze2

4πε0rne
. (2.2.6)
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Thus, the total crystal potential is

V =
e2

8πε0

[
N∑
i 6=j

1

|ri − rj|
+

M∑
k 6=l

ZkZl
|Rk −Rl|

+ 2
N∑
i=1

M∑
k=1

Zk
|ri −Rk|

]
. (2.2.7)

Replacing the right-hand side of Eqn. 2.2.1 with Eqns. 2.2.2 and 2.2.7 give the total

crystal energy as

Etot =
me

2

N∑
i=1

v2i +
1

2

M∑
j=1

mjv
2
j

+
e2

8πε0

[
N∑
i 6=j

1

|ri − rj|
+

M∑
k 6=l

ZkZl
|Rk −Rl|

+ 2
N∑
i=1

M∑
k=1

Zk
|ri −Rk|

]
. (2.2.8)

The classically derived total crystal energy in Eqn. 2.2.8 is insufficient

because it does nothing to address the non-local wave functions that will comprise

the sought-after charge density. However, the classical interpretation of the total

energy can be rectified with quantum mechanics by replacing the classical definitions

of kinetic and potential energies with their quantum mechanical operators

T̂ = − ~2

2me

N∑
i=1

∇2
i −

1

2

M∑
j=1

∇2
j

mj

, (2.2.9)

V̂ee, V̂nn, and V̂ne. The potential operators retain the form of their classical

counterparts. Now the total crystal energy takes the form of the Hamiltonian

Ĥ = − ~2

2me

N∑
i=1

∇2
i −

1

2

M∑
j=1

∇2
j

mj

+
e2

8πε0

[
N∑
i 6=j

1

|ri − rj|
+

M∑
k 6=l

ZkZl
|Rk −Rl|

+ 2
N∑
i=1

M∑
k=1

Zk
|ri −Rk|

]
. (2.2.10)

The wave function of the electron charge density, Ψ, satisfies the Shrödinger
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equation with the Hamiltonian of Eqn. 2.2.10:

ĤΨ = EtotΨ. (2.2.11)

In Hartree atomic units, which from the US National Institute of Standards and

Technology database (hhtp://physics.nist.gov/cuu), are

1 Ha = 27.2114 eV = 4.3597× 10−18 J,

1 bohr = 0.529177 Å = 0.529177× 10−10 m,

1 a. u. of mass = 9.10938291× 10−31 kg.

(2.2.12)

and are used for the remainder of this work unless otherwise stated, Eqn. 2.2.11

takes the form

[
−

N∑
i=1

∇2
i

2
−

M∑
j=1

∇2
j

2mj

+
1

2

N∑
i 6=j

1

|ri − rj|
+

1

2

M∑
k 6=l

ZkZl
|Rk −Rl|

+
N∑
i=1

M∑
k=1

Zk
|ri −Rk|

]
Ψ

= EtotΨ. (2.2.13)

At this point it is convenient to remember that the desired electron charge

density is confined to a crystal. In the ground state, the kinetic energy of the

electrons far surpasses the kinetic energy of the nuclei due to the nuclei having

masses that are drastically larger than the electron mass and velocities that are

much smaller. The dominance of the electron kinetic energy results in the second

term on the left-hand side of 2.2.13 approaching zero. Thus, it will be assumed that

the nuclei remain stationary − an assumption known as the Bohr-Oppenheimer

approximation. Additionally, the fixed positions of the nuclei result in Vnn
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remaining constant, allowing for the definition a new energy

E = Etot −
1

2

M∑
k 6=l

ZkZl
|Rk −Rl|

, (2.2.14)

such that Eqn. 2.2.13 becomes

[
−

N∑
i=1

∇2
i

2
+

1

2

N∑
i 6=j

1

|ri − rj|
+

N∑
i=1

M∑
k=1

Zk
|ri −Rk|

]
Ψ = EΨ. (2.2.15)

The third term in the sum on the left-hand side of Eqn. 2.2.15 is an external

potential to the electron charge density due to the nuclei

Vn(r) =
M∑
k

Zk
|r−Rk|

. (2.2.16)

Eqns. 2.2.15 and 2.2.16 imply that the Hamiltonian now takes the form

Ĥ (r1, r2, . . . , rN) = −
N∑
i=1

∇2
i

2
+

1

2

N∑
i 6=j

1

|ri − rj|
+

N∑
i=1

Vn(ri) (2.2.17)

which is known as the many-electron Hamiltonian and can be simplified further to

Ĥ (r1, r2, . . . , rN) =
N∑
i=1

Ĥ0(ri) +
1

2

N∑
i 6=j

1

|ri − rj|
(2.2.18)

where

Ĥ0(r) = Vn(r)− ∇
2

2
(2.2.19)

is known as the single-electron Hamiltonian.

The wave function that satisfies the Schrödinger equation arising from the

many-electron Hamiltonian is a function of the positions of the electrons in the

crystal

Ψ = Ψ (r1, r2, . . . , rN) , (2.2.20)
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thus, the probability of finding one electron in the crystal at position r is

P (r1 = r) =

∫
|Ψ (r1, r2, . . . , rN)|2dr1dr2 . . . drN , (2.2.21)

where the limits of integration are over the volume within the crystal where the

measurement takes place. If the measurement for the position of the electron is over

the entire volume crystal, then P (r1 = r) = 1. The electron charge density, n(r), at

r corresponds to finding any electron at r:

n(r) = P (r1 = r) + P (r2 = r) + · · ·+ P (rN = r). (2.2.22)

Substituting Eqn. 2.2.21 into Eqn. 2.2.22 yields

n(r) = N

∫
|Ψ (r1, r2, . . . , rN)|2dr1dr2 . . . drN , (2.2.23)

and implies that ∫
n(r)dr = N. (2.2.24)

2.2.2. Hohenberg-Kohn theorem. The many-electron Hamiltonian

implies that the external potential due to the nuclei must be exactly known in order

to determine the total crystal energy. However, at this point it is not guaranteed

that this is even possible, nor is there any guarantee that the determined Vn(r) will

be unique. It was the work of Hohenberg and Kohn [44] in 1964 to prove a very

useful result concerning the external potential from nuclei and the relationship

between the electron charge density and the total crystal ground state energy that

serve as the pillars of density functional theory (DFT).

In general, the total crystal energy is

E = 〈Ψ| Ĥ |Ψ〉 , (2.2.25)
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where Ĥ is Eqn. 2.2.18. The crystal structure fixes all terms in the many-electron

Hamiltonian arising from the external potential from the nuclei and in this way the

total crystal energy only depends on the wave function corresponding to the electron

charge density. The energy is then a functional, F , of the wave function such that

E = F [Ψ] . (2.2.26)

The Hohenberg-Kohn theorem takes the result of Eqn. 2.2.26 a step further and

states that the total ground state energy of the crystal, E0, is a functional of the

ground state electron charge density, n0(r),

E0 = F0[n0(r)]. (2.2.27)

The proof of this result hinges on the fact that the ground state energy must be the

lowest energy of the system. Introducing the notation

Ŵ =
1

2

N∑
i 6=j

1

|ri − rj|
(2.2.28)

allows the ground state energy to be expressed as

E0 = 〈Ψ|
N∑
i=1

Vn0(ri) |Ψ〉+ 〈Ψ| T̂ + Ŵ |Ψ〉 , (2.2.29)

where T̂ is the simplified fixed-nuclei kinetic energy operator from 2.2.9 and Vn0(r)

is the external potential that dictates the ground state charge density. The outer

product on the sum in Eqn. 2.2.29 can be re-expressed using Eqns. 2.2.23 and

2.2.24 such that the ground state energy is

E0 =

∫
drn0(r)Vn0(r) + 〈Ψ| T̂ + Ŵ |Ψ〉 , (2.2.30)
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If it is assumed, for the purpose of creating a contradiction, that there is another,

distinct, Vn(r), such that Vn(r) 6= Vn0(r) and Vn(r) has ground state wave function

Ψ′, ground state energy E ′, ground state Hamiltonian Ĥ ′, and still gives the same

ground state charge density n0(r), then E ′ is not the ground state energy of the

wave function Ψ and it must be true that

〈Ψ| Ĥ ′ |Ψ〉 > E ′. (2.2.31)

Putting Eqn. 2.2.31 into the form of 2.2.30 gives

∫
drn0(r)Vn(r) + 〈Ψ| T̂ + Ŵ |Ψ〉 > E ′. (2.2.32)

Summing Eqns. 2.2.30 and 2.2.32 gives

E0 − E ′ >
∫

drn0(r) [Vn0(r)− Vn(r)] . (2.2.33)

Since no consideration was given to distinguish Vn0(r) from Vn(r), the same

reasoning can be given, starting from Eqn. 2.2.30, for Vn(r) and E ′, yielding

E ′ − E0 >

∫
drn0(r) [Vn(r)− Vn0(r)] . (2.2.34)

Finally, summing Eqns. 2.2.33 and 2.2.34 gives the desired contradiction

0 > 0, (2.2.35)

and thus the ground state electron charge density uniquely determines the external

potential of the nuclei. Since the external potential is the only undetermined

quantity of the many-electron Hamiltonian, i.e. the ground state energy is a

functional of the ground state wave function, then it must be true that solving the
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ground state charge density gives a unique external potential and allows for the

total ground state energy to be determined

n0(r)→ Vn0(r)→ Ψ→ E0 ⇒ n0(r)→ E0 ⇒ E0 = E0 [n0(r)] , (2.2.36)

proving that the total ground state crystal energy is a functional of the ground state

charge density.

2.2.3. Hatree-Fock equations. It is empowering to know that there is

a total ground state energy that can be obtained from the ground state electron

charge density, but in order to develop an algorithm that will allow for the

determination of the ground state charge density, a few more strategic

approximations will be required. The problem can be simplified significantly by

eliminating the Coulomb potential in Eqn. 2.2.29. Doing so eliminates any

interaction between electrons in the crystal. The Hamiltonian of Eqn. 2.2.18

reduces to the single-electron Hamiltonian summed over all electrons, thus the

single-electron Schrödinger equation is

N∑
i=1

Ĥ0(ri)Ψ = EΨ. (2.2.37)

Since the electrons do not interact, it is beneficial to assume that the wave function

can be expressed as a product solution of N single-electron wave functions

Ψ(r1, r2, . . . , rN) = φ(r1)φ(r2) . . . φ(rN), (2.2.38)

giving Eqn. 2.2.37 the form

N∑
i=1

Ĥ0(ri)φ(r1)φ(r2) . . . φ(rN) = Eφ(r1)φ(r2) . . . φ(rN). (2.2.39)
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Each single-electron wave function φ(ri) returns energy εi when acted upon by the

ith single-electron Hamiltonian

Ĥ0(ri)φ(ri) = εiφ(ri) (2.2.40)

which along with Eqn. 2.2.39 implies that

E = ε1 + ε2 + · · ·+ εN . (2.2.41)

Reducing the Hamiltonian to be single-electron in nature has introduced

two problems. The first is that on its face the wave functions Ψ are not

antisymmetric and thus will not satisfy the Pauli exclusion principle, and the second

is that the Coulomb interaction term that was eliminated from the many-electron

Hamiltonian is of the same order of magnitude as the other terms, and thus the

total energy of the crystal is underestimated drastically.

The first problem is addressed by constructing Ψ from the Slater

determinant

Ψ(r1, r2, . . . , rN) =

(
1

N !

) 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) . . . φ1(rN)

φ2(r1) φ2(r2) . . . φ2(rN)

...
...

. . .
...

φN(r1) φN(r2) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2.42)

This wave function still satisfies

∫
|Ψ (r1, r2, . . . , rN)|2dr1dr2 . . . drN = 1. (2.2.43)

Since the electrons no longer interact, the probability of measuring any single

electron is statistically independent and the charge density may be written as a

19



summation over single-electron wave function probability amplitudes

n(r) =
N∑
i=1

|φi(r)|2. (2.2.44)

The second problem arising from the single-electron Hamiltonian − the

elimination of the Coulomb potential − can be treated by using an approximation

that can reasonably mimic the Coulomb potential. Reverting again to a classical

approach, a charge distribution n(r) will obey the Poisson equation

∇2V (r) = 4πn(r) (2.2.45)

such that the electrons have potential energy VH(r) = −V (r), referred to as the

Hartree potential [42], which has the formal solution

VH(r) =

∫
dr′

n(r′)

|r− r′|
, (2.2.46)

and also satisfies the Poisson equation

∇2VH(r) = −4πn(r). (2.2.47)

Adding the Hartree potential gives the single-electron Schrödinger equation the form

[
−∇

2

2
+ Vn(r) + VH(r)

]
φi(r) = εiφi(r), (2.2.48)

which must be solved simultaneously with Eqns. 2.2.44 and 2.2.47. The requirement

that Eqns. 2.2.44, 2.2.47, and 2.2.48 be solved as a system ensures that the

approach is self-consistent.

The minimum energy associated with the ground state wave function Ψ is

obtained via a variational approach. By minimizing the total energy with respect to
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small changes to the single-electron wave functions and requiring that the

single-electron wave functions be orthonormal

δE

δφi
= 0∫

drφ∗i (r)φj(r) = δi,j

, (2.2.49)

the Hartree-Fock (HF) equations are obtained

[
−∇

2

2
+ Vn(r) + VH(r)

]
φi(r) +

∫
dr′Vc(r, r

′)φi(r
′) = εiφi(r), (2.2.50)

n(r) =
N∑
i=1

|φi(r)|2, (2.2.51)

∇2VH(r) = −4πn(r), (2.2.52)

where

Vc(r, r
′) = −

N∑
j=1

φ∗j(r
′)φi(r)

|r− r′|
. (2.2.53)

The last term on the left-hand side of Eqn. 2.2.50, Vc(r, r
′), and given by Eqn.

2.2.53, arises from the constraint on each φi(r) to obey the Pauli exclusion principle,

and is referred to as the correlation potential. This potential is non-local in nature

due to the integration over r′.

2.2.4. Kohn-Sham equations. The canonical framework of DFT is

almost complete. The Hohenberg-Kohn theorem elucidates that the total ground

state energy of the crystal is a functional of the ground state charge density.

Considering Eqns. 2.2.30 and 2.2.36 allows the energy functional to take the form

E[n(r)] =

∫
drn(r)Vn(r) + 〈Ψ| T̂ + Ŵ |Ψ〉 . (2.2.54)
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The work of Kohn and Sham [45] in 1965 was to rectify the energy functional of

Eqn. 2.2.54 with the Hartree potential and the correlation potential from the

Hartree-Fock equations and a new potential that approximates the last remaining

potential acting on the electrons in the crystal, the exchange potential, Vx(r), such

that the single-electron Hamiltonian is now

Ĥ = −∇
2

2
+ Vn(r) + VH(r) + Vc(r) + Vx(r). (2.2.55)

The energy functional becomes an expression of the kinetic and potential energies of

non-interacting electrons and an extra energy term, the exchange and correlation

energy, Exc[n(r)], which considers all of the remaining energy of the electrons that is

unaccounted for

E[n(r)] =∫
drn(r)Vn(r)−

N∑
i=1

∫
drφ∗i (r)

∇2

2
φi(r) +

1

2

∫∫
drdr′

n(r)n(r′)

|r− r′|
+ Exc[n(r)].

(2.2.56)

At long last, the framework for determining the ground state charge density is in

place. Finding the ground state energy of the electron density in the crystal is a

matter of minimizing the energy functional with respect to the charge density

evaluated at the ground state

δE[n(r)]

δn

∣∣∣∣
n0

= 0. (2.2.57)

Eqn. 2.2.57 is known as the Hohenberg-Kohn variational principle and solving it

results in the single-particle Schrödinger equation taking the final form of the
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Kohn-Sham equation

[
−∇

2

2
+ Vn(r) + VH(r) + Vxc(r)

]
φi(r) = εiφi(r), (2.2.58)

where Vxc(r) is the exchange and correlation potential and is determined via

Vxc(r) =
δExc[n(r)]

δn

∣∣∣∣
n(r)

. (2.2.59)

With the Kohn-Sham equations the foundation of DFT is complete. The

analytic form of Exc[n(r)] is unknown, but the functional approach to approximating

the exchange and correlation energy is an area of research that has seen many,

ever-more elaborate approximations estimate this value with increasing accuracy.

