
 
 

COMPRESSION OF A SIGNATURE DATABASE 

THESIS 

Presented to the Graduate Council of 

 Texas State University-San Marcos  

in Partial Fulfillment  

of the Requirements 

 

 

for the Degree 

 

  

Master of SCIENCE  
 

by 
 

Edson Ricardo Amboni, B.S. 
 

San Marcos, Texas  

December 2011 



COMPRESSION OF A SIGNATURE DATABASE 

 

 

 

 

 

 

Committee Members Approved: 

 

 

 

_____________________________ 

Dan E. Tamir, Chair 

 

 

 

_____________________________ 

Mina S. Guirguis 

 

 

 

_____________________________ 

Apan Qasem 

 

 

 

 

 

 

 

 

 

 

 

Approved: 

 

 

_____________________________ 

J. Michael Willoughby 

Dean of the Graduate College 

 



 
 

COPYRIGHT 

by 

Edson Ricardo Amboni 

2011 



 
 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 

 

 

Fair Use 

 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 

from this material are allowed with proper acknowledgment. Use of this material for 

financial gain without the author’s express written permission is not allowed. 

 

 

 

 

 

Duplication Permission 

 

 

 

As the copyright holder of this work I, Edson Ricardo Amboni, authorize duplication of 

this work, in whole or in part, for educational or scholarly purposes only. 



v 
 

ACKNOWLEDGMENTS 

I would like to thank Dr. Mina S. Guirguis and Dr. Apan Qasem for participating 

on my committee.  

In addition, I would like to thank Dr. Dan Tamir for his patience and guidance 

during this entire process of developing and writing this thesis. 

Finally, I would like to thank my family for their support. In specific, I would like 

to thank my wife Viviane for her understanding and encouragement throughout the nights 

and weekends I have spent focusing on this project. 

This manuscript was submitted on October 18, 2011. 

  



vi 
 

TABLE OF CONTENTS 

 

 Page 

ACKNOWLEDGMENTS ........................................................................................................ v 

 

LIST OF TABLES ................................................................................................................ viii 

 

LIST OF FIGURES ................................................................................................................. ix 

 

ABSTRACT............................................................................................................................. xi 

 

CHAPTER 

 

I. INTRODUCTION ............................................................................................................. 1 

 

II. BACKGROUND INFORMATION ................................................................................ 4 

 

Digital Image Processing ................................................................................................. 4 

Image Segmentation ......................................................................................................... 5 

K-Means Clustering ..................................................................................................... 6 

Image Thresholding ..................................................................................................... 6 

Connected Component Labeling ................................................................................. 7 

Contour Tracing ........................................................................................................... 8 

Object Representation ...................................................................................................... 9 

Chain Code ................................................................................................................... 9 

Object Signature ......................................................................................................... 11 

Object Recognition ......................................................................................................... 12 

Quantization .................................................................................................................... 13 

Sum of Absolute Differences ......................................................................................... 14 

The Error Image ............................................................................................................. 14 

Signal-to-noise Ratio ...................................................................................................... 14 

Lossless Compression .................................................................................................... 15 

Lossy Compression ........................................................................................................ 16 

DPCM ......................................................................................................................... 17 

Differential LPC ......................................................................................................... 17 

Compressed Sensing .................................................................................................. 18 

DCT ............................................................................................................................ 18 

 

III. RELATED WORK ....................................................................................................... 19 

 

IV. EXPERIMENT SETUP ............................................................................................... 21 



vii 
 

Process 1: Generating a PGM Image from BPM Files ................................................. 23 

Process 2: Creating a Signature Database from a PGM Image .................................... 24 

Process 3: Reconstructing a PGM Image from a Signature File .................................. 27 

Process 4: Recognition of a PGM Image Using a Signature Database ........................ 30 

 

V. EXPERIMENT RESULTS AND EVALUATION ...................................................... 31 

 

Experiment 1................................................................................................................... 32 

Experiment 2................................................................................................................... 49 

Experiment 3................................................................................................................... 51 

Experiment 4................................................................................................................... 53 

Summary of Results ....................................................................................................... 55 

 

VI. CONCLUSION AND FURTHER RESEARCH ......................................................... 60 

 

WORKS CITED ..................................................................................................................... 62 



viii 
 

LIST OF TABLES 

Table  Page 

 

Absolute Difference between Non-convex Star Shaped Signatures and the Signature 

Database .......................................................................................................................... 35 

Absolute Difference between Rectangle Signatures and the Signature Database ................ 37 

Absolute Difference between Square Signatures and the Signature Database ..................... 40 

Absolute Difference between Ellipse Signatures and the Signature Database ..................... 42 

Absolute Difference between Triangle Signatures and the Signature Database .................. 44 

Absolute Difference between Circle Signatures and the Signature Database ...................... 46 

Absolute Difference between Comparing Shapes Not in the Database ................................ 48 

Calculated Compression Ratio ............................................................................................... 50 

SNR Values of Images Reconstructed from Compressed Signatures ................................... 51 

SNR with Different Bit Allocations ....................................................................................... 52 

Distortion after Image Reconstruction ................................................................................... 55 

 



ix 
 

LIST OF FIGURES 

Figure  Page 

 

Pixel Matrix .............................................................................................................................. 5 

Input and Output of Thresholding Process .............................................................................. 7 

Example of 4-Connected and 8-Connected Pixels .................................................................. 8 

Direction Numbers for 4-Connected and 8-Connected Chain Codes ................................... 11 

Object Signatures .................................................................................................................... 12 

PGM Images Contained in the Signature Database ............................................................... 23 

Images Not Stored in the Signature Database........................................................................ 24 

The Signature Creation Process ............................................................................................. 26 

Non-convex Star Shaped Signature Recreation Process ....................................................... 28 

Ellipse Variations: Normal, Rotation, Rotation and Scale, Scale, and Translation .............. 33 

Comparing Non-convex Star Shaped to the Signature Database .......................................... 34 

Comparing Rectangle to the Signature Database .................................................................. 36 

Ellipse and Rectangle Signatures ........................................................................................... 38 

Comparing Square to the Signature Database ....................................................................... 39 

Comparing Ellipse to the Signature Database ....................................................................... 41 

Comparing Triangle to the Signature Database ..................................................................... 43 

Comparing Circle to the Signature Database ......................................................................... 45 

Comparing Shapes Not in the Database ................................................................................. 47



x 
 

Square and Pentagon Signatures ............................................................................................ 49 

SNR Values of Images Reconstructed from Compressed Signatures ................................... 50 

SNR with Different Bit Allocations ....................................................................................... 52 

Distortion after Image Reconstruction ................................................................................... 54 

Signature and Image Representation of Non-convex Star Shaped ....................................... 57 

Signature and Image Representation of Non-convex Star Shaped with DCT ...................... 57 

Signature and Image Representation of Non-convex Star Shaped with DPCM .................. 58 

Signature and Image Representation of Non-convex Star Shaped with DLPC .................... 58 

Signature and Image Representation of Non-convex Star Shaped with CS ......................... 58 

 

 



xi 
 

ABSTRACT 

COMPRESSION OF A SIGNATURE DATABASE 

by 

Edson Ricardo Amboni, B.S. 

Texas State University-San Marcos 

December 2011 

SUPERVISING PROFESSOR: DAN TAMIR 

Lossy compression algorithms are commonly used to compress multimedia data 

such as image, video, and audio. This type of compression method is generally applied in 

streaming media applications since there is a strong motivation for reducing the storage 

space and/or transmission bandwidth where small visual quality loss is acceptable.  

This thesis investigates and evaluates lossless and lossy compression algorithms via 

the compression and reconstruction of an object representation referred to as signature. 

Lossy compression is investigated due to the fact that lossless compression does not yield 

significant compression. An object signature is a sequence of values representing the 

distance between the object center and its boundary. 

Several steps are involved in extracting an object signature. The processes applied 

to an input image are executed in the following order: binarization, connected component 

labeling (CCL), contour tracing, and signature calculation. This sequence of events is 
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applied to a set of synthetic images. The output results are used to create an image 

signature database. 

The lossy compression methods studied in this project are Differential Pulse Code 

Modulation (DPCM), Differential Linear Predictive Coding (DLPC), Discrete Cosine 

Transformation (DCT), and Compressed Sensing (CS). The lossless method used in this 

thesis is the Dictionary based compression method utilized by the UNIX ‘gzip’ 

compression utility. These algorithms are applied to the object signatures before storing 

them in a database. The compression quality is evaluated with respect to three different 

aspects: object recognition using a compressed signature, Signal-to-Noise ratio (SNR) of 

the original signature compared to the reconstructed compressed signature, and pixel by 

pixel comparison between the original image and the image reconstructed from a 

compressed signature. 

