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NONLINEAR NEUMANN PROBLEMS ON BOUNDED
LIPSCHITZ DOMAINS

ABDELMAJID SIAI

Abstract. We prove existence and uniqueness, up to a constant, of an entropy
solution to the nonlinear and non homogeneous Neumann problem

− div[a(.,∇u)] + β(u) = f in Ω

∂u

∂νa
+ γ(τu) = g on ∂Ω .

Our approach is based essentially on the theory of m-accretive operators in
Banach spaces, and in order preserving properties.

1. Introduction

Let Ω be a connected open bounded set in RN , N ≥ 3, with a connected Lipschitz
boundary ∂Ω. Let (f, g) ∈ L1(Ω) × L1(∂Ω) satisfy the condition

∫
Ω
f(y)dy +∫

∂Ω
g(y)dσ(y) = 0 which is necessary and sufficient for solving classical Neumann

problem in smooth bounded domains [10]. Let a(x, ξ) be an operator of Leray-Lions
type, in the sense that (x, ξ) 7→ a(x, ξ) is a Carathéodory function from Ω×RN to
RN , 〈a(x, ξ1)−a(x, ξ2), ξ1−ξ2〉 > 0, if ξ1 6= ξ2 and there exist some constants p > 1,
C1, C2 > 0 and a function h0 ∈ Lp′(Ω), p′ = p

p−1 , such that 〈a(x, ξ), ξ〉 ≥ C1|ξ|p and
|a(x, ξ)| ≤ C2(h0(x) + |ξ|p−1), for a.e. x ∈ Ω and all ξ ∈ RN , (see [12]). We discuss
existence and uniqueness of a solution u for the nonlinear and non homogeneous
Neumann problem

−div[a(.,∇u)] + β(u) = f in Ω
∂u

∂νa
+ γ(τu) = g on ∂Ω,

(1.1)

The trace τu on ∂Ω is taken in the sense of [1]. The gradient ∇u is defined by mean
of truncating, in the sense of [3], ∇u = DTku on every set {|u| ≤ k}, k > 0, where
Tk(r) = max{−k,min(k, r)}, r ∈ R. The normal derivative ∂u

∂νa
related to the

operator a may be interpreted as the trace of the inner product in RN 〈a(.,∇u), ν〉,
where ν is the outward normal derivative vector field. More precisely 〈a(., DTku), ν〉
represents a.e. on ∂Ω an element of the dual space of W 1− 1

p ,p(∂Ω) ∩ L∞(∂Ω) (see
[9]), but this interpretation is not essential to our approach, since it does not appear
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explicitly in the definitions, given later, for weak solutions as well as for entropy
solutions.

For a sake of simplicity, β, γ are taken as continuous non decreasing real functions
everywhere defined on R, with β(0) = γ(0) = 0. We may extend our approach to
the case where β, γ are maximal monotone graphs in R2 with some compatibility
conditions on their domains, as given in [17].

We prove existence and uniqueness up to a constant, of an entropy solution u to
the problem (1.1), in the sense that u : Ω → R is measurable, DTku ∈ Lp(Ω), for
every k > 0, β(u) ∈ L1(Ω), γ(τu) ∈ L1(∂Ω), and for every ϕ ∈ C∞0 (RN ), u satisfies

∫
Ω

〈a(.,∇u), DTk(u−ϕ)〉 ≤
∫

Ω

(f−β(u))Tk(u−ϕ)+
∫

∂Ω

(g−γ(τu))Tk(τu−ϕ). (1.2)

We cannot expect better result for uniqueness, since in the particular case where
β = γ = 0, if u is a solution, then it is so for u + c, where c is an arbitrary real
constant.

Later on, for uniqueness, we will take in (1.2) the test function ϕ in a class larger
than C∞0 (RN ).

To the best of our knowledge, the Non homogeneous case g 6= 0, with a double
nonlinearity β(u) and γ(τu), even in the Quasilinear case where div[a(x,∇u)] = ∆u,
is new. The homogeneous case g = 0 has been discussed by many authors. See e.g.
[2], [8]. For the nonlinear problem, with particular β and γ, we refer the reader
to [1] for the case β(u) = u, and to [15] for β = 0 and γ(τu) = λτu. In all these
approaches, the boundary condition is a part of the definition of the operator’s
domain. This is no longer possible in our situation. For this reason, to investigate
the non homogeneous quasilinear Neumann problem in a half-space, we used in [17]
a matrix operator A on a product space. This had been extended in [18] to the
problem,

−div[a(.,∇u)] + β(u) = f in RN \ ∂Ω[ ∂u
∂νa

]
+ γ(τu) = g on ∂Ω

[u] = 0 on ∂Ω .

(1.3)

Where Ω is given as previously, [ ∂u
∂νa

] and [u] are respectively the jump of the normal
derivative ∂u

∂νa
and of the trace τu across ∂Ω.

In the present, X1 = L1(Ω)×L1(∂Ω) and A is an operator related to the problem

−div[a(.,∇u)] = f in Ω
∂u

∂νa
= g on ∂Ω,

(1.4)

in the sense that A(u, τu) = (f, g), if u is an entropy solution to (1.4). A1 is the
restriction of A to X1.

Our approach is based essentially on the theory of m-accretive operators in Ba-
nach spaces and the following order preserving properties:

If Fi = (fi, gi) ∈ L1(Ω) × L1(∂Ω), i = 1, 2, satisfy the conditions
∫
Ω
fi(y)dy +∫

∂Ω
gi(y)dσ(y) = 0, A(ui, τui) = (fi, gi) and ϕ = sign0(u1−u2) and ψ = sign0(τu1−
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τu2), then∫
Ω

(f1 − f2)ϕ+
∫

Ω∩{u1=u2}
|f1 − f2|+

∫
∂Ω

(g1 − g2)ψ +
∫

∂Ω∩{τu1=τu2}
|g1 − g2| ≥ 0

(1.5)
If in addition, (ui, τui) ∈ X1, i = 1, 2 and A1(ui, τui) = (fi, gi), then for every
ϕ ∈ sign(u1 − u2) and every ψ ∈ sign(τu1 − τu2), we have∫

Ω

(f1 − f2)ϕ+
∫

∂Ω

(g1 − g2)ψ ≥ 0, (1.6)

where

sign(r) =

{
r/|r| if r 6= 0
[−1, 1] if r = 0,

sign0(r) =

{
r/|r| if r 6= 0
0 if r = 0.

