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A PROPERTY OF THE H-CONVERGENCE FOR ELASTICITY
IN PERFORATED DOMAINS

HAMID HADDADOU

ABSTRACT. In this article, we obtain the H?-convergence as a limit case of the
H.-convergence. More precisely, if )¢ is a perforated domain with (admissible)

0
holes T: and x. denote its characteristic function and if (A€, T%) He A we
show how the behavior as (g,8) — (0,0) of the double sequence of tensors
A$ = (xe + 6(1 — x<))A® is connected to AY. These results extend those
given by Cioranescu, Damlamian, Donato and Mascarenhas in [3] for the H-
convergence of the scalar second elliptic operators to the linearized elasticity
systems.

1. INTRODUCTION

The notion of H-convergence was introduced by Murat and Tartar [7], [8, [9] for
the second-order elliptic operators (non necessary symmetric) and extended to the
case of holes by Briane, Damlamian and Donato in [2] and called H-convergence.
Cioranescu, Damlamian, Donato and Mascarenhas [3] obtain the H%-convergence
as a limit case of the H-convergence with a vanishing coercivity constant in the
holes.

In this work, we show that a similar property holds for the linearized elasticity
systems, namely between the H.-convergence studied by Francfort and Murat in
[6] and its generalization to the case of holes, denoted by HY-convergence, which
has been developed by Donato and El Hajji in [5]. The H.-convergence deals
with the convergence of the solutions of a system of linearized elasticity whose
tensor coefficients {A°} are equibounded and uniformly definite positive. The H?-
convergence treat the same problem in a perforated domain 2. with a traction
condition on the holes for which uniform Korn estimates hold.

Let us briefly describe here the main results of this paper. Let Q a bounded
open subset of R™, {T.} a sequence of (admissible) holes, denote Q. = Q\ T
the perforated domain and x° the characteristic function of Q.. Let also {A®} a

HO
sequence of linearized elasticity tensors on €2 such that (A%, 7.) — A°. We prove
(Theorem [4.1)) that if we set for every § > 0

S=(xe +0(1 —x.))A° a.e. inQ
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and if AS H.-converges to a tensor As (for some subsequence), then A; — A°

strongly in LP(Q) for any p > 1, and weakly x in L>°(Q2). Moreover, under suitable

assumption (see (4.3) below), we have also (Theorem [4.2))

. u§ — uf strongly in H}(Q.)",
(A5 =0 (A%, T.)) in the sense { ’ T o y

ASe(uf) — A%e(uf) strongly in L*(Q)"*"

and (Theorem [4.3)

u§ — u® weakly in Hj(Q)",

Ase(us) — A%(u®) weakly in L2(Q)"*",

where u¢, u§ and u® are the solutions of (2.2), (3.5) and (2.4) respectively. This
results can be resumed by the following commutative schema:

(A5 (=:8)=(0.0) A®) in the sense {

Az Heooa,
oo

0
(A5, 1) e g0,

The definition and the main properties of the H?-convergence are recalled in
Section 2. In Section 3 we give some preliminary results and in Section 4 we state
and prove the main results.

2. THE H?-CONVERGENCE

We use the following notation:
o If A= (Aijn)i<ijki<n is a forth order tensors and A € R™"*", we set

AN= )" Airihpg,

1<i,j,k,l1<n

AT = > ATy,
1<i,j<n

1

Al=( Y 1Ag%)e,
1<i,j<n

e () is a domain of R",
o if F'is a set of matrices fields, Fs = {M € F s. t. M is symmetric},
e {c} and {6} denote a two strictly decreasing sequence converging to zero,
o if v = (v1,...,v,) is a vector valued function and ¢ = ({;j)1<i,j<n is & second
order tensor of variable x = (z1,..., z,), we set
c'?vl-

(V’U)ij = axj = Dm].’()i,

ev) = 5 (Vo +' V),

e 08
(le 5)1 - 6a:j ’
e for two real numbers « and § such that 0 < o < 8, M.(«, 3,Q) is the set of the
tensors A = (Aijki)1<i,jk,i<n defined on €2, such that a.e. on 2 we have
(1) Ajji € L>(Q), for any 4,7, k,1=1,...,n,
(11) Aijkl = Ajikl = Aklij; for any iaj7 kvl = 17 EREN(T
(iii) a|A|?> < AA.A, for any symmetric matrix A,
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(iv) |AA| < BJA|, for any matrix A,
o if f S Hﬁl(Q)n and u € H&(Q)n, we set <f, u) = <f, U>H71(Q)H7H(%(Q)n.