Our results show that the recognition process is able to identify all input objects for 

every image and compression method combination. The experiments demonstrate that 

lossless compression is not a viable method for this application. Furthermore, according to 

the experimental results DPCM has the best rate distortion performance. On the other hand, 

the Compressed Sensing method produces higher distortion and requires a higher threshold 

value in order to accept a valid recognition response. This higher distortion caused by 

Compressed Sensing is also visible in the lower SNR values obtained when comparing the 

signature error with other compression methods utilized in this project. Although the 

quality results for this method are not as good as the DPCM method, Compressed Sensing 

has an important advantage of requiring less data to represent an image during the 
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acquisition process. This means that CS might enable to capture the data with a smaller 

number of sensors.
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CHAPTER I 

 INTRODUCTION 

The explosion of multimedia content is one of the biggest challenges the Internet 

faces today.  According to the Cisco Visual Networking Index report, in 2010 mobile data 

traffic was three times the size of the entire global Internet in 2000 (Cisco, 2011). 

The desire to reduce the data storage space and the bandwidth necessary to transmit 

content through the networks is one of the main motivations for data compression.  

Data compression algorithms are used to decrease the number of bits necessary to 

represent images, videos, speech, and music. For example, an uncompressed CD-quality 

music requires 11 times more storage space compared to amount required by the MP3 

digital audio encoding format. This significantly increases the time necessary to download 

the data into a music player. Compression methods are referred to as lossy or lossless, 

depending if the method loses information or not (Sayood, 2006). 

One of the concerns of computer vision relates to the extraction of information from 

an image or video. For example, consider an automated quality system for detecting an 

anomaly in a specific product shape. This process stores the expected shape (boundary) of 

the product and it is able to detect any significant difference between the manufactured 

product and the desired one by “visually” inspecting object images at the end of the 

assembly line. 
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This research identifies and analyzes compression methods that obtain a high 

signature data compression rate with negligible effect on the rate of correct recognition of 

objects. This thesis combines image recognition with different types of lossy data 

compression. The compression methods are applied to the object border representation. The 

input images used are basic shapes stored in a plain text image representation format, 

known as Portable Graymap (PGM). These images are processed by a segmentation 

method in order to detect and extract the contour of objects. The signature is represented by 

a set of distances between the object center and its boundary. This representation is 

translational invariant and it is sufficient to recognize the object. Furthermore, it can be 

modified in a relatively straight forward way to account for scale and rotation variations.  

The hypothesis of this research is that it is possible to devise lossy compression 

methods for compression of object signature data with high compression rate and low 

distortion while keeping a low recognition error rate. 

Four experiments are done as part of the project. These experiments are related to 

lossless and lossy compression of an object signature extracted from basic shape images. 

The first experiment is an image recognition test. A signature database is created from a 

group of shapes. The signature is stored in its plain format and in five different types of 

compression methods: UNIX ‘gzip’, DPCM, DLPC, DCT, and CS (Sayood, 2006). Images 

with similar shapes but with variations in scale, rotation, and translation are compared to 

this database. Images not present in the signature database are also included in this group. 

The objective of the first experiment is to analyze image recognition rates with different 

methods of data compression. 
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The remaining three experiments are related to the compression rate and 

reconstruction quality of the compression methods used with the image signatures. All 

these tests use the compressed object signature in order to reconstruct the original image. 

SNR and distortion error are used to quantify the reconstruction quality. In addition, 

manual visual comparison is applied to verify the quality of the reconstructed shapes in 

comparison to the original input images. 

Our results show that the recognition process is able to identify all input objects for 

every image and compression method combination. The experiments demonstrate that 

lossless compression is not a viable method for this application. Furthermore, according to 

the experimental results DPCM has the best rate distortion performance. On the other hand, 

the Compressed Sensing method produces higher distortion and requires a higher threshold 

value in order to accept a valid recognition response. This higher distortion caused by 

Compressed Sensing is also visible in the lower SNR values obtained when comparing the 

signature error with other compression methods utilized in this project. Although the 

quality results for this method are not as good as the DPCM method, Compressed Sensing 

has an important advantage of requiring less data to represent an image during the 

acquisition process. This means that CS might enable to capture the data with a smaller 

number of sensors. 
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CHAPTER II 

 BACKGROUND INFORMATION 

Digital Image Processing 

A digital image is a discrete representation of a two-dimensional natural image and 

it is generally represented by a matrix with coordinates x and y, where x indicates the row 

location and y indicates the column location of each point in the image. As Figure 1 shows 

each point in this matrix represents a picture element, referred to as a pixel, and the value of 

each pixel is called intensity or gray level (Gonzalez & Woods, 2002). 

Digital image processing is the use of computer algorithms to perform operations 

on a digital image. These processes are used to enhance, compress and decompress, or 

segment an image among several other objectives. They are generally divided into three 

main levels: 

1. Low-level process: the input and output of this process are images. Examples in this 

category are noise reduction, contrast enhancement, and image sharpening. 

2. Mid-level process: the input is an image and the outputs are image attributes. One 

common example is the partition of an image into regions or objects.  
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3. High-level process: the input is a recognized object and the output is the result of 

analysis of this object. It is “making sense” of this visual attribute and an important 

step for computer vision (Gonzalez & Woods, 2002). 

 

Figure 1 Pixel Matrix 

Image Segmentation 

Segmentation is the process of breaking an image into sets of pixels. Each set 

represents an image object. This mid-level method tries to identify a connected set of pixels 

that has common characteristics. There are two basic characteristics used to find objects in 

an image: uniformity, and continuity or discontinuity. Uniformity tries to find objects and 

boundaries in an image by assigning a label to every pixel in a way that pixels with the 

same label share certain visual characteristics such as low variance. The second property 
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tries to detect objects by abrupt change in the gray level intensity of a pixel, such as point, 

line or edge detection (Gonzalez & Woods, 2002). 

Another method for assessing continuity relates to requiring that the uniformity 

holds for sets of pixels and their 4 or 8 neighbors. 

Applications for the segmentation process include medical imaging (to find 

pathologies, measure tissue volumes, etc), face and fingerprint recognition, machine vision 

and several others fields. The next subsections are briefly describing important aspects of 

image segmentation: K-Means Clustering, Image Thresholding Process, Connected 

Component Labeling, and Contour Tracing. 

K-Means Clustering 

K-means clustering is a process that attempts to find the centers of a data set 

through an iterative refinement approach. The steps for this process are: 

1. k initial "means" (in this case k=2) are randomly selected from the data set. 

2. k clusters are generated by associating every observation with the closest 

mean.  

3. The center of each of the k clusters becomes the new means. 

4. Steps 2 and 3 are repeated until convergence is achieved (MacKay, 2003). 

Image Thresholding 

The thresholding or binarization process can be used for image segmentation. The 

basic idea behind this method is to divide the pixels of a digital image into two main 

categories: object and background pixels. Each pixel is then colored white or black 

according to a pre-defined pixel threshold value. Figure 2 shows an example of a binary 

image created by this segmentation process. 
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Figure 2 Input and Output of Thresholding Process 

 

The main aspect in the binarization process is the choice of the threshold value that 

best separates the object pixels from the non-object pixels. There are several techniques 

used to choose a threshold value. Some of these techniques are manual; others calculate the 

mean or median value. A different method uses K-Means with K=2 to find the two centers 

of the pixel values and calculate the average of these centers in order to find the threshold 

value.  

Another option is to create an image histogram of the pixel intensities and use the 

valley point as the threshold. But sometimes an image does not have clearly defined valley 

points in the histogram and this generally makes the right selection of a threshold difficult. 

In cases where the gray level intensity of the object is similar to the background, an 

adaptative method is required to better separate the object (Shapiro & Stockman, 2002). 

Connected Component Labeling 

 The next step in an image segmentation process is to identify different objects in 

the binary image. An object is represented by a group of interconnected pixels. Connected 

component labeling (CCL) is a process that identifies similar pixel regions based on 
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connectivity considerations. The algorithm traverses the image and labels the pixels based 

on the connectivity and value of their neighbors. A pixel is considered connected to another 

pixel if they are neighbors. Figure 3 shows the two main types of neighbor connectivity: 4-

connected or 8-connected pixels. 

 

Figure 3 Example of 4-Connected and 8-Connected Pixels 

 

A two-pass algorithm that iterates through 2-dimensional image binary data is a 

relatively simple example of CCL code. The first pass identifies and labels the pixels in 

connected regions. The second pass finds equivalent regions and merges these regions 

together (Shapiro & Stockman, 2002). 

Contour Tracing  

Contour Tracing is a method applied to digital images in order to extract the set of 

pixels that defines the object boundary. This technique is also known as border following 

or boundary following. Thresholding and CCL pre-processing methods are usually 

necessary before executing the contour algorithm since the pixel set of each object in an 

image needs to be identified and separated from the background pixels. However, there are 
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exception cases where the contour is used to find the object pixels. This is based on the 

principle that a component is fully determined by its contours (Chang, Chen, & Lu, 2004).  

One well-known contour tracing algorithm is the Moore-Neighbor Tracing. This 

method uses the 8-connectivity neighborhood (Moore neighborhood) for the boundary 

extraction.  It extracts the contour by going around the pattern in a clockwise direction. 

