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Multiplicity of solutions for quasilinear elliptic

boundary-value problems ∗

Idris Addou

Abstract

This paper is concerned with the existence of multiple solutions to the
boundary-value problem

−(ϕp(u
′))′ = λϕq(u) + f(u) in (0, 1) , u(0) = u(1) = 0 ,

where p, q > 1, ϕx(y) = |y|
x−2y, λ is a real parameter, and f is a function

which may be sublinear, superlinear, or asymmetric. We use the time
map method for showing the existence of solutions.

1 Introduction

We study the existence and multiplicity of solutions for the boundary-value
problem

−(ϕp(u′))′ = λϕq(u) + f(u) in (0, 1) (1)

u(0) = u(1) = 0 ,

where p, q > 1, ϕx(y) = |y|x−2y, λ ∈ R, and f is a continuous function such
that

a± = lim
s→±∞

f(s)/ϕq(s) and a0 = lim
s→0

f(s)/ϕq(s)

exist as real numbers. Also, we assume that m± := inf±s≥0 f(s)/ϕq(s) exists in
R, and define

m := inf
u∈R

f(s)/ϕq(s) = min(m+,m−) and m±k =

{
m± if k = 1
m if k ≥ 2.

We shall consider the following three cases: Superlinear case, a0 < min(a−, a+);
Sublinear case, a0 > max(a−, a+); and Asymmetric case, a− < a0 < a+.
In the special case when p = 2, several authors have been interested in

Problem (1), including higher dimensions under various assumptions. See, for
instance, Amann and Zehnder [5], Castro and Lazer [18], Hess [41], Struwe [60],
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2 Multiplicity of solutions for boundary-value problems EJDE–1999/21

and particularly Esteban [29]. For the general case p > 1, we mention a recent
paper by J. Wang [73] where positive solutions are studied.

Now we define some sets that will be used in the statement of the main
results. For k ≥ 1, let

S+k =

{
u ∈ C1([0, 1]) : u admits exactly (k − 1) zeros in (0, 1),

all are simple, u(0) = u(1) = 0 and u′(0) > 0

}
,

then S−k = −S
+
k and Sk = S+k ∪ S

−
k . If u ∈ C([0, 1]) is a real-valued function

vanishing at x1 and x2 and not between them, (with x1 < x2) we call its
restriction to the open interval (x1, x2) a hump of u. So, each function in S

+
k

has exactly k humps such that the first one is positive, the second is negative,
and so on with alternations.

Let A+k (k ≥ 1) be the subset of S
+
k consisting of the functions u satisfying:

• Every hump of u is symmetrical about the center of the interval of its
definition.

• Every positive (resp. negative) hump of u can be obtained by translating
the first positive (resp. negative) hump.

• The derivative of each hump of u vanishes once and only once.

Let A−k = −A
+
k and Ak = A+k ∪A

−
k . Denote by (λk)k≥1 the eigenvalues of the

one dimensional p-Laplacian operator with Dirichlet boundary conditions,

−(ϕp(u′))′ = λϕp(u) in (0, 1) (2)

u(0) = u(1) = 0 .

Then for each integer k ≥ 1 and p > 1, λk = kpλ1 and

λ1 = (p− 1)(2

∫ 1
0

(1 − tp)−1/pdt)p = (p− 1)(
2π

p sin(π/p)
)p.

For fixed real constants a− and a+, consider the boundary value problem

−(ϕp(u′))′ = λϕp(u) + a+ϕp(u+)− a−ϕp(u−), in (0, 1) (3)

u(0) = u(1) = 0 ,

where λ is a real parameter. If λ is such that problem (3) admits a nontrivial
solution uλ, then λ is called a half-eigenvalue of (3). In the particular case where
p = 2, this definition goes back to Berestycki [11]. For any integer k ≥ 1, let

b±k =

{
a± if k = 1
min(a−, a+) if k ≥ 2

and c±k =

{
a± if k = 1
max(a−, a+) if k ≥ 2 .
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Proposition 1 For fixed real constants a− and a+, the set of half-eigenvalues
of problem (3) consists of two increasing sequences (λ+k )k≥1 and (λ

−
k )k≥1, sat-

isfying h±k (λ
±
k ) = 1, for all k ≥ 1, where

h±2n(λ) :=
λ
1/p
n

(a± + λ)1/p
+

λ
1/p
n

(a∓ + λ)1/p
, for all λ > −b±2n, n ≥ 1,

h±2n+1(λ) :=
λ
1/p
n+1

(a± + λ)1/p
+

λ
1/p
n

(a∓ + λ)1/p
, for all λ > −b±2n+1, n ≥ 0 ,

with the convention λ0 = 0. Moreover, if a∓ < a± then

λ±2n−1 < λ∓2n−1 < λ±2n < λ±2n+1 < λ∓2n+1, ∀n ≥ 1 ,

and
λk − a± < λ±k < λk − a∓, ∀k ≥ 1.

If a− = a+ then λ
±
k = λk − a±, for all k ≥ 1.

The first result reads as follows.

Theorem 2 Assume that q = p. For each integer k ≥ 1,

1. If a0 < b±k and max(−m
±
k , λ

±
k ) < λk − a0, problem (1) admits at least a

solution in A±k for all λ satisfying max(−m
±
k , λ

±
k ) < λ < λk − a0 .

2. If a0 > c±k and max(−m
±
k , λk − a0) < λ±k , problem (1) admits at least a

solution in A±k for all λ satisfying max(−m
±
k , λk − a0) < λ < λ±k .

The next result deals with the asymmetric case. For any integer n ≥ 1, let

a±2n+1 =
na∓ + (n+ 1)a±

2n+ 1
and a±2n =

na− + na+
2n

=
a− + a+
2

.

Theorem 3 Assume that q = p and a− < a0 < a+. Then

1. If max(−m+, λ1 − a+) < λ1 − a0, problem (1) admits at least a solution
in A+1 for all λ satisfying max(−m+, λ1 − a+) < λ < λ1 − a0.

2. If max(−m−, λ1 − a0) < λ1 − a−, problem (1) admits at least a solution
in A−1 for all λ satisfying max(−m−, λ1 − a0) < λ < λ1 − a−.

3. For each integer k ≥ 2, there exists ã±k : a− < ã±k < a±k < a+ such that,

(i) if a− < a0 < ã±k and max(−m,λ
±
k ) < λk − a0, problem (1) admits

at least a solution in A±k for all λ satisfying max(−m,λ
±
k ) < λ <

λk − a0,

(ii) if ã±k < a0 < a+ and max(−m,λk − a0) < λ±k , problem (1) admits at
least a solution in A±k for all λ satisfying max(−m,λk − a0) < λ <
λ±k .
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Theorem 4 Assume that q 6= p. Then for each integer k ≥ 1, problem (1)
admits at least a solution in A±k for all λ > −m±k . In particular, (1) admits
infinitely many solutions for all λ > −m.

The paper is organized as follows. The next section is dedicated to the proof
of Proposition 1. In Section 3, we present the method used for proving the
main results of this paper. In Section 4, we present some preliminary lemmas.
In Section 5, we prove the main results, present some remarks. The paper ends
with an appendix which contains a brief historical overview on time maps.