2.2.5. The exchange and correlation energy: the local density

approximation (LDA), generalized gradient approximation (GGA),

Hubbard correction (U), hybrid functional, and modified Becke-Johnson

(MBJ) potential. The exchange and correlation energy, Exc[n(r)], is guaranteed

to have a solution, although currently it is unknown. Despite this, many

approximations have been offered over the years. The discussion of approximations

to the exchange and correlation energies is restricted to the functionals used within

the scope of this thesis, beginning with Kohn and Sham, who suggested that the

electron charge density in a crystal be treated like a homogenous electron gas

confined to a volume V [45] . In this approximation, the potential arising from the

nuclei of the crystal is treated like a constant. The electrons have wave functions

φk(r) =
1

V
1
2

exp(ik · r) (2.2.60)

and have energy

εk =
|k|2

2
. (2.2.61)
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The wave functions are standing, and correspond to the ground state configuration

such that the highest occupied energy, known as the Fermi energy [38], εF, has

energy

εF =
k2F
2
, (2.2.62)

where kF is the Fermi wave number, or the wave number of the highest occupied

state. The usefulness of adopting this model is that it allows for the form of the

exchange and correlation energy for a single electron, εxc[n(r)], to be determined

exactly, such that the total exchange and correlation energy is approximated as

Exc[n(r)] =

∫
drn(r)εxc[n(r)]. (2.2.63)

This first approximation to Exc[n(r)] offered by Kohn and Sham can be further

refined by first determining an exact exchange energy from the electron gas model

in the form of

Ex[n(r)] = −3

4

(
3

π

) 1
3
∫

drn
4
3 (r). (2.2.64)

which is determined by integrating over the volume of crystal.

The exchange potential is then just the functional derivative of the

exchange energy in Eqn. 2.2.64

Vx[n(r)] = −
(

3

π

) 1
3

n
1
3 (r). (2.2.65)

The LDA. The correlation energy is not such a straightforward solution

and must be obtained using numerical methods. However, the idea with this

extended approximation, known as the local density approximation for density

functional theory (LDA), is that at all points in the crystal there is a local

homogeneous electron gas with local density n(r) that contributes a differential to
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the exchange and correlation energy, dExc[n(r)], such that

dExc[n(r)] = dr
EHEG
xc [n(r)]

V
, (2.2.66)

where EHEG
xc [n(r)] is the exchange and correlation energy of the homogenous

electron gas [46]. Then the LDA functional approximation of the exchange and

correlation energy is obtained by integrating Eqn. 2.2.66 over the crystal volume

Exc[n(r)] =

∫
d3r

EHEG
xc [n(r)]

V
. (2.2.67)

The LDA functional approximation to the exchange and correlation energy is most

accurate for systems with charge densities that vary slowly over space, such as

metals, due to its reliance on approximating regions of the charge density as a

homogeneous electron gas. The LDA approximation is less accurate for

semiconductor and insulator systems, where the homogenous electron gas model

becomes a less accurate representation of the electron charge density.

The GGA and Perdew, Burke, and Erzenhof (PBE) method.

The generalized gradient approximations (GGA) seek to further refine the LDA by

accounting for higher charge concentrations around the nuclei through a derivative

expansion of the charge density [42]. This exchange and correlation energy

functional is similar in form to Eqn. 2.2.58, with the addition of a gradient

expansion correction functional, Fxc[n(r),∇n(r),∇2n(r), . . . ], in the integrand

Exc[n(r)] =

∫
d3rn(r)εLDA

xc [n(r)]Fxc[n(r),∇n(r),∇2n(r), . . . ] (2.2.68)

and

εLDA
xc [n(r)] =

EHEG
xc [n(r)]

n(r)V
, (2.2.69)
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where εLDA
xc [n(r)] is the LDA exchange and correlation energy density functional.

Note that in the LDA approximation the gradient expansion correction functional

reduces to one and Eqn. 2.2.67 is regained.

Initially, in the GGA approach, only the first order term in the gradient

expansion correction functional was used and often the correlation energy contained

more error than a pure LDA approach. Langreth and Mehl [47] addressed this

problem in 1981 but their work did not address lingering problems with the

exchange energy, which arise from modifying the LDA exchange and correlation

energy via the gradient expansion correction functional. Specifically, in non-uniform

charge densities where the Coulomb potential is not ignored, the presence of an

electron at position r inherently lowers the probability of finding another electron at

position r + δr for some small δr. The exclusion of other electrons from the vicinity

of the first can be thought of as an artificial hole, and considering all of these holes

in the crystal gives a hole density

nh(r, r′) = n(r′)[g(r, r′)− 1] (2.2.70)

where g(r, r′) is the probability of finding a second electron at the position r′ given

that the first is at position r. Imposing the requirement that
∫

dr′nh(r, r′) = −1

when applying the gradient expansion correction functional was found to greatly

reduce the error in the exchange energy.

Although many GGA methods have been introduced over the years, the

method of Perdew, Burke, and Erzenhof [48] (PBE) introduced in 1996 further

increased the accuracy of the exchange and correlation energies and is seen as the

standard GGA approach today. The PBE method gives a spin-dependent
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correlation energy functional as

Ec[n↑(r), n↓(r)] =

∫
d3rn(r)[ELDA

c (rs, ζ) +H(rs, ζ, t)] (2.2.71)

for n(r) = n↑(r) + n↓(r), where rs is the local Wigner-Seitz radius

rs =

[
3

4πn(r)

] 1
3

. (2.2.72)

Additionally,

ζ =
n↑(r)− n↓(r)

n(r)
(2.2.73)

and

t =
|∇n(r)|

2ϕ(ζ)ksn(r)
. (2.2.74)

In Eqn. 2.2.74,

ϕ(ζ) =
1

2

[
(1 + ζ)

2
3 + (1− ζ)

2
3

]
(2.2.75)

is the spin-scaling factor,

ks =

(
4kF
π

) 1
2

(2.2.76)

is the Thomas-Fermi screening wave number, and kF is the Fermi wave number with

kF =
[
3π2n(r)

] 1
3 . (2.2.77)

To satisfy the correlation energy functional, the Hamiltonian in Eqn. 2.2.67 takes

the form

H = γϕ3(ζ)ln

[
1 +

βt2

γ

(
1 + At2

1 + At2 + A2t4

)]
, (2.2.78)

with γ = 0.1091, β = 0.066725, and

A = β

(
γexp

{
−εLDA

c [n(r)]

γϕ3(ζ)
− 1

})
. (2.2.79)
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The GGA exchange energy in the PBE method is given by

Ex[n(r)] =

∫
d3rn(r)εLDA

x [n(r)]Fx(s). (2.2.80)

where

Fx(s) = 1 + κ− κ

1 + µs2/κ
. (2.2.81)

In Eqn. 2.2.81, µ = 0.21951, κ = 0.804, and s is a dimensionless density gradient

such that

s =
|∇n(r)|
2kFn(r)

. (2.2.82)

Summing Eqns. 2.2.71 and 2.2.80 gives the total PBE exchange correlation

potential.

The GGA+U approach. As much of an improvement that the PBE

method is, it still suffers from one of the pitfalls plaguing the LDA approach,

namely that error is increased for highly correlated systems, such as in the case for

Mott insulators like the transition metal oxides [49]. Essentially, energies associated

with transitions in the d and f orbitals are drastically underestimated since the

LDA method is a mean field theory and the interactions are expected to be small

compared to the band gap width. For a weakly correlated system, the exchange

splitting is independent of wave number and can be related back to the

magnetization m(r) by

〈φk
j | f(r)m(r) |φk

j 〉 ≈ −mI (2.2.83)

where f(r) is the occupancy at position r and I is the Stoner parameter and

represents the Hund’s rule exchange. In contrast, the exchange splitting in highly

correlated systems is not dependent on the Stoner parameter, but instead the
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Hubbard parameter, U , which is an on-site quasiatomic interaction

U = E(dn+1) + E(dn−1)− 2E(d). (2.2.84)

The Hubbard parameter is the Coulomb energy required for two electrons to occupy

the same site in a d (or f) orbital. The Hund’s rule exchange parameter is typically

one order of magnitude lower than the Hubbard parameter, leading to the

underestimated d orbital transitions. The Hubbard correction is a functional [49] of

the form

E+U
xc [N(r)] = Exc[N(r)] +

U

2

∑
i

∑
m,m′,σ

(nimσ − n0)(nim′−σ − n0)

+
U − J

2

∑
i

∑
m 6=m′,σ

(nimσ − n0)(nim′σ − n0) (2.2.85)

where nimσ are the spin- and orbital-dependent occupancies of only the strongly

correlated electrons defined in a single-particle, orthonormal basis, and n0 is the

average occupancy of one d orbital. With GGA+U it is possible to employ the PBE

method and still treat highly correlated systems, but the accuracy offered by the

exchange and correlation function can still be improved.

The hybrid functional (HSE06). The nature of determining the

ground state charge density by means of either the non-local Hartree-Fock theory or

the semi-local DFT equations introduces error into the exchange and correlation

functional approximations that is similar in nature to the applied theory; non-local

approaches have non-local error and semi-local approaches have semi-local error.

One way to reduce the error in obtaining an exchange and correlation energy

functional is to create an exchange energy that is a linear combination of HF and
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DFT exchange energies and add it to the correlation energy of DFT,

Exc[n(r)] = αEHF
x [n(r)] + (1− α)EDFT

x [n(r)] + EDFT
c [n(r)]. (2.2.86)

In this work, the hybrid functional used is the HSE06 functional [50], where

α = 0.25.

The modified Becke-Johnson (MBJ) potential. Tran and Blaha

offered one improvement [51] in 2009 based on the Becke-Johnson exchange

potential, which seeks to reproduce the shape of exact optimized effective potentials

rather than refine the exchange and correlation potentials. Their proposed

potential, the modified Beck-Johnson (MBJ) potential is

vMBJ
x,σ (r) = cvBR

x,σ(r) + (3c− 2)
1

π

[
5

12

] 1
2
[

2τσ(r)

n(r)

] 1
2

, (2.2.87)

where n(r) is the charge density of Eqn. 2.2.44,

c = α + β

(
1

Vcell

∫
d3r′
|∇ρ(r)|
ρ(r)

) 1
2

, (2.2.88)

with α and β acting as free parameters and the limits of integration are over the

volume of the cell. Additionally, τσ(r) is the kinetic-energy density

τσ(r) =
N∑
i=1

φ∗i,σ∇φi,σ, (2.2.89)

and vBR
x,σ(r) is the Becke-Roussel (BR) potential [52] which is intended to treat the

Coulomb potential created by the exchange hole

vBR
x,σ(r) = − 1

bσ(r)

{
1− exp[−xσ(r)]− 1

2
xσ(r)exp[−xσ(r)]

}
. (2.2.90)
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The parameter xσ(r) is determined in the context of n(r), ∇n(r), ∇2n(r) and τσ(r).

Then bσ takes the form

bσ(r) =

{
x3σ(r)exp[−xσ(r)]

8πn(r)

} 1
3

. (2.2.91)

The MBJ potential is meant as an improvement for results obtained using a

self-consistent approach, i.e. solving the Kohn-Sham equations using the LDA or

GGA, by increasing the accuracy of the results through adding vMBJ
x,σ (r) to the

exchange and correlation potential, in a process referred to as a meta- LDA or GGA

approach.

Explicit approximations for the exchange and correlation potential enable

DFT to be put to use in calculating ground state charge densities and total energies.

How this is done is the focus of the next section.

2.3. Determination of the Ground State Electron Charge Density.

The task of determining the ground state charge density and total energy is carried

out through DFT-based numerical calculations performed via computation. To

facilitate the ease of computation, several techniques are employed to approximate

aspects of the calculation and the wave functions that satisfy the Kohn-Sham

equations. What follows, then, is an accounting of two crucial approximations as

well as an overview of the algorithm of solving the electron charge density through

use of a DFT-based computational software package, the Vienna Ab Initio

Simulation Package [53–56] (VASP).

2.3.1. The projector-augmented wave (PAW) method and

pseudopotentials. Recall that in the initial discussion of the crystal potential in

subsection 2.2.1 that the total potential was a superposition of separate potentials

handling electron-electron, nuclei-nuclei, and nuclei-electron interactions. Within

the crystal, bound electrons in the core states near the nucleus create a
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charge-screening effect that weakens the Coulomb potential experienced by valence

states. This phenomenon results in a much higher oscillation frequency of the wave

functions in the core region than in the valence region. For that reason, the wave

functions are modeled in two parts: the core region wave functions are treated as a

partial-wave expansion in a sphere surrounding the nucleus, and in an outer shell

beyond the core region the wave functions are modeled using plane waves [57].

In the frozen core approach [57,58], the linear-augmented plane wave

(LAPW) method uses ab-initio-based calculations to determine the wave functions

in the core region by self-consistent means using local-density-functional theory

based atomic potentials. A pseudo wave function is then generated by removing the

oscillation such that the pseudo wave function approximately matches the real one

outside of the core region. Even in the valence region, the wave functions − which

are the single-electron Kohn-Sham wave functions called the all-electron (AE) wave

functions − oscillate in a Hilbert space that is orthogonal to the core region in such

a way as to make numerical approaches through computation difficult. The PAW

method was introduced by Blöchl [57] in 1994 and applies a linear transformation to

the all-electron (AE) wave functions that map them into a pseudo-Hilbert (PS)

space, making calculations easier. Numerical approaches cannot fully treat a Hilbert

space, and so to limit error both the AE and PS wave functions are truncated in a

prescribed way.

To apply the linear transformation, an augmentation region similar to the

frozen-core region of the LAPW method is established, outside of which the AE and

PS wave functions are identical. Within the augmentation region, each PS

single-electron wave function, |φ̃〉, is a linear combination of |ψ̃i〉, the partial PS

wave functions

|φ̃〉 =
N∑
i=1

ci |ψ̃i〉 , (2.3.1)

and each AE one-electron wave function, |φ〉, is a linear combination of partial AE
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wave functions, |ψi〉, which are obtained through the linear transformation, T, on

the corresponding PS single-electron wave function

|φ〉 = T |φ̃〉 =
N∑
i=1

ci |ψi〉 . (2.3.2)

The constants ci are given by

ci = 〈p̃i|φ̃i〉 , (2.3.3)

where p̃i are the Blöchl projector functions, which minimize the total energy via the

condition

〈p̃i|ψ̃j〉 = δij, (2.3.4)

with

δij =


1, if i = j

0, if i 6= j,

is the Kronecker delta. Thus, from Eqns. 2.3.1 and 2.3.2, in the PAW method the

AE single-electron wave function is

|φ〉 = |φ̃〉 −
N∑
i=1

ci |ψ̃i〉+
N∑
i=1

ci |ψi〉 , (2.3.5)

from which the PS wave functions become the variational parameters used during

calculations.

2.3.2. The Vienna Ab Initio Simulation Package (VASP). Using

the previously discussed theoretical framework as well as the unit cell and atomic

basis discussed in section 2.1 and the electronic configuration of each atom, the

ground state electron charge density of Eqn. 2.2.44 and ground state wave functions

of Eqn. 2.3.5 can be calculated by means of an iterative, numerical method for

solving the Kohn-Sham Eqn. 2.2.58.

A Rayleigh-Ritz variational approach to the sub-space diagonalization of
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the trial AE wave functions of the valence electrons is employed

〈φj| Ĥ |φi〉 = Hij. (2.3.6)

This diagonalization process is excessively demanding when calculated in a

straightforward manner for large systems. However, it was the work of Car and

Parrinello [59] in 1985 to prove that the total potential energy Hamiltonian in real

space and the total kinetic energy Hamiltonian in reciprocal space are already

diagonal. Thus, computational time can be optimized by performing fast Fourier

transforms − to be discussed shortly − from one Hamiltonian to the other and vice

versa. The self-consistent cycle, which is used by VASP, is even more

computationally efficient, and involves the mixing of the Car and Parrinello method

with an iterative algorithm to determine the ground state charge density.

The process is applied to one single-electron wave function at a time and

revolves around finding the error in the trial solution for each iterative step and

adding the error to the trial wave function, producing a new wave function for the

next iterative step. The result is ever-increasing accuracy of the eigenvalues over

time, with the process completing when the change in total energy from one iterative

step to the next is below some threshold value. The eigenvalues are calculated as

εi =
〈φi| Ĥ |φi〉
〈φi| Ŝ |φi〉

, (2.3.7)

where the operator Ŝ is

Ŝ = 1 +
N∑
i=1

N∑
j=1

qij |p̃j〉 〈p̃i| (2.3.8)

and

qij =

∫
d3rQij(r), (2.3.9)

using p̃i, the localized projection states from the PAW method in Eqns. 2.3.2 and
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2.3.5. In Eqn. 2.3.9, Qij(r) are the localized augmentation functions. The operator

Ŝ is subject to the normalization condition

〈φi| Ŝ |φj〉 = δij. (2.3.10)

A residual vector to facilitate finding the error in the wave function (WF) is given by

|RWF〉 = (Ĥ − εiŜ) |φi〉 , (2.3.11)

such that the error in the wave function, |φerr
i 〉, becomes

|φerr
i 〉 =

(
1

Ĥ − εi

)
|RWF〉 . (2.3.12)

The error does not have an exact solution due to the dominance of kinetic energy in

the Hamiltonian arising from large reciprocal lattice vectors, G, in reciprocal space,

lim
G→∞

Ĥ =
G2

2
, (2.3.13)

thus the error is treated with an approximation that limits large G and keeps small

values tending towards a constant. Once the error is added to the trial wave

function, the process repeats for the next band, until all eigenvalues and wave

functions are determined, after which they are diagonalized via the Gram-Schmidt

method and the new trial wave functions are then used in the next iteration after

the partial occupancies and charge density is updated. As previously mentioned,

this process repeats until the change in total energy falls below a threshold value.