Every time the process hits an object pixel P, it marks this point as a boundary pixel and 

backtracks to the background pixel. It is necessary to switch to a background pixel to 

guarantee that no edge element is left unvisited. This process continues around pixel P in a 

clockwise direction, visiting each pixel in its Moore neighborhood, until finding a black 

pixel again (Pavlidis, 1995).  

Object Representation 

The next step in the recognition process is to transform a group of related pixels 

into an abstraction useful for digital processing. An external representation is used to 

interpret the shape of an object. Boundary, length, and number of concavities in the edge 

are examples of external representation. An internal representation is used to analyze the 

internal characteristics of an object. Color and texture are examples of internal 

representation. Often, both types of representation are required (Gonzalez & Woods, 2002).  

Two important types of object representation are described in the next subsections: 

Chain Code and Object Signature. 

Chain Code 

Chain code is a method used to represent a boundary in a digital image. This 

process describes the object boundary by a sequence of 2 or 3 bits long integers, based on a 
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4-connectivity or 8-connectivity segments respectively. The numbers indicate the change of 

direction from one pixel to the next pixel in the boundary (Gonzalez & Woods, 2002).  

This process starts with a pre-defined pixel in the object contour. From this initial 

point the encoder moves to the next pixel keeping track of the movement executed. The 

change of direction is translated into a number representing the direction of the move. The 

encoder repeats these steps for all boundary pixels. 

Figure 4 illustrates this representation method for a 4-connected and 8-connected 

direction map. Generally, the start pixel is the top left pixel, but for comparison purposes 

the example described below uses the bottom left pixel as the beginning point. The next 

element is positioned above the first one and the encoder translates this movement as the 

number mapped for an up movement in the grid. The third pixel is situated at the up-right 

side of the second pixel. In this scenario the encoder moves up-right for an 8-connected 

grid. For the 4-connected grid the encoder only moves up and loses some details in the 

image. Figure 4 shows the result chain codes for these 4 and 8-connected grids as 

11000332222 and 21997664344 respectively (Gonzalez & Woods, 2002). 
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Figure 4 Direction Numbers for 4-Connected and 8-Connected Chain Codes 

 

Object Signature 

Object signature is a 1-D representation of an image object and/or its boundary. The 

main idea is to measure the distance between the object centroid and its boundary in equal 

angles, or using every pixel in the border. The object boundary can be generated in 

different methods. Figure 5 displays the signature of a rectangle and circle. Since the 

distance between the center of the circle and any point in the circumference is always the 

same (radius), the signature of a circle is a constant line and equal to the radius value. 
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Figure 5 Object Signatures 

 

The object signatures generated using the centroid of an object as the origin of a 

coordinate system is invariant to translation, but it is still dependent on the object scale and 

rotation. It is desired to normalize the signature in order to make it invariant to rotation and 

scale. The goal is to recognize the same instance of an object in another image, but with a 

different size and rotation.  The cyclic autocorrelation method is utilized to minimize the 

rotation variance (Baggs & Tamir, 2008).  

 

Object Recognition 

Object Recognition is concerned with the ability to identify an object in an image. 

The main aspect of object recognition is the concept of “learning” by samples of objects. 

An object representation process generates a collection of descriptors. This object feature 

allows for a classification of these patterns and possible future recognition with as little 

human intervention as possible.  

Matching is a recognition technique based on quantitative descriptors. One simple 

method is the minimum distance classifier. In this method, a pre-defined class metric is 
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used to find unknown patterns. An object is included in a category if it is the closer 

Euclidian distance between this verified pattern feature and the known value of this class 

(Gonzalez & Woods, 2002).  

Quantization 

The principal of quantization is to convert a large set of input values into a smaller 

output set. This is a basic step in compression. A simple example is the rounding method 

from a real number to the closest integer. This operation is performed by a quantizer and 

since this is a many-to-few mapping, it is not always possible to recover the original input 

from the quantized input. Therefore, this function is used in the context of lossy 

compression methods. 

Scalar quantization is the most common type and it is executed by a function used 

to map a scalar (one-dimensional) input value to a scalar output value.  

A uniform quantizer has equal size intervals, with the exception of the two external 

intervals. In the previous example of rounding real numbers to integers, the intervals are 

equal to one. It is necessary to know the number of levels M expected in the output result in 

order to design a uniform quantizer. The interval ∆ for an input range [-Xmax, Xmax] is 

calculated by the formula    
     

 
. Since the quantizer is uniform, the expected 

quantization error is in the range  
 

 
 
 

 
  .  

For the rounding number example, the interval ∆ = 1 and the error range is from      

-0.5 to 0.5. If 3.7, 1, -4.345, and 7.3 are the input values, the quantized output values are 4, 

1, -4, and 7. The quantized error values, for this example, are -0.3, 0, -0.345, and 0.3 

(Sayood, 2006). 
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Sum of Absolute Differences 

Sum of absolute differences (SAD) is a simple algorithm commonly used for 

evaluating the similarity between image blocks. The process calculates the absolute 

difference between each pixel value in the original image and the correlated pixel in the 

image being used for comparison (Richardson, 2004).  

SAD is generally applied in object recognition, the creation of disparity maps for 

stereo images, and motion estimation for video compression. SAD is a fast metric due to its 

simplicity.  SAD can also be parallelized since it analyzes each pixel separately, making it 

easy to implement with hardware instructions (Richardson, 2004). 

The Error Image 

Image Subtraction is used to compute the difference between two images f(x, y) 

and h(x, y). This process generates a third image, called the error image g(x,y), by 

calculating the absolute value of the pixel difference between all pairs of corresponding 

pixels from images f() and h(). It is described by the formula: 

g(x, y) = |f(x, y) – h(x, y)| (Gonzalez & Woods, 2002). 

In lossy image compression, the error image is used to visually compare the 

difference between the original and reconstructed image. If there is none or almost no 

difference between these images, the resultant error image appears nearly black. 

Signal-to-noise Ratio  

Signal-to-noise ratio (SNR) is a measurement used to calculate the ratio between 

the original signal and the unwanted signal (background noise). A ratio greater than 1:1 

indicates that more signal is available than noise. Although this ratio is frequently applied 
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to electrical signals, the concept can be applied to other scientific areas, such as lossy 

compression. 

In data compression, SNR is used to present the difference between the 

reconstructed data and the original data. The noisy part of the SNR formula is calculated by 

the square error sum of the original value and the reconstructed value. This difference is 

referred to as the distortion. An efficient lossy compression algorithm has a higher SNR 

value. The formulas   
   

 

 
     

 
          and                  

  
 

   
  are used to 

calculate the SNR, where σx is the square sum of all values from the original source and σd 

is the mean square error, that is the sum square difference from the original value and the 

reconstructed value (Sayood, 2006).  

Lossless Compression 

Lossless Compression is a data encoding process that exploits data redundancy, in 

which the original data is reconstructed without any loss of information. This method is 

generally used where the process cannot accept any difference between the original and the 

reconstructed data (Sayood, 2006).  

In general, the entropy of the source that generates the data is a lower bound on the 

compression ratio. One type of effective lossless data compression is used in the ZIP file 

format and in the UNIX utility gzip. This type of compression, known as dictionary 

techniques, is used in this thesis, due to its good performance and availability (Sayood, 

2006).  



16 
 

 
 

Lossy Compression 

Lossy compression is investigated in this research due to the fact that lossless 

compression does not yield a significant compression ratio. Lossy compression is a data 

encoding method in which the compression causes loss of part of the information during 

the process. Since some information is lost during the compression, it is not possible to 

recreate the same original data. This type of process is used in applications where it is 

acceptable to have a reconstruction error, such as voice or video transmission programs. 

Lossy algorithms are good candidates for compressing the data in these scenarios since a 

higher compression ratio is required and a small distortion in the transmitted data is 

tolerated (Sayood, 2006). 

Lossy algorithms can be evaluated by the relative complexity, required memory, 

and speed needed in order to run in a specific hardware configuration. In addition to the 

performance measurement, there are two other important aspects of code compression: the 

compression ratio and the reconstruction quality.  

A common method used to measure the amount of compression is the ratio between 

the number of bits required to store the data before and after compression.  Another way to 

represent the compression method is by the amount of bits necessary to store a single 

sample. This is known as the rate.  

The second performance measurement is related to the difference between the 

original data and the reconstructed compressed data. This difference is known as distortion. 

Since the quality of a recreated speech or video is a subjective measurement, it is difficult 

to create a mathematical model to cover the human response for this evaluation. SNR is 
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one of the methods used to overcome this limitation. It is used in this thesis as the distortion 

measure. 

The next part of this section describes four different types of lossy compression 

methods used in this thesis: DPCM, DLPC, Compressed Sensing, and DCT. 

DPCM 

Differential pulse-code modulation (DPCM) is a lossy compression method. This 

method takes advantage of the correlation between sequential data samples and transmits 

the quantized difference between the current element and the previous one.  

A problem with this simple algorithm is that the encoder works with real data to 

calculate the difference, but the decoder uses the reconstructed data. This means that the 

quantization error accumulates throughout the reconstruction process. A common strategy 

to reduce the quantization noise is to enforce the encoder and decoder to work with the 

reconstructed data sequence. This enhanced encoding algorithm is known as the DPCM 

and it is mostly used for speech encoding in telephone systems (Sayood, 2006). 