2 Proof of Proposition 1

Notice that for all u ∈ R, ϕp(u) = ϕp(u
+) − ϕp(u−); so, problem (3) may be

written as

−(ϕp(u′))′ = α+ϕp(u+)− α−ϕp(u−), in (0, 1) , (4)

u(0) = u(1) = 0 ,

with α± = λ + a±. The set of (α+, α−) ∈ R2 such that problem (4) has a
nontrivial solution is known as the Fučik spectrum for the operator (ϕp(u

′))′

under Dirichlet boundary conditions. See for instance, Drábek [28], Boccardo
et al. [12], Huang and Metzen [42]. We denote this spectrum by

∑
p.

One has
∑
p =
⋃
k≥0 C

±
k , where

C±0 =
{
(α+, α−) ∈ R2 : α± = λ1

}
,

C±2n =
{
(α+, α−) ∈ (R+)2 : (λ

1/p
n /α

1/p
± ) + (λ

1/p
n /α

1/p
∓ ) = 1

}
, n ≥ 1,

C±2n+1 =
{
(α+, α−) ∈ (R+)2 : (λ

1/p
n+1/α

1/p
± ) + (λ

1/p
n /α

1/p
∓ ) = 1

}
, n ≥ 0 .

So, λ is a half-eigenvalue of (3) if and only if (λ + a+, λ + a−) ∈
∑
p, that

is, h±k (λ) = 1, for some k ≥ 1. Since the function λ 7→ h±k (λ), k ≥ 1, is
strictly decreasing on (−b±k ,+∞) and its limits at −b

±
k and +∞ are +∞ and

0 respectively, it follows that the equation h±k (λ) = 1 admits a unique solution
λ = λ±k .
It is easy to check that for a− < a+ and for all λ > −a− one has

h+2n−1(λ) < h−2n−1(λ) < h±2n(λ) < h+2n+1(λ) < h−2n+1(λ), ∀n ≥ 1.

Due to the fact that the function λ 7→ h±k (λ), k ≥ 1, is strictly decreasing on
(−a−,+∞), it follows that

λ+2n−1 < λ−2n−1 < λ±2n < λ+2n+1 < λ−2n+1, ∀n ≥ 1 .

On the other hand, if a− < a+, it follows that for all λ > −a−, k ≥ 1,

λ
1/p
k

(a+ + λ)1/p
<

λ
1/p
k

(a− + λ)1/p
, so

λ
1/p
2k

(a+ + λ)1/p
< h±2k(λ) <

λ
1/p
2k

(a− + λ)1/p
,
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and then λ2k−a+ < λ±2k < λ2k−a−. The other cases may be handled the same
way.

If a− = a+, problem (3) may be written as

−(ϕp(u
′))′ = µϕp(u) in (0, 1) , u(0) = u(1) = 0, (5)

with µ = λ + a±. So, λ is a half-eigenvalue of (3) if and only if λ + a± is an
eigenvalue of (2), that is, if and only if λ = λ±k = λk− a±, which ends the proof
of Proposition 1. ♦

3 The time map method

To prove the main results, we use the time mapping approach as used in [2], [3],
[4]. To keep this paper self-contained, we describe it here.

Denote by g a nonlinearity and by p a real parameter, and we assume,

g ∈ C(R,R) and 1 < p < +∞ . (6)

Consider the boundary value problem

−(ϕp(u
′))′ = g(u) in (0, 1), u(0) = u(1) = 0, (7)

where ϕp(x) = |x|p−2x, x ∈ R. Denote by p′ = p/(p−1) the conjugate exponent
of p. Let G(s) =

∫ s
0
g(t)dt. For E > 0 and κ = +,−, let

Xκ(E) = {s ∈ R : κs ≥ 0 and Ep − p′G(ξ) > 0, ∀ ξ, 0 ≤ κξ < κs}

and

rκ(E) =

{
0 if Xκ(E) = ∅
κ sup(κXκ(E)) otherwise.

Note that rκ may be infinite. We shall also make use of the following sets,

Dκ = {E > 0 : 0 < |rκ(E)| < +∞ and κg(rκ(E)) > 0}

and D = D+ ∩ D−. Also, let Dκk := D if k ≥ 2, and Dκ1 := Dκ. Define the
following time-maps,

Tκ(E) = κ
∫ rκ(E)
0

(Ep − p′G(t))−1/pdt, E ∈ Dκ ,

T κ2n(E) = n(T+(E) + T−(E)), n ∈ N, E ∈ D ,

T κ2n+1(E) = T
κ
2n(E) + Tκ(E), n ∈ N, E ∈ D.

Theorem 5 (Quadrature method) Assume that (6) holds. Let E > 0, k ∈
N
∗, κ = +,−. If E ∈ Dκk and T

κ
k (E) = 1/2, problem (7) admits at least a

solution uκk ∈ A
κ
k satisfying (u

κ
k)
′(0) = κE, and this solution is unique.
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This theorem is well-known, but we did not find a convenient reference to
the precise statement used later. The paper by Guedda and Veron [40], seems to
be the first one dealing with time maps approach when the differential operator
is the one dimensional p-Laplacian. An easy adaptation of the ideas contained
in [40] and in the paper by Del Pino and Manasevich [23], allows one to prove
Theorem 5. Also, we mention the papers by Manasevich and Zanolin [44] and
Manasevich et al. [45], where one can find time maps used when the differential
operator is the one dimensional p-Laplacian.
Notice that time maps were also used when the differential operator gener-

alizes the p-Laplacian; see for example Garcia-Huidobro et al. [33], [34], [35],
[36], [37], Garcia-Huidobro and Ubilla [38], Huang and Metzen [42] and Ubilla
[61]. A brief historical overview of time maps is given in the appendix.
For the sake of completeness, we dedicate the rest of this section to the proof

of Theorem 5 for the case where k = 1 and κ = +. The adaptation of the other
cases may be handled similarly.
We shall say that u is a solution of (7) if u and ϕp(u

′) belong to C1([0, 1])
and u satisfies

−(ϕp(u
′(x)))′ = g(u(x)) ∀x ∈ (0, 1) , with u(0) = u(1) = 0 .

Let us assign to each function u ∈ C1([0, 1]) the set

Z(u′) = {x ∈ [0, 1] : u′(x) = 0} .

Lemma 6 Assume that (6) holds and u is a solution of (7). Then u ∈ C2([0, 1])
if 1 < p ≤ 2, and u ∈ C2([0, 1]\Z(u′)) if p > 2.

Proof. The identity t = ϕp′oϕp(t) for all t ∈ R implies that

u′(x) = ϕp′o(ϕp(u
′))(x) for all x ∈ [0, 1].

Thus, if 1 < p ≤ 2, it follows that p′ ≥ 2 and therefore ϕp′ ∈ C1(R). By
ϕp(u

′) ∈ C1([0, 1]), (since u is a solution of (7)), it follows that u′ ∈ C1([0, 1]),
that is u ∈ C2([0, 1]). If p > 2, it follows that 1 < p′ < 2 and therefore ϕp′ ∈
C1(R∗) and ϕ′p′(0) = +∞. Hence, u

′ is C1 at each point x where ϕp(u
′(x)) 6= 0.

But ϕp(u
′(x)) = 0 if and only if u′(x) = 0, that is, if and only if x ∈ Z(u′).

Therefore, Lemma 6 is proved. ♦

By Lemma 6, if u is a solution of problem (7), then

−(p− 1)|u′(x)|p−2u′′(x) = g(u(x)), for all x ∈ [0, 1]\Z(u′).