Note that the main difficulty of the problem here as well as in [18] is that the
domain of the operator A in not necessary included in L1 + L∞.

The inequality (1.5) is applied to the proof of uniqueness for the nonlinear per-
turbation (β(u), γ(τu)), in the problem (1.1) which leads to the uniqueness of the
solution u up to a constant, while (1.6) is applied to the proof of existence of a solu-
tion to (1.1), and mainly when β and γ are possibly, mulivalued maximal monotone
graphs in R2.

Following [2] and [8], the inequalities (1.5) and (1.6) may be interpreted as
properties of maximum principle type or order preserving properties in the sense
of [5] related to an operator whose domain is not necessary included in L1(Ω).

For the sequel, we proceed as follows: In Section 2, we collect some properties of
functional spaces and traces. In Section 3, we prove that operator A is one-to-one
(modulo constants) and A1 is m-completely accretive on X1. Section 4 is devoted
to establish order preserving properties (1.5) and (1.6). In Section 5, we discuss
existence and uniqueness for the entropy solution to (1.1).

2. Preliminaries and notations

Let M(Ω) be the space of classes of Borel measurable real valued functions on
Ω, equipped with the topology of the convergence in measure

d(f, g) =
∫

Ω

|f − g|(x)
1 + |f − g|(x)

dx.

For r > 0, we consider the functional Nr and the Marcinkiewicz space Mr(Ω),

Nr(u) =
[
sup
λ>0

λr|{|u| > λ}|
]1/r

, if u ∈M and Mr(Ω) = {u ∈M : Nr(u) <∞}

If r > 1 and B is the Borel family of subsets of Ω or ∂Ω, then Nr is equivalent to
the norm,

‖u‖Mr = sup
K∈B, |K|>0

1

|K| 1
r′

∫
K

|u(x)|dµ(x),
1
r

+
1
r′

= 1.

(Mr(Ω), ‖ ‖Mr ), (respect: (Mr(∂Ω)), ‖ ‖Mr ), is a Banach space and the inclusion
Mr ⊂ Lq holds for all r, q, 1 ≤ q < r. (see [4]).

We recall from [18] that, for an arbitrary r > 0, Nr(u+v) ≤ 21/r[Nr(u)+Nr(v)],
if 0 < q < r, then u ∈ Mr if and only if |u|q ∈ M

r
q and Mr is closed subspace of

M. In particular Mr is complete for the topology of convergence in measure.
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Following [3], the gradient by mean of truncating ∇u is a measurable function

V : Ω → RN such that V = DTku, a.e. on Ωk = {|u| ≤ k}, k > 0. (2.1)

and the set T 1,p(Ω) is given by

T 1,p(Ω) = {u ∈M(Ω), such that DTku ∈ Lp(Ω), for every k > 0}.
Note that in view of the identity 1{|u|<k}∇u = DTku, the notation ∇u becomes
superfluous on the set {|u| < k}, where Tku = u. For this reason 1{|u|<k}∇u will
be noted simply 1{|u|<k}Du.

We apply also the sets T 1,p
tr (Ω) introduced in [1, Theorem 3.1] as being the subset

of functions in T 1,p(Ω) for which a generalized notion of trace may be defined. More
precisely u ∈ T 1,p

tr (Ω) if u ∈ T 1,p(Ω) and there exist a sequence (un)n in W 1,p(Ω)
and a measurable function v on ∂Ω such that

un → u a.e. in Ω,

DTk(un) → DTk(u) in L1(Ω),

(τun)n → v a.e. on ∂Ω .
(2.2)

Therefore, we set τ̃u = v the trace of u. The operator τ̃ satisfies the following
properties

(i) If u ∈ W 1,p(Ω), then τTku = Tkτu, for every k > 0 and τ̃u = τu a.e. on
∂Ω.

(ii) If u ∈ T 1,p
tr (Ω), then τ(Tku) = Tk(τ̃u), for all k > 0.

(iii) τ̃(u− ϕ) = τ̃u− τϕ, if ϕ ∈W 1,p(Ω) and u ∈ T 1,p
tr (Ω).

In the sequel, τ̃u is noted simply τu.

Lemma 2.1. Let be given δ > 0 and p such that 1 < p < N . If p1 = N(p−1)
N−p ,

p2 = N(p−1)
N−1 and u ∈ T 1,p

tr (Ω) such that the trace τu ∈ L1(∂Ω) and u satisfies

1
k

∫
{|u|<k}

|Du|pdx ≤ δ, for every k > 0, (2.3)

then we have
(i) u ∈Mp1(Ω) and there exists a constant C3 = C3(N, p,Ω, δ) such that

|{|u| > k}| ≤ C3k
−p1 for every k > 0, (2.4)

(ii) ∇u ∈Mp2(Ω) and there exists a constant C4 = C4(N, p,Ω, δ) such that

|{|∇u| > k}| ≤ C4k
−p2 , for every k > 0. (2.5)

Proof. (i) We denote by v = 1
|∂Ω|

∫
∂Ω
v the mean of any measurable function v,

when it exits and we select k0 > 2|u|. If k ≥ k0, then,

|{|u| ≥ k}| = |{|Tku| = k}|

≤ |{|Tku|+
k

2
≥ k + |u|}|

≤
∣∣{|Tku|+

k

2
≥ k + |Tku|

}∣∣
≤

∣∣{|Tku− Tku| ≥
k

2
}∣∣

≤
(2
k
‖Tku− Tku‖p∗

)p∗

,
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where p∗ = Np
N−p .