Differential LPC 

Differential Linear Predictive Coding (DLPC) is a technique mostly used in audio 

and speech processing. The technique utilizes the information from a linear predictive 

model. The transmitter analyzes the input signal and creates the filter coefficients that best 

match the input segment. These coefficients are sent to the receiver and they are used to 

reconstruct the signal (Sayood, 2006). 

Differential LPC is a variation of LPC. The information is compressed using a 

regular DPCM method, where the encoder quantizes the error between the real value and 
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the predicted value. As in DPCM the encoder mimics the decoded and performs the 

prediction on reconstructed data (Sayood, 2006). 

Compressed Sensing 

Compressed Sensing (CS) is a sampling technique used to capture and reconstruct 

signals at a rate significantly below the Nyquist rate. This rate states that for an accurate 

reconstruction of a band-limited signal from its samples, the signal needs to be sampled at 

least twice its bandwidth. CS theory shows that it is possible to recover certain signals and 

images with zero or small distortion using much less samples than the number implied by 

the Nyquist theory. The CS method takes advantage of two common characteristics present 

in many interesting signals: sparsity and incoherence. Sparsity occurs when a signal has 

several coefficients close or equal to zero when analyzed in a specific domain such as the 

spectrum domain. Coherence measures the correlation between any two elements in the 

domain. CS is concerned with elements that have low coherence (correlation), or 

incoherence (Candès & Wakin, 2008). 

DCT 

The Discrete Cosine Transformation (DCT) is a lossy compression method based 

on a sequence of sum of cosine functions. The method is similar to and in fact can be 

obtained from the Discrete Fourier Transform function (DFT). However, in terms of 

compression, DCT has superior results (Sayood, 2006). 

DCT is the recommended approach for audio (MP3) and images (JPEG/MPEG1 

and MPEG2) because its rate-distortion is superior to many other lossy methods and its 

computational complexity is relatively low (Sayood, 2006). 
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CHAPTER III 

RELATED WORK 

He and Chao propose a fast CCL algorithm that requires only one and a half raster 

scanning. This is quicker than the conventional two passes approach. Their algorithm scans 

the background pixel once and does not require the relabeling of object pixels (He, Chao, & 

Suzuki, 2010). 

Some CCL algorithms can be implemented at the hardware level. Ito and Nakano 

examine an implementation of CCL algorithm in Field Programmable Gate Array (FPGA). 

The advantage of using hardware circuits to implement the CCL code is its low latency. 

However, one of the problems with hardware implementation is the lack of storage space in 

the FPGA for large images. It is possible to use external memory such as DRMAs, if 

available, but this can be too costly in terms of price and power consumption (Ito & 

Nakano, 2010).  

This thesis uses a custom developed Connected Component Labeling (CCL) 

algorithm to identify the pixels belonging to objects in the image. The algorithm, 

implemented in software, uses two passes through the image pixels to identify the objects 

because this approach is not complex to implement and the algorithm performance is not an 

important concern. 
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Das and Chande present a lossless adaptive DPCM schema that requires less 

computation than the conventional DPCM coding used in this project. The method uses 

Huffman code and it delivers a better compression rate than conventional DPCM 

techniques (Das & Chande, 2001). 

Nikolaou and Papamarkos explore a new technique for retrieval of color images. 

Their research is based on the construction of a general purpose image database for object 

recognition. Their method requires the extraction of shape and color information in a set of 

images. The signature color extraction uses a fractal scanning procedure to create 1-D 

image signatures corresponding to each one of the image color components. This important 

feature is related to Discrete Cosine Transform (DCT) and Fourier Descriptor (FD) and is 

generated from the object signatures. This allows for an effective content-based image 

retrieval of color images from the database (Nikolaou & Papamarkos, 2002). 

Baggs and Tamir investigate image registration using Dynamic Space Warping 

(DSW) for object recognition of natural and artificial images. DSW is an object spatial 

transformation technique. The image registration process spatially transforms two images 

of the same set of objects but of different geometries. The modification generates objects 

with the same size, shape, position, and orientation of objects from the other image. The 

method is an adaptation of the process used to align speeches known as Dynamic Time 

Warping (DTW). The recognition results of this study with natural images are overall 

successful with a low rate error and a high SNR value (Baggs & Tamir, 2008). 
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CHAPTER IV 

 EXPERIMENT SETUP 

A custom application developed in the Java language is used to execute the 

experiments in this thesis. The code is developed using the Object Oriented approach, and 

the main concepts of the process required for the experiments are translated into classes in 

the application. The application has four main starting points related to the preparation and 

execution of the experiments: 

1. Process to generate PGM images from bmp files. 

2. Process to create a signature database from PGM images. 

3. Process to reconstruct PGM images from a signature text file. 

4. Process to recognize PGM images using a signature database. 

The principal models developed are presented in the following list with a short 

description: 

 PGMImage: represents an entire PGM image.  

 ImageObject: represents the pixels of an object extracted from a PGM image. 

 ConnectedComponentLabeling: encapsulates the algorithm to find connected pixels 

in an image. These pixels represent an image object. 

 ContourTracing: encapsulates the algorithm to find the pixels only in the border of 

the object. 
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 Signature: represents a list of distances from the coordinates of the centroid to the 

pixels in the border of an object. The signature angle increment is 1 degree. This 

results in 360 measurements and the signature has the same number of entries. This 

increment is selected based on analysis of the shapes of objects used in our 

experiments. 

 EqualAngleSignature: encapsulates the algorithm to extract a signature using 

uniform angle variation from an image object. 

 SignatureDatabase: represents the set of signatures stored for future comparison. 

 SignatureCompressor: encapsulates the algorithm to encode and decode a signature 

object to a file in the database. 

 SignatureCompressorDCT: this subclass of SignatureCompressor adds DCT 

compression to the encode and decode process. 

 SignatureDiferentialEncoding: this subclass of SignatureCompressor adds DPCM 

compression to the encode and decode process. 

 SignatureCompressorLPC: this subclass of SignatureCompressor adds DLPC 

compression to the encode and decode process. 

 SignatureGenerator: encapsulates the main logic to create a signature from a PGM 

image file. 

The synthetic images are generated using Microsoft Paint. A Java module is 

responsible for converting these images to PGM format, using the ImageMagick 

conversion tool. Figure 6 shows the images stored in the signature database. These images 

are: circle, ellipse, triangle, square, rectangle, and non-convex star shaped object (Tamir, 

Shaked, Geerts, & Dolev, 2010). In addition to these six basic geometric figures, each 
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individual image generates four variations. The variations are: rotation, rotation and scale, 

scale, and translation. This gives a total of 30 objects. These instances are used for 

comparison with the data in the signature database.  

 
Figure 6 PGM Images Contained in the Signature Database 

Process 1: Generating a PGM Image from BPM Files 

Each shape used in the experiment is manually created using Microsoft Paint and 

stored using the BMP format. However, the custom Java application requires an image in a 

Portable Graymap format (PGM). Therefore, a conversion is required. The simple 

preparation process is a necessary step in order to convert all BMP images used in the 

experiments into the PGM plain text format. The final size of the PGM image is 250x250 

pixels. 
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Figure 7 shows two new shapes that are not stored in the signature database: a 

pentagon and a concave shape. These two transient images have four variations each and 

they are used to test a negative scenario where a signature that does not exist in the 

database is compared to the signature entries. The total of images used for the comparison 

experiment is 40 PGM files.  

 
Figure 7 Images Not Stored in the Signature Database 

 

Process 2: Creating a Signature Database from a PGM Image 

This process uses a PGM image as an input and creates a signature file in a plain or 

compressed form as the output. Various steps are necessary in order to reach the final goal. 

The first step is the binarization or image thresholding process. The process generates a 

PGM image with two pixel values: black for the object and white for the background.  

The second step is to find the pixels belonging to the background and the pixels 

representing the objects in the input image. This step uses a Connected Component 

Labeling technique to find all object pixels in the binary PGM image. The output of this 
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method is a map and each entry is a list of coordinates of the object pixels. Although all the 

input images in this project only have one object, the algorithm is developed in such a way 

that it is capable to handle images with more than one object. 

The third step is the identification of the object boundary. Once the object pixels are 

mapped, the contour trace algorithm executes the Moore Neighbor Tracing method to find 

the edge. 

The fourth step is to generate the object signature using the geometric center of the 

object and calculating the distance from this point to selected pixels in the object border. 