The electron charge density is updated by mixing the input and output

charge densities from each iteration. The residual vector for the error in the charge
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density is

RCD[nin(r)] = nout[nin(r)]− nin(r), (2.3.14)

where nout[nin(r)] is a functional of the input charge density, nin(r). The charge

density of Eqn. 2.2.44 is modified to take the form

n(r) =
N∑
i=1

fi|φi(r)|2 +
N∑
i=1

N∑
j=1

N∑
k=1

fi 〈φi|p̃k〉 〈p̃j|φi〉Qjk(r), (2.3.15)

with the sums over i, j, and k happening independently and where fi is the

occupancy number one or zero. The mixing method for the step l + 1 is then

nl+1
in (r) = nlin(r) + ARCD[nlin(r)], (2.3.16)

where A is a value determined from the eigenvalue spectrum.

The specific method for mixing that VASP uses is that of Pulay [60], such

that all of the preceding charge densities from earlier iterations are linearly

combined into a current optimized charge density

nopt
in (r) =

N∑
i=1

αin
i
in(r), (2.3.17)

with αi subject to
N∑
i=1

αi = 1. (2.3.18)

The Pulay method gives residual vector

|Ropt
in 〉 =

N∑
i=1

αi |Ri
in〉 . (2.3.19)

The intent is that the new optimal charge density must minimize the norm of the

residual vector, 〈Ropt
in |R

opt
in 〉, with the process repeated iteratively until reaching the

36



required accuracy.

2.4. Beyond the VASP Code.

As stated in section 2.2, obtaining the ground state electron charge density and

total crystal energy enables − in theory − the determination of all physical

properties of the crystal. In the computational approach, many physical properties

are calculated −with a few exceptions, notably force constants and optical

properties − as a post-process in which the ground state charge density and

eigenvalues obtained from first-principles calculations are then used by

supplementary software that performs the required additional calculations. In this

work, the response of the total crystal energy to changes in the unit cell lattice

constants, changes to the wave number and magnitude of the hole effective masses

as a result of introducing native defects and dopants in XTO, and the optical

properties associated with the pristine and defective crystals are of interest.

2.4.1. The Birch-Murnaghan equation of state. In order to obtain

theoretical optimized lattice constants for a crystal, it is necessary to calculate the

total crystal energy using many different unit cell volumes. For any particular

volume, V , of the crystal, there is an associated total energy, E, and in the case

that the volume is the relaxed volume then the lowest − and correct − ground state

energy is obtained. The lowest ground state energy is given by theoretically

optimized lattice constants that approach the lattice constants of the crystal

observed in nature, although due to the approximations employed by DFT-based

calculations these values will not be identical. Although there may be a lowest

ground state energy associated with a series of total energy calculations for similar

crystals different only by unit cell volume, it would only be coincidental for that

lowest energy to truly correspond to the optimized lattice constants. For this

reason, the optimized lattice constants must be interpolated by fitting an equation

of state to the series and finding the minimum of the function. In this work, the

37



Birch-Murnaghan equation of state [61,62] is employed for this process,

E(V ) = E0 +
9V0B0

16


[(

V0
V

) 2
3

− 1

]3
+B0

[(
V0
V

) 2
3

− 1

]2 [
6− 4

(
V0
V

) 2
3

] ,

(2.4.1)

where E0 is the minimum energy of the curve, V0 is the associated volume of the

minimum energy, and B0 is the bulk modulus of the crystal

B = −V
(
∂P

∂V

)
T

(2.4.2)

evaluated at constant temperature and zero pressure

B0 = −V
(
∂P

∂V

)
T

∣∣∣∣
P=0

. (2.4.3)

The pressure is given by

P =

(
∂E

∂V

)
S

(2.4.4)

evaluated at constant entropy. Therefore, at the relaxed volume which corresponds

to the ground state energy of the crystal, there is zero pressure.

There are several ways to implement the method outlined above, and in

this work a series of ground state energies are determined for a series of volumes, all

defined by fixing one lattice constant and varying the other − recall that XTO has

one lattice constant shared by two vectors . The minimum energy determined by

the equation of state gives a more optimized value for the varying lattice constant

than the initial value, and the new value is then held fixed while the second lattice

constant is varied to produce new volumes which generate new ground state

energies that can then be fitted by the equation of state again. In general, each

application of the equation of state should produce a minimum total energy that is

lower than the one before it, so repeating the curve fitting in this way until the
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change in total ground state energy falls below a threshold value corresponds to

determining the optimized lattice constants.

2.4.2. Hole effective masses and the method of band unfolding.

A vital quality of any effective semiconductor is to have a high electrical

conductivity in the on state. The electrical conductivity is affected by two main

factors, namely the number of available charge carriers for conduction and their

mobility [38]. The charge carrier mobility, µ, is a measure of the carrier’s response

to the internal electric field of the crystal which is induced by the potential created

by the charged nuclei and carriers. This internal electric field arises regardless of the

presence of an external bias and produces a current within the crystal. Thus, the

mobility relates directly to the carrier charge, e, which is either negative or positive

depending on the nature of the carrier − whether it is an electron or a hole,

respectively − and indirectly to the carrier mass, m, which is also positive or

negative for the same reason as the charge. The carrier mass affects the acceleration

that the charge experiences in the presence of the electric field through inertia.

Additionally, the configuration of the potential in the crystal affects the charge

carrier mobility by creating scattering events as the charge carrier is accelerated

towards nuclei in the crystal, which is accounted for in the mean scattering time, τ .

In general, then, the charge carrier mobility is

µ =
eτ

m
. (2.4.5)

For a crystal with n electrons and p holes, the electrical conductivity, σ, takes the

form of a sum

σ = neµe + peµh, (2.4.6)
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where the subscript attached to the mobility denotes whether the source is an

electron (e) or a hole (h). Substituting Eqn. 2.4.5 into Eqn. 2.4.6 gives

σ =
ne2τe
me

+
pe2τh
mh

. (2.4.7)

The electrical conductivity is susceptible to tuning by introducing dopants and

defects to the crystal, which has an immediate effect on the number of majority

charge carriers, but also has the effect of changing the effective mass of the charge

carrier and also − perhaps to a lesser extent − affecting the mean scattering time.

The hole effective mass changes since this is essentially a measure of how the carrier

will be accelerated in the crystal field, and that acceleration is controlled by the

electronic band structure which imposes restrictions on the allowed energies of the

carrier. Sections 2.1 and 2.2 clearly illustrate how altering the atomic basis of the

unit cell will alter the electronic structure. The mean scattering time may also

change due to a reconfiguring of the potential as a result of the dopant or defect.

For charge carriers defined as wave packets that are localized around a

wave vector k, motion through the crystal happens at the group velocity

v =
dω

dk
, (2.4.8)

where ω is the angular frequency. In the quantum theory, a wave function with

energy ε has angular frequency ω = ε/~, such that the group velocity of Eqn. 2.4.8

becomes

v =
1

~
∇kε(k). (2.4.9)

The acceleration of the charge carrier in the field is time derivative of the group

velocity

dv

dt
=

1

~

(
d2ε

dk2
dk

dt

)
, (2.4.10)
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within which, a mass term, known as the effective mass, m∗, may be identified

m∗ = ~2
(

d2ε

dk2

)−1
. (2.4.11)

This effective mass is purely a measure of the inertia experienced by the charge

carrier as a result of being accelerated in the crystal electric field, and in general

depends on the direction through which the carrier moves in the crystal such that

the carrier effective mass is given by a tensor. From Eqn. 2.4.11 it becomes

apparent that the carrier effective mass is inversely proportional to the band

curvature of the band structure, d2ε/dk2. In a small enough region around the

wavenumber of the carrier, the band can be approximated by a parabola, such that

the second order derivative (the curvature) is calculated to be a numerical constant.

For semiconductors, conduction is achieved by exciting valence state charge carriers

across the band gap into the conduction states, and so the electron effective mass is

determined by the curvature at the lowest unoccupied energy state, also known as

the conduction band minimum (CBM), while the hole effective mass is determined

by the curvature at the highest occupied energy state, or the valence band

maximum (VBM).

Naturally, a thoroughly described, well-resolved band structure, especially

around the VBM or CBM, is essential for an accurate measurement of the band

curvature and subsequently the effective mass of the charge carrier. For many

semiconductors it is not good enough to have a measurement of the carrier effective

mass in the pristine crystal, since many semiconductors depend on the introduction

of dopants and defects to reach their full potential for tunable devices. In order to

model doped and defective crystals in DFT-based calculations, the size of the unit

cell must be increased in such a way that when it is replicated through space it

accurately establishes the crystal structure with the incorporated dopant or defect.
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Due to the requirements of periodicity, the arrangement of the dopants or defects in

the crystal will not be random, but may be quasi-random depending on their

locations in the atomic basis. The supercell (SC) will have primitive reciprocal

lattice vectors B1 = Nib1, B2 = Njb2, and B3 = Nkb3 for Ni, Nj, Nk ∈ Z+, where

b1,b2, and b3 are the primitive reciprocal lattice vectors of the primitive cell [38]

(PC). In this way, the SC contains NiNjNkA atoms if A is the number of atoms in

the PC and the term Ni ×Nj ×Nk SC refers to the length of each edge of the SC in

multiples of the corresponding PC unit cell edge.

Although converting to a SC representation alone does not alter the total

crystal energy or the charge density distribution other than being composed of more

electrons due to the presence of more atoms, resulting in identical electronic density

of states (DOS) when normalized by the number of atoms in the cell, it does come

with the drawback that it introduces a coupling to the Kohn-Sham orbitals, which

results in the “folding” of the electronic band structure into the smaller SC from the

larger PC. This phenomenon is brought to the forefront when attempting to

measure changes to the charge carrier effective mass as the result of introducing

defects and dopants. The folding of the bands in the SC representation of the band

structure is not reconcilable with the need to compare the new effective mass

location in reciprocal space since it relies on a measurement of the PC VBM band

curvature. It becomes essential to unfold the SC representation of the band

structure into that of the PC. This is accomplished through the method of

Medeiros, Stafström and Björk [63,64] proposed in 2014, which differs slightly from

earlier methods first developed by Boykin and Klimeck [65] in 2005.

As previously mentioned, there is a coupling of the Kohn-Sham orbitals

introduced by converting a PC into an SC. Consider a wave function in the SC

representation in band number m with wave vector K and eigenstate |φSC
mK〉. In the

PAW method (subsection 2.3.1) the eigenstate is a sum of partial wave functions.
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The part of the PAWs outside of the augmentation region takes the form

|φSC
mK〉 =

∑
G

Cn,K(G)exp[i(K + G) · r]. (2.4.12)

The SC Brillouin Zone (SCBZ) has a volume VSCBZ, and the PC Brillouin Zone

(PCBZ) has a volume VPCBZ such that there are Nunf = VPCBZ/VSCBZ wave vectors

ki in the PCBZ for a wave vector K within the SCBZ. The wave vectors ki are

given by

ki = K + Gki←K, (2.4.13)

where K unfolds into ki via the unfolding vector Gki←K in the SCBZ. In other

words, a wave vector ki must obey

ki + g = K + G. (2.4.14)

for lattice vectors g and G in the PCBZ and SCBZ, respectively [66]. When the

above condition is satisfied, the PC Blöchl wave vector ki PAW expansion

coefficients match those of the SC,

Cn,K(G)→ cn,k(g). (2.4.15)

The probability that an eigenfunction |φSC
mK〉 in the SCBZ has the same

eigenenergy as |φPC
nki
〉 in the SCBZ is given by the spectral weight

wn,K(ki) =
∑
g

Cn,K(ki + g), (2.4.16)

such that the SCBZ wave functions can be expressed in terms of the PCBZ wave
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functions as

|φSC
mK〉 =

∑
n,i

wn,K(ki) |φPC
nki
〉 . (2.4.17)

Specific to the Medeiros, Stafström and Björk method [63], a spectral

function W (ki, ε), is defined as

W (ki, ε) ≡
∑
n

wn,K(ki)δ[ε− εn(K)], (2.4.18)

with δ being the Dirac delta function. The cumulative probability function, Ski(ε),

has a differential of the form

dSki(ε) = W (ki, ε)dε, (2.4.19)

which represents the number of PC energy bands crossing the interval (ε, ε+ dε).

The interval is then mapped onto a (ki, εj) grid with step size δε, where an energy

weight, δN(ki, εj), is obtained via

δN(ki, εj) ≡
∫ εj+δε/2

εj−δε/2
dSki(ε). (2.4.20)

Substituting Eqns. 2.4.18 and 2.4.19 into the above result yields

δN(ki, εj) =
∑
n

wn,K(ki)

∫ εj+δε/2

εj−δε/2
dεδ[ε− εn(K)]. (2.4.21)

The energy weight is then averaged over all ki that relate via symmetry operations

of the PCBZ. This method possesses the advantage of not needing to find the peaks

of the spectral function W (ki, ε) nor the steps of the cumulative probability

function Ski(ε).

The implementation of this method for the measurement of carrier effective

masses is essentially to define all ki in the PCBZ, e.g. the path through the PCBZ
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that gives a band structure for either the CBM or VBM to be measured, and then

through the relation in Eqn. 2.4.13 find all required K of the path through the

SCBZ that must be traced to obtain a band structure that will then be unfolded

into the primitive cell representation using the above method. In this way changes

in the wave number and magnitude of the carrier effective mass can be studied upon

the introduction of dopants and defects.

2.4.3. Optical properties. The last set of properties that are of

interest in this study are associated with the optical character of the crystal.

Consider a semiconductor in which the electron configuration is in the ground state.

The electron in the most excited electron state will have an energy equal to that of

the Fermi energy and all of the occupied states are valence states. Imparting the

electrons with energy will allow them to occupy conduction states if the energy they

receive is greater than that of the band gap. This energy can come from many

sources, such as thermal excitation or an applied external bias. Similarly, radiation

in the form of photons incident on the crystal may also scatter electrons into the

conduction band states. Due to the quantum selection rules, for an electron with

wave vector k, the electron is restricted to possessing excited-state energies, εi(k),

i.e. the electron is only permitted to transitions according to the electronic band

structure. For that reason, photons will not excite electrons into excited states

(valence nor conduction) unless the interband energy for two eigenenergies, εi > εj

corresponds to the energy, E = ~ω, of the photon with angular frequency ω by

~ω = εi − εj. (2.4.22)

Some time after the electron has been excited it will spontaneously relax back into

an unoccupied valence state and emit a photon with angular frequency ω′

corresponding to the change in energy of the electron. A semiconductor is
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transparent when the band gap, Eg = εCBM − εVBM, where εCBM and εCBM are the

eigenenergies at the CBM and VBM respectively, is large enough that the energies

of photons in the visible portion of the spectrum (roughly 1.6−3.0 eV) are too small

to allow electron energies to transition across the band gap [67].

The incident photons themselves may be modeled as plane waves

E(r, t) = E0exp[i(k̂ · r− ωt)], (2.4.23)

where E0 is the amplitude of the plane wave, and k̂ is a unit vector parallel to the

direction of travel [43, 67]. Using SI units for the remainder of this subsection, Eqn.

2.4.23 satisfies the wave equation

∇2E(r, t) =
µε

c2
∂2

∂t2
E(r, t) +

µσ

ε0c2
∂

∂t
E(r, t). (2.4.24)

where µ and ε are the permeability and permittivity of the crystal, respectively, ε0 is

the permittivity of the vacuum, and σ is the crystal’s electrical conductivity.

Substituting Eqn. 2.4.23 into Eqn. 2.4.24 gives

k̂2 =
µω2

c2

(
ε+ i

σ

ε0ω

)
. (2.4.25)

Define a complex refractive index, n̂ = n+ iκ, such that

k̂ =
ω

c
n̂ =

ω

c
(n+ iκ), (2.4.26)

which gives the following result when substituted into Eqn. 2.4.23:

E(r, t) = E0exp(−ω
c
κ · r)exp

[
iω
(n · r

c
− t
)]
. (2.4.27)

The exponential term containing the extinction coefficient κ determines the decrease

46



in the amplitude of the plane wave as a function of distance [67]. The second

exponential term is the plane wave phase velocity, vph = c/n. Since n ≥ 1, the phase

velocity is always less than the speed of light [67]. In this way, the refractive index

is a measure of how much slower the speed of light is in a solid. Together, Eqns.