The last estimation follows from Hölder inequality. Indeed if Ω′k = {|Tku−Tku| ≥
k
2}, then

k

2
|Ω′

k| ≤
∫

Ω′
k

|Tku− Tku| ≤ ‖Tku− Tku‖p∗ |Ω′
k|

1− 1
p∗

Then applying [20, page 191], there exists a constant C = C(N, p,Ω) such that

|{|u| ≥ k}| ≤ C(‖DTku‖p)p∗(
k

2
)−p∗ ≤ 2p∗Cδ

p∗
p k

p∗
p −p∗ , if k ≥ k0.

Hence, (2.4) follows if we select for example, C3 = max{2p∗Cδ
p∗
p , kp1

0 |Ω|}.
(ii) The same proof of [3, lemma 4.2] apply here, taking into account that the
constant C4 depends on Ω. �

3. Accretive operators and entropy solutions

We define the Banach spaces, Xr = Lr(Ω) × Lr(∂Ω), r ≥ 1, X∞ = L∞(Ω) ×
L∞(∂Ω) and the measure space X = (Ω ∪ ∂Ω, BΩ ∪ B∂Ω, dx⊕ dσ).

For (U, V ) ∈ Xr × Xr′ , 1
r + 1

r′ = 1, U = (u1, u2), V = (v1, v2), we use the
notation

UV = (u1v1, u2v2) and
∫
X
UV =

∫
Ω

u1v1 +
∫

∂Ω

u2v2

The spaces Xr, r ≥ 1, and X∞ are equipped respectively with the norms

‖F‖r =
[ ∫

X
(|f |r, |g|r)

]1/r

=
[ ∫

Ω

|f(x)|rdx+
∫

∂Ω

|g(x)|rdσ(x)
]1/r

,

for F = (f, g) ∈ Xr and

‖F‖∞ = ess sup
x∈Ω

|f(x)|+ ess sup
x∈∂Ω

|g(x)|,

for F = (f, g) ∈ X∞. Let us recall the classical sets

P0 = {p : R → R, p Lipschitz, odd, non decreasing and p′ has a compact support},
J0 = {j : R → R, j is convex, lower semi-continuous, with min j = j(0) = 0}.

Definition 3.1. If A1 is a mapping from D(A1) ⊂ X1 to X1, then A1 is said to
be is m-accretive in X1, if the resolvent JA1

λ = (I + λA1)−1 satisfies,

JA1
λ is a contraction everywhere defined in X1, for every λ > 0.

X1 = L1(X ) is a normal Banach space in the sense of [5, page 53]. If Ui ∈ D(A1),
Fi ∈ X1, are given such that, A1Ui = Fi, i = 1, 2 and p ∈ P0, then

(A1U1 −A1U2)p(U1 − U2) ∈ L1(X ).

Therefore, the condition∫
X

((A1U1 −A1U2)p(U1 − U2))+ ≥
∫
X

((A1U1 −A1U2)p(U1 − U2))−

is equivalent to ∫
X

(A1U1 −A1U2)p(U1 − U2) ≥ 0,

This leads to the next definition [5, proposition 2.2].
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Definition 3.2. A1 is m-completely accretive in X1, if A1 is m-accretive and
verifies one of the following equivalent conditions,∫

X
j(JA1

λ U1 − JA1
λ U2) ≤

∫
X
j(U1 − U2), for all U1, U2 ∈ X1, λ > 0 and j ∈ J0.

(3.1)

∫
X

(A1U1 −A1U2)p(U1 − U2) ≥ 0, for all U1, U2 ∈ D(A1) and p ∈ P0. (3.2)

As a consequence, if A1(ui, τui) = (fi, gi), i = 1, 2, then by selecting p(r) =
mT 1

m
(r) in (3.2), r ∈ R, and let m → +∞, we obtain the next particular order

preserving property for A1,∫
Ω

(f1 − f2) sign 0(u1 − u2) +
∫

∂Ω

(g1 − g2) sign 0(τu1 − τu2) ≥ 0 (3.3)

If A1 is m-completely accretive in X1, we know from [5, proposition 3.7], (see also

[2]), that the Yosida approximation A1,λ =
I − JA1

λ

λ
= A1J

A1
λ satisfies, for every

U ∈ D(A1),

A1,λ is m-completely accretive, Lipschitz with coefficient
2
λ

and lim
λ↓0

A1,λU = A1U.

(3.4)
The operator a of Leray-Lions type is defined as follows,

(H1) a : Ω×RN → RN , (x, ξ) 7→ a(x, ξ) is a Carathéodory function in the sense
that, a is continuous in ξ, for almost every x ∈ Ω and measurable in x for
every ξ ∈ RN .

(H2) There exist p, 1 < p < N , and C1 > 0, so that,

〈a(x, ξ), ξ〉 ≥ C1|ξ|p, for a.e x ∈ RN and every ξ ∈ RN .

(H3) 〈a(x, ξ1)− a(x, ξ2), ξ1 − ξ2〉 > 0, if ξ1 6= ξ2, for a.e. x ∈ Ω.
(H4) There exists some h0 ∈ Lp′(Ω), p′ = p

p−1 and C2 > 0, such that,

|a(x, ξ)| ≤ C2(h0(x) + |ξ|p−1), for a.e x ∈ Ω and every ξ ∈ RN .

Definition 3.3. If u is any measurable function on Ω, then u is a weak solution
to the problem (1.4), if u ∈ T 1,p

tr (Ω), a(.,∇u) ∈ L1(Ω) and for every v ∈ C∞0 (RN ),∫
Ω

〈a(.,∇u), Dv〉 =
∫

RN

fv +
∫

∂Ω

g.τv,

It is well known, from [16], that uniqueness of weak solutions for degenerate
elliptic equations, fails to be always true, then following [3], (see [13], for example,
for another type of solutions, the renormalized solutions).