The equal angle approach is used to get a Euclidian distance list with the same number of 

elements independent of the object size. The technique allows large object signatures to be 

compared to smaller ones. The total number of elements depends only on the angle 

selected. It does not depend on the number of pixels in the contour of the object. The value 

of the angle used in this thesis is one degree (360 measurements in this thesis). This degree 

value is enough to capture the border details for the executed experiments. Figure 8 shows 

a graphical representation of the entire process with a rectangle shape. The images 

representing the results of the threshold processing (rectangle_bin.pgma) and connected 

component labeling processing (rectangle_ccl.pgma) are the same because the input image 

(rectangle.pgma) only has one object. The graphical representation of the rectangle 

signature (rectangle_sig.pgma) also shows the border, but it uses fewer pixels than the real 

border represented in the rectangle_contour.pgma file because the edge of the object has 

more than 360 pixels. 
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Figure 8 The Signature Creation Process 

 

The final step in creating an object signature representation is the compression 

method. Since the method used to generate a signature is the one degree equal angle 

approach, the result list has 360 entries. For reference, a version of the signature stored 

without compression is furnished. The highest distance value in the signature list is used to 

normalize all other values. The range here goes from zero to one. Each entry is stored in 16 

bits, so the normalized distance is multiplied by 2
16

 - 1. It is also necessary to store the 

maximum distance value without any modification (normalization) in order to recreate an 

image from the signature. 
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The compression methods applied to signatures are DPCM, DCT, DLPC, and 

Compressive Sensing.  This custom developed application creates five output signature 

files for each input PGM image. Each one is compressed using one of the previously 

mentioned compression techniques and contains only one signature in its full 

representation. 

The DPCM signature uses a 3 bit quantizer. The DCT stores the first 48 coefficients 

created by the DCT method. A Java DCT library is used for the actual DCT algorithm. 

The Differential LPC method uses 10 LPC coefficients and uses 3 bit differential 

quantizer.  

Compressive Sensing is developed using a Matlab library. The Java application 

generates a signature file from a PGM image and the Matlab script performs compression 

and decompression using the Compressive Sensing method. The signature file compressed 

by this method is used as an input for the Java application in order to recreate a PGM 

image and calculate the distortion rate. 

Process 3: Reconstructing a PGM Image from a Signature File 

This process developed in Java is responsible for recreating a PGM image from a 

signature file which contains either compressed or non-compressed signatures. Since the 

object signature represents 360 pixels in the object border, the image generated only has a 

contour with this number of pixels. Furthermore, if the signature is stored with lossy 

compression, the regenerated image also presents a distortion. Figure 9 shows an example 

of an image recreated from the non-convex star shaped object. The file 

shape_1_contour.pgma has the original border of the object and the other three files 

represent the recreated image from the respective signature file. The two bottom images are 
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created from a compressed signature file and contain a significant distortion in the image 

recreated from a signature compressed with the Compressive Sensing method. 

 
Figure 9 Non-convex Star Shaped Signature Recreation Process 

 

The first step of the process is to read the signature file and decompress it, if 

necessary. Depending on the compression method, the signature file stores the name of 

method as the first line. Since Compressive Sensing is created using Matlab, the possible 

entries are: COMPRESS_NONE, COMPRESS_DCT, COMPRESS_DLPC, and 

COMPRESS_DIFFERENTIAL_ENCODING. 

COMPRESS_NONE only requires that each entry be multiplied by the maximum 

distance that is stored without modification in the beginning of the file and that the result be 

divided by 2
16

 – 1. The decode process is exactly the reverse of the signature encode 

process described earlier. These COMPRESS_NONE signature files are also used for 

evaluating the lossless compression rate of signatures. A ZIP application is utilized to 

compress the signature. 
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The lossy compression method requires decompressing before mapping the list of 

distance values from the object center to its border. The DPCM algorithm 

(COMPRESS_DIFFERENTIAL_ ENCODING) reads the maximum and minimum 

difference from the signature file to initialize the quantizer. It also retrieves the number of 

levels the quantizer uses. In this case there are 8 levels (3 bits storage for each difference). 

The first element in the list is the actual distance. For the subsequent entries, the stored 

value is the quantized difference from the previous entry. 

The DCT method (COMPRESS_DCT) applies the inverse DCT function (iDCT) 

on the 48 DCT coefficients maintained by the DCT compression method. The Java 

algorithm developed for DLPC (COMPRESS_DLPC) loads the 10 LPC coefficients and 

10 first sample distances from the signature file. The data is used for reconstruction using 

LPC. The result list is adjusted by the DPCM method by initializing the quantizer with the 

maximum distance, minimum distance and the number of levels (8 levels again). 

The next step, after loading the signature list, is to convert the list of distances into a 

list of pixels. The first pixel defined is the center. The definition is achieved by reading the 

center information from the file and creating a pixel with its x and y coordinates. Next, the 

coordinates of each border pixel are calculated with a line function equation by using the 

distance stored in the file and the object center point. A rotation matrix is used to rotate the 

linear function by the correspondent degree. 

The SNR is calculated by comparing the non-compressed signatures with the 

compressed signatures. More details about the results are explained in the Experiment 

Results and Evaluation section. 
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Process 4: Recognition of a PGM Image Using a Signature Database 

This process compares the six basic shapes (circle, ellipse, triangle, square, 

rectangle, and non-convex star shaped object) with the four variation types (rotation, 

rotation and scale, scale, and translation) and the two shapes not in the database (pentagon 

and concave shape) against the signature in the database. Figure 6 in chapter IV illustrates 

the six basic shapes and Figure 7 in that same chapter shows the two shapes not in the 

database. Process 2: Creating a Signature Database from a PGM Image is a required before 

proceeding with this method. 

The first step of this method is to load all signatures from the database to the 

memory. A similar process to read and decompress the signature (if necessary) is 

performed using the operations described in the previous section. The next step is to extract 

the signature from each input PGM image. The recent generated signature is compared to 

all signatures in the database. The result is a single number for each object in the database 

and it indicates the difference between the input object signature and the pre-stored 

signature in the database. If the value is close to zero, then it indicates a possible match 

between the signatures. A higher result indicates that the comparison of the distances 

between the center and the border of both objects is too disparate.  
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CHAPTER V 

 EXPERIMENT RESULTS AND EVALUATION 

This section describes the results of the experiments executed as part of this thesis. 

The experiments are divided into four groups. The first experiment evaluates the 

recognition process of image signatures. The results are displayed in distribution graphs 

and tables for each input shape. The data in the graphs and tables are the sum of the 

absolute difference between the original and the compressed signature entry.  

The second and third experiments are related to the image signature compression 

and reconstruction. These two experiments use SNR to evaluate the quality of the lossy 

compression methods.  The fourth experiment evaluates the quality in the reconstruction 

process, but it does not use the object signature. It calculates the image distortion by 

comparing the difference between pixel values in the original and reconstructed image. 
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Experiment 1 

This experiment consists of an object recognition process that compares the 

absolute difference of two distinct objects using a 360 entry equal angle signature. It uses 

process 1and process 2 described before. Process 1 is used to convert the experiment input 

into PGM images and process 2 is used to populate the signature database with the base 

shapes. Finally, this experiment executes the comparison method described in process 4, 

which consists of a comparison between the input image signatures and the signatures in 

the database. 

Figure 6 in chapter IV describes the shape signatures in the image database. The set 

is composed of the signatures in the plain and compressed forms. For each shape the 

signature is compressed using one of the following methods: DPCM, DCT, DLPC, and 

Compressive Sensing (CS). The database has a total of 30 different entries which are used 

to find a possible match for each input image.  

The input PGM images are divided into six different shape groups with five 

elements each. Among those five elements, one input image is the same as the one 

previously recorded in the signature database. The other four elements are instances of the 

same image with translation, scale, rotation and scale, and rotation. Figure 10 shows an 

example of these variations for an ellipse. The recognition experiment has a total of 32 

input images. Figure 7 in chapter IV illustrates one group of two shapes non-existent in the 

database. 
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Figure 10 Ellipse Variations: Normal, Rotation, Rotation and Scale, Scale, and Translation  

 

The non-convex star shaped object is the first image compared to the 30 entries in 

the signature database. Figure 11 shows the results of this test in a graph where the results 

of all five variations are combined to produce an arithmetic mean value. The average value 

of the five variations of the non-convex star shaped object has the lowest sum of absolute 

difference in comparison to a non-convex star shaped object signature stored in the 

database. The difference between the resultant values of a compressed and non-compressed 

signature is small, with the exception of the Compressive Sensing technique. This method 

has a lower recognition rate. 
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Figure 11 Comparing Non-convex Star Shaped to the Signature Database 

 

Table 1 shows the data used to build the graph in Figure 11. This table shows that, 

with the exception of Compressive Sensing, the sum of absolute differences of all signature 

elements is almost zero when comparing the input image to the non-convex star shaped 

signatures. 
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Table 1 Absolute Difference between Non-convex Star Shaped Signatures and the Signature 