Multiplying both sides by u′(x) one obtains for the left hand side

−(p− 1)|u′(x)|p−2u′′(x)u′(x) = −(1/p′)(|u′|p)′(x),

for all x ∈ [0, 1]\Z(u′), and for the right hand side

g(u(x))u′(x) = (G(u(x)))′, for all x ∈ [0, 1]\Z(u′).
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Thus,
(|u′|p(x) + p′G(u(x)))′ = 0, (8)

for all x ∈ [0, 1]\Z(u′). Let us prove that (8) holds even for x ∈ Z(u′).

Lemma 7 (Energy relation) Let p > 1 and assume that u is a solution of
problem (7). Then

(|u′|p(x) + p′G(u(x)))′ = 0, for all x ∈ [0, 1].

Proof. Let x0 ∈ Z(u′). One has

(G(u))′(x0) = g(u(x0))u
′(x0) = 0 .

Let us prove that
(|u′|p)′(x0) = 0 . (9)

One has for all x 6= x0,

|u′(x)|p − |u′(x0)|p

x− x0
= u′(x) ×

ϕp(u
′(x))− ϕp(u′(x0))

x− x0
.

Thus, limx→x0 u
′(x) = u′(x0) = 0, and

lim
x→x0

ϕp(u
′(x)) − ϕp(u′(x0))

x− x0
= (ϕp(u

′))′(x0) = −g(u(x0)) ∈ R.

Therefore, (9) is proved. Regarding (8), Lemma 7 follows. ♦

Remark. In Lemmas 6 and 7, the solutions, u, are arbitrary and are not
necessarily in A+1 .

Now, assume that u is a solution of problem (7) belonging to A+1 . Thus,

u′ > 0 in [0, (1/2)) and u′(1/2). (10)

It follows that

sup {x ∈ [0, 1) : u′(t) > 0, ∀t ∈ [0, x)} = 1/2,

and by the energy relation one gets

u′(x) = {(u′(0))p − p′G(u(x))}
1/p
, for all x ∈ [0, 1]. (11)

Thus,

sup {x ∈ [0, 1) : (u′(0))p − p′G(u(t)) > 0, ∀t ∈ [0, x)} = 1/2,

or equivalently

sup {x ∈ [0, 1) : (u′(0))p − p′G(z) > 0, ∀z ∈ [0, u(x))} = 1/2,
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which implies that

sup {s ≥ 0 : (u′(0))p − p′G(ξ) > 0, ∀ξ ∈ [0, s)} = u(1/2).

Also, by (11) it follows that

x =

∫ u(x)
0

{(u′(0))p − p′G(ξ)}
−1/p

dξ, for all x ∈ [0, (1/2)]. (12)

Thus, the improper integral in (12) is convergent for all x ∈ [0, (1/2)] and in
particular, u′(0) is such that the improper integral

∫ r+(u′(0))
0

{(u′(0))p − p′G(ξ)}
−1/p

dξ

converges and is equal to (1/2), where for all E > 0

r+(E) = supX+(E) if X+(E) 6= ∅ and r+(E) = 0 if X+(E) = ∅

and
X+(E) = {s ≥ 0 : E

p − p′G(ξ) > 0, ∀ξ ∈ [0, s)} .

It follows that if u is a solution of problem (7) belonging to A+1 , then there
exists E∗ ∈ D̃+ with

D̃+ =
{
E > 0 : 0 < r+(E) < +∞ and

∫ r+(E)
0

{Ep − p′G(ξ)}
−1/p

dξ < +∞
}
,

such that

u′(0) = E∗ , u(1/2) = r+(E∗) , and T+(E∗) = 1/2 ,

where

T+(E) =

∫ r+(E)
0

{Ep − p′G(ξ)}
−1/p

dξ, for all E ∈ D̃+.

Conversely, it is possible to assign to each root E∗ of the equation T+(E) = 1/2
in the variable E ∈ D̃+ a unique solution u of the problem (7) belonging to A

+
1

and satisfying u′(0) = E∗, max[0,1] u = u(1/2) = r+(E∗).

In fact, if E∗ ∈ D̃+ is such that T+(E∗) = 1/2, define the function h+ on

[0, r+(E∗)] by h+(u) =
∫ u
0
{Ep∗ − p′G(ξ)}

−1/p
dξ. Notice that h+(r+(E∗)) =

T+(E∗) = 1/2 and

0 ≤ h+(u) ≤ T+(E∗), for all u ∈ [0, r+(E∗)].

Thus, h+ is well defined on [0, r+(E∗)]. Moreover, it is an increasing diffeomor-
phism from (0, r+(E∗)) onto (0, T+(E∗)),

h′+(u) = {E
p
∗ − p

′G(u)}
−1/p

> 0 for all u ∈ (0, r+(E∗)).
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Let u+ be the inverse of h+ defined by

u+(x) = h
−1
+ (x) ∈ [0, r+(E∗)], for all x ∈ [0, (1/2)] ,

and let u be defined on [0, 1] by

u(x) =

{
u+(x) if x ∈ [0, (1/2)]
u+(1− x) if x ∈ [(1/2), 1].

It easy to show that this function u is a solution of problem (7) belonging to
A+1 and satisfying u

′(0) = E∗, max[0,1] u = u(1/2) = r+(E∗). Let us prove its

uniqueness. Assume that v is also a solution of problem (7) belonging to A+1
and satisfies

v′(0) = E∗,max
[0,1]

v = v(1/2) = v+(E∗).

By (12) it follows that

x =

∫ u(x)
0

{Ep∗ − p
′G(ξ)}

−1/p
dξ =

∫ v(x)
0

{Ep∗ − p
′G(ξ)}

−1/p
dξ,

for all x ∈ [0, 1/2]. Thus,

∫ v(x)
u(x)

{Ep∗ − p
′G(ξ)}

−1/p
dξ = 0, for all x ∈ [0, 1/2].

Thus, u = v on [0, 1/2], and by symmetry it follows that u = v on [0, 1].
Therefore, because D+ ⊂ D̃+, Theorem 5 is proved for the case k = 1 and
κ = +. ♦

4 Preliminary Lemmas

In order to define the time maps we need the following.

Lemma 8 For s ∈ R, consider the equation

Ep − p′(F (s) + λΦq(s)) = 0, (13)

where p > 1, E ≥ 0 and λ ∈ R are real parameters, F (s) =
∫ s
0 f(t)dt and

Φq(s) =
∫ s
0 ϕq(t)dt. If λ > −m±, then for any E > 0, equation (13) admits a

unique positive zero s+ = s+(λ,E) (resp. a unique negative zero s− = s−(λ,E))
and if E = 0 it admits no positive (resp. negative) zero beside the trivial one
s± = 0. Moreover, for all λ > −m±, p > 1,

(i) The function E 7−→ s±(λ,E) is C
1 on (0,+∞), and

±
∂s±

∂E
(λ,E) =

±(p− 1)Ep−1

f(s±(λ,E)) + λϕq(s±(λ,E))
> 0, ∀E > 0 .



10 Multiplicity of solutions for boundary-value problems EJDE–1999/21

(ii) lim
E→0+

s±(λ,E) = 0, lim
E→+∞

s±(λ,E) = ±∞.

(iii) lim
E→0

Ep

|s±(λ,E)|q
= p′

q
(a0 + λ), lim

E→+∞

Ep

|s±(λ,E)|q
= p′

q
(a± + λ).

(iv) lim
E→0

E
|s±(λ,E)|

=

{
0 if q − p > 0
((a0 + λ)/(p− 1))1/p if q − p = 0
+∞ if q − p < 0,

lim
E→+∞

E
|s±(λ,E)|

=

{
+∞ if q − p > 0
((a± + λ)/(p− 1))1/p if q − p = 0
0 if q − p < 0.