Definition 3.4. u is said to be an entropy solution to (1.4), if u ∈ T 1,p
tr (Ω) and u

satisfies, ∫
Ω

a(., Du)DTk(u− ϕ) ≤
∫

Ω

fTk(u− ϕ) +
∫

∂Ω

gTk(τu− ϕ) (3.5)

for every ϕ ∈ T 1,p
tr (Ω) ∩ L∞(Ω).
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We notice that if we set K = k + ‖ϕ‖∞, then {|u − ϕ| ≤ k} ⊂ {|u| ≤ K}, thus
1{|u−ϕ|≤k}.∇u = 1{|u−ϕ|≤k}.DTKu = 1{|u−ϕ|≤k}.Du, since TKu = u on the set
{|u− ϕ| ≤ k}.

We can prove easily as in [3] that if u is an entropy solution of (1.4), then u is
a weak solution.

To discuss uniqueness, for the problem (1.4), the test functions ϕ must be taken
in a class, larger than C∞0 (Ω) and that contains Tku. In [3], the class T 1,p

0 (Ω) ∩
L∞(Ω) is well adapted to the problem with Dirichlet condition on ∂Ω. In [18] this
extension is obtained directly from [3], in the class T 1,p(RN )∩L0(RN )∩L∞(RN ),
since we have the identity T 1,p

0 (RN ) ∩ L0(RN ) = T 1,p(RN ) ∩ L0(RN ), where
L0(RN ) = {u ∈ M(RN ) s.t. |{|u| > k}| < +∞, for every k > 0}. In the present,
we need the next lemma.

Lemma 3.5. (i) If ϕ ∈ T 1,p
tr (Ω) ∩ L∞(Ω), then, there exists a sequence (ϕn)n in

C∞0 (Ω), n ∈ N, such that Tk(u−ϕn) converges a.e. on Ω to Tk(u−ϕ), τTk(u−ϕn)
converges a.e. on ∂Ω to τTk(u−ϕ) and DTk(u−ϕn) converges weakly in (Lp(Ω))N

to DTk(u− ϕ), for every k > 0.
(ii)In particular, u ∈ T 1,p

tr (Ω) is an entropy solution to (1.4), if and only if u
satisfies (3.5), for every ϕ ∈ T 1,p

tr (Ω) ∩ L∞(Ω).

Proof. (i) Let (θn)n a regularizing sequence in RN , θn ∈ C∞0 (RN ) and φn,m =
(ϕ.1B(0,m)) ∗ θn, m,n ∈ N. By the diagonal process, there exists a sequence ϕn

that converges a.e. on Ω to ϕ. Tk(u−ϕ) and Tk(u−ϕn) are in W 1,1(Ω), we assume
that Tk(u−ϕn) converges a.e. on Ω to Tk(u−ϕ) and the same type of convergence
for the trace on ∂Ω.

For the weak convergence of the sequence DTk(u− ϕn), it is sufficient to prove
that ∫

Ω

〈DTk(u− ϕn), ψ〉 →
∫

Ω

〈DTk(u− ϕ), ψ〉, for every ψ ∈ [C∞0 (Ω)]N .

By the divergence theorem, we have,∫
Ω

div[Tk(u− ϕn)ψ] =
∫

∂Ω

Tk(u− ϕn)(x)〈ψ(x), ν(x)〉dσ(x)

Where ν(x) is the outward normal vector in x ∈ ∂Ω. Thus,∫
Ω

〈DTk(u− ϕn), ψ〉

= −
∫

Ω

[Tk(u− ϕn) divψ] +
∫

∂Ω

Tk(u− ϕn)(x)〈ψ(x), ν(x)〉dσ(x)

The lemma is proved by applying dominated convergence in the last two integrals
and then again the divergence theorem in the opposite sense. Part (ii) is an imme-
diate consequence of part (i). �

For the sequel, the operators A and A1 are given as follows,

(u, τu) ∈ D(A), if u ∈ T 1,p
tr (Ω), τu ∈ L1(∂Ω) and there exists

(f, g) ∈ X1 such that, u is an entropy solution for (1.4).
A1is the restriction of A to X1.

(3.6)

Theorem 3.6. (i) A1 is m-completely accretive in X1.
(ii) A is one-to-one.
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Proof. (i). In view of (H3) the inequality (3.2) is satisfied. Hence, A1 is completely
accretive in X1. Now, we prove that I +A1 is onto from X1 to X1.
Step 1: Construction of an approximate sequence. First, we consider the reflexive
Banach space

E = W 1,p(Ω)× Lp(∂Ω), ‖U‖E = (‖u‖p
W 1,p(Ω) + ‖v‖p

Lp(∂Ω))
1/p.

and we define a subspace X0 and an operator A0 as follows, X0 = {(u, v) ∈ E : v =
τu}, and U = (u, τu) ∈ X0 is a solution to A0(u, τu) = (f, g) ∈ E′ if,∫

Ω

〈a(., Du), Dv〉 =
∫

Ω

fv +
∫

∂Ω

g.τv, for every V = (v, τv) ∈ X0.

Next, we consider, the convex functional

Φn(u, v) =
1
2

[ ∫
Ω

u2(x)dx+
∫

∂Ω

v2(x)dσ(x)
]

+
1
np

∫
Ω

|u|pdx; U = (u, v) ∈ X0,

The real mapping t 7→ 〈A0(u + tv), w〉 is continuous, for all u, v, w ∈ E, then A0

is monotone and Hemi-continuous (see [7], [11]), thus it is Pseudo-monotone. It is
also coercive in the sense that

lim
‖U‖E→+∞,U∈X0

〈A0U,U〉+ Φn(U)
‖U‖E

= +∞.