Database 

Signature DB 

Non-convex Star 

Shaped Rotation 

Rotation and 

Scale Scale Translation 

Circle 12.14 12.03 12.07 11.68 12.14 

Circle CS 12.09 11.98 12.02 11.63 12.09 

Circle DCT 12.10 11.99 12.03 11.64 12.10 

Circle DPCM 12.08 11.98 12.01 11.62 12.08 

Circle DLPC 12.07 11.97 12.01 11.62 12.07 

Ellipse 56.17 56.44 56.31 56.52 56.17 

Ellipse CS 57.71 57.98 57.84 58.06 57.71 

Ellipse DCT 56.24 56.51 56.37 56.59 56.24 

Ellipse DPCM 56.36 56.63 56.50 56.71 56.36 

Ellipse DLPC 57.25 57.52 57.38 57.60 57.25 

Rectangle 65.45 65.71 65.58 65.80 65.45 

Rectangle CS 67.19 67.45 67.32 67.54 67.19 

Rectangle DCT 65.44 65.71 65.58 65.79 65.44 

Rectangle DPCM 65.51 65.77 65.64 65.86 65.51 

Rectangle DLPC 66.95 67.21 67.08 67.30 66.95 

Non-convex Star Shaped 0.20 0.84 0.51 0.57 0.20 

Non-convex Star Shaped CS 5.36 5.26 5.29 4.91 5.36 

Non-convex Star Shaped DCT 0.25 0.85 0.52 0.56 0.25 

Non-convex Star Shaped DPCM 0.03 0.84 0.50 0.63 0.03 

Non-convex Star Shaped DLPC 0.32 0.83 0.51 0.53 0.32 

Square 8.42 8.31 8.35 7.96 8.42 

Square CS 8.38 8.27 8.31 7.92 8.38 

Square DCT 8.32 8.21 8.25 7.86 8.32 

Square DPCM 8.32 8.21 8.25 7.86 8.32 

Square DLPC 8.20 8.10 8.14 7.75 8.20 

Triangle 24.09 24.21 24.17 24.56 24.09 

Triangle CS 25.24 25.36 25.32 25.70 25.24 

Triangle DCT 24.21 24.33 24.29 24.67 24.21 

Triangle DPCM 24.24 24.36 24.32 24.70 24.24 

Triangle DLPC 24.77 24.89 24.85 25.23 24.77 

 

Although the non-convex star shaped signature stored using Compressive Sensing 

has a higher value in comparison to other compression methods, it still has a smaller value 

than other shapes. Based on this characteristic, the automated recognition process 

acknowledges that the image is in the database if the threshold is around five. This 

automated recognition process is based on the minimum distance classifier between the 
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signature in the database and the input signature. That is, the sum of absolute differences 

among the elements in each signature. 

The next image compared to the database is a rectangle. Figure 12 shows the results 

of this comparison. It is possible to observe that the process recognizes this image better 

than the previous one (non-convex star shaped). Table 2 shows that the Compressive 

Sensing method has a higher value, but the results are still closer to zero. 

 

Figure 12 Comparing Rectangle to the Signature Database 

 

The values generated in Table 2 are based on the signatures of each image in the 

database. The ellipse has the closest absolute sum of absolute differences value in 
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comparison to the recognition results for the rectangle. This is due to the fact that both 

images have a similar shape.  

Table 2 Absolute Difference between Rectangle Signatures and the Signature Database 

Signature DB Rectangle Rotation Rotation and Scale Scale Translation 

Circle 76.33 76.33 75.03 76.58 76.33 

Circle CS 76.28 76.28 74.98 76.53 76.28 

Circle DCT 76.29 76.29 74.98 76.54 76.29 

Circle DPCM 76.28 76.28 74.97 76.53 76.28 

Circle DLPC 76.27 76.27 74.96 76.52 76.27 

Ellipse 9.46 9.46 8.28 9.70 9.46 

Ellipse CS 8.10 8.10 7.07 8.28 8.10 

Ellipse DCT 9.38 9.38 8.23 9.62 9.38 

Ellipse DPCM 9.26 9.26 8.12 9.49 9.26 

Ellipse DLPC 8.47 8.47 7.40 8.66 8.47 

Rectangle 0.14 0.14 1.19 0.39 0.14 

Rectangle CS 1.64 1.64 2.94 1.39 1.64 

Rectangle DCT 0.14 0.14 1.19 0.39 0.14 

Rectangle DPCM 0.06 0.06 1.25 0.31 0.06 

Rectangle DLPC 1.41 1.41 2.71 1.15 1.41 

Non-convex Star Shaped 65.72 65.72 64.43 65.97 65.72 

Non-convex Star Shaped CS 70.23 70.23 68.93 70.48 70.23 

Non-convex Star Shaped DCT 65.77 65.77 64.48 66.02 65.77 

Non-convex Star Shaped DPCM 65.57 65.57 64.27 65.82 65.57 

Non-convex Star Shaped DLPC 65.83 65.83 64.53 66.08 65.83 

Square 72.61 72.61 71.31 72.86 72.61 

Square CS 72.57 72.57 71.26 72.82 72.57 

Square DCT 72.51 72.51 71.20 72.76 72.51 

Square DPCM 72.51 72.51 71.21 72.76 72.51 

Square DLPC 72.40 72.40 71.09 72.65 72.40 

Triangle 45.82 45.82 44.58 46.05 45.82 

Triangle CS 44.92 44.92 43.69 45.15 44.92 

Triangle DCT 45.73 45.73 44.49 45.96 45.73 

Triangle DPCM 45.69 45.69 44.46 45.92 45.69 

Triangle DLPC 45.28 45.28 44.05 45.51 45.28 

 

Figure 13 demonstrates the similarity between the ellipse and the rectangle 

signatures. The main difference between these signatures is in the peak regions of the graph 

line. An ellipse image generates a graph with a round peak and the rectangle has a flat 

peak.  
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Figure 13 Ellipse and Rectangle Signatures 

 

The square is the next image processed; and Figure 14 illustrates the graph results. 

The values in the graph are very low for all variations and compression methods for this 

input shape. This means that a small threshold value is sufficient for automated image 

recognition. 
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Figure 14 Comparing Square to the Signature Database 

 

Table 3 shows that the values for the Square are closer to zero and this is the ideal 

result for the recognition process. 
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Table 3 Absolute Difference between Square Signatures and the Signature Database 

 

 

The next image evaluated is the ellipse. Figure 15 shows that the recognition 

process is capable of identifying all five variations of this shape. Table 4 shows the data 

results. The rectangle is the closest image to the ellipse. The reason for that is based on the 

similarity between their signatures. 

 

Signature DB Square Rotation Rotation and Scale Scale Translation 

Circle 3.98 3.98 3.75 3.75 3.98 

Circle CS 3.94 3.94 3.71 3.71 3.94 

Circle DCT 3.94 3.94 3.72 3.72 3.94 

Circle DPCM 3.93 3.93 3.70 3.70 3.93 

Circle DLPC 3.92 3.92 3.70 3.70 3.92 

Ellipse 62.93 62.93 63.17 63.17 62.93 

Ellipse CS 64.49 64.49 64.73 64.73 64.49 

Ellipse DCT 63.02 63.02 63.26 63.26 63.02 

Ellipse DPCM 63.15 63.15 63.39 63.39 63.15 

Ellipse DLPC 64.06 64.06 64.30 64.30 64.06 

Rectangle 72.25 72.25 72.49 72.49 72.25 

Rectangle CS 74.00 74.00 74.24 74.24 74.00 

Rectangle DCT 72.24 72.24 72.48 72.48 72.24 

Rectangle DPCM 72.32 72.32 72.56 72.56 72.32 

Rectangle DLPC 73.79 73.79 74.03 74.03 73.79 

Non-convex Star Shaped 7.99 7.99 8.23 8.23 7.99 

Non-convex Star Shaped CS 3.13 3.13 3.25 3.25 3.13 

Non-convex Star Shaped DCT 7.94 7.94 8.17 8.17 7.94 

Non-convex Star Shaped DPCM 8.17 8.17 8.41 8.41 8.17 

Non-convex Star Shaped DLPC 7.87 7.87 8.11 8.11 7.87 

Square 0.23 0.23 0.07 0.07 0.23 

Square CS 0.19 0.19 0.08 0.08 0.19 

Square DCT 0.13 0.13 0.12 0.12 0.13 

Square DPCM 0.13 0.13 0.12 0.12 0.13 

Square DLPC 0.04 0.04 0.23 0.23 0.04 

Triangle 32.25 32.25 32.49 32.49 32.25 

Triangle CS 33.39 33.39 33.63 33.63 33.39 

Triangle DCT 32.38 32.38 32.62 32.62 32.38 

Triangle DPCM 32.42 32.42 32.66 32.66 32.42 

Triangle DLPC 32.95 32.95 33.19 33.19 32.95 
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Figure 15 Comparing Ellipse to the Signature Database 
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Table 4  Absolute Difference between Ellipse Signatures and the Signature Database 