(v) lim
E→0

F (s±(λ,E)t)
Ep

= tp

p′
a0
a0+λ

, ∀t > 0, lim
E→+∞

F (s±(λ,E)t)
Ep

= tp

p′
a±
a±+λ

, ∀t > 0.

Proof. For p > 1 and E ≥ 0 fixed, consider the function

s 7−→ G±(λ,E, s) := E
p − p′(F (s) + λΦq(s)),

defined in R± and strictly decreasing on (0,+∞) (resp. strictly increasing on
(−∞, 0)), because

dG±

ds
(λ,E, s) = −p′ϕq(s)(

f(s)

ϕq(s)
+ λ) and m± + λ > 0 .

One has G±(λ,E, 0) = E
p ≥ 0, and via l’Hospital’s rule,

lim
s→+∞

G±(λ,E, s) = lim
s→+∞

Ep − p′Φq(s)(
F (s)

Φq(s)
+ λ)

= Ep − p′ lim
s→+∞

Φq(s)( lim
s→+∞

f(s)

ϕq(s)
+ λ)

= −∞.

So, it is clear that in the case m+ + λ > 0 (resp. m− + λ > 0) for any E > 0,
(13) admits a unique positive zero, s+ = s+(λ,E), (resp. a unique negative
zero, s− = s−(λ,E)), and if E = 0, it admits no positive (resp. negative) zero
beside the trivial one s = 0.

Now, for any p > 1 and λ > −m±, consider the real valued function,

(E, s) 7−→ G±(E, s) := E
p − p′(F (s) + λΦq(s)),

defined on Ω+ = (0,+∞)2 (resp. Ω− = (0,+∞) × (−∞, 0)). One has G± ∈
C1(Ω±) and,

∂G±

∂s
(E, s) = −p′ϕq(s)(

f(s)

ϕq(s)
+ λ) in Ω± ;

hence, because m± + λ > 0, it follows that

±
∂G±

∂s
(E, s) < 0, in Ω±,



EJDE–1999/21 Idris Addou 11

and one may observe that s±(λ,E) belongs to the open interval (0,+∞) (resp.
(−∞, 0)) and from its definition satisfies

G±(E, s±(λ,E)) = 0 . (14)

So, one can make use of the implicit function theorem to show that the function
E 7→ s±(λ,E) is C

1((0,+∞),R) and to obtain the expression of ∂s±
∂E
(λ,E) given

in (i). Hence, by m±+λ > 0, it follows that for any fixed p > 1 and λ > −m±,
the function defined on (0,+∞) by E 7→ s±(λ,E) is strictly increasing (resp.
strictly decreasing) and bounded from below by 0 (resp. by −∞) and from
above by +∞ (resp. by 0). Then the limit limE→0+ s±(λ,E) = `

±
0 exists as real

number and the limit limE→+∞ s±(λ,E) = `±+∞ exists and belongs to (0,+∞]
(resp. [−∞, 0)). Moreover,

−∞ ≤ `−+∞ < `−0 ≤ 0 ≤ `
+
0 < `++∞ ≤ +∞.

Let us observe that, for any fixed p > 1 and λ > −m±, the function (E, s) 7→
G±(E, s) is continuous on [0,+∞)2 (resp. [0,+∞)× (−∞, 0]) and the function
E 7−→ s±(λ,E) is continuous on (0,+∞) and satisfies (14). So, by passing to
the limit in (14) as E tends to 0+ one obtains

0 = lim
E→0+

G±(E, s±(λ,E)) = G±(0, `
+
0 ) .

Hence, `±0 is a zero, belonging to [0,+∞) (resp. (−∞, 0]), to the equation in s:

G±(0, s) = 0.

By solving this equation one gets: `±0 = 0.

Assume that `±+∞ is finite, then by passing to the limit in (14) as E tends
to +∞ one gets,

+∞ = p′(F (`±+∞) + λΦq(`
±
+∞)) < +∞,

which is impossible. So, `±+∞ = ±∞.

Proof of (iii). Dividing equation (14) by |s±(λ,E)|q one gets,

Ep

|s±(λ,E)|q
= p′(

F (s±(λ,E))

|s±(λ,E)|q
+
λ

q
),

and by passing to the limit as E tends to 0+, (using l’Hospital’s rule),

lim
E→0+

Ep

|s±(λ,E)|q
=
p′

q
( lim
E→0+

f(s±(λ,E))

ϕq(s±(λ,E))
+ λ) =

p′

q
(a0 + λ).

The second limit is obtained by the same way.
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Proof of (iv). Dividing equation (14) by |s±(λ,E)|p one gets,

lim
E→0+

Ep

|s±(λ,E)|p
= lim

E→0+
p′(
F (s±(λ,E))

|s±(λ,E)|p
+
λ

q
|s±(λ,E)|

q−p)

= lim
E→0+

p′|s±(λ,E)|
q−p(

F (s±(λ,E))

|s±(λ,E)|q
+
λ

q
)

=
p′

q
(a0 + λ) lim

E→0+
|s±(λ,E)|

q−p.

Therefore, the first limit follows. The second one is obtained by the same way.

Proof of (v). Using l’Hospital’s rule one gets, for any t > 0,

lim
E→0+

F (s±(λ,E)t)

Ep
= lim

E→0+

t
ds±
dE (λ,E)f(s±(λ,E)t)

pEp−1

= lim
E→0+

t(p− 1)Ep−1f(s±(λ,E)t)

(f(s±(λ,E)) + λϕq(s±(λ,E)))pEp−1

=
t

p′
lim
E→0+

f(s±(λ,E)t)
ϕq(s±(λ,E)t)

( f(s±(λ,E))
ϕq(s±(λ,E))

1
ϕq(t)

+ λ
ϕq(t)
)

=
tq

p′
(

a0

a0 + λ
).

The second limit may be computed by the same way, which completes the proof
of Lemma 8. ♦

Now, for any p > 1, λ > −m± and E > 0 we compute X±(λ,E) as defined
in Section 3. In fact, for all E > 0,

X+(λ,E) = (0, s+(λ,E)), X−(λ,E) = (s−(λ,E), 0),

where s±(λ,E) is defined in Lemma 8. Then

r±(λ,E) = s±(λ,E) for all E > 0.

Hence, for any p > 1, λ > −m±, 0 < |s±(λ,E)| < +∞ if and only if E > 0.
And for all E > 0,

±(f(r±(λ,E)) + λϕq(r±(λ,E))) = ±ϕq(r±(λ,E))(
f((r±(λ,E)))

ϕq(r±(λ,E))
+ λ) > 0.

So, D±(λ) = (0,+∞) for all λ > −m± and

D(λ) = D+(λ) ∩D−(λ) = (0,+∞), ∀λ > −m.