Let F = (f, g) be given in X1 and Fn = (fn, gn) = (Tnf, Tng). Then Fn ∈
X1 ∩ X∞ ⊂ E′, ‖fn‖1 ≤ ‖f‖1 and ‖gn‖1 ≤ ‖g‖1, fn converges to f in L1(Ω),
and gn converges to g in L1(∂Ω). By [7, corollary 30], there exists Un ∈ X0 that
satisfies, for all V ∈ X0,

Φn(V )− Φn(Un) ≥ 〈Fn −A0Un, V − Un〉E′×E

Thus, Fn − A0Un = ∂Φn(Un) ∈ E′, ∂Φn is the subdifferential of Φn, ∂Φn is
univalued here. In other words, Un = (un, τun) ∈ X0 and Un satisfies,∫

Ω

unv +
∫

∂Ω

τunτv +
∫

Ω

〈a(., Dun), Dv〉+
1
n

∫
Ω

|un|p−2unv =
∫

Ω

fn.v +
∫

∂Ω

gnτv,

(3.7)
for every V = (v, τv) ∈ X0.
Step 2: we claim that the sequence ( 1

n |un|p−1)nconverges to 0 in L1(Ω). If we take
v = Tk(un) in (3.7), then v ∈W 1,p(Ω), and we obtain,

C1

k

∫
{|un|<k}

|Dun|p ≤ ‖Fn‖1 ≤ ‖F‖1 (3.8)

We deduce from (2.4), that
(
|un|p−1

)
n

is uniformly bounded in the Marcinkiewicz

space M
N

N−1 (Ω) and then in L1(Ω). After passing to a subsequence, we assume
that 1

n |un|p−1 converges in L1(Ω) and a.e. on Ω to 0.
Step 3: Convergence in measure of the sequence (un)n. We consider the decom-
position,

{|un − um| > t} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|un| ≤ k, |um| ≤ k, |un − um| > t}

Since (un)n is uniformly bounded in the Marcinkiewicz space Mp1 , then, for every
ε > 0, there exists k0 such that |{|un| > k}| < ε and |{|um| > k}| < ε, if k > k0.
Next, if we select some k > k0, since (Tkun)n, is bounded in W 1,p(Ω), we assume
then, up to a subsequence, that (Tkun)n is a Cauchy sequence in L1(Ω) and in
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measure. Then we have |{|un| ≤ k, |um| ≤ k, |un − um| > t}| < ε, if m, n are
sufficiently large.

Hence, up to a subsequence, (un)n converges in measure and a.e. to some u and
u ∈Mp1(Ω).
Step 4: Convergence of the sequence (Dun)n. If k, l, t, ε are positive real numbers,
we have the inclusions,

{|Dun −Dum| > t} ⊂{|un − um| > k} ∪ {|Dun| > l} ∪ {|Dum| > l}
∪ {|Dun| ≤ l, |Dum| ≤ l, |un − um| ≤ k, |Dun −Dum| > t}.

We proceed, first, with the last term in the previous inclusion
Let a compact K and a function µ be given as follows,

K = {(ξ, ζ) ∈ RN × RN : |ξ| ≤ l, |ζ| ≤ l, |ξ − ζ| ≥ t},
µ(x) = min

(ξ,ζ)∈K
〈a(x, ξ)− a(x, ζ), ξ − ζ〉

We derive from (H1) and (H3), that µ is defined for a.e. x ∈ Ω and is positive.
Thus |{µ = 0}| = 0, and there exists η > 0, such that for every measurable subset
S of Ω, if

∫
S
µ < η, then |S| < ε. By applying this last statement to,

S = {|Dun| ≤ l, |Dum| ≤ l, |un − um| ≤ k, |Dun −Dum| > t},

Since, ∫
S

µ ≤
∫

S

〈a(x,Dun)− a(x,Dum), Dun −Dum〉 ≤ k‖F‖1,

then |S| < ε, if k is small enough.
Next, if k is fixed small enough, from the step 3, we have, |{|un−um| > k}| < ε,

if m,n are sufficiently large.
According to (3.8) and (2.5), (Dun)n is uniformly bounded in the Marcinkiewicz

space Mp2 , p2 = N(p−1)
N−1 . Hence |{|Dun| > l}| < ε and |{|Dum| > l}| < ε, for l

sufficiently large.
Then, we may assume that, Dun converges in measure and a.e. on Ω, if n→ +∞

to some V and |V | ∈Mp2(RN ).
We claim that u ∈ T 1,p(Ω) and ∇u = V . For a fixed k > 0, on one hand Tkun is

converging to Tku by dominated convergence, and therefore DTkun is converging
to DTku in D′(RN ), on the other hand, (DTkun)n is bounded in Lp(Ω), thus,
DTkun is converges weakly to a Vk in Lp, therefore also in D′(RN ). By uniqueness,
DTku = Vk ∈ Lp(Ω) andDTkun converges weakly in Lp(Ω) toDTku. Consequently,
u ∈ T 1,p(Ω).

Next, we prove that

DTkun converges in measure and a.e. on Ω to ∇u, as n→ +∞ and k → +∞.
(3.9)

Since Tk+α ◦ Tk = Tk, for every k > 0 and α > 0, then, by the same arguments as
for (Dun)n, we obtain from (3.9) that (DTkun)n converges in measure to some vk,
then claim that (DTkun)n converges weakly to vk, since that leads to vk = DTku.

Indeed, if ε > 0, and ϕ ∈ Lp′(Ω), then for every k > 0, we can select two positive
constants ck and η > 0 such that, for every n ∈ N and every measurable subset
S ⊂ Ω, we have

‖DTkun‖p ≤ ck, and ‖ϕ‖Lp′ (S) ≤
ε

4ck
, if |S| ≤ η
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By Fatou lemma, we have ‖vk‖p ≤ ck. Next, if we set,

λ =
ε

2|Ω|
1
p ‖ϕ‖Lp′ (Ω)

, Sλ = {|DTkun − vk| > λ}

and n0 such that |Sλ| ≤ η for n ≥ n0, then

|
∫

Ω

(DTkun − vk)ϕ| ≤
∫

Sλ

|DTkun − vk||ϕ|+
∫

Ω\Sλ

|DTkun − vk||ϕ|

≤ 2ck‖ϕ‖Lp′ (Sλ) + λ|Ω|
1
p ‖ϕ‖Lp′ (Ω) ≤ ε .