2.4.25 and 2.4.26 give

n2 − κ2 + i2nκ = µε+ i
µσ

ε0ω
. (2.4.28)

equating the real and imaginary parts of the above result gives

ε =
1

µ
(n2 − κ2), (2.4.29)

and

σ =
2nκε0ω

µ
. (2.4.30)

Recalling that σ is a coefficient relating the strength of the current density J

produced by an electric field, σ = J/E, and that in this case only the current

density produced by incident photons is considered, σ may be referred to as the

optical conductivity. A complex dielectric function, ε̂ = ε1 + iε2, may be introduced

such that

ε1 =
1

µ
(n2 − κ2) (2.4.31)

and

ε2 = 2nκ =
µσ

ε0ω
. (2.4.32)

Eqns. 2.4.31 and 2.4.32 can be used to express the refractive index and

extinction coefficient in terms of the real and imaginary part of the complex

dielectric function:

n(ω) =

[
|ε̂(ω)|+ ε1(ω)

2

] 1
2

, (2.4.33)

κ(ω) =

[
|ε̂(ω)| − ε1(ω)

2

] 1
2

. (2.4.34)
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The optical conductivity re-expressed in terms of the complex dielectric function is

σ(ω) =
ω

4π
Im[ε̂(ω)], (2.4.35)

While in terms of the refractive index and extinction coefficient, the reflectivity,

R(ω), is

R(ω) =
[n(ω)− 1]2 + κ2(ω)

[n(ω) + 1]2 + κ2(ω)
. (2.4.36)

The absorption coefficient, α, describes the fractional decrease in intensity, I, as a

function of distance [67]. Since the intensity is proportional to the square of the

electromagnetic wave amplitude, norm squaring the plane wave solution of Eqn.

2.4.23 and differentiating with respect to r gives:

α(ω) = −dI

dr
=

2ωκ(ω)

c
. (2.4.37)

The rate of absorption of a solid, otherwise known as the loss function, L, is related

to the imaginary part of the inverse of the complex dielectric function by

L(ω) = −Im

[
1

ε̂(ω)

]
=

ε2(ω)

ε21(ω) + ε22(ω)
. (2.4.38)

The complex dielectric function is calculated from the VASP code after the

eigenenergies εk corresponding to the ground state have been determined by

enabling LOPTICS = .TRUE. in the INCAR input file. The imaginary part of the

dielectric function can be determined from a summation over conduction states, c,

and valence states, v, at a wave vector k

Im[ε̂(ω)]αβ =
4π2e2

Ω
lim
q→0

1

q2

∑
c,v,k

2ωkδ(εck − εvk − ω) 〈uck+eαq|uv,k〉 〈uv,k|uck+eβq〉 ,

(2.4.39)

where e is the fundamental charge, Ω is the cell volume, q is the magnitude of the
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Bloch vector, εck and εvk are conduction and valence energies at wave vector k

respectively, and eα and eβ are Cartesian unit vectors [68]. The Kramers-Kronig

relations gives the real part of the dielectric function from the imaginary part:

Re[ε̂(ω)]αβ = 1 +
2

π
P

∫ ∞
0

dω′
ω′ε2(ω)

ω′2 − ω2 + iη
, (2.4.40)

where P is a principle value and η is a complex shift, which can be used to limit

local oscillations in the real part of the complex dielectric function. Once the

complex dielectric function is calculated by VASP, Eqns. 2.4.33 through 2.4.38 can

be used to determine the other previously discussed optical properties.

2.5. Computational Methodology

The first principles study using density functional theory will be performed by using

the VASP code [53–56]. Projector augmented wave function

pseudopotentials [69,70] will be used in conjunction with the GGA in the PBE

method. The screened values, UCAO
Cu = 3.24 eV, UCCO

Cu = 1.99 eV, UAAO
Ag = 2.45 eV,

UACO
Ag = 1.29 eV, UCCO

Cr = 2.20 eV, and UACO
Cr = 1.81 eV, in CuAlO2 (CAO),

AgAlO2 (AAO), CuCrO2 (CCO), and AgCrO2 (ACO), were calculated using the

ATOM code [71] in the non-relativistic PBE method following the screening effect

approach described by Janotti, Segev, and Van de Walle [72]. The valence

configuration of each atom set in the ATOM code are: Cu+ 3d104s0 [73], Ag+

4d105s0, Cr3+ 3d34s0. Optimized lattice constants for each material were obtained

by minimizing the total crystal energy by fitting the Birch-Murnaghan equation of

state according to the method described in subsection 2.4.1 via the Gibbs2

code [74,75]. The valence electron configuration for each atom is as follows: Cu

3d104s1, Ag 4d105s1, Al 3s23p1, Cr 3d54s1, Mg 2p63s2, O 2s22p4. A plane wave

cut-off energy of 400 eV was employed during calculations, which were conducted on

a 21× 21× 5 gamma-centered k-mesh for band structure and DOS calculations, and
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a 41× 41× 9 gamma-centered k-mesh for complex dielectric function calculations on

the primitive cell. During the self-consistent phase, each of the atomic positions

within each structure were allowed to relax and the calculations were considered

converged once the global force on all atoms was less than 1× 10−6 eV Å
−1

. The

bulk XAO material will be modelled using the unit cells mentioned in section 2.1 to

optimize all structures and evaluate the total energy for each polymorph of XAO by

means of fitting the Birch-Murnaghan equation of state (of degree 4) using Gibbs2.

With regards to the complex antiferromagnetic configuration of CCO in

the ground state reported by Frontzek et al. in chapter 2, an accurate model would

involve the use of a supercell due to the need for more than two Cr atoms to

accurately produce the required spin configuration and would also require the use of

the non-colinear version of the VASP code in order to calculate the ground state

charge density and wave functions properly. Both of the requirements outlined

above would very likely prove too computationally demanding within the scope of

this work, and thus in order to justify the adoption of a simple antiferromagnetic

(AFM) α-2H primitive cell, such as the one used by Xu et al. [35], in which each of

the two Cr atoms in the primitive cell have opposite spin moments aligned along the

c-axis, the total ground state energy of AFM 2H XCO will be scrutinized against a

simple ferromagnetic (FM) configuration − where both Cr spins are aligned along

the c-axis − and a nonmagnetic (NM) configuration achieved by ignoring spin

during the calculation of the ground state charge density. The different 2H XCO

magnetic configurations will be optimized and evaluated by means of the equation

of state fitting using the Gibbs2 code described above for the polymorphs of XAO.

2H XTO will be the focus of the remainder of this investigation as it is the

least studied of the delafossites. The more accurate − but more computationally

demanding − hybrid functional, HSE06, is also used for the exchange and

correlation energies of bulk 2H XTO with the intent of using results to scrutinize a
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proper choice of Hubbard correction, such that the less computationally demanding

Hubbard correction to treat exchange and correlation energies of the

Cu/Cr(Ag)-3d(4d) orbitals in the PBE method (+U) can be utilized for the

defective/doped systems [76].

Specific to the application of GGA, GGA+U, and hybrid functionals to the

study of transition metal oxides (TMOs), namely Cu2O and other A+ cation TMOs,

Scanlon, Morgan, and Watson demonstrated [77] in 2009 that the GGA and

GGA+U approaches unsuccessfully model the deep traps and other properties

associated with the polarons that are understood to be the main conduction

mechanism and arise from Cu-vacancy and O-intersticial acceptor-forming defects.

Any “improvements” to the inter- Cu-3d state transitions were shown to only be

superficial and could not be resolved in the context of experimental ionization levels.

It was thus concluded that the GGA and GGA+U methods fail to describe

conduction mechanisms in TMOs that are polaronic in nature but hybrid

functionals can be successful due to their ability to treat to some degree the exact

exchange in all atomic species and not just the Cu-3d states [77]. However, Tate

et al. have argued that although some groups have reported [78] small polaronic

character in CuAlO2, which is a TMO obtained schematically by combining Cu2O

with an aluminate like Al2O3, their measurements of a− b plane and c-axis

mobilities at 300 K of 3.0 and 0.12 cm2 V−1 s−1 respectively are too large to have

dominant polaronic character and therefore support a band conduction model.

Though the exact mechanism at work in their offered band conduction model is not

known, Tate et al. rule out polaronic character in CuAlO2. Additionally, Laskowski

et al. have demonstrated that a GGA+U approach in the context of the

Bethe-Salpeter formalism can describe excitonic effects through calculation of the

complex dielectric function [79]. However, such a methodology is outside of the

scope of this research. With that in mind, the consideration of the PBE method and
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an on-site Hubbard correction for d states in this work is considered reasonable due

to the computational efficiency of the methods.

2.5.1. Supercell Scheme. Once pristine 2H XTO is well understood

electronically, 64-atom hexagonal supercells will be used to model pristine 2H XTO,

6.25% Cu/Ag-vacant 2H XTO, 3.13% O-vacant 2H XTO, and 6.25% Mg-doped 2H

XTO. The supercells are illustrated [17] in Fig. 2.3. Charge densities for the

structural and electronic properties will be obtained on an 11× 11× 3

gamma-centered k-mesh and visualized using the VESTA code [17], and optical

properties will be derived from a 7× 7× 3 gamma-centered k-mesh, all using

PBE+U. All symmetry considerations imposed by the VASP code to facilitate the

efficient calculation of the charge density will be turned off in the supercell scheme.

After the electronic structure has been determined for pristine and

defective 2H XTO systems, parabolic band fitting will be employed on both

primitive cells and all supercells using energies within 10% of the VBM towards

adjacent symmetry-like points to measure the hole effective masses in each

reciprocal lattice vector direction. Due to the band folding phenomenon discussed in

subsection 2.4.2, the band structures of the supercells must first be unfolded into a

primitive cell representation using the BandUP code [63,64].
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Figure 2.3: 2H XTO 2× 2× 2 supercell.
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3. STRUCTURAL, ELECTRONIC, AND OPTICAL PROPERTIES OF

PURE XTO

3.1. Introduction

The beginning of this study is centered on building as accurate a model of the

pristine XTO crystals as possible, comparing their total energies normalized by the

number of atoms in each respective cell, and then using those energies to motivate a

decision regarding which polymorph to study more thoroughly. Concerning XAO,

the choice is among polymorphs, and after which, for XCO modeled with the same

polymorph as XAO, the choice is in regard to a simple magnetic configuration −

e.g. whether the two Cr nuclei in the primitive cell are arranged in a NM

configuration where their moments are ignored in the calculation, a FM

configuration with parallel moments, or an AFM configuration where the moments

are antiparallel. From there, the underestimated band gaps in the PBE method will

be treated by modeling the chosen 2H polymorph with the functional approaches

discussed in section 2.2 and comparing the obtained band gaps with the

experimental values from literature. The 2H XTO crystal will then be re-optimized

using the chosen functional approach and several structural parameters will be

determined and compared with available experimental data. With XTO optimized

in the PBE+U method, the electronic band structure and density of states (DOS)

are calculated. Hole effective masses are measured around the VBM, and optical

properties are determined. Once a thorough description for the pristine 2H XTO in

the primitive cell model is obtained, the study will shift into adopting a 2× 2× 2

supercell model, in which the electronic structure, hole effective masses, and optical

properties will be re-determined and evaluated against the primitive cell model for

the purpose of ensuring that the chosen parameters of the calculation − which are

motivated by the capabilities of the LEAP cluster, a high performance computing

cluster maintained by the Division of Information Technology at Texas State, upon
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which the calculations are run − are sufficient to accurately model the structure and

give confidence to the results obtained for the defective and doped systems.

3.2. Structural Properties

The optimized lattice constants used to obtain the total crystal energy normalized

by the number of atoms in the unit cell, Etot/atom, are given in Tab. 3.1 for CAO

and 3.2 for AAO. Here, the lattice constants for the α-3RR polymorph are given in

the α-3RCH representation for ease of comparison. All CAO optimized constants

have a percent error lower than 1.5%, showing good agreement with

theoretical [27,80] and experimental [80]values. Regarding the AAO optimized

Table 3.1: The optimized lattice constants of CAO using PBE.

Phase Const. This Work Other Work % Diff. Exp. % Error
(Å) (Å) (Å)

α− 2H a 2.8797 2.8646 [80] 0.53 2.8630 [80] 0.58
c 11.4248 11.282 [80] 1.26 11.3140 [80] 0.98
u = c/a 3.9647 3.9384 0.67 3.9518 0.40

α− 3RCH a 2.8844 2.8844 [27] 0 2.8567 [7] 0.97
c 17.1240 17.1389 [27] 0.09 16.943 [7] 1.07
u = c/a 5.9368 5.9419 0.09 5.931 -

α− 3RR a 2.8844 2.8844 [27] 0 2.8567 [7] 0.97
c 17.1256 17.1389 [27] 0.08 16.943 [7] 1.07
u = c/a 5.9373 5.9419 0.08 5.931 0.11

β a 5.3048 - - - -
b 6.5167 - - - -
c 5.3153 - - - -

lattice constants, the α-2H, α-3RCH, and α-3RR all show high agreement with the

associated theoretical values [16,27], but there is less agreement with the theoretical

constants of the β polymorph reported by Reshak [16], specifically for the b

constant, which has a percent difference of 19.60%. However, more importantly,

there is good agreement with the optimized constants and their experimental [16]

values, with the error in b being only 2.30%. With all XTO polymorph structures
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Table 3.2: The optimized lattice constants of AAO using PBE.

Phase Const. This Work Other Work % Diff. Exp. % Error
(Å) (Å) (Å) -

α− 2H a 2.9164 - - - -
c 12.3482 - - - -
u = c/a 4.2341 - - - -

α− 3RCH a 2.9175 2.9211 [27] 0.12 2.890 [25] 0.95
c 18.5049 18.6017 [27] 0.52 18.350 [25] 0.84
u = c/a 6.3427 6.3680 0.40 6.349 0.10

α− 3RR a 2.9170 2.9211 [27] 0.14 2.890 [25] 0.93
c 18.5406 18.6017 [27] 0.33 18.350 [25] 1.04
u = c/a 6.3560 6.3680 0.19 6.349 0.11

β a 5.4508 5.2728 [16] 3.32 5.4306 [16] 0.37
b 7.0147 5.7628 [16] 19.60 6.9802 [16] 0.49
c 5.4986 5.3626 [16] 2.51 5.3751 [16] 2.30

optimized in the PBE method, their total energies may be compared after

normalizing by the number of atoms in each respective unit cell. At this stage, the

ratio of the optimized lattice constants, u = c/a, are held fixed for total energy

calculations for a series of volumes around − and including − the relaxed volume

(using the optimized lattice parameters). Then this series is fitted by the

Birch-Murnaghan equation of state from section 2.4, from which the minimum

energy from the fit corresponds to the minimum total crystal energy of the relaxed

structure. The results, plotted in Fig. 3.1, show the total energies calculated by

VASP as x’s and the equation of state as a line, both in colors corresponding to

each polymorph, plotted against the unit cell volume after normalizing by each

respective relaxed volume. Clearly, the β polymorph corresponding to the

orthorhombic phase has an unambiguously higher total energy than the α- 2H and

3R polymorphs associated with the hexagonal phases. The normalized total energies

are presented in Tab. 3.3. For the α-2H and α-3R polymorph modeled using the

conventional hexagonal unit cell, the minimum energy calculated by the Gibbs2

code is identical for CAO and AAO. The minimum total energy calculated by VASP
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a) CuAlO2 b) AgAlO2

Figure 3.1: Total crystal energies normalized by the number of atoms in each unit
cell versus the volume of the unit cell normalized by each relaxed volume for a) CAO
and b) AAO using PBE.

using the optimized lattice constants shows α-3RCH to have a slightly lower total

energy (-6.4266 eV) than α-2H (-6.4264 eV) for CAO, but results using VASP show

the opposite for AAO (-6.07336 eV and -6.07343 eV). From both the VASP and

Gibbs2 data, the α-3R polymorph modeled using the rhombohedral primitive cell

shows the α-3RR polymorph to be 5× 10−4(8× 10−4) eV higher in total energy than

α-2H CAO(AAO). The similarity of the total energies of the 2H and 3R polymorphs

is consistent with the only difference in the two crystal structures being a rotation

of every third 2H layer by an angle π to obtain the 3R polymorph, resulting in no
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change to coordination or bond lengths. These calculations suggest that the α-2H

polymorph may have the lowest crystal energy in the ground state. However,

referring to Tabs. 3.1 and 3.2, the optimized lattice constants used to obtain these

results are slightly higher than the experimentally measured values, which may

bring ambiguity to the results obtained through the Gibbs2 code. Considering that

the α-3R polymorph is the most thoroughly studied in the literature, and since the

total energy calculations using the PBE method in this study support the idea that

the α-2H polymorph may be just as stable as α-3R, the remainder of this study is

devoted to the 2H polymorph of XTO.