Before going further in the investigation, from Lemma 8, we deduce that for
any fixed p > 1 and λ > −m±,

±
∂r±

∂E
(λ,E) =

±(p− 1)Ep−1

f(r±(λ,E)) + λϕq(r±(λ,E))
> 0, ∀E > 0. (15)
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lim
E→0+

r±(λ,E) = 0 and lim
E→+∞

r±(λ,E) = ±∞ (16)

lim
E→0

Ep

|r±(λ,E)|q
=
p′

q
(a0 + λ), lim

E→+∞

Ep

|r±(λ,E)|q
=
p′

q
(a± + λ). (17)

lim
E→0

E

|r±(λ,E)|
=



0 if q − p > 0

(a0+λ
p−1 )

1
p if q − p = 0

+∞ if q − p < 0

(18)

lim
E→+∞

E

|r±(λ,E)|
=



+∞ if q − p > 0

(a±+λ
p−1 )

1
p if q − p = 0

0 if q − p < 0

(19)

lim
E→0

F (r±(λ,E)t)

Ep
=
tp

p′
a0

a0 + λ
, ∀t > 0 (20)

lim
E→+∞

F (r±(λ,E)t)

Ep
=
tp

p′
a±

a± + λ
, ∀t > 0. (21)

At present we define, for any p > 1, λ > −m±, and E > 0, the time map,

T±(λ,E) := ±

∫ r±(λ,E)
0

{Ep − p′(F (ξ) + λΦq(ξ))}
− 1p dξ, E > 0,

and a simple change of variables shows that,

T±(λ,E) = |r±(λ,E)|

∫ 1
0

{Ep − p′(F (r±(λ,E)ξ) + (λ/q)|r±(λ,E)ξ|
q)}
− 1p dξ,

(22)
which may be written as,

T±(λ,E) = (|r±(λ,E)|/E)

∫ 1
0

{
1− p′(F (r±(λ,E)ξ)/E

p (23)

+(λξq/q)(|r±(λ,E)|
q/Ep))

}−1/p
dξ .

Also, we define, the time maps

T±2n(λ,E) := n(T+(λ,E) + T−(λ,E)), E > 0, λ > −m±2n, n ≥ 1 ,

T±2n+1(λ,E) := T
±
2n(λ,E) + T±(λ,E), E > 0, λ > −m±2n+1, n ≥ 0 .

To prove Theorems 2, 3, 4, it suffices to compute the limits of these time
maps as E tends to 0+ and +∞, and then apply the intermediate value theorem.
Recall that we have defined in Proposition 1 the functions h±k and let us now
define,

gk(λ) =
λ
1/p
k

(a0 + λ)1/p
, for all λ > −a0, k ≥ 1 .

Lemma 9 Assume that p, q > 1, then for all k ≥ 1, and all λ > −m±k ,
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1. lim
E→0+

T±k (λ,E) = +∞ and lim
E→+∞

T±k (λ,E) = 0, if q > p,

2. lim
E→0+

T±k (λ,E) = 0 and lim
E→+∞

T±k (λ,E) = +∞, if q < p,

3. lim
E→0+

T±k (λ,E) =
1
2gk(λ) and lim

E→+∞
T±k (λ,E) =

1
2h
±
k (λ), if q = p.

Proof. The limits of T±(λ,E) as E tends to 0
+ or +∞ follow by making use

of (23) and (17)–(21), together with the fact that

λ
1/p
k = 2k(p− 1)1/p

∫ 1
0

(1− tp)−1/pdt.

The limits of T±2n(λ,E) and T
±
2n+1(λ,E) as E tends to 0 or +∞ follow

immediately from the definition of these maps and the limits of T±(λ,E) as E
tends to 0 or +∞ respectively. The proof is complete. ♦

To apply the intermediate value theorem we need to know, for each integer
k ≥ 1, which one of the limits,

lim
E→0+

T±k (λ,E) or lim
E→+∞

T±k (λ,E)

is greater than the other. If q − p 6= 0, the answer is evident from Lemma 9,
but if q − p = 0, a deep study is required. Let, for any integer n ≥ 1,

Λ±2n+1 =
a−a+ − a0a

∓
2n+1

a0 − a
±
2n+1

and Λ±2n =
a−a+ − a0a

±
2n

a0 − a
±
2n

.

Lemma 10 Let k ≥ 1 be an integer,

(i) If a0 < b±k , then gk(λ) > h±k (λ) for all λ > −a0.

(ii) If a0 > c±k , then gk(λ) < h±k (λ) for all λ > −b
±
k .

(iii) If a− < a±k ≤ a0 < a+, (k ≥ 2) then gk(λ) < h±k (λ) for all λ > −a−.

(iv) If a− < a0 < a±k , (k ≥ 2) then there exists a unique λ̃
±
k = λ̃±k (a0) ∈

(−a−,Λ
±
k ) such that,

gk(λ) < h±k (λ) for all λ ∈ (−a−, λ̃
±
k ),

gk(λ̃
±
k ) = h

±
k (λ̃

±
k ),

gk(λ) > h±k (λ) for all λ ∈ (λ̃
±
k ,+∞).

Moreover, the function a0 7→ λ̃±k (a0) is strictly increasing on (a−, a
±
k ) and

lim
a0→a−

λ̃±k (a0) = −a−, and lim
a0→a

±
k

λ̃±k (a0) = +∞.
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Proof. It is immediate to prove Assertions (i) and (ii) of this lemma since
the function a 7→ (a+λ)−1/p is strictly decreasing. Let us prove assertions (iii)
and (iv).
We are concerned by the case k = 2n+1 for some n ≥ 1 and the superscript

is + : (k = 2n+ 1,+). All the remaining cases may be handled similarly.
Let y+2n+1 be the function defined on (−a−,+∞) by

y+2n+1(λ) = (n+ 1)(a+ + λ)
−1/p + n(a− + λ)

−1/p − (2n+ 1)(a0 + λ)
−1/p.

One has, y+2n+1(λ) < 0 if and only if

((
n+ 1

2n+ 1
)(a+ + λ)

−1/p + (
n

2n+ 1
)(a− + λ)

−1/p)p < (a0 + λ)
−1

and (y+2n+1)
′(λ) < 0 if and only if

((
n+ 1

2n+ 1
)(a+ + λ)

−1−1/p + (
n

2n+ 1
)(a− + λ)

−1−1/p)p/(p+1) > (a0 + λ)
−1.

Since the function t 7→ tp (resp. t 7→ −tp/(p+1)) is convex on (−a−,+∞),

((
n+ 1

2n+ 1
)(a+ + λ)

−1/p + (
n

2n+ 1
)(a− + λ)

−1/p)p

< (
n+ 1

2n+ 1
)(a+ + λ)

−1 + (
n

2n+ 1
)(a− + λ)

−1

(resp.

((
n+ 1

2n+ 1
)(a+ + λ)

−1−1/p + (
n

2n+ 1
)(a− + λ)

−1−1/p)p/(p+1)

> (
n+ 1

2n+ 1
)(a+ + λ)

−1 + (
n

2n+ 1
)(a− + λ)

−1).

So, if we define on (−a−,+∞) the function x
+
2n+1 by

x+2n+1(λ) = (
n+ 1

2n+ 1
)(a+ + λ)

−1 + (
n

2n+ 1
)(a− + λ)

−1 − (a0 + λ)
−1,

it follows that for all λ > −a−,

x+2n+1(λ) ≤ 0 =⇒ y+2n+1(λ) < 0 and x+2n+1(λ) ≥ 0 =⇒ (y
+
2n+1)

′(λ) < 0.

Some simple computations show that for all λ > −a− and κ = +,−, one has,

κx+2n+1(λ) > 0⇐⇒ κ(λ(a0 − a
+
2n+1)− (a−a+ − a0a

−
2n+1)) > 0.