Thus, DTkun converges in measure and a.e to DTku , as n→ +∞. Consequently,
for every k > 0, there exists some nk ∈ N, such that, d(DTkunk

, DTku) ≤ 1
k , where

d is the metric on M. On the other hand,

d(DTku,∇u) =
∫

Ω

|DTku−∇u|
1 + |DTku−∇u|

≤ |{|u| > k}| → 0, as k → +∞. (3.10)

Therefore, we assume the subsequence (DTkunk
)k converges in measure and a.e. to

∇u, as k → +∞.
But for a.e. x ∈ Ω, if k > |u(x)| and k′ > |u(x)|, we have

|DTkun(x)−DTk′um(x)|
≤ |DTkun(x)−Du(x)|+ |Du(x)−DTk′um(x)|
= |DTkun(x)−DTku(x)|+ |DTk′u(x)−DTk′um(x)| ≤ ε

if m and n are sufficiently large,
At last by the same argument as in (3.10), we conclude that, up to a subsequence

DTkun converges in measure and a.e. to Dun, if k → +∞. Since (Dun)n converges
in measure and a.e. to ∇u, we conclude that DTkun converges in measure and a.e.
to ∇u, as n, k → +∞. This completes the proof of (3.9).

Applying classical arguments for Carathéodory functions, we assume that the
sequence (a(., Dun))n converges in measure to a(., Du). ¿From (H4) and the fact
that |Dun|p−1 a.e. uniformly bounded in the Marcinkiewicz space M

N
N−1 (Ω), we

deduce that (a(., Dun))n is equi-integrable on Ω. Hence, a(., Dun) converges in
L1(Ω) to a(., Du).
Step 5: Convergence of the trace. We prove that (τun)n converges to some w ∈
M(∂Ω), that u ∈ T 1,p

tr (Ω) and w = τu, dσ a.e.
Since the trace operator is completely continuous from W 1,p(Ω) to Lp(∂Ω), we

assume that Tkτun = τTkun → τTku, a.e. on Sk = {x ∈ ∂Ω; |Tku| < k}, for every
k > 0. Thus τun converges a.e. to w on ∂Ω, w = τTku, a.e. on Sk, for every k > 0.

On the other hand, DTkun converges weakly in Lp and in measure to DTku, we
deduce also that DTkun converges to DTku in L1(Ω).

We summarize, DTkun DTku, we deduce that L1(Ω).

(un)n converges in measure to some u,

DTkun converges to DTku in L1(Ω),
τun converges a.e. to w on ∂Ω.

We conclude, as defined in (2.2), that u ∈ T 1,p
tr (Ω) and τu = w.

Step 6: It remains to prove that u is an entropy solution to

u− div[a(., Du)] = f in Ω
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τu+
∂u

∂νa
= g on ∂Ω

If ϕ ∈ C∞0 (Ω), and v = Tk(un − ϕ) in (3.7), then we have∫
Ω

〈a(., Dun), DTk(un − ϕ)〉

=
∫

Ω

(fn − un −
1
n
|un|p−2un)Tk(un − ϕ) +

∫
∂Ω

(gn − τun)τTk(un − ϕ),

un → u a.e. on Ω and τun → τu a.e. on ∂Ω.
For the left member, we notice first that D(u−ϕ) = 0, a.e. on the set {|u−ϕ| =

k}. Then DTk(un−ϕ) = D(un−ϕ)1{|un−ϕ|<k} a.e. , and 〈a(., Dun), DTk(un−ϕ)〉
converges a.e on Ω, to 〈a(., Du), Du −Dϕ)〉1{|u−ϕ|<k} = 〈a(., Du), DTk(u − ϕ))〉.
Next

lim
n

∫
Ω∩{|u−ϕ|<k}

〈a(., Dun), Dϕ〉1{|un−ϕ|<k} =
∫

Ω∩{|u−ϕ|<k}
〈a(., Du), Dϕ〉

On the other hand, 〈a(., Dun), DTkun〉 ≥ 0, a.e. and a(., Dun) converges in L1(Ω).
Therefore,∫

Ω

〈a(., Du), DTk(u− ϕ)〉

=
∫

Ω

lim inf
n

〈a(., Dun), DTk(un − ϕ)〉

=
∫

Ω∩{|un−ϕ|<k}
lim inf

n
〈a(., Dun), DTkun〉 −

∫
Ω∩{|un−ϕ|<k}

lim
n
〈a(., Dun), Dϕ〉

≤ lim inf
n

∫
Ω∩{|un−ϕ|<k}

〈a(., Dun), DTkun〉 − lim
n

∫
Ω∩{|un−ϕ|<k}

〈a(., Dun), Dϕ〉

= lim inf
n

∫
Ω

〈a(., Dun), DTk(un − ϕ)〉

≤ lim inf
n

∫
Ω

(fn − un −
1
n
|un|p−2un)Tk(un − ϕ)

+ lim inf
n

∫
∂Ω

(gn − τun)Tk(τun − τϕ).

By the Lebesgue theorem, we have

lim
n

∫
Ω

fnTk(un − ϕ) + lim
n

∫
∂Ω

gnτTk(un − ϕ) =
∫

Ω

fTk(u− ϕ) +
∫

∂Ω

gτTk(u− ϕ).

Next we prove that

lim inf
n

∫
Ω

(
− un −

1
n
|un|p−2un

)
Tk(un − ϕ) ≤

∫
Ω

(−u)Tk(u− ϕ).

In view of the fact that ( 1
n |un|p−2un) converges to 0 in L1(Ω), we have

lim inf
n

∫
Ω

−unTk(un − ϕ)

≤ lim sup
n

∫
Ω

−unTk(un − ϕ)

≤ lim sup
n

∫
Ω

−(un − ϕ)Tk(un − ϕ)− lim
n

∫
Ω

ϕTk(un − ϕ))
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≤
∫

Ω

lim sup
n

[
− (un − ϕ)Tk(un − ϕ)

]
−

∫
Ω

ϕTk(u− ϕ)

=
∫

Ω

−uTk(u− ϕ).