Table 3.3: The XAO total energies normalized by the number of atoms in each unit
cell, Etot/atom, using PBE.

Phase Etot/atom
(eV)

CuAlO2 α− 2H -6.4264
α− 3RCH -6.4264
α− 3RR -6.4252
β -6.2514

AgAlO2 α− 2H -6.0734
α− 3RCH -6.0734
α− 3RR -6.0720
β -5.9968

As discussed in the computational methodology (section 2.5), modeling

XCO’s tertiary helical magnetic moment structure would require the use of the

non-collinear version of VASP, and a unit cell much larger than the primitive unit

cell which only contains two Cr atoms. These two requirements would make

computation of the pristine crystal quite taxing, and the supercell defect and doped

systems even more so. Models in the literature side-step the need for non-colinear

DFT-based calculations by adopting a simple AFM configuration where each Cr

nucleus has a magnetic moment antiparallel to the other and aligned along the

c-axis. Thus, it is necessary to show that adopting the simple AFM configuration
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still results in a model accurate enough to be capable of offering useful predictions.

In similar rationale to the total energy evaluation of the XAO polymorphs, the

AFM configuration of XCO should have the lowest total ground state energy of the

three studied configurations, the other two being the nonmagnetic NM − where the

magnetic moments are ignored in the calculation − and FM with parallel Cr

magnetic moments. Using the same method for evaluating the total ground state

energy of the XAO polymorphs, the normalized total energy for each magnetic

configuration against the normalized crystal volume is presented in Fig 3.2, with the

minimum energies obtained from Gibbs2 reported in Tab. 3.4. The VASP and

Gibbs2 data show the NM configuration to have the highest total energy. The

VASP results give a slightly lower total energy for the AFM configuration,

-7.1967(-6.8610) eV, than the FM configuration, -7.1964(-6.8580) eV, for

CCO(ACO). However, the Gibbs2 data show that in both materials the FM

configuration is less than 0.1 eV lower in energy than the AFM configuration.

Although it may be ambiguous given the contradictory results that the AFM

configuration is the most stable, it is predicted to be at least as stable as the FM

configuration, and for that reason the AFM configuration will be used in this study

to allow the results obtained for the XCO defect and doped systems to be compared

to other first principles results in literature.

Table 3.4: The XCO total energies normalized by the number of atoms in each unit
cell, Etot/atom, using PBE.

Config. Etot/atom
(eV)

CuCrO2 NM -6.9688
FM -7.2050

AFM -7.1966

AgCrO2 NM -6.5506
FM -6.8626

AFM -6.8608
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a) CuCrO2 b) AgCrO2

Figure 3.2: Total crystal energies normalized by the number of atoms in each unit
cell versus the volume of the unit cell normalized by each relaxed volume for a) CCO
and b) ACO using PBE.

With a rationale for a focused study on 2H XTO and a simple AFM

configuration for XCO, it is now necessary to justify the choice of Hubbard

correction what will be used with the PBE and PBE+MBJ exchange and

correlation energy functionals when choosing which functional approach will

produce the most accurate band gap. In accordance with the method described by

Van de Walle, the static dielectric constant, ε∞, for each 2H XTO crystal is first

determined along with the unscreened Hubbard correction, Uunscr, for each atom in

vacuum using the ATOM code. The screened Hubbard corrections, Uscr are used in

the remainder of this work and are presented with the unscreened values and the

static dielectric constant obtained in the PBE method in Tab. 3.5.

As will be discussed in the proceeding section, the PBE+U method most
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Table 3.5: The 2H XTO Hubbard corrections, where ε∞ is the static dielectric con-
stant, Uunscr is the unscreened Hubbard parameter in vacuum, and Uscr = Uunscr/ε∞
is the screened Hubbard parameter in the crystal, using PBE.

ε∞ Uunscr Uscr

(eV) (eV)

CuAlO2:Cu 5.6944 18.4477 3.2368

AgAlO2:Ag 5.9282 14.5058 2.4469

CuCrO2:Cu 9.2486 18.4477 1.9947
CuCrO2:Cr 9.2486 20.3871 2.2044

AgCrO2:Ag 11.2699 14.5058 1.2871
AgCrO2:Cr 11.2699 20.3871 1.8090

accurately models the 2H XTO direct bang gaps, which are the most relevant for

optical properties (since they do not require phonon generation to conserve wave

number). With that in mind, the optimized lattice constants, bond lengths dX−O

and dT−O, bulk modulus B0 at zero Kelvin and its associated pressure derivative,

∂B/∂P , are presented in Tab. 3.6. Also presented in Tab. 3.6 are the 2H XTO

cohesive energies, defined as Ecoh = 2EX
tot + 2ET

tot + 2EO2
tot − E2HXTO

tot , where EX
tot,

ET
tot, and EO2

tot are the total energies of X, T, and O2 in vacuum and E2HXTO
tot is the

total ground state energy of 2H XTO calculated using the PBE method only. The

decision to calculate the 2H XTO cohesive energies using only the PBE method is

motivated by the fact that the Hubbard correction is only intended to widen the

band gap by means of adjusting the inter-energy transitions of the X atom d

orbitals, however, the total ground state energy of any system is only affected by the

ground state valence configuration of the bonded atoms in the material, and thus

using the Hubbard correction for the calculation of the total ground state energy is

a superfluous treatment. The lattice constant a in the case of XAO does not change

when optimizing the structures when beginning with the PBE lattice constants

using PBE+U, however, the lattice constant c slightly decreases and further

approaches the experimental values. The experimental lattice constants for CCO of
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a = b = 2.97 Å and c = 11.40 Å [30] are in good agreement with the optimized

constants obtained in this work of a = 3.0308 Å and c = 11.4914 Å. The Cu-O bond

lengths in CTO are shorter than the bond lengths in ATO, with CCO(ACO) longer

than the respective bonds in CAO(AAO). This behavior has a direct effect on the

lattice constant c since the X-O bond is parallel to the c-axis. The T-O bond length

is only affected by the X-O bond length in a minor way (since there are three T-O

bonds for every X-O bond on the same O atom), and so although the T-O length is

shorter for CTO than in its corresponding ATO counterpart, the length is most

dependent on the T atom, and so the physically larger valence configuration of Cr

compared to Al gives ACO(CCO) a longer T-O bond length than AAO(CAO).

Since the X-O bond is parallel to the c-axis it has no bearing on the lattice constant

a, and thus a only depends on the T-O bond lengths.

Table 3.6: The optimized lattice constants, a and c, the ratio u = c/a, X-O and
T-O bond lengths, dX−O and dT−O respectively, ground state bulk modulus, B0, and
pressure derivative of the ground state bulk modulus, ∂B/∂P of XTO using PBE+U.
Also presented are the XTO cohesive energies normalized by the number of atoms in
the primitive cell, EPBE

coh /atom, calculated using PBE only.

a c u dX−O dT−O B0 ∂B/∂P EPBE
coh /atom

(Å) (Å) (Å) (Å) (GPa) (eV)

CuAlO2 2.8797 11.3918 3.9560 1.8804 1.9278 169.92 4.41 34.2563
AgAlO2 2.9164 12.3329 4.2288 2.1215 1.9391 151.71 4.70 31.4283
CuCrO2 3.0308 11.4914 3.7912 1.8959 2.0040 165.35 4.67 38.0474
AgCrO2 3.0322 12.5225 4.1298 2.1254 2.0187 143.71 5.00 35.3601

3.3. Electronic Properties

The XAO and 2H XCO crystal structures have been optimized in the PBE method

and the choice for studying the α-2H XTO polymorph with a simple AFM

configuration for XCO has been validated. Additionally, looking ahead at the result

that the PBE+U method using the screened Hubbard corrections from Tab. 3.5

most accurately replicates the band gaps of 2H XTO, several structural parameters
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for 2H XTO were calculated using the PBE+U method. Now it is appropriate to

give attention to the electronic structures of the pristine crystals and compare them

to experimental results from the literature. The paths taken through the Brillouin

zones when calculating the band structure are Γ→M→L→A→ Γ→K→H for the

hexagonal lattice, Γ→F→L→Z→ Γ for the rhombohedral lattice, and

Γ→Y→S→X→U→R→ Γ for the orthorhombic lattice. The fractional coordinates

in terms of the reciprocal lattice vectors are given in Tab. 3.7. All paths are shown

in Fig. 3.3. The electronic band structures and DOS for CAO and AAO obtained

a) 𝛼-2H, 𝛼-3RCH

b) 𝛼-3RR

c) 𝛽

b1

b2

b3

Γ
M

L

A
K
H

b1

b2

b3

Γ

F

Z
L

b1

b2

b3

Γ

Y

SX

RU

Figure 3.3: Brillouin zone paths through the a) hexagonal, b) rhombohedral, and c)
orthorhombic unit cells used in calculating the electronic band structure.

in the PBE method are plotted in Figs. 3.4 and 3.5 respectively. In all of the band

structure and DOS plots presented in this work, the Fermi energy, EF, is set at zero

and is defined as the maximum energy of a valence electron in the ground state.

The delafossite polymorphs of CAO are predicted to be indirect band gap materials,

with an indirect transition from H→ Γ in the 2H polymorph and from M→ Γ in

α-3RCH CAO, which corresponds to a transition from F→ Γ in α-3RR. The β

polymorph is predicted to be a direct band gap material with a significantly smaller

band gap than the α polymorphs. For all 2H CAO delafossites, the direct band gap
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Table 3.7: The high symmetry points used in the paths through the Brillouin zones of
each polymorph expressed as fractional coordinates of the respective reciprocal lattice
vectors.

Phase High sym. pts. Frac. coor.

α− 2H, α− 3RCH Γ (000)
M

(
1
2
00
)

L
(
1
2
01
2

)
A

(
001

2

)
K

(
1
3
1
3
0
)

H
(
1
3
1
3
1
2

)
α− 3RR Γ (000)

F
(
01
2
1
2

)
L

(
01
2
0
)

Z
(
1
2
1
2
1
2

)
β Γ (000)

Y
(
01
2
0
)

S
(
1
2
1
2
0
)

X
(
1
2
00
)

U
(
1
2
01
2

)
R

(
1
2
1
2
1
2

)
is located at the M point. In AAO, the delafossite polymorphs are also indirect

band gap materials, with a direct gap also located at the M point, but the indirect

band gap is from H→ Γ. The β AAO polymorph also has a smaller band gap than

the corresponding delafossites but is also predicted as an indirect band gap

material, with a transition from R→ Γ and a direct gap at a location between R and

Γ. The band gap values for all polymorphs of XAO using the PBE method are

presented in Tab. 3.8. It is clear from the experimental values for the α-3R

polymorphs that the PBE method has underestimated the direct band gaps. It is

well known that the band gaps obtained with DFT are underestimated since it is

intended to be an accurate theory of the ground state and error is introduced when

exciting states into the conduction bands [81,82]. Incidentally, since there are no

experimental values reported specifically for the 2H delafossite polymorphs of XAO
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CuAlO2

a) 𝛼-2H b) 𝛼-3RCH c) 𝛼-3RR d) 𝛽

Figure 3.4: Band structures and DOS of the a) α-2H, b) α-3RCH, c) α-3RR, and d)
β CAO polymorphs using PBE, where the Fermi energy, EF, is set to zero and is
defined as the maximum energy of a valence electron in the ground state.

at the time of this writing, and since the crystal structures and total ground state

energies are so similar for both delafossite polymorphs, the 3R direct gap will be

used to evaluate the 2H direct band gaps as well. Making the approximation that

the two delafossite polymorphs have the same direct band gap enables 2H XAO to
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AgAlO2

a) 𝛼-2H b) 𝛼-3RCH c) 𝛼-3RR d) 𝛽

Figure 3.5: Band structures and DOS of the a) α-2H, b) α-3RCH, c) α-3RR, and d)
β AAO polymorphs using PBE, where the Fermi energy, EF, is set to zero and is
defined as the maximum energy of a valence electron in the ground state.

be modeled using different functionals, namely PBE, PBE+U, PBE+MBJ,

PBE+MBJ+U, and HSE06 for the purpose of obtaining direct band gaps that are

as close as possible to the experimental values.

The band structures for 2H XAO calculated using the previously
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Table 3.8: The XAO band gaps using PBE, where Eind
g−opt and Edir

g−opt are the indirect
and direct gaps obtained in this work, and Eind

g−exp and Edir
g−exp are the respective

experimental values from the literature.

Phase Eind
g−opt Eind

g−exp Edir
g−opt Edir

g−exp
(eV) (eV) (eV) (eV)

CuAlO2 α− 2H 1.7796 - 2.5594 -
α− 3RCH 1.7766

2.99 [20]
2.6020 3.01 [21],3.47-3.53 [6, 7, 13, 20],

α− 3RR 1.7757 2.7122 3.75 [10],3.9 [22]
β - - 0.6141 -

AgAlO2 α− 2H 1.4480 - 2.4465 -
α− 3RCH 1.4211

-
2.5246

3.6 [25]
α− 3RR 1.4037 2.9159

β 0.9108 - 1.0248 2.81 [16], 2.95 [29]

mentioned functionals are shown in Figs. 3.6 and 3.7. Note that as implemented by

the VASP code, the HSE06 functional does not allow for the same k-point to be

traced more than once in the BZ path, and for that reason two separate calculations

were run using the same converged charge density, each covering a unique path that

produces the same overall path shown in Fig. 3.3a when catenated. The direct band

gaps, EXAO
g−dir, for XAO calculated using PBE, PBE+U, PBE+MBJ, PBE+MBJ+U,

and HSE06 are shown in Tab. 3.9. For both XAO, the direct gap is overestimated

by PBE+MBJ+U and HSE06 except for the direct band gap value of 3.9 eV for

CAO reported by Suriwong, Thongtem, and Thongtem [22]. The PBE+MBJ

method overestimates the band gap for AAO as well, and in all cases the over

estimation is by roughly 0.5 eV for all reported values (up to 0.9 eV in the case of

the direct band gap of 4.4858 eV for AAO calculated by PBE+MBJ+U). The

PBE+U method direct band gap values, Edir
g−opt, presented along with the associated

indirect band gaps, Eind
g−opt, are shown in Tab. 3.10. These band gaps are still

roughly 0.5 eV below the experimental values, except for the value reported by

Smith [21] of 3.01 eV, which has good agreement with the direct band gap of

3.0689 eV for CAO. The direct band gap of CCO (2.3869 eV) is also approximately
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0.5 eV below the reported range of 2.95 − 3.3 eV [30–34]. Due to the high efficiency

in computation of the PBE+U method when compared to PBE+MBJ,

PBE+MBJ+U, and HSE06, as well as similar error in the direct band gap values

without overestimation and an improvement in the structural parameters, the

PBE+U method is adopted for the remainder of this work.

a) PBE b) PBE+U e) HSE06c) PBE+MBJ d) PBE+MBJ+U

CuAlO2

Figure 3.6: The electronic band structure for 2H CAO calculated using PBE, PBE+U,
PBE+MBJ, PBE+MBJ+U, and HSE06, where the Fermi energy, EF, is set to zero
and is defined as the maximum energy of a valence electron in the ground state.

Table 3.9: The direct band gaps, ECAO
g−dir and EAAO

g−dir, for CAO and AAO respectively,
calculated using PBE, PBE+U, PBE+MBJ, PBE+MBJ+U, and HSE06.

ECAO
g−dir EAAO

g−dir
(eV) (eV)

PBE 2.5594 2.8798
PBE+U 3.0689 3.2545

PBE+MBJ 3.3427 4.1844
PBE+MBJ+U 3.9523 4.4858

HSE06 4.0276 3.9265

Concerning the magnetic configurations of 2H XCO, the AFM

configuration not only shares the lowest total energy with FM configuration, it also

has an unambiguous semiconductor nature and the larger band gap which is
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a) PBE b) PBE+U e) HSE06c) PBE+MBJ d) PBE+MBJ+U

AgAlO2

Figure 3.7: The electronic band structure for 2H AAO calculated using PBE, PBE+U,
PBE+MBJ, PBE+MBJ+U, and HSE06, where the Fermi energy, EF, is set to zero
and is defined as the maximum energy of a valence electron in the ground state.

Table 3.10: The 2H XTO band gaps using PBE+U, where Eind
g−opt and Edir

g−opt are the
indirect and direct gaps respectively.

Eind
g−opt Edir

g−opt
(eV) (eV)

CuAlO2 2.0227 3.0689
AgAlO2 1.6202 3.2545
CuCrO2 1.7083 2.3869
AgCrO2 1.5233 2.5184

preferred for a TCO as presented in Figs. 3.8 and 3.9 along with the other

configurations. The NM XCO is clearly metallic, and FM ACO exhibits shallow

acceptor states (unoccupied states immediately above the Fermi energy) in addition

to a small band gap with is also a characteristic of FM CCO along with strong

asymmetry in the band structure across spin, making both the NFM and FM poor

candidates for p-type TCOs. In this way the electronic structures further support

using the AFM configuration with the primitive cell representation of 2H XCO.