Also, for all λ ∈ R and κ = +,−, one has in the case where a0 > a+2n+1,

κ(λ(a0 − a
+
2n+1)− (a−a+ − a0a

−
2n+1)) > 0⇐⇒ κ(λ− Λ+2n+1) > 0,
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and in the case where a0 < a+2n+1,

κ(λ(a0 − a
+
2n+1)− (a−a+ − a0a

−
2n+1)) > 0⇐⇒ κ(λ− Λ+2n+1) < 0.

On the other hand one has,

a0 < a+2n+1 =⇒ Λ
+
2n+1 > −a− and a0 > a+2n+1 =⇒ Λ

+
2n+1 < −a−.

Hence, an easy compilation of the above assertions shows that if a0 < a+2n+1,
then

λ ≥ Λ+2n+1(> −a−) =⇒ x+2n+1(λ) ≤ 0

−a− < λ < Λ+2n+1 =⇒ x+2n+1(λ) < 0

and if a0 > a+2n+1, then λ > −a− implies x
+
2n+1(λ) > 0.

It remains to study the particular case a0 = a
+
2n+1. For λ > −a−, define

ψλ(t) = (λ+ t)
−1, for all t > −λ.

Let us observe that x+2n+1(λ) > 0 if and only if

ψλ(a0) < (
n

2n+ 1
)ψλ(a−) + (

n+ 1

2n+ 1
)ψλ(a+).

But since ψλ is strictly convex, one has

ψλ(a0) = ψλ(a
+
2n+1) = ψλ((

n

2n+ 1
)a− + (

n+ 1

2n+ 1
)a+)

< (
n

2n+ 1
)ψλ(a−) + (

n+ 1

2n+ 1
)ψλ(a+),

that is, if a0 = a
+
2n+1, then

λ > −a− =⇒ x+2n+1(λ) > 0.

Thus, in the case where a0 ≥ a
+
2n+1, y

+
2n+1 is strictly decreasing on (−a−,+∞)

and by limλ→+∞ y+2n+1(λ) = 0 it follows that y
+
2n+1 is strictly positive on

(−a−,+∞). Thus, Assertion (iii) is proved.
In the case where a0 < a+2n+1, y

+
2n+1 is strictly negative on [Λ

+
2n+1,+∞)

and strictly decreasing on (−a−,Λ
+
2n+1). By lim

λ→−a−
y+2n+1(λ) = +∞, it follows

that there exists λ̃+2n+1 = λ̃+2n+1(a0) ∈ (−a−,Λ
+
2n+1) such that y

+
2n+1 is strictly

positive on (−a−, λ̃
+
2n+1), y

+
2n+1(λ̃

+
2n+1) = 0, and y

+
2n+1 is strictly negative on

(λ̃+2n+1,+∞).

One has y+2n+1(a0, λ̃
+
2n+1(a0)) = 0. So, the implicit function theorem yields

∂λ̃+2n+1
∂a0

(a0) = −
∂y+2n+1
∂a0

(a0, λ̃
+
2n+1(a0))/

∂y+2n+1
∂λ

(a0, λ̃
+
2n+1(a0)).
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One has
∂y+2n+1
∂λ
(a0, λ̃

+
2n+1(a0)) < 0 since x

+
2n+1(λ̃

+
2n+1(a0)) > 0, and

∂y+2n+1
∂a0

(a0, λ̃
+
2n+1(a0)) =

2n+ 1

p
(a0 + λ̃

+
2n+1(a0))

−1−1/p > 0.

So, the function a0 7→ λ̃+2n+1(a0) is strictly increasing on (a−, a
+
2n+1). On the

other hand, one has

−a− < λ̃+2n+1(a0) < Λ
+
2n+1(a0); ∀a0 ∈ (a−, a

+
2n+1),

and lim
a0 7→a−

Λ+2n+1(a0) = −a−, which is easy to check. Thus, lima0→a−
λ̃+2n+1(a0) =

−a−.
Assume that the function a0 7→ λ̃+2n+1(a0) is bounded as a0 tends to a

+
2n+1.

Denote by λ∗ its limit, that is, lim
a0→a

+
2n+1

λ̃+2n+1(a0) = λ∗. Since

y+2n+1(a0, λ̃
+
2n+1(a0)) = 0, ∀a0 ∈ (a−, a

+
2n+1),

it follows that y+2n+1(a
+
2n+1, λ∗) = 0, that is,

((
n+ 1

2n+ 1
)(a+ + λ∗) + (

n

2n+ 1
)(a− + λ∗))

−1/p

= (
n+ 1

2n+ 1
)(a+ + λ∗)

−1/p + (
n

2n+ 1
)(a− + λ∗)

−1/p .

By the strict convexity of the function t → t−1/p on (0,+∞), it follows that
a++λ∗ = a−+λ∗, that is a− = a+, which contradicts the hypothesis a− < a+.
So, the function a0 7→ λ̃+2n+1(a0) is unbounded, and

lim
a0→a

+
2n+1

λ̃+2n+1(a0) = +∞ .

Therefore, Assertion (iv) is proved for the case (k = 2n+ 1,+).
In the case (k = 2n + 1,−) (resp. (k = 2n,±)) one considers y−2n+1 and

x−2n+1 (resp. y
±
2n and x

±
2n) defined by

y−2n+1(λ) = n(a+ + λ)
−1/p + (n+ 1)(a− + λ)

−1/p − (2n+ 1)(a0 + λ)
−1/p

x−2n+1(λ) = (
n

2n+ 1
)(a+ + λ)

−1 + (
n+ 1

2n+ 1
)(a− + λ)

−1 − (a0 + λ)
−1

(resp.

y±2n(λ) = (a+ + λ)
−1/p + (a− + λ)

−1/p − 2(a0 + λ)
−1/p

x±2n(λ) =
1

2
(a+ + λ)

−1 +
1

2
(a− + λ)

−1 − (a0 + λ)
−1).

The same reasoning as above also works here; therefore, Lemma 10 is proved.
♦
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5 Proof of the main results

Proof of Theorem 2. If a0 < b±k , then for all k ≥ 1 and λ > −m
±
k

lim
E→0+

T±k (λ,E) =
1

2
gk(λ) and lim

E→+∞
T±k (λ,E) =

1

2
h±k (λ).

On the other hand, for all λ > −a0 : gk(λ) > h±k (λ). So, since the function
λ 7→ gk(λ) (resp. λ 7→ h±k (λ)) is strictly decreasing on (−a0,+∞) (resp. on
(−b±k ,+∞)), and

gk(λk − a0) = 1 (resp. h
±
k (λ

±
k ) = 1) ,

then

gk(λ) > 1 if and only if − a0 < λ < λk − a0

(resp.

h±k (λ) < 1 if and only if λ±k < λ).

Hence, one has,

gk(λ) > 1 > h±k (λ) if and only if max(−a0, λ
±
k ) < λ < λk − a0.

Then the equation in E > 0 : T±k (λ,E) = 1/2 admits at least a solution for all
λ satisfying

λ > −m±k and max(−a0, λ
±
k ) < λ < λk − a0,

that is, for all λ satisfying

max(−m±k , λ
±
1 ) < λ < λk − a0,

since max(−a0,−m
±
k ) = −m

±
k .

If a0 > c±k then for all k ≥ 1 and λ > −m
±
k ,

lim
E→0+

T±k (λ,E) =
1

2
gk(λ) and lim

E→+∞
T±k (λ,E) =

1

2
h±k (λ).