In the same way, we have,

lim inf
n

∫
∂Ω

−τunτTk(un − ϕ) ≤
∫

∂Ω

−τuτTk(u− ϕ).

This completes the proof of (i).
(ii). If u is an entropy solution to (1.4) with data F = (f, g) ∈ X1, and h, k > 0,
then by taking Tk+h(u − Tku) as test functions in (3.7), and applying (H2), we
obtain

C1

∫
{h≤|u|≤k+h}

|Du|p ≤ k

∫
{h≤|u|≤k+h}

|f |+ k

∫
{h≤|τu|≤k+h}

|g| ≤ k‖F‖1.

In particular (2.3) while taking h = 0.
We deduce, then from (2.5) and the condition τu ∈ L1(∂Ω) in (3.6) that,

lim
h→+∞

∫
{h≤|u|≤k+h}

|Du|p = 0. (3.11)

Next, if u1, u2 ∈ T 1,p
tr (Ω) are two entropy solutions to (1.4) with the same data

(f, g), by taking the same decomposition as in [3], for a fixed k,

S1(h) = {|u1 − u2| ≤ k} ∩ [{|u1| < h} ∪ {|u2| < h}]
S2(h) = {|u1 − u2| ≤ k} ∩ [{|u1| ≥ h} ∪ {|u2| < h}]
S′2(h) = {|u1 − u2| ≤ k} ∩ [{|u2| ≥ h} ∪ {|u1| < h}],

and selecting ϕ = Thu2 as test function in the equation related to u1, we have∫
{|u1−Thu2|≤k}∩{|u2|<h}

〈a(., Du1), Du1 −Du2〉

+
∫
{|u1−Thu2|≤k}∩{|u2|≥h}

〈a(., Du1), Du1〉

≤
∫

Ω

fTk(u1 − Thu2) +
∫

∂Ω

gTk(τu1 − τThu2)

Then, taking into account that∫
Ω

〈a(., Du1), Du1〉1{|u1−Thu2|≤k}1{|u2|≥h} ≥ 0,∫
S2

〈a(., Du1),−Du2〉 ≤
∫

S2

〈a(., Du1), Du1 −Du2〉,

we have ∫
S2

〈a(., Du1), Du2〉+
∫

S1

〈a(., Du1), Du1 −Du2〉

≤
∫

Ω

fTk(u1 − Thu2) +
∫

∂Ω

gTk(τu1 − τThu2)

On the other hand, if S3 = {h− k ≤ |u2| < h} and S4 = {h ≤ |u1| ≤ h+ k}, then∣∣ ∫
S2

〈a(., Du1),−Du2〉
∣∣ ≤ C3‖Du2‖Lp(S3)

(
‖h0‖Lp′ (S4)

+ ‖|Du1|p−1‖Lp′ (S4)

)
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With the help of (2.4) and (2.5) we conclude that

lim
h→+∞

∫
S2(h)

〈a(., Du1),−Du2〉 = 0. (3.12)

Next, we do the same for the equation related to u2, with test function ϕ = Thu1

an add the two inequalities:

lim inf
h→+∞

∫
Ω

〈a(., Du1)− a(., Du2), Du1 −Du2〉1S1(h)

+ lim
h→+∞

∫
S2(h)

〈a(., Du1),−Du2〉+ lim
h→+∞

∫
S′

2(h)

〈a(., Du2),−Du1〉

≤ lim
h→+∞

∫
Ω

f [Tk(u1 − Thu2) + Tk(u2 − Thu1)]

+ lim
h→+∞

∫
∂Ω

g[Tk(τu1 − τThu2) + Tk(τu2 − τThu1)].

Then, by applying the Lebesgue dominated convergence on the right, and Fatou
lemma on the left, taking into account (3.12), we obtain,∫

{|u1−u2|<k}
〈a(., Du1)− a(., Du2), Du1 −Du2〉 = 0, k > 0 .

It arises from (H3), that Du1 = Du2, a.e. in Ω. �

4. An order preserving property

Theorem 4.1. (i) If u1, u2 ∈ T 1,p
tr (Ω) are entropy solutions for

−div[a(., Dui)] = fi, in Ω
∂ui

∂νa
= gi on ∂Ω,

(4.1)

i = 1, 2, and ϕ = sign0(u1 − u2), ψ = sign0(τu1 − τu2), then we have the following
order preserving property:∫

Ω∩{u1−u2}
|f1 − f2|+

∫
∂Ω∩{τu1−τu2}

|g1 − g2|+
∫

Ω

(f1 − f2)ϕ+
∫

∂Ω

(g1 − g2)ψ ≥ 0

(4.2)
(ii) If furthermore, Ui = (ui, τui) ∈ Dom(A1), then for every ϕ ∈ sign(u1 − u2)
and ψ ∈ sign(τu1 − τu2), we have∫

Ω

(f1 − f2)ϕ+
∫

∂Ω

(g1 − g2)ψ ≥ 0 . (4.3)

Proof. (i) If Ui = (ui, τui) ∈ D(A), is an entropy solution for the problem (4.1)
with data Fi = (fi, gi) ∈ X1, i = 1, 2, then from Theorem 3.6, there exist Vi,n =
(vi,n, τvi,n) ∈ X1 such that Vi,n is an entropy solution for,

1
n
vn,i − div[a(., Dvn,i)] = fi in Ω

1
n
τvn,i +

∂vn,i

∂νa
= gi on ∂Ω , n ∈ N.