Signature DB Ellipse Rotation Rotation and Scale Scale Translation 

Circle 67.09 67.10 66.46 66.43 67.09 

Circle CS 67.04 67.05 66.41 66.38 67.04 

Circle DCT 67.05 67.05 66.42 66.39 67.05 

Circle DPCM 67.04 67.04 66.40 66.38 67.04 

Circle DLPC 67.03 67.03 66.40 66.37 67.03 

Ellipse 0.21 0.21 0.46 0.49 0.21 

Ellipse CS 1.38 1.38 2.00 2.02 1.38 

Ellipse DCT 0.13 0.13 0.52 0.55 0.13 

Ellipse DPCM 0.07 0.07 0.65 0.67 0.07 

Ellipse DLPC 0.92 0.92 1.55 1.57 0.92 

Rectangle 9.20 9.19 9.75 9.78 9.20 

Rectangle CS 10.87 10.87 11.50 11.52 10.87 

Rectangle DCT 9.19 9.19 9.75 9.77 9.19 

Rectangle DPCM 9.24 9.24 9.82 9.85 9.24 

Rectangle DLPC 10.65 10.65 11.29 11.31 10.65 

Non-convex Star Shaped 56.50 56.50 55.88 55.86 56.50 

Non-convex Star Shaped CS 60.99 61.00 60.37 60.35 60.99 

Non-convex Star Shaped DCT 56.55 56.55 55.93 55.91 56.55 

Non-convex Star Shaped DPCM 56.34 56.34 55.73 55.70 56.34 

Non-convex Star Shaped DLPC 56.60 56.60 55.99 55.96 56.60 

Square 63.37 63.38 62.74 62.71 63.37 

Square CS 63.33 63.33 62.70 62.67 63.33 

Square DCT 63.27 63.27 62.64 62.61 63.27 

Square DPCM 63.27 63.27 62.64 62.61 63.27 

Square DLPC 63.16 63.16 62.53 62.50 63.16 

Triangle 36.57 36.57 36.00 35.98 36.57 

Triangle CS 35.67 35.67 35.10 35.08 35.67 

Triangle DCT 36.48 36.49 35.91 35.89 36.48 

Triangle DPCM 36.45 36.45 35.87 35.85 36.45 

Triangle DLPC 36.03 36.03 35.46 35.44 36.03 

 

Figure 16 and Table 5 show that among all evaluated images, the triangle is the 

most affected by rotation and scale. The sole rotation has the highest result in comparison 

to other triangle variations, but the value is still low in comparison to other shapes. This is 

sufficient for the success in a recognition process.  
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Figure 16 Comparing Triangle to the Signature Database 
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Table 5 Absolute Difference between Triangle Signatures and the Signature Database 

Signature DB Triangle Rotation Rotation and Scale Scale Translation 

Circle 36.59 40.76 32.98 35.18 36.59 

Circle CS 36.54 40.71 32.93 35.13 36.54 

Circle DCT 36.55 40.71 32.94 35.14 36.55 

Circle DPCM 36.54 40.70 32.93 35.12 36.54 

Circle DLPC 36.53 40.69 32.92 35.12 36.53 

Ellipse 36.16 33.84 38.56 36.50 36.16 

Ellipse CS 37.61 35.24 40.03 37.97 37.61 

Ellipse DCT 36.21 33.89 38.61 36.55 36.21 

Ellipse DPCM 36.32 34.00 38.73 36.66 36.32 

Ellipse DLPC 37.17 34.81 39.59 37.52 37.17 

Rectangle 45.44 43.12 47.84 45.75 45.44 

Rectangle CS 47.12 44.75 49.53 47.45 47.12 

Rectangle DCT 45.44 43.12 47.83 45.75 45.44 

Rectangle DPCM 45.49 43.16 47.89 45.80 45.49 

Rectangle DLPC 46.86 44.49 49.28 47.19 46.86 

Non-convex Star Shaped 24.65 28.81 21.04 23.24 24.65 

Non-convex Star Shaped CS 29.82 33.98 26.21 28.40 29.82 

Non-convex Star Shaped DCT 24.71 28.87 21.10 23.30 24.71 

Non-convex Star Shaped DPCM 24.48 28.64 20.87 23.06 24.48 

Non-convex Star Shaped DLPC 24.77 28.93 21.16 23.36 24.77 

Square 32.87 37.04 29.26 31.46 32.87 

Square CS 32.83 36.99 29.22 31.42 32.83 

Square DCT 32.77 36.93 29.16 31.36 32.77 

Square DPCM 32.77 36.93 29.16 31.36 32.77 

Square DLPC 32.66 36.82 29.05 31.25 32.66 

Triangle 0.39 4.56 3.24 2.75 0.39 

Triangle CS 0.81 3.45 4.38 2.85 0.81 

Triangle DCT 0.27 4.43 3.36 2.75 0.27 

Triangle DPCM 0.23 4.39 3.39 2.71 0.23 

Triangle DLPC 0.33 3.85 3.92 2.80 0.33 

 

The circle is the last image analyzed in this experiment. The circle has the best 

recognition results in comparison to all other shapes. That is due to the constant value of 

the distance between the center and the boundary of the image. The signature compression 

has little data loss. Another reason for that is based on the fact that the circle is less affected 

by rotation or scale variation. Figure 17 and Table 6 show that the recognition results for 

the circle are almost zero. 
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Figure 17 Comparing Circle to the Signature Database 
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Table 6 Absolute Difference between Circle Signatures and the Signature Database 

Signature DB Circle Rotation Rotation and Scale Scale Translation 

Circle 0.12 0.12 0.09 0.40 0.12 

Circle CS 0.07 0.07 0.04 0.35 0.07 

Circle DCT 0.08 0.08 0.05 0.36 0.08 

Circle DPCM 0.06 0.06 0.03 0.34 0.06 

Circle DLPC 0.06 0.06 0.03 0.34 0.06 

Ellipse 66.76 66.76 66.79 66.49 66.76 

Ellipse CS 68.32 68.32 68.35 68.04 68.32 

Ellipse DCT 66.85 66.85 66.88 66.57 66.85 

Ellipse DPCM 66.98 66.98 67.01 66.70 66.98 

Ellipse DLPC 67.89 67.89 67.92 67.60 67.89 

Rectangle 76.07 76.07 76.10 75.80 76.07 

Rectangle CS 77.83 77.83 77.86 77.55 77.83 

Rectangle DCT 76.07 76.07 76.10 75.79 76.07 

Rectangle DPCM 76.15 76.15 76.18 75.87 76.15 

Rectangle DLPC 77.62 77.62 77.65 77.34 77.62 

Non-convex Star Shaped 11.82 11.82 11.85 11.54 11.82 

Non-convex Star Shaped CS 6.67 6.67 6.70 6.39 6.67 

Non-convex Star Shaped DCT 11.77 11.77 11.80 11.48 11.77 

Non-convex Star Shaped DPCM 12.00 12.00 12.03 11.72 12.00 

Non-convex Star Shaped DLPC 11.70 11.70 11.73 11.42 11.70 

Square 3.68 3.68 3.70 3.46 3.68 

Square CS 3.71 3.71 3.74 3.49 3.71 

Square DCT 3.76 3.76 3.79 3.53 3.76 

Square DPCM 3.76 3.76 3.79 3.53 3.76 

Square DLPC 3.87 3.87 3.90 3.64 3.87 

Triangle 36.08 36.08 36.11 35.80 36.08 

Triangle CS 37.22 37.22 37.25 36.94 37.22 

Triangle DCT 36.21 36.21 36.24 35.92 36.21 

Triangle DPCM 36.25 36.25 36.28 35.97 36.25 

Triangle DLPC 36.78 36.78 36.81 36.50 36.78 

 

Figure 7 in chapter IV shows two images that are used in the recognition process 

but are not present in the database. These images are: concave shape and pentagon. Figure 

18 and Table 7 demonstrate the results for this test.  The square has the closest value in 

comparison to the pentagon. Figure 19 shows the similarity between both signatures. 
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Figure 18 Comparing Shapes Not in the Database 
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Table 7 Absolute Difference between Comparing Shapes Not in the Database 

Signature DB Pentagon Concave Shape 

Circle 5.47 84.16 

Circle CS 5.42 84.11 

Circle DCT 5.43 84.11 

Circle DPCM 5.42 84.10 

Circle DLPC 5.41 84.09 

Ellipse 62.19 17.27 

Ellipse CS 63.74 15.71 

Ellipse DCT 62.26 17.19 

Ellipse DPCM 62.39 17.05 

Ellipse DLPC 63.28 16.15 

Rectangle 71.48 9.81 

Rectangle CS 73.23 9.32 

Rectangle DCT 71.48 9.81 

Rectangle DPCM 71.55 9.77 

Rectangle DLPC 73.00 9.30 

Non-convex Star Shaped 6.47 72.52 

Non-convex Star Shaped CS 2.10 77.40 

Non-convex Star Shaped DCT 6.41 72.57 

Non-convex Star Shaped DPCM 6.64 72.35 

Non-convex Star Shaped DLPC 6.35 72.63 

Square 2.64 80.44 

Square CS 2.62 80.39 

Square DCT 2.63 80.33 

Square DPCM 2.62 80.33 

Square DLPC 2.64 80.22 

Triangle 30.73 51.04 

Triangle CS 31.87 50.06 

Triangle DCT 30.85 50.94 

Triangle DPCM 30.89 50.90 

Triangle DLPC 31.43 50.46 
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Experiment 2 

The second experiment compares the quality results of the compression methods 

while trying to reconstruct the shape images. The steps executed in this process are 

described in a previous section (Process 3: Reconstructing a PGM Image from a Signature 

File).  Table 8 shows a summary of the compression ratio of all methods used in this thesis. 