The next step in this study is to use the optimized crystal structure in the

PBE+U approach to obtain band structures and DOS of pristine 2H XTO − from

now on referred to only as XTO − which will serve as a point of comparison when
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a) NM b) FM – spin up c) FM – spin down d) AFM – spin up e) AFM – spin down

CuCrO2

Figure 3.8: 2H CCO band structures in the a) non-magnetic (NM), b) spin-up fer-
romagnetic (FM), c) spin-down ferromagnetic, d) spin-up antiferromagnetic (AFM),
and e) spin-down antiferromagnetic configurations using PBE, where the Fermi en-
ergy, EF, is set to zero and is defined as the maximum energy of a valence electron
in the ground state.

d) AFM – spin up e) AFM – spin downb) FM – spin up
AgCrO2

c) FM – spin downa) NM

Figure 3.9: 2H ACO band structures in the a) non-magnetic (NM), b) spin-up fer-
romagnetic (FM), c) spin-down ferromagnetic, d) spin-up antiferromagnetic (AFM),
and e) spin-down antiferromagnetic configurations using PBE, where the Fermi en-
ergy, EF, is set to zero and is defined as the maximum energy of a valence electron
in the ground state.
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the supercell scheme is implemented. X behaves as X+, T as T3+, and O as O2− in

XTO. Figure 3.10 shows the electronic band structure and DOS for CAO. As

previously stated, the delafossite XTO are indirect band gap materials, and the

CAO indirect gap is from H→ Γ. The direct gap is located at the slightly off-M

location in the direction of Γ. The bands around the gap are highly dispersive in the

a− b plane. Local to the band gap area, the DOS in the valence band is at a

maximum at -2.0 eV below the Fermi energy. There is another, smaller local

maximum right below the Fermi energy, which is dominated by Cu-3d states, with

minor contributions from O-2p states. Shown in panel b) of Fig. 3.10 are the band

structure and DOS for AAO. The band structure is very similar to that of CAO,

with the exception of the indirect gap being located at the off-K point towards Γ

instead of the H point. The DOS are more evenly distributed than in CAO from

about -1 eV to -4 eV below the Fermi energy, with contributions becoming smaller

until the local maxima right below the Fermi energy that begins at about -1 eV. In

AAO, the contribution of Ag-4d states near the VBM is roughly the same as O-2p

states. In both XAO, the region above the CBM is equal parts Cu(Ag)-3(4)d states.

The Al contributions to the DOS in XAO are negligible.

The XCO electronic band structures and DOS, which are shown in Fig.

3.11, show that the indirect gap for both materials is from the off-K point towards Γ

to a point roughly midway between Γ and M. The direct gap for both materials is

located at a similar off-K point. The energy bands around the band gap are less

dispersive in the a− b plane as compared to XAO. The DOS in CCO have a local

maximum at about -1.8 eV below the Fermi energy. There is also a small local

maximum immediately below the Fermi energy. The immediate DOS below the

Fermi energy are dominated by Cu-3d states, followed by similar contributions from

Cr-3d and O-2p states, while in the area directly above the CBM Cr-3d states

dominate the DOS followed closely by equal contributions from Cu-3d and O-2p
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a) CuAlO2

b) AgAlO2

Figure 3.10: The electronic band structure and density of states for a) CAO, and b)
AAO using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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a) CuCrO2

b) AgCrO2

Figure 3.11: The electronic band structure and density of states for AFM a) CCO,
and b) ACO using PBE+U, where the Fermi energy, EF, is set to zero and is defined
as the maximum energy of a valence electron in the ground state.
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states. The DOS in ACO has the greatest local maximum at -3.5 eV, but that local

maximum is only a bit more than half of the local maximum in CCO. The DOS

generally decreases as energy increases from -3.5 eV until about -1.2 eV, when the

DOS reaches another local maximum at -0.7 eV. This local maximum close to the

band gap is dominated heavily by Cr-3d states, followed by O-2p states. Similarly to

CCO, the lower conduction band states are predominantly Cr-3d in nature, with

equal contributions from Cu-3d and O-2p states.

In order to convert to a supercell scheme and study the effects of Mg

doping and Cu and O vacancies, it is important to ensure that the electronic

structure of the pristine XTO crystal modeled in the 2× 2× 2 supercell is in good

agreement with the results from the primitive cell model. In converting to a

supercell, it is necessary to scale back the number of points in the k-mesh in order

to prevent the computation from running out of virtual memory or creating output

files that are too large to process. Reducing the k-mesh by too many points can

cause the supercell results to become less accurate. As presented in Fig. 3.12,

however, the folded band structures for XTO using the SC model are difficult to

interpret in the context of the primitive cell model. From Fig 3.12 alone it cannot

be determined if the chosen SC model accurately reproduces the results of the PC

model shown in Figs. 3.10 and 3.11. Plotting the unfolded SC band structures (red

x’s) as obtained using the BandUP code [63,64] along with the results for the PC

models (black lines) is displayed in Fig. 3.13 and shows strong agreement between

the electronic band structures obtained in both models.

The charge densities, shown in Fig. 3.14, are strongly ionic in nature, with

a majority of the density located at the X and O sites. The Cr nuclei in XCO have

the highest density in CCO, and in general the density is greater at the Cr sites than

at the Al sites in XAO. The charge density at the Al sites in CAO is negligible.
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a) CuAlO2 b) AgAlO2

d) AgCrO2c) CuCrO2

Figure 3.12: The folded electronic band structure of the a) CAO, b) AAO, c) CCO,
and d) AAO supercells using PBE+U, where the Fermi energy, EF, is set to zero and
is defined as the maximum energy of a valence electron in the ground state.
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a) CuAlO2 b) AgAlO2

d) AgCrO2c) CuCrO2

Figure 3.13: The electronic band structure of the primitive cell (solid black lines) and
the supercell in the primitive cell representation (red x’s) for a) CAO, b) AAO, c)
CCO, and d) ACO using PBE+U, where the Fermi energy, EF, is set to zero and is
defined as the maximum energy of a valence electron in the ground state.
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a) CuAlO2

[100]

[001] - Al

[001] - Cu

[001] - O
0
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[001] - Al

[001] - Ag

[001] - O
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b) AgAlO2

[100]

[001] - Cr

[001] - Cu

[001] - O
0
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c) CuCrO2

[100]

[001] - Cr

[001] - Ag

[001] - O
0

1

d) AgCrO2

Figure 3.14: Charge density contour plots for a) CAO, b) AAO, c) CCO, and d) ACO
supercells using PBE+U. The direction presented with each contour plot indicates a
direction perpendicular to the plot and the atomic symbol indicates the ion in the
plot.
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3.4. Hole Effective Masses

The VBM was calculated to be at the off-M point in XAO and the off-K point in

XCO, both in the direction of the Γ point. New paths through the BZ are defined

that pass through each VBM in the [010] and [001] directions in addition to the

[100] direction already covered by the initial band structure calculations. The [010]

direction are not associated with a high symmetry point, but the [010] direction is

towards L(H) for off-M(off-K). The reported hole effective mass, m∗ = |mh/me|

where mh and me are the measured hole effective mass and free electron mass

respectively, are reported in Tab. 3.11. In all cases, the hole effective mass is

Table 3.11: The hole effective masses for XTO using the primitive cell model and
PBE+U, in units of me, the free electron mass.

M(K) → Γ [100] [010] M(K) → L(H) [001] avg.

CuAlO2 (off-M) 0.48 2.36 2.72 1.85
AgAlO2 (off-M) 0.42 1.99 1.11 1.17
CuCrO2 (off-K) 2.33 2.82 4.27 3.14
AgCrO2 (off-K) 1.61 1.77 6.06 3.15

smallest in the [100] direction. With the exception of AAO, the [001] direction is

associated with the largest mass. Overall, the hole effective masses in XCO are

larger than in XAO. Other theoretical values for the hole effective masses in XAO

are reported in Tab. 3.12 and are similar with the results obtained in this work

except for Cerqueira’s average value [83] of 2.66 for 3R CAO and Zhang’s reported

value [1] of 38.9 for 3R CAO in the [001] direction. Tab. 3.13 shows the hole

effective masses obtained for the pristine XTO crystal in the SC scheme. The values

are comparable to results calculated in the PC model for XAO. However, although

there is agreement between hole effective masses in the [100] direction in the PC

and SC models, there is much more disagreement in the [010] and [001] directions,

which leads to overall smaller hole effective masses for XCO in the SC scheme. In

the case of CCO, the hole effective mass is lowest in the [001] direction. The
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Table 3.12: Other theoretical hole effective masses for XTO from literature, in units
of me, the free electron mass.

[100] [010] [001] avg.

3R CuAlO2 (PBE) [27] 0.41 1.88 1.01 1.10
3R CuAlO2 (PBE) [83] - - - 2.66
3R CuAlO2 (HSE06) [1] - 2.6 38.9 -

AgAlO2 (PBE) [27] 0.47 2.01 1.91 1.46
AgAlO2 (PBE) [83] - - - 1.49

discrepancies between the results in the PC and SC models is the result of a

reduction of the number of k points in the k-mesh of the primitive cell and a

reduction in the resolution of the energy spectrum from 1× 10−4 eV in the PC

model to 1× 10−3 eV in the SC model as a result of the band unfolding process.

Table 3.13: The hole effective masses for XTO using the supercell scheme, in units of
me, the free electron mass.

M(K) → Γ [100] [010] M(K) → L(H) [001] avg.

CuAlO2 (off-M) 0.47 1.54 2.22 1.41
AgAlO2 (off-M) 0.42 1.72 2.03 1.39
CuCrO2 (off-K) 2.05 5.23 0.81 2.70
AgCrO2 (off-K) 1.25 1.76 1.99 1.67

3.5. Optical Properties

The optical properties of XTO are symmetric in the a− b plane. As indicated by

Tab. 3.14, the static dielectric constants and refractive indices in each primitive

lattice vector direction are larger for XCO than XAO, with the largest values in

ACO and the smallest in CAO. In all crystals, the values are higher in the plane

than perpendicular.

The frequency-dependent optical properties presented in this section, the

real component of the complex dielectric function, ε1(ω), imaginary component of

the complex dielectric function, ε2(ω), refractive index, n(ω), extinction coefficient,

κ(ω), optical conductivity, Re σ(ω), absorption coefficient, α(ω), reflectivity, R(ω),
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Table 3.14: The static dielectric constants, ε∞, and refractive indices, n, in the direc-
tions a, b, and c, corresponding to the primitive lattice vectors b1, b2, and b3, of 2H
XTO modeled in the primitive cell using PBE+U.

εa∞ εb∞ εc∞ εavg∞ na nb nc navg

CuAlO2 5.4141 5.4142 4.4346 5.0876 2.3268 2.3268 2.1058 2.2531
AgAlO2 5.4994 5.4999 5.5418 5.5137 2.3451 2.3452 2.3541 2.3481
CuCrO2 7.7501 7.7478 6.6488 7.3822 2.7839 2.7835 2.5785 2.7153
AgCrO2 8.0116 8.0116 7.8292 7.9508 2.8305 2.8305 2.7981 2.8197

and loss function, L(ω), are overlays of the results obtained using the SC model

onto results obtained in the PC scheme. The component in the a− b plane is drawn

in blue for the SC model and the corresponding component in the PC scheme is

green. The perpendicular component in the SC model is drawn in dotted red, while

the same component in the PC scheme is drawn in dashed cyan. The optical

properties for CAO are shown in Fig. 3.15. The real component of the complex

dielectric function of CAO shows the onset of the optical transition in the a− b

plane. The overall maximum value also happens in the plane and about 1 − 2 eV

before the corresponding maximum in the perpendicular component. A similar

behavior is exhibited in the imaginary component of the complex dielectric function.

These features are exhibited in the derived optical properties. There is a sharp

increase in the optical conductivity oriented in the plane at about 3 eV, consistent

with the optical transition in the real component of the dielectric function and the

direct gap measured from the band structure. In addition to symmetry in the plane,

the complex dielectric function in AAO shares more symmetry with the

perpendicular component than in CAO, which can be seen in Fig 3.16. That

approximate symmetry is disturbed at roughly 4.5 eV, where much more anisotropy

is introduced across the two components. Unlike CAO, the complex dielectric

function also exhibits a second local maximum at 5.0(6.0) eV for the

perpendicular(in-plane) component. As illustrated in Fig. 3.17, there are many

more features to the complex dielectric function in CCO than in XAO. First, due to
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CuAlO2
a) b) c) d)

e) f) g) h)

Figure 3.15: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of CAO. The in-plane components of the supercell are
drawn as a thick blue line and the perpendicular component is drawn by a thick red
dashed line. The primitive cell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.

the smaller band gap, the maximums in each component happen at lower energies,

which is consistent with the direct band gap measured from the band structure.

The in-plane component is larger than the perpendicular component until about

4.0 eV, at which point the perpendicular component is larger. Although the

complex dielectric function has a lower energy optical transition and many features

across the spectrum similar to CCO, it differs from CCO in that the in-plane and

perpendicular components alternate more often as the dominant component.

In all materials the results from the supercell scheme match closely the
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AgAlO2
a) b) c) d)

e) f) g) h)

Figure 3.16: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of AAO. The in-plane components of the supercell are
drawn as a thick blue line and the perpendicular component is drawn by a thick red
dashed line. The primitive cell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.

results obtained from the PC model, indicating that the accuracy of the complex

dielectric function was not appreciably affected by the reduction of k-points in the

mesh used on the SC.
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CuCrO2
a) b) c) d)

e) f) g) h)

Figure 3.17: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of CCO. The in-plane components of the supercell are
drawn as a thick blue line and the perpendicular component is drawn by a thick red
dashed line. The primitive cell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.
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AgCrO2
a) b) c) d)

e) f) g) h)

Figure 3.18: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of ACO. The in-plane components of the supercell are
drawn as a thick blue line and the perpendicular component is drawn by a thick red
dashed line. The primitive cell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.
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3.6. Summary of Results

All polymorphs of XAO are optimized in the PBE method, and their normalized

total energies indicate that 2H XAO may be just as − if not more − stable than 3R

XAO in the ground state, and since it is the lesser investigated polymorph, it is

chosen to be the focus of the remainder of this work. The simple AFM configuration

is the most appropriate choice for XCO in the PC model. PBE+U is shown to most

suitably replicate the experimental band gaps and structural properties. The

electronic band structure, hole effective masses, and optical properties are

determined in the SC scheme and the PC model in order to have confidence in the

calculated results of the defect and doped systems. All properties except the XCO

hole effective masses in the [010] and [001] directions are determined to be in good

agreement between the PC and SC models. The optical properties for XAO support

transparent character due to an onset of the optical transition in the real and

imaginary components of the complex dielectric function taking place at about 3 eV.

Due to the underestimation of the band gaps in XCO, which are smaller than for

XAO, the onset of the optical transition happens at roughly 2 eV, in which case the

transparent character of XCO is poorly modeled. The lighter hole effective masses in

the a− b plane (with the exception of CCO in the SC model) along with dominant

optical properties in the plane for all materials except AAO (in which case the

in-plane and perpendicular components are much more symmetric) and the strong

contributions from the X-d and O-2p states around the band gap support a model of

hole conduction in the a− b plane perpendicular to the O−X−O dumbbells.
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4. NATIVE DEFECTS IN XTO: X AND O VACANCIES

4.1. Introduction

The first type of crystal defects that are studied in this work are X and O vacancies.

Vacancies affect the bond lengths of the atoms adjacent and near the defect site,

which not only affects the structural parameters, but also the electronic structure by

affecting the charge density distribution both from the new positions of the adjacent

ions and the absence of an ion at the defect site as well as by acting as an electron

donor or acceptor, altering the number of available electrons available for

conduction.