On the other hand, for all λ ∈ (−b±k ,+∞), gk(λ) < h±k (λ). So, since the function
λ 7→ gk(λ) (resp. λ 7→ h±k (λ)) is strictly decreasing on (−a0,+∞) (resp. on
(−b±k ,+∞)) and

gk(λk − a0) = 1, (resp. h
±
k (λ

±
k ) = 1) ,

it follows that

gk(λ) < 1 if and only if λk − a0 < λ

(resp.

h±k (λ) > 1 if and only if − b±k < λ < λ±k ).
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Hence, one has,

gk(λ) < 1 < h±k (λ) if and only if max(−b
±
k , λk − a0) < λ < λ±k .

Then the equation in E > 0 : T±k (λ,E) = 1/2 admits at least a solution for all
λ satisfying

λ > −m±k and max(−b±k , λk − a0) < λ < λ±k ,

that is, for all λ satisfying

max(−m±k , λk − a0) < λ < λ±k

since max(−b±k ,−m
±
k ) = −m

±
k . The proof of Theorem 2 is complete. ♦

Proof of Theorem 3. If a− < a0 < a+ then for all λ > −m±,

lim
E→0+

T±1 (λ,E) =
1

2
g1(λ) and lim

E→+∞
T±1 (λ,E) =

1

2
h±1 (λ).

On the other hand, one has,

for all λ > −a0, g1(λ) > h+1 (λ) (resp. for all λ > −a−, g1(λ) < h−1 (λ)).

So, the same reasoning as in the superlinear (resp. sublinear) case leads to the
proof of the first assertion (resp. the second assertion) of Theorem 3.

If a− < a±k ≤ a0 < a+ and k ≥ 2, for all λ > −m
±
k = −m,

lim
E→0+

T±k (λ,E) =
1

2
gk(λ) and lim

E→+∞
T±k (λ,E) =

1

2
h±k (λ).

On the other hand, one has for all λ > −a−, gk(λ) < h±k (λ). So, the same
reasoning as in the sublinear case leads to the fact that the equation in E > 0 :
T±k (λ,E) = 1/2 admits at least a solution for all λ satisfying

max(−m,λk − a0) < λ < λ±k .

If a− < a0 < a±k < a+ and k ≥ 2, for all λ > −m,

lim
E→0+

T±k (λ,E) =
1

2
gk(λ) and lim

E→+∞
T±k (λ,E) =

1

2
h±k (λ).

Since the function a0 7→ λ̃±k (a0) ∈ (−a−,Λ
±
k ) is strictly increasing on the interval

(a−, a
±
k ) then the function a0 7→ h±k (λ̃

±
k (a0)) is strictly decreasing on (a−, a

±
k ).

Also, one has,
lim
a0→a−

h±k (λ̃
±
k (a0)) = lim

x→−a−
h±k (x) = +∞,

and
lim
a0→a

±
k

h±k (λ̃
±
k (a0)) = lim

x→+∞
h±k (x) = 0 .
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Then there exists a unique ã±k ∈ (a−, a
±
k ) such that for all a0 ∈ (a−, a

±
k ) one

gets,

h±k (λ̃
±
k (a0)) > 1 ⇐⇒ a− < a0 < ã±k ,

h±k (λ̃
±
k (a0)) = 1 ⇐⇒ a0 = ã

±
k ,

h±k (λ̃
±
k (a0)) < 1 ⇐⇒ ã±k < a0 < a±k .

So, one has to distinguish two cases:
Case where a− < a0 < ã±k . Then for all λ ∈ (−a−, λ̃

±
k (a0)),

1 < h±k (λ̃
±
k (a0)) = gk(λ̃

±
k (a0)) < gk(λ) < h±k (λ),

and for all λ > λ̃±k (a0),

h±k (λ) < 1 < gk(λ) if and only if λ±k < λ < λk − a0 ,

hence, the equation in E > 0 : T±k (λ,E) = 1/2 admits at least a solution for all
λ satisfying

λ > −m and λ±k < λ < λk − a0 ,

that is, for all λ satisfying, max(−m,λ±k ) < λ < λk − a0.

Case where ã±k < a0 < a±k . Then for all λ > λ̃±k (a0),

h±k (λ) < gk(λ) < gk(λ̃
±
k (a0)) = h

±
k (λ̃

±
k (a0)) < 1,

and for all λ ∈ (−a−, λ̃
±
k (a0)),

gk(λ) < 1 < h±k (λ) if and only if max(−a−, λk − a0) < λ < λ±k ;

hence, the equation in E > 0 : T±k (λ,E) = 1/2 admits at least a solution for all
λ satisfying

λ > −m and max(−a−, λk − a0) < λ < λ±k ,

that is, for all λ satisfying max(−m,λk − a0) < λ < λ±k , this is so because
max(−m,−a−) = −m. The proof of Theorem 3 is complete. ♦

Proof of Theorem 4. If q − p > 0 (resp. q − p < 0), by Lemma 9, for all
λ > −m±k , k ≥ 1,

lim
E→0+

T±k (λ,E) = +∞ (resp. = 0) and lim
E→0+

T±k (λ,E) = 0 (resp. = +∞).

So, the intermediate value theorem implies that the equation in E > 0 :
T±k (λ,E) = 1/2 admits at least a solution for all λ > −m±k . Theorem 4 is
proved. ♦
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Remark 1. Some easy computations show that

∂T+

∂E
(λ,E) =

(p′)−
1
p

p
(
∂r+

∂E
(λ,E))

∫ 1
0

(H(λ, r+(λ,E)) −H(λ, r+(λ,E)ξ))

(F (λ, r+(λ,E)) − F (λ, r+(λ,E)ξ))
1+ 1p

dξ,

where H(λ, x) := pF̃ (λ, x) − xf̃(λ, x), F̃ (λ, x) = λΦq(x) + F (x) and f̃(λ, x) =
λϕq(x) + f(x). So, if q = p, one gets,

d

dx
(
f(x)

ϕp(x)
) =

−1

xϕp(x)

∂H

∂x
(λ, x), x > 0.

Hence, in the particular case where the function x 7→ f(x)/ϕp(x), (q = p) is
strictly decreasing on (0,+∞) the function x 7→ H(λ, x) is strictly increasing
on (0,+∞) and then the time map E 7→ T+(λ,E) is strictly increasing on
(0,+∞). So, uniqueness (if existence) of the solution of the equation in E > 0 :
T+(λ,E) = 1/2 is guaranteed. The exact number of positive solution(s) in A

+
1

should be obtained with this additional condition. The same remark works for
the result of Guedda and Veron [40]. That is, their Theorem 2.1 holds without
there condition (2.7).

Remark 2. If f is an odd function, a− = a+. The statements of Theorems 2,
3, and 4 may be simplified in this particular case.

Remark 3. Several corollaries may be deduced from Theorems 2, 3, and 4
and the above remarks. In fact, one may draw some bifurcation diagrams and
compute a lower bound on the number of solutions of problem (1) in some
cases and the exact number of positive solutions in others. This would require
more space and patience, and is left to the diligent, patient reader. However, a
qualitative feature of the variations of the bifurcation branches as a0 varies is
known. In fact, if a− < a+, then the bifurcation branches are trend towards a
same direction for all a0 < ã±k and towards the opposite for all a0 > ã±k . The
case where a0 = ã±k remains an open question. If a− > a+, one may study the
asymmetric case, a− > a0 > a+, as in Theorem 3.