By taking ϕ = 0 in the entropy condition and applying (H2), we have
C1

k

∫
{|un,i|<k}

|Dvn,i|p ≤
∥∥Fn,i −

1
n
Vn,i

∥∥
1
≤ 2‖Fi‖1
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Then applying the same proof as in the previous section, we assume then that
(vn,i)n converges in measure and a.e. to some wi ∈Mp1(Ω), τvn,i converges dσ a.e.
to τwi. Thus ( 1

nvn,i)n and ( 1
nτvn,i)n converge a.e. to 0 and a(., Dvn,i) converges

in L1(Ω) to a(., Dwi), where wi is an entropy solution to the problem

−div[a(., Dwi)] = fi in Ω
∂wi

∂νa
= gi on ∂Ω

Applying again Theorem 3.6, we have Dwi = Dui a.e. Hence, there exist some
constants c1, c2 ∈ R, such that wi = ui + ci. Consider, then the sequences

un,i = vn,i − ci, fn,i = fi −
1
n
un,i −

1
n
ci,

gn,i = gi −
1
n
τun,i −

1
n
ci, ϕn = sign 0(un,1 − un,2),

ψn = sign 0(τun,1 − τun,2), i = 1, 2, n ∈ N .

Then un,i is an entropy solution to

−div[a(., Dun,i)] = fn,i in Ω
∂un,i

∂νa
= gn,i on ∂Ω, n ∈ N.

Since (un,i, τun,i) ∈ X1, from (3.3), we have∫
Ω

(fn,1 − fn,2)ϕn +
∫

∂Ω

(gn,1 − gn,2)ψn ≥ 0.

After suppressing a negative part on the left, this leads to,∫
Ω

(f1 − f2)ϕn +
∫

∂Ω

(g1 − g2)ψn −
1
n

(c1 − c2)
[ ∫

Ω

ϕn +
∫

∂Ω

ψn

]
≥ 0.

In particular,∫
{u1=u2}

|f1 − f2|+
∫
{τu1=τu2}

|g1 − g2|

+ lim
n→+∞

∫
{u1 6=u2}

(f1 − f2)ϕn + lim
n→+∞

∫
{τu1 6=τu2}

(g1 − g2)ψn ≥ 0
(4.4)

Since (un,i)n converges in measure and a.e. to ui and τun,i converges dσ -a.e. to
τui, then we have

lim
n→+∞

ϕn = sign 0(u1 − u2), a.e. on the set {u1 − u2 6= 0},

lim
n→+∞

ψn = sign 0(τu1 − τu2), a.e. on the set{τu1 − τu2 6= 0} .

Then passing to the limit n→ +∞ in (4.4), we obtain (4.2).
(ii) This is exactly the same as in [18, theorem 4.1.(ii)], while changing the integrals
on RN by integrals on Ω. �
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5. Existence and uniqueness

Theorem 5.1. If β, γ are non decreasing continuous functions on R such that
β(0) = γ(0) = 0 and f ∈ L1(Ω), g ∈ L1(∂Ω), then there exists an entropy solution
u ∈ T 1,p

tr (Ω) to the problem

−div[a(., Du)] + β(u) = f in Ω
∂u

∂νa
+ γ(τu) = g on ∂Ω

(5.1)

with, (β(u), γ(τu)) ∈ X1 and ‖(β(u), γ(τu))‖1 ≤ ‖(f, g)‖1 and u is unique, up to an
additive constant. Furthermore, if β or γ is one-to-one, then the entropy solution
is unique.

Proof. Existence: Let E, and X0, be the same spaces, and A0 the same operator
on X0 as in the proof of the Theorem 3.6. Then we define the sequence (Φn)n of
convex and lower semi-continuous functions in X0, as follows:

jβ(r) =
∫ r

0

β(s)ds, jγ(r) =
∫ r

0

γ(s)ds

and for U = (u, v) ∈ X0,

Φn(u, v) =


1
2

[ ∫
Ω
jβ(u) +

∫
∂Ω
jγ(τu)

]
+ 1

np

∫
Ω
|u|pdx,

if jβ(u) ∈ L1(Ω) and jγ(τu) ∈ L1(∂Ω)
+∞ otherwise.

Let Fn = (fn, gn) = (Tnf, Tng) ∈ E′ ∩X1. Applying again, [7, Corollary 30], there
exits Un = (un, τun) ∈ X0, a solution for∫

Ω

〈a(., Dun), Dv〉+
∫

Ω

β(un)v +
∫

∂Ω

γ(τun).τv

+
1
n

∫
Ω

|un|p−2un.v +
1
n

∫
Ω

|un|p−2un.v

=
∫

Ω

fnv +
∫

∂Ω

gnv, for all V = (v, τv) ∈ X0.

(5.2)

If F̃n = (fn − β(un) − 1
n |un|p−2un, gn − γ(τun)), then ‖F̃n‖1 ≤ 3‖F‖1. Thus we

obtain, as previously,

C1

∫
{h≤|u|≤k+h}

|Dun|p ≤ 3k‖F‖1.

We assume that (un)n converges in measure to some u, that 1
n |un|p−2un converges

to 0 in L1(Ω). Then applying (4.2), we have∫
Ω

|β(un)− β(um)|+
∫

∂Ω

|γ(τun)− γ(τun)|

≤ 1
n

∫
Ω

|un|p−1 +
1
m

∫
Ω

|um|p−1 +
∫

Ω

|fn − fm|+
∫

∂Ω

|gn − gm|

Hence, (β(un), γ(τun))n is a Cauchy sequence in X1.
The rest of the proof of existence and uniqueness up to a constant of a solution

for (1.1) and the entropy condition is the same as for Theorem 3.6, and finally, by
Fatou lemma, we have, ‖(β(u), γ(τu))‖1 ≤ ‖(f, g)‖1.
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Uniqueness: Applying again (4.2) we have uniqueness for the nonlinear perturbation
(β(u), γ(τu)). Thus we have uniqueness up to a constant for the solution u. If u1,
u2 are two entropy solutions and u2 = u1 + c, then, τu2 = τu1 + c. Thus c = 0, if
β or γ is one-to-one. �
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