4.2. Structural Properties

The new bond lengths, reported in Tab. 4.1 show 1.33− 2.43% and 2.12− 3.57%

shorter lengths for X-O and T-O bonds, respectively, than those of the pristine

XTO crystals in Tab. 3.6 adjacent to an X vacancy, indicating a contraction of the

dangling O anions towards the T plane. In the presence of an O vacancy, the T-O

bond length increases only marginally (0.02− 0.57%) for all crystals except ACO,

where the change is by 1.83%, and the X-O bond length also increases quite

drastically, by 9.10− 19.60%, which is consistent with the X cation relaxing towards

the vacancy site towards the T plane adjacent to the vacancy.
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Table 4.1: The X-O and T-O bond lengths, dX−O and dT−O respectively, of X- and
O- vacant XTO in the PBE+U method. % Diff. refers to the difference between the
values reported here and the associated values from the pristine crystals reported in
Tab. 3.6.

dX−O % Diff. dT−O % Diff.
(Å) (Å)

CuAlO2:VCu 1.8556 1.33 1.8602 3.57
AgAlO2:VAg 2.0866 1.66 1.9815 2.16
CuCrO2:VCu 1.8503 2.43 1.9620 2.12
AgCrO2:VAg 2.1219 1.65 1.9518 3.37

CuAlO2:VO 2.1886 15.15 1.9304 0.13
AgAlO2:VO 2.5823 19.60 1.9281 0.57
CuCrO2:VO 2.0766 9.10 2.0411 1.83
AgCrO2:VO 2.5842 19.48 2.0192 0.02

4.3. Electronic Properties

The bond length trends discussed in the previous section manifest as corresponding

shifts in the local maxima of the charge densities, shown in Figs. 4.1 and 4.2. A

disturbance of the symmetry in the T plane is introduced by the discussed native

defects for all crystals except for O vacancies in CAO and vacancies in general for

CCO. The band structure for Cu-vacant CAO, shown in Fig. 4.3 along with the

DOS, shows the presence of shallow acceptor states above the Fermi energy in the

spin up channel, which are strongly Cu-3d in nature according to the partial DOS.

The electronic structure of Ag-vacant AAO is presented in Fig. 4.4 and contains

acceptor states in the spin down channel. Similar to pristine AAO, the character of

the DOS is equal parts Ag-4d and O-2p in the immediate vicinity of the band gap

and dominant O-2p character at -0.5 eV below the Fermi energy. Very shallow

acceptor states in the spin up and down channels are predicted in the Cu-vacant

CCO band structure and DOS shown in Fig. 4.5. Here the Cu-3d, Cr-3d, and O-2p

states are roughly equal in contribution to the VBM, but the Cr-3d states still

dominate the lower conduction band energies. The band structure and DOS are
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symmetric across spin as shown in Fig. 4.6 for Ag-vacant ACO and indicate shallow

acceptor states present in both spin channels. Similar to the pristine crystal, Cr-3d

states dominate the area surrounding the band gap, followed by equal contributions

from Ag-4d and O-2p states. The shallow acceptor states in X-vacant XTO are

likely the result of the vacancy site (missing X+ ion) acting as an electron acceptor

for the adjacent O anions, creating shallow transition energies directly above the

Fermi energy.

The O-vacant CAO band structure and DOS presented in Fig. 4.7 exhibit

symmetry across spin and a slight decrease in the band gap as compared to pristine

CAO. There is an increase in Al-3p states around the band gap, likely from the

three Al atoms near the vacancy site which each retain an electron, raising the

energy of those associated states. The local maximum with strong Cu-3d character

at the VBM is replaced by contributions that taper off towards the VBM that are

equal parts Cu-3d and O-2p. Fig. 4.8 shows a drastic decrease in the band gap

symmetrically across both spins in O-vacant AAO, likely the result of the

corresponding Al-3p states similar to what is discussed for O-vacant CAO. The

region surrounding the band gap has equal contributions from Ag-4d and O-2p

states. O-vacant CCO contains acceptor states in the spin down channel. The upper

valence states near the Fermi energy are now dominated by Cu-3d character down

to -0.8 eV below the Fermi energy. The band structure shown in Fig. 4.10 for

O-vacant ACO also shows spin down acceptor states. The partial DOS shows that

the Cr-3d states remain the dominant contribution to the total DOS around the

band gap. For both XCO, there is a decrease in the band gap when compared to the

pristine crystal. The shrinking band gap in the case of O vacancies is a result of the

X+ and three T3+ ions surrounding the vacancy site retaining an extra electron each

instead of donating them to an O atom. The retained electrons will be higher in

energy than their counterpart empty states and will take less energy to excite into
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the conduction bands, thus there are more Al-3p and Cr-3d states in the upper

valence band, pushing the Fermi energy upwards, and more Al-3p and Cr-3d states

near the conduction band minimum, which has moved closer to the Fermi energy.
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Figure 4.1: Charge density contour plots for a) Cu-vacant CAO, b) O-vacant CAO,
c) Ag-vacant AAO, and d) O-vacant AAO 2 × 2 × 2 supercells using PBE+U. The
direction presented with each contour plot indicates a direction perpendicular to the
plot and the atomic symbol indicates the ion in the plot.
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Figure 4.2: Charge density contour plots for a) Cu-vacant CCO, b) O-vacant CCO,
c) Ag-vacant ACO, and d) O-vacant ACO 2 × 2 × 2 supercells using PBE+U. The
direction presented with each contour plot indicates a direction perpendicular to the
plot and the atomic symbol indicates the ion in the plot.
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CuAlO2:VCu

Figure 4.3: The electronic band structure and density of states for Cu-vacant CAO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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AgAlO2:VAg

Figure 4.4: The electronic band structure and density of states for Ag-vacant AAO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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CuCrO2:VCu

Figure 4.5: The electronic band structure and density of states for Cu-vacant CCO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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AgCrO2:VAg

Figure 4.6: The electronic band structure and density of states for Ag-vacant ACO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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CuAlO2:VO

Figure 4.7: The electronic band structure and density of states for O-vacant CAO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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AgAlO2:VO

Figure 4.8: The electronic band structure and density of states for O-vacant AAO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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CuCrO2:VO

Figure 4.9: The electronic band structure and density of states for O-vacant CCO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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AgCrO2:VO

Figure 4.10: The electronic band structure and density of states for O-vacant ACO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.

99



4.4. Hole Effective Masses

The hole effective masses, which are presented in Tab. 4.2 show that X vacancies in

XTO increase the hole effective mass across the board compared to the values in

Tab. 3.12. Additionally, in Cu-vacant CAO and Ag-vacant ACO, the hole effective

masses become the heaviest in the [010] direction, indicating that in those materials

conduction perpendicular to the O−X−O dumbbells may no longer be preferential.

Although O-vacant XTO retains a similar average value of the hole effective mass of

the pristine crystal with the exception of O-vacant CCO, the values in the [100]

direction become larger while the [010] values become smaller. From the perspective

of hole effective masses, O vacancies may do more to improve conduction than X

vacancies.

Table 4.2: The hole effective masses for X- and O-vacant XTO using PBE+U, in
units of me, the free electron mass.

K(L){Γ} → Γ(A){M} [100] [010] K(L){Γ} → H(M){A} [001] avg.

CuAlO2:VCu (off-Γ) 10.11 10.32 4.89 8.44
AgAlO2:VAg (off-K) 6.88 2.23 13.34 7.49
CuCrO2:VCu (off-L) 3.48 4.05 18.66 3.14
AgCrO2:VAg (off-L) 3.09 7.46 3.58 4.71

CuAlO2:VO (off-K) 1.82 1.46 1.29 1.52
AgAlO2:VO (off-K) 1.48 0.84 1.50 1.27
CuCrO2:VO (off-K) 3.59 2.56 3.10 3.08
AgCrO2:VO (off-K) 2.42 1.54 0.32 1.43

4.5. Optical Properties

The static dielectric constants and refractive indices for X- and O- vacant XTO,

which are shown in Tab. 4.3, are smaller for X-vacant XTO and larger in O-vacant

XTO than the static values from the pristine crystal shown in Tab. 3.13.

For the remainder of this work, optical properties presented for the

defective and doped systems will be plotted in a solid blue line for the in-plane

components and dashed red for the perpendicular components, overlaid onto the
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Table 4.3: The static dielectric constants, ε∞, and refractive indices, n, in the direc-
tions a, b, and c, corresponding to the primitive lattice vectors b1, b2, and b3, of X-
and O- vacant XTO modeled in the primitive cell using PBE+U.

εa∞ εb∞ εc∞ εavg∞ na nb nc navg

CuAlO2:VCu 4.9681 4.9685 4.2716 4.7361 2.2289 2.2290 2.0668 2.1749
AgAlO2:VAg 5.0956 5.0932 5.2570 5.1468 2.2573 2.2568 2.2928 2.2690
CuCrO2:VCu 7.2841 7.2867 6.1913 6.9207 2.6989 2.6994 2.4882 2.6288
AgCrO2:VAg 7.4677 7.4654 7.1225 7.3519 2.7327 2.7323 2.6688 2.2713

CuAlO2:VO 5.7020 5.6969 5.0480 5.4823 2.3879 2.3868 2.2468 2.3405
AgAlO2:VO 6.1675 6.1659 7.4967 6.6100 2.4834 2.4831 2.7380 2.5682
CuCrO2:VO 8.1215 8.1223 6.8623 7.7020 2.8498 2.8500 2.6196 2.7731
AgCrO2:VO 8.4270 8.4258 8.3722 8.4083 2.9029 2.9027 2.8935 2.8897

pristine XTO crystal modeled in the SC scheme to facilitate evaluation. The

Cu-vacancy in CAO results in slightly less extreme maxima in the in-plane

component of the complex dielectric function as compared to pristine CAO. This

lends a similar behavior to the remaining optical properties, where the local maxima

on the in-plane components are also not as pronounced as in the pristine crystal.

The Ag-vacancies in AAO produce the same decrease in the maximum in-plane

values of the complex dielectric function as discussed for Cu-vacant CAO and are

shown in Fig. 4.12. For the optical properties of Cu-vacant CCO, displayed in Fig.

4.13, both the in-plane and perpendicular components are lower than the pristine

crystal across the spectrum. The in-plane component of the complex dielectric

function if Ag-vacant ACO is less than the pristine ACO crystal out to 7 eV, and

then takes on larger values. The perpendicular component of the complex dielectric

function appears largely unaffected.

The optical properties of O-vacant CAO are similar to the pristine crystal

with the exception of a new local maximum for both components at approximately

2.0 eV, which is shown in Fig. 4.15. As shown in Fig. 4.16, a similar new local

maxima appears in both components of the complex dielectric function for O-vacant

AAO, but at about 1.0 eV. A new but only marginally pronounced oscillation in the
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CuAlO2:VCu
a) b) c) d)

e) f) g) h)

Figure 4.11: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of Cu-vacant CAO. The in-plane components are
drawn as a thick blue line and the perpendicular component is drawn by a thick
red dashed line. The pristine supercell results are plotted in the same panels for
comparison, with the in-plane components drawn as a thin green line and a thin cyan
dashed line for the perpendicular component.

in-plane component of the complex dielectric function appears in O-vacant CCO,

shown in Fig. 4.17, at about 2.0 eV. For O-vacant ACO, which is shown in Fig.

4.18, the new minor oscillation at 1.5 eV is in the perpendicular component of the

complex dielectric function.
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AgAlO2:VAg
a) b) c) d)

e) f) g) h)

Figure 4.12: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of Ag-vacant AAO. The in-plane components are
drawn as a thick blue line and the perpendicular component is drawn by a thick
red dashed line. The pristine supercell results are plotted in the same panels for
comparison, with the in-plane components drawn as a thin green line and a thin cyan
dashed line for the perpendicular component.
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CuCrO2:VCu
a) b) c) d)

e) f) g) h)

Figure 4.13: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of Cu-vacant CCO. The in-plane components are
drawn as a thick blue line and the perpendicular component is drawn by a thick
red dashed line. The pristine supercell results are plotted in the same panels for
comparison, with the in-plane components drawn as a thin green line and a thin cyan
dashed line for the perpendicular component.
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AgCrO2:VAg
a) b) c) d)

e) f) g) h)

Figure 4.14: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of Ag-vacant ACO. The in-plane components are
drawn as a thick blue line and the perpendicular component is drawn by a thick
red dashed line. The pristine supercell results are plotted in the same panels for
comparison, with the in-plane components drawn as a thin green line and a thin cyan
dashed line for the perpendicular component.
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CuAlO2:VO
a) b) c) d)

e) f) g) h)

Figure 4.15: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of O-vacant CAO. The in-plane components are drawn
as a thick blue line and the perpendicular component is drawn by a thick red dashed
line. The pristine supercell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.
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AgAlO2:VO
a) b) c) d)

e) f) g) h)

Figure 4.16: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of O-vacant AAO. The in-plane components are drawn
as a thick blue line and the perpendicular component is drawn by a thick red dashed
line. The pristine supercell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.
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CuCrO2:VO
a) b) c) d)

e) f) g) h)

Figure 4.17: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of O-vacant CCO. The in-plane components are drawn
as a thick blue line and the perpendicular component is drawn by a thick red dashed
line. The pristine supercell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.
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AgCrO2:VO
a) b) c) d)

e) f) g) h)

Figure 4.18: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of O-vacant ACO. The in-plane components are drawn
as a thick blue line and the perpendicular component is drawn by a thick red dashed
line. The pristine supercell results are plotted in the same panels for comparison,
with the in-plane components drawn as a thin green line and a thin cyan dashed line
for the perpendicular component.
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4.6. Summary of Results

The X and O vacancies produce acceptor states in XCO, and X vacancies also

produce acceptor states in XAO by redistributing the charge density due to changes

in the bond lengths of the ions around the vacancy site, and by acting as an electron

acceptor. The hole effective masses for X-vacant XTO are larger than in the pristine

crystal, while the hole effective masses for O-vacant XTO are not drastically

changed overall, although the particular masses in the [100] and [010] have opposite

trends to those in the pristine crystal. Even though the values of the hole effective

masses suggest that oxygen vacancies may be beneficial to conductivity, the changes

introduced to the electronic structure and optical properties are not favorable for

transparent character. The oxygen vacancies in AAO greatly reduce the bandgap to

less than 2.5 eV, and to a lesser degree decrease the band gap in CAO and XCO as

well, which threatens the transparency of the material. The new Al-3p states on

either side of the band gap in XAO have a difference in energy of about 1.0(2.0) eV,

which corresponds to new local maxima in the visible portion of the spectrum for

the optical properties in O-vacant CAO(AAO) and may indicate that the

transitions of those states are direct (no change in wavenumber). Since Cr-3d states

are already quite dominant in the pristine crystal, there is a small shift (< 0.5 eV)

in the onset of the optical transition towards 0 eV, but otherwise the overall

character of the optical properties is not as drastically affected as in XAO. Overall

then, the promotion of conduction holes and general preservation of optical

properties around the visible spectrum imply that promoting X vacancies during

crystal growth may improve conductivity and preserve transparent character, even

though the increase in hole effective masses may act as a limiting factor. Due to O

vacancies affecting transparency in XTO, crystal growth in O-rich environments

may be crucial to preserve transparency.
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5. MAGNESIUM IMPURITIES IN XTO

5.1. Introduction

The final defect to be studied in this work is 6.25% Mg doping replacing T. Similar

to vacancies, the Mg dopant affects the bond lengths of the atoms around it and

also donates an electron to the charge density. Both of these factors affect changes

to the electronic structure and optical properties. Mg replaces Al in XAO and acts

as a hole donor due to having one less valence electron available for conduction,

ionizing to Mg2+. Within XCO, Mg replaces Cr, again acting as a hole donor.

However, in the case of XCO, the valence configuration of Mg2+, 3s0, also has three

fewer electrons than the Cr3+ ion with a valence configuration of 3d34s0. There is

an upper saturation limit on how much Mg can be added to the XTO crystal before

the semiconductor nature gives way to strong metallicity or even becomes

fundamentally altered by taking on the character of an alloy.

5.2. Structural Properties

All of the Mg-O bond lengths, displayed with the other new bond lengths in Tab.

5.1, are longer than the T-O bond lengths in the pristine crystals by 3.41− 4.58%.

Additionally, the new T-O bond lengths surrounding the dopant are slightly shorter

by 0.04− 1.79%, and the new Cu(Ag)−O bond lengths are shorter(longer) for

CTO(AAO) by 2.68− 3.13%(0.22%), and also shorter for ACO by 0.44%.

Table 5.1: The X-O and T-O bond lengths, dX−O and dT−O respectively, of Mg-
doped XTO in the PBE+U method. % Diff. refers to the difference between the
values reported here and the associated values from the pristine crystals reported in
Tab. 3.6.

dX−O % Diff. dT−O % Diff. dMg−O % Diff.
(Å) (Å) (Å)

CuAl0.94Mg0.06O2 1.8308 2.68 1.9074 1.06 2.0140 4.37
AgAl0.94Mg0.06O2 2.1261 0.22 1.9383 0.04 2.0300 4.58
CuCr0.94Mg0.06O2 1.8375 3.13 2.0022 0.09 2.0770 3.58
AgCr0.94Mg0.06O2 2.1161 0.44 1.9829 1.79 2.0888 3.41
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5.3. Electronic Properties

The replacement of a T atom with Mg does not exhibit much more than a marginal

change to the charge density in the T plane. Charge density contour plots for

Mg-doped XTO are depicted in Fig. 5.1.