As the table demonstrates DPCM yields the best compression ratio. The lossless 

compression method does not yield significant compression and is omitted from the table. 
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Table 8 Calculated Compression Ratio 

Compression Method Compression Ratio 

DPCM 5 

DCT 4 

DLPC 3 

CS 4 

 

This experiment has six different shapes: rectangle, non-convex star shape, ellipse, 

triangle, circle, and square. The four types of lossy compression methods are applied to 

each image. Figure 20 and Table 9 show the results for this experiment. A higher SNR 

value means that the image is reconstructed with little quality loss. DPCM using 3 bits is 

the method with best reconstruction results.  

The figure and the table demonstrate that the DPCM compression method provides 

the best SNR. Hence, based on the compression ratio and the SNR, DPCM has the best rate 

distortion of all the lossy compression methods investigated in this research. 

 

Figure 20 SNR Values of Images Reconstructed from Compressed Signatures 
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Table 9 SNR Values of Images Reconstructed from Compressed Signatures 

Compression Method Rectangle 

Non-convex 

Star Shaped Ellipse Triangle Circle Square 

Compressive Sensing 32.47 19.73 32.41 29.67 38.53 34.51 

DCT 36.06 33.59 41.06 36.17 45.73 44.94 

DPCM 3 bits 41.52 40.66 43.72 42.23 57.20 56.47 

DLPC 3 bits 37.30 38.13 39.66 39.98 52.87 35.83 

Experiment 3 

The next experiment is similar to the previous one as it uses the same image 

reconstruction algorithm in order to generate a PGM file from a signature text file. 

However, Experiment 3 compares the SNR results using different bit rates in the 

compression method. 

The same six shapes are used in the process, but only three compression techniques 

are applied in the signature images: DCT, DPCM, and DLPC. Each of these compression 

methods has two variations of bit rates: one using a low number of bits to store the data and 

the other using double or more bits than the previous one. The DCT method varies in the 

number of coefficients stored in the compressing file. One method stores only 32 

coefficients and the other stores 90 coefficients.  DPCM and DLPC have 3 and 4 bits (8 

and 16 levels) used for the quantizer process. 

Figure 21 and Table 10 show the results for this experiment. All three compression 

methods have better results when more bits are used. DPCM with 16 levels is the method 

with the best results for all images. 
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Figure 21 SNR with Different Bit Allocations 
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Experiment 4 

The last experiment in this project is related to the distortion occurred during the 

image reconstruction process.  The process is described in the Experiment Setup section 

(under Process 3: Reconstructing a PGM Image from a Signature File).  

The distortion values for all signature images in the database are calculated by 

comparing each pixel value from the reconstructed image to the correspondent pixel of an 

image reconstructed from a signature without compression. Figure 22 and Table 11 display 

the sum of absolute differences (SAD) between the pixel comparisons. Table 11 shows 

values close to zero for DPCM with 3 bits for the circle and square.  

Figure 22 demonstrates the distortion value for the signature images after the 

reconstruction process. Compressive Sensing is the method with highest distortion. 
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Figure 22 Distortion after Image Reconstruction 
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Table 11 Distortion after Image Reconstruction 

Signature File Distortion 

circle_object_1_compressive_sensing.csv 4.23 

circle_object_1_dct.csv 1.63 

circle_object_1_diff_8_.csv 0.88 

circle_object_1_dlpc.csv 0.84 

ellipse_object_1_compressive_sensing.csv 4.41 

ellipse_object_1_dct.csv 2.14 

ellipse_object_1_diff_8_.csv 1.45 

ellipse_object_1_dlpc.csv 1.81 

rectangle_object_1_compressive_sensing.csv 4.72 

rectangle_object_1_dct.csv 2.19 

rectangle_object_1_diff_8_.csv 1.92 

rectangle_object_1_dlpc.csv 2.22 

shape_1_object_1_compressive_sensing.csv 4.68 

shape_1_object_1_dct.csv 2.31 

shape_1_object_1_diff_8_.csv 2.10 

shape_1_object_1_dlpc.csv 2.13 

square_object_1_compressive_sensing.csv 5.92 

square_object_1_dct.csv 1.75 

square_object_1_diff_8_.csv 0.65 

square_object_1_dlpc.csv 2.76 

triangle_object_1_compressive_sensing.csv 2.09 

triangle_object_1_dct.csv 1.38 

triangle_object_1_diff_8_.csv 1.27 

triangle_object_1_dlpc.csv 1.51 

Summary of Results 

The object signature file has 360 entries corresponding to the collected distances 

from the center to the object border with a difference of one degree separating each value. 

These entries are normalized by the maximum distance and then quantized to an integer 

number using 16 bits for storage. The file also stores the maximum distance among all 

values with the objective of restoring it later. The maximum distance value is stored using a 

32-bit floating point representation. This results in a total of 5792 bits per file without using 

a compression method.  



56 
 

 
 

Experiment 1 demonstrates that all four compression methods are able to find a 

correct match signature for the input image. The Compressive Sensing method needs a 

higher threshold value to recognize some images, but it is still able to recognize them.  

Simple signatures such as circle and square have good recognition results for all 

different input variations and compression methods. The triangle is an exception because 

some inputs with rotation variation have results with higher values, which means they 

almost do not match with the original signature stored in the database. 

Experiment 2 shows through the SNR that DPCM is the method with the highest 

values for all six input objects. Higher value means better reconstruction. Experiment 3 

confirms that DPCM has the best quality results with 3 bits quantizer. Once the number of 

bits increases from 3 to 4 there is an increase in the SNR numbers for all images. Other 

methods also have an improvement when the compression ratio decreases.  

Experiment 4 shows through the distortion that Compressive Sensing has a lower 

reconstruction quality when the images are compared pixel by pixel. This is also noticeable 

by visual inspection of the reconstructed images. The following figures graphically 

demonstrate the reconstruction of a non-convex star shaped image from a signature file 

using different compression methods. Figure 23 shows the signature without compression 

and the expected PGM image generated by that. The reconstructed image has almost the 

same border as the original non-convex star shaped image depicted in Figure 6 (chapter 

IV). It is important to notice that the contour is recreated using only 360 pixels from the 

original object edge and this justifies the small border imperfections in Figure 23. 
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Figure 23 Signature and Image Representation of Non-convex Star Shaped 

 

Subsequent figures reveal different noise quantity in the signature and recreated 

image in comparison to Figure 23. Figures 24, 25, and 26 have a PGM recreated image 

similar to the PGM image with no compression method applied in Figure 23. It is possible 

to visualize a small noise present in the signature graph located at the left side of the PGM 

image in Figures 24, 25, and 26.  

Figure 27 uses Compressive Sensing and it is possible to notice a higher quantity of 

noise present in the graph. The PGM image is different from images reconstructed using 

other compression methods. 

 

 

Figure 24 Signature and Image Representation of Non-convex Star Shaped with DCT 
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Figure 25 Signature and Image Representation of Non-convex Star Shaped with DPCM 

Figure 26 Signature and Image Representation of Non-convex Star Shaped with DLPC 

Figure 27 Signature and Image Representation of Non-convex Star Shaped with CS 
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The results show that the recognition process is able to identify all input objects for 

every image and compression method combination. The experiments demonstrate that 

lossless compression is not a viable method for this application. Furthermore, according to 

the experimental results DPCM has the best rate distortion performance. On the other hand, 

the Compressed Sensing method produces higher distortion and requires a higher threshold 

value in order to accept a valid recognition response. Although the quality results for this 

method are not as good as the DPCM method, Compressed Sensing has an important 

advantage of requiring less data to represent an image during the acquisition process. This 

means that CS might enable to capture the data with a smaller number of sensors. 
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CHAPTER VI 

 CONCLUSION AND FURTHER RESEARCH  

This thesis compares four types of lossy compression methods in the recognition 

and reconstruction context.  The results show that the recognition process is able to identify 

all input objects for every image and compression method combination. The experiments 

demonstrate that lossless compression is not a viable method for this application. 

Furthermore, according to the experimental results DPCM has the best rate distortion 

performance. On the other hand, the Compressed Sensing method produces higher 

distortion and requires a higher threshold value in order to accept a valid recognition 

response. Although the quality results for this method are not as good as the DPCM 

method, Compressed Sensing has an important advantage of requiring less data to represent 

an image during the acquisition process. This means that CS might enable to capture the 

data with a smaller number of sensors. 

The analysis calls for further research in the field. For example, the signature 

extraction and recognition process for natural images can be challenging. The topic 

requires an enhanced segmentation method in order to compare 3D objects since any small 

rotation generates completely different signatures.
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An interesting topic for future research is the study of the computational complexity 

of the four compression methods applied in this thesis. Memory requirement for encoding 

and decoding the object signature is another important aspect to be further evaluated. 

Another possible research direction is the study of new types of compression 

methods in order to combine those with the four methods analyzed in this thesis and 

evaluate their efficiency using measurements such as compression ratio, quality 

reconstruction by SNR, speed for encoding and decoding, and memory utilization. 
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