Remark 4. One may observe that a common feature in Theorems 2, 3, and
4 is that the parameter λ is taken, in particular, such that the function x 7→
λ+f(x)/ϕq(x) is strictly positive on (−∞, 0) and/or (0,+∞). Some cases where
this function changes sign once are studied by Guedda and Veron [40] and by
Boucherif, Bouguima and Derhab [13], both for the particular case where f
is odd. So, it is reasonable to ask the question of what happens if f is not
necessarily odd.

6 Appendix: Historical overview on time maps

At the beginning of time maps’ history, the authors used them with the one
dimensional Laplacian operator, that is, with the one dimensional p-Laplacian
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and p = 2. From the 1960’s we can mention Opial [46], [47], Urabe [62], [63],
[64], [65], [66], Pimbley [48], [49], and Gavalas [39].

In the early 1970’s, Laetsch [43] used time maps to study positive solutions
to a class of boundary-value problems with Dirichlet boundary data. Since
then many authors have referred to his work. We also want to mention Chafee
and Infante [21], and Chafee [22]. Brown and Budin [14], [15] used the time
map approach to study positive solutions to some boundary-value problems.
Independently and about the same time, De-Mottoni and Tesei [24] studied
positive solutions of some other class of boundary-value problems by means of
the same method.

In the early 1980’s Smoller and Wasserman [55] introduced a technique that,
in some circumstances, can be used to prove uniqueness of the critical point of
time maps. Their technique has been used subsequently by many authors; see
for instance, Ammar Khodja [6], Ramaswamy [50], S. H. Wang and Kazarinoff,
[67], [68], S. H. Wang and F. P. Lee [69], S. H. Wang [70], [71], [72], and recently
by Addou and Benmezäı [4].

The study of sign-changing solutions by means of time maps was initiated
by De-Mottoni and Tesei [25], and independently, some years after, by Shivaji
[53].

During the last two decades, time maps have been used in many publications.
Besides the above mentioned papers, we want to add the following ones: Addou
and Ammar Khodja [1], Anuradha, Shivaji and Zhu [7], [8], Anuradha and
Shivaji [9], Anuradha, C. Brown and Shivaji [10], Brown, Ibrahim and Shivaji
[16], Brunovsky and Chow [17], Castro and Shivaji [19], [20], Ding and Zanolin
[26], [27], Fernandes [30], Fonda and Zanolin [31], Fonda, Gossez and Zanolin
[32], Schaaf [51], Shivaji [52], [53], [54], Smoller, Tromba and Wasserman [59],
Smoller and Wasserman [56], [57], [58]. Notice that this list is in alphabetical
order, and is not complete by any means. The differential operator in the
equations studied in these papers is the p-Laplacian with p = 2. For more
general differential operators, see references listed in Section 3 of this paper.

Acknowledgment. I want to thank Professor Julio G. Dix for his help in
improving the presentation of an early version of this article.
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[44] Manásevich, R., and F. Zanolin, Time-mappings and multiplicity of
solutions for the one-dimensional p-Laplacian, Nonlinear Analysis T. M.
A. 21 (1993), pp. 269-291.



26 Multiplicity of solutions for boundary-value problems EJDE–1999/21
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[50] Ramaswamy, M., Thèse 3è cycle, Univ. Pierre et Marie Curie, Paris VI,
(1983).

[51] Schaaf, R., Global solution branches of two point boundary value prob-
lems, Lecture Notes Math. 1458 (1990). Springer Verlag.

[52] Shivaji, R., Uniqueness results for a class of positone problems, Nonlinear
Anal. T.M.A. 7 (1983), pp. 223-230.

[53] Shivaji, R., Perturbed bifurcation theory for a class of autonomous ordi-
nary differential equations, in: Lakshmikantham V. (ed.), Trends in theory
and practice of nonlinear differential equations (Marcel Dekker, Inc., New
York and Basel, 1984).

[54] Shivaji, R., A comparison of two methods on non-uniqueness for a class
of two-point boundary value problems, Applicable Anal. 27 (1988), pp. 173-
180.

[55] Smoller, J., and A. Wasserman, Global bifurcation of steady-state so-
lutions, J. Diff. Eqns. 39 (1981), pp. 269-290.

[56] Smoller, J., and A. Wasserman, Generic bifurcation of steady state
solutions, J. Diff. Eqns. 52 (1984), pp. 432-438.

[57] Smoller, J., and A. Wasserman, Existence, uniqueness, and nondegen-
eracy of positive solutions of semilinear elliptic equations, Commun. Math.
Phys. 95 (1984), pp. 129-159.

[58] Smoller, J., and A. Wasserman, On the monotonicity of the time-map,
J. Diff. Eqns. 77 (1989), pp. 287-303.

[59] Smoller, J., A. Tromba, and A. Wasserman, Non-degenerate solu-
tions of boundary-value problems, Nonlinear Anal. T.M.A. 4 (1980), pp.
207-215.



EJDE–1999/21 Idris Addou 27

[60] Struwe, M., Infinitely many solutions of superlinear boundary value prob-
lems with rotational symmetry, Arch. Math. 36, No. 4 (1981), pp. 360-369.

[61] Ubilla, P., Multiplicity results for the 1-dimensional generalized p-
Laplacian, J. Math. Anal. Appl. 190 (1995), pp. 611-623.

[62] Urabe, M., Potential forces which yield periodic motions of a fixed period,
J. Math. Mech. 10 (1961), pp. 569-578.

[63] Urabe, M., The potential force yielding a periodic motion whose period
is an arbitrary continuous function of the amplitude of the velocity, Arch.
Rational Mech. Anal. 11 (1962), pp. 27-33.

[64] Urabe, M., The potential force yielding a periodic motion whose period
is an arbitrary continuously differentiable function of the amplitude, J. Sci.
Hiroshima Univ. Ser. A-I 26 (1962), pp. 93-109.

[65] Urabe, M., The potential force yielding a periodic motion with arbitrary
continuous half-periods, J. Sci. Hiroshima Univ. Ser. A-I 26 (1962), pp.
111-122.

[66] Urabe, M., Relations between periods and amplitudes of periodic solutions
of x′′ + g(x) = 0, Funkcialaj Ekvacioj 6 (1964), pp. 63-88.

[67] Wang, S.H., and N. D. Kazarinoff, Bifurcation and stability of positive
solutions of a two-point boundary value problem, J. Austral. Math. Soc.
Series A 52 (1992), pp. 334-342.

[68] Wang, S.H., and N. D. Kazarinoff, Bifurcation of steady-state solu-
tions of a scalar reaction-diffusion equation in one space variable, J. Aus-
tral. Math. Soc. Series A 52 (1992), pp. 343-355.

[69] Wang, S.H., and F.P. Lee, Bifurcation of an equation from catalysis
theory, Nonlinear Anal. T.M.A. 23 (1994), pp. 1167-1187.

[70] Wang, S.H., On the time map of a nonlinear two point boundary value
problem, Diff. Integral. Eqns. 7 (1994), pp. 49-55.

[71] Wang, S.H., On S-Shaped bifurcation curves, Nonlinear Anal. T.M.A. 22
(1994), pp. 1475-1485.

[72] Wang, S.H., Rigorous analysis and estimates of S-shaped bifurcation
curves in a combustion problem with general Arrhenius reaction-rate laws,
Proc. Roy. Soc. Lond. A 453 (1997), pp. 1-18.

[73] Wang, J., The existence of positive solutions for the one dimensional p-
Laplacian, Proc. Amer. Math. Soc. 125 (1997), pp. 2275-2283.

Idris Addou

USTHB, Institut de Mathématiques
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