The band structure and DOS presented in Fig. 5.2 for Mg-doped CAO

show acceptor states in the spin up channel, but otherwise the major contribution

to the DOS remains Cu-3d states in the upper valence bands and equal parts Cu-3d

and O-2p states in the lower conduction bands. Shown in Fig. 5.3 are the band

structure and DOS for Mg-doped AAO. The acceptor states reside in the spin down

channel, and the dominant contribution to the DOS in the upper valence bands are

Ag-4d and O-2p states, with the lower conduction states remaining equal parts

Ag-4d and O-2p states. Similar to O-vacant CCO, Mg-doped CCO, shown in Figure

5.4, has acceptor states in the spin up channel and strong Cu-3d contribution in the

upper valence bands with Cr-3d and O-2p states in roughly equal measure. In the

lower valence bands the Cr-3d states dominate over Ag-4d and O-2p states which

are present in equal amounts. Lastly, the electronic structure of Mg-doped ACO are

presented in Fig. 5.5. The acceptor states in the spin down channel are barely

distinguishable in the partial DOS, and for that reason a small inset plot is included

in the plot of the partial DOS that emphasizes this acceptor states. Below the

Fermi energy the DOS is highly Cr-3d in character down to -1.0 eV, with slightly

more O-2p states than Ag-4d moving towards the Fermi energy. In the lower

conduction bands, the Cr-3d states are the greatest contribution, followed closely by

Ag-4d and O-2p.
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d) AgCr0.94Mg0.06O2

Figure 5.1: Charge density contour plots for Mg-doped a) CAO, b) AAO, c) CCO,
and d) ACO 2 × 2 × 2 supercells using PBE+U. The direction presented with each
contour plot indicates a direction perpendicular to the plot and the atomic symbol
indicates the ion in the plot.
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CuAl0.94Mg0.06O2

Figure 5.2: The electronic band structure and density of states for Mg-doped CAO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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AgAl0.94Mg0.06O2

Figure 5.3: The electronic band structure and density of states for Mg-doped AAO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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CuCr0.94Mg0.06O2

Figure 5.4: The electronic band structure and density of states for Mg-doped CCO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.

116



AgCr0.94Mg0.06O2

Figure 5.5: The electronic band structure and density of states for Mg-doped ACO
using PBE+U, where the Fermi energy, EF, is set to zero and is defined as the
maximum energy of a valence electron in the ground state.
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5.4. Hole Effective Masses

The average hole effective masses, presented with the other hole effective mass

values for Mg-doped XTO in Tab. 5.2, are higher than their counterparts in pristine

XTO for XAO and CCO. The hole effective masses also become larger in the [100]

and [001] directions and smaller in the [010] direction. For Mg-doped ACO, the

trend is reversed, and the overall hole effective mass is lower than in the pristine

crystal as a result. In ATO and CCO, the hole effective masses become smaller in

the [001] direction than they are in the [100] direction. These trends support hole

conduction still being favorable in the a− b plane, but in the [010] direction instead

of the [100] direction as in the pristine crystals, except with ACO, where the hole

effective masses are lowest in the [001] direction, indicating that hole conduction

may be more favorable parallel to the O−X−O dumbbells.

Table 5.2: The hole effective masses for Mg-doped XTO using the supercell scheme,
in units of me, the free electron mass.

K → Γ [100] [010] K→ H [001] avg.

CuAl0.94Mg0.06O2 2.62 0.76 3.11 2.16
AgAl0.94Mg0.06O2 8.27 0.34 6.34 4.99
CuCr0.94Mg0.06O2 7.77 0.54 6.04 4.78
AgCr0.94Mg0.06O2 0.92 1.88 0.53 1.11

Despite the increase in hole effective masses in XTO as a result of Mg

doping, it may still be the case that conductivity is increased overall. Liu et al.

report [84] that hole concentration in pristine CAO increases from 3.52× 1016 to

1.79× 1018 cm−3 in CuAl0.94Mg0.06O2. Considering the highly ionic character of the

charge density, it may be reasonable to assume that the mean scattering time for

charge carriers in Mg-doped CAO may be largely unchanged from the pristine

crystal, such that the two-order-of-magnitude increase in hole concentration more

than makes up for a nearly two-fold increase in hole effective masses. Referring back
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to Eqn. 2.3.9, the potential increase in conductivity is

σdoped/σ = 33.20. (5.4.1)

5.5. Optical Properties

The static dielectric constants and refractive indices in Mg-doped XAO, which are

shown in Tab. 5.3 are lower than those in the pristine crystals by about 1− 2%.

Table 5.3: The static dielectric constants, ε∞, and refractive indices, n, in the direc-
tions a, b, and c, corresponding to the primitive lattice vectors b1, b2, and b3, of
Mg-doped XAO in the PBE+U method.

εa∞ εb∞ εc∞ εavg∞ na nb nc navg

CuAl0.94Mg0.06O2 5.3057 5.3188 4.4073 5.0106 2.3034 2.3036 2.0994 2.2364
AgAl0.94Mg0.06O2 5.3554 5.3536 5.4348 5.3813 2.3142 2.3138 2.3313 2.3198

The optical properties obtained for Mg-doped CAO are displayed in Fig.

5.6 and show a new local maximum at approximately 5.0 eV for the in-plane

component of the complex dielectric function. This local maximum in the optical

properties may correspond to the two local maximums in the total DOS presented

in Fig. 5.2 on either side of the band gap which are separated by roughly 5.0 eV,

indicating that those states may share the same wave number and be related via a

direct transition across the band gap. Otherwise, the results match those of pristine

CAO. Figure 5.7 presents the optical properties for Mg-doped AAO, which are

identical to the pristine crystal with the exception of a slight decrease in the

maximum values of the in-plane component of the complex dielectric function.

There are no optical properties to present for Mg-doped XCO due to problems with

the calculations that persisted until the printing of this work and led to erroneous

results. It may be the case that 6.25% Mg doping in XCO may be beyond the

solubility limit for Mg in XCO. Although Sun et al. report that 7.0% Mg doping in

layers of CCO stacked on both sides of a thin Ag layer results in improvement in the
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CuAl0.94Mg0.06O2
a) b) c) d)

e) f) g) h)

Figure 5.6: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of Mg-doped CAO. The in-plane components are
drawn as a thick blue line and the perpendicular component is drawn by a thick
red dashed line. The pristine supercell results are plotted in the same panels for
comparison, with the in-plane components drawn as a thin green line and a thin cyan
dashed line for the perpendicular component.

optoelectronic character [11], Maignan et al. report that the saturation level of Mg

in CCO is much closer to 1.0% [85], indicating that the 6.25% Mg doping in this

study may be beyond the saturation level for bulk XCO and is the source of the

problem in calculating the optical properties of Mg-doped XCO.
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AgAl0.94Mg0.06O2
a) b) c) d)

e) f) g) h)

Figure 5.7: Frequency dependence of the a) real component of the complex dielectric
function, b) imaginary component of the complex dielectric function, c) refractive
index, d) extinction coefficient, e) optical conductivity, f) absorption coefficient, g)
reflectivity, and e) loss function of Mg-doped AAO. The in-plane components are
drawn as a thick blue line and the perpendicular component is drawn by a thick
red dashed line. The pristine supercell results are plotted in the same panels for
comparison, with the in-plane components drawn as a thin green line and a thin cyan
dashed line for the perpendicular component.

5.6. Summary of Results

Although the hole effective masses increase in Mg-doped XAO, the increase in

charge carriers that results from Mg doping may still results in an increase in

conductivity for XAO, and the optical properties remaining unchanged in the visible

portion of the spectrum suggests that the optical properties are only negligibly

affected by the Mg-dopant. Although the same rationale concerning the hole

effective masses and charge carriers may be true in XCO, the calculations of the

optical properties remained problematic up to the printing of this work, and so the
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effects of Mg doping on the optical properties of XCO remains inconclusive.
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6. CONCLUSIONS AND PERSPECTIVES

An introduction to the necessary physics of basic DFT in the PAW method using

various approximations for the exchange and correlation energy functionals as well

as the extended physics that are associated with the many properties that may be

derived from the total ground state charge densities obtained through DFT have

been presented. The implementation of DFT by the VASP code has also been

discussed, along with the various pieces of software associated with the

post-processes in determining many of the derived quantities presented in this work,

such as the determination of screened Hubbard corrections for XTO using the

ATOM code, the equation of state fitting for optimizing structural parameters by

minimizing the total ground state energy via the Gibbs2 code, and the method of

band unfolding as implemented by the BandUP code.

All XAO polymorphs have been optimized using PBE, and the optimized

lattice constants agree very well with the available experimental results. The

adoption of the PBE+U method for the study of 2H XTO as well the simple AFM

configuration for XCO has been justified by demonstrating that these configurations

correspond to the lowest ground state total energies and also give the most

semiconductor-like behavior. The PBE+U optimized lattice parameters and direct

band gaps compare favorably to the experimental results from literature. Hole

effective masses and optical properties have been determined for XTO, and new

predictions are offered in this work concerning XCO hole effective masses and ACO

optical properties that may benefit the literature. The hole effective masses, strong

X-d and O-2p contributions to the density of states in XTO, and optical properties

support a model of hole conduction that is perpendicular to the O−X−O dumbbells.

Native defects in the form of 6.25% X and 3.13% O vacancies have been

investigated from the perspective of the changes in structural properties, emergence

of shallow acceptor states, changes in the band gap, specific state contributions to

123



the DOS, and changes in hole effective masses and optical properties. X vacancies

resulted in the O anions near the vacancy site moving closer to the T planes. The

changes to the charge density result in the emergence of shallow acceptor states

which should promote hole conduction, however, there is also a slight increase to the

hole effective masses, and without information on how the carrier concentration is

affected by the X vacancy it is not possible to evaluate the change in conductivity.

Although there is a slight increase in the static dielectric constants and refractive

indices, the optical properties of XTO remain largely unaffected indicating that the

transparent character is preserved. O vacancies, however, only promote shallow

acceptor states in one spin channel of XCO, likely the result of the abundance and

dominance of Cr-3d states along with the Cu(Ag)-3(4)d states surrounding the band

gap, but also decrease the band gap in the other spin channel. In all cases the band

gap decreases overall, drastically so in AAO and to a lesser degree in CAO, due to

the three Al ions near the O vacancy site retaining one electron each, raising the

energy of those states and introducing more Al-3p states to the immediate vicinity

of the band gap. In all cases of the introduction of O vacancies, the in-plane

components of the optical properties experience a slight decrease in their local

maxima, as well as the emergence of a strong oscillation at around 2.0(1.5) eV for

XAO(XCO). This oscillation is localized around the optical transition in all

materials and likely inhibits transparent behavior in XTO. For this reason, this

work predicts that a growth environment slightly deficient in X but saturated in O

may benefit the conductivity in XTO.

Lastly, the effects of 6.25% Mg doping on the structural, electronic, and

optical properties have been presented and discussed. The defect site has the effect

of pushing the O and X ions in the immediate vicinity away from the T planes.

Similarly to X vacancies, Mg doping promotes shallow acceptor states in XTO and

has a negligible effect on the visible portion of the optical properties for XAO.
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Although the hole effective masses are also predicted to generally increase by a

factor of two as compared to the pristine crystal, the increase in hole concentration

of Mg-doped CAO over its pristine counterpart suggests that the conductivity in

Mg-doped CAO still increases by a factor of 33.20, and thus conductivity may

increase for all XTO despite the rise in hole effective masses. Thus, 6.25% Mg

doping is expected to further increase the conductivity in XTO in addition to

promoting X vacancies and discouraging O vacancies.

Concerning the future outlook for this work, it is proposed that a more

thorough investigation concerning the magnetic ordering of XCO be undertaken, in

order to understand the shortcomings of the simple AFM configuration used in this

work, from the perspective of adopting a supercell and implementing its study using

the non-colinear version of the VASP code and scrutinizing the electronic structure

against the simple model. Since band gaps are still too underestimated in the case

of XCO, even within the PBE+U approach adopted here, it is suggested that a

hybrid functional be used to improve the description of pristine XCO as well as the

defective and doped XTOs. It was determined during the final stages of this work

that rigorous estimates of the acceptor state binding energies could be determined

by identifying states deep within the valence bands of the pristine XTO crystal with

strong s character that would not be affected by the introduction of defects and

dopants and comparing the changes in Fermi energy with regard to that deep state

across pristine and defect systems. Adding the maximum acceptor state energy to

the change in Fermi energy across systems (all calculated at the same k-point)

should then account for the binding energy of the acceptor state. All of the required

parameters needed to calculate defect and impurity formation energies should be

available after estimating the chemical potential of each element within the pristine,

defect, and doped systems. Additionally, a study on the effects of different

concentrations of Mg doping on XCO should be conducted for the purposes of
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evaluating the saturation level of the Mg dopant in the bulk crystal from the

perspective of first principles calculations.
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Solid-state chemistry of cuprous delafossites: Synthesis and stability aspects,
Chemistry of Materials 25 (2013) (21), pp. 4423–4435

[5] D. Xiong, H. Wang, W. Zhang, X. Zeng, H. Chang, X. Zhao, W. Chen and
Y.-B. Cheng, Preparation of p-type AgCrO2 nanocrystals through
low-temperature hydrothermal method and the potential application in p-type
dye-sensitized solar cell, Journal of Alloys and Compounds 642 (2015) (0), pp.
104–110

[6] Hiroshi Kawazoe, Masahiro Yasukawa, Hiroyuki Hyodo, Masaaki Kurita,
Hiroshi Yanagi and Hideo Hosono, P -type electrical conduction in transparent
thin films of CuAlO2, Letters to Nature 389 (1997), pp. 939–942

[7] H. Yanagi, S.-I. Inoue, K. Ueda and H. Kawazoe, Electronic structure and
optoelectronic properties of transparent p-type conducting CuAlO2, Journal of
Applied Physics 88 (2000) (7), pp. 4159–4163

[8] M. Diantoro, P. E. Yuwita, D. Olenka and Nasikhudin, Fabrication of
CuAl1−xMxO2 (M = Fe, Cr)/Ni film delafossite compounds using spin coating
and their microstructure and dielectric constant, in AIP Conference Proceedings
(2014), vol. 1617, pp. 170–174

[9] Z. Deng, X. Zhu, R. Tao, W. Dong and X. Fang, Synthesis of CuAlO2 ceramics
using sol-gel, Materials Letters 61 (2007) (3), pp. 686–689

[10] A. N. Banerjee, R. Maity and K. K. Chattopadhyay, Preparation of p-type
transparent conducting CuAlO2 thin films by reactive DC sputtering, Materials
Letters 58 (2004) (1-2), pp. 10–13

[11] H. Sun, M. A. P. Yazdi, S.-C. Chen, C.-K. Wen, F. Sanchette and A. Billard,
Ag composition gradient CuCr0.93Mg0.07O2/Ag/CuCr0.93Mg0.07O2 coatings with
improved p-type optoelectronic performances, Journal of Materials Science 52
(2017) (19), pp. 11537–11546

127



[12] D. O. Scanlon and G. W. Watson, Conductivity Limits in CuAlO2 from
Screened-Hybrid Density Functional Theory, Journal of Physical Chemistry
Letters 1 (2010) (21), pp. 3195–3199

[13] J. Tate, H. L. Ju, J. C. Moon, A. Zakutayev, A. P. Richard, J. Russell and
D. H. McIntyre, Origin of p-type conduction in single-crystal CuAlO2, Physical
Review B - Condensed Matter and Materials Physics 80 (2009) (16), pp.
165206–165214

[14] J. Pellicer-Porres, A. Segura, C. Ferrer-Roca, A. Polian, P. Munsch and
D. Kim, XRD and XAS structural study of CuAlO2 under high pressure,
Journal of Physics: Condensed Matter 25 (2013) (11), pp. 115406–10

[15] R. Wei, X. Tang, L. Hu, J. Yang, X. Zhu, W. Song, J. Dai, X. Zhu and Y. Sun,
Facile chemical solution synthesis of p-type delafossite Ag-based transparent
conducting AgCrO2 films in an open condition, J. Mater. Chem. C 5 (2017) (8),
pp. 1885–1892

[16] A. H. Reshak, First Principle Calculations of Transition Metal Oxide , AgAlO2,
as Active Photocatalyst : Sustainable Alternative Sources of Energy,
International Journal of Electrochemical Science 8 (2013), pp. 9371–9383

[17] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of
crystal, volumetric and morphology data, Journal of Applied Crystallography
44 (2011) (6), pp. 1272–1276

[18] Q. J. Liu, Z. T. Liu, L. P. Feng, H. Tian, W. T. Liu and F. Yan, Density
functional theory study of 3R- and 2H-CuAlO2 under pressure, Applied Physics
Letters 97 (2010) (14), pp. 141917–141920

[19] F. A. Benko and F. P. Koffyberg, Opto-electronic properties of CuAlO2, Journal
of Physics and Chemistry of Solids 45 (1984) (1), pp. 57–59

[20] J. Pellicer-Porres, A. Segura, A. S. Gilliland, A. Muñoz,
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