Let us recall first the main results concerning the H2-convergence introduced by
Donato and El Hajji [5]. We introduce the perforated domain

Q. = NT,
where T is a sequence of compact subsets of 2 and set
Ve ={ve H (Q.)" s. t. v=0on 9Q}.

In the following, we denote by v the outward normal unit vector on the boundary
of Q). and " the extension by 0 from . to 2 and set x* = x,_-
Definition 2.1 ([5]). The set T. is said to be admissible (in ) for the linearized
elasticity (or e-admissible), if and only if:

(i) Every L* weak -limit point of {x,,_}c is positive a.e. in ;

(i) there exists a positive real C, independent of ¢, and a sequence {P.}. of
linear extension operators such that for each ¢

P. € L(V., Hy(Q)"™),
(Pv)|a, =v, Yvelg, (2.1)
[e(P-v)[lo,0 < Clle(v)llo,n., Vv e Ve
We denote by P the adjoint operator of P., which is defined from H~1(Q)" to
V! with P given for every f € H-1(Q)" by
Vo € Ve, (PXf,v)vyve = (f, Pev) g-1(9)m a2 (@)n -

Definition 2.2 ([5]). Let A € M.(«,3,9), T. be e-admissible in Q. The pair
(A¢,T.) is said HO-converge to the tensor A° € M.(a/,,Q) and denoted by

(45, 72) < 40 if and only if for cach function f¢ € H~1(Q)" such that f& — f
strongly in H ()", the solution u® of
—div (A% (u®)) = PXf° in Q.,
(A%e(u®))y =0 on T, (2.2)
u® =0 on 09,
satisfies the weak convergence
P.(uf)—u®  weakly in Hj(Q)",
Ase/(\/us)éAoe(uo) weakly in L?(€Q)"*", (23)
where u is the unique solution of the problem
—div(A%(u®)) = f inQ,

2.4
w0=0 on 90. 24)

Remark 2.3. (1) In [5] the definition is given for fixed f. = f. The two definitions
are equivalent in view of [5, Proposition 2].

(2) In the case where T. = (), this definition reduces to the definition of the H,-
convergence [6].

This notion of convergence makes sense in view of the following compactness
theorem:
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Theorem 2.4 ([5]). Let A° € M («,3,8) and T, be e-admissible in Q. Then there
exists a subsequence, still denoted by {c}, and a tensor A° € M (&=, 8,9), such
that the sequence {(A®,T.)}. HO-converge to A°.

Remark 2.5. The fact that A° belongs to M (&=, B,2), does not appears explicitly
in the statement given in [5], but can be easily deduced with the same arguments
as that used in the non perforated case.

Let us recall also a property proved recently in [4].

Theorem 2.6 ([4]). Let {A°} € M(, 3,Q) and {B°} € M.(o,5',Q) such that

A= He 40 and Be Ze BO. Assume that there exists two functions he, h® € LY(Q)
such that
|A® — B*| < h® — h®  strongly in L'(Q).
Then
Bo’

|A%(x) — B%(z)| < i RO(z) a.e. in Q.

The following proposition completes a result given in [5]:

Proposition 2.7. One has
(1) If {v°} is a bounded sequence in Hi(SY), then

(v — v weakly in H}(Q)") < (Ps(v5|gs) — v weakly in H&(Q)")

(2) If (,9) is a sequence of R x R such that (¢,0) — (0,0) and {v§} is a
sequence in Hg () bounded independently of € and &, then
(v§ — v weakly in H}(Q)") < (Ps(v§|gs) — v weakly in H&(Q)”)
Proof. Suppose that
P.(v°]g.) — v weakly in H}(Q)". (2.5)
Observe first that
vex® = PE(UE‘QE )XC- (2.6)

On the other hand, since {v°} is a bounded sequence in H{(f2), there exists a
{e’} C {e} and w € HZ(Q)" such that

v = w  weakly in Hg(Q)™. (2.7
But [x¢'| < 1, hence there exists x° € L>(2) and {"} C {¢'} such that
x° —x" weakly x in L>(Q). (2.8)
Passing to the limit (in D’(Q2)) in by using ([2.5)), and (2.8)), we find
X'w = x°v.

Taking now into account the fact that (in view of Definition x* > 0, we
obtain w = v. This, together with 7 implies that the whole sequence Pg(vglng)
converge weakly to v. We refer to [5] for the converse implication. The proof of (2)
follows by the same arguments. (I
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3. PRELIMINARY RESULTS
In this paper, {A°} is a sequence of fourth-order tensors of M.(«, 5,9Q) and {7}
is a sequence of holes e-admissible in 2 such that
A= 1 g0, (3.1)
Set, for every § > 0,
A5 = (xe +6(1 —xe))A® ae. in Q. (3.2)

Since, for fixed § > 0, A5 € M.(min(1,d)e, max(1,6)5,Q), in view of the com-
pactness properties of H.-convergence, there exists a subsequence {¢,,} of {¢} and
As € Mc(min(1,6)a, max(1,0)3,Q) such that A5™ e As as &, — 0. Hence, for
every ¢ > 0, the set

e H
Ws = {As; H{emtmen C {e} s. t. A5™ =< A5} (3.3)

is not empty. Let {f°} be a sequence in H~1(Q)" such that
f¢ — fquadstrongly in H~*(Q)" (3.4)

and let As be in Ws. Let u§ and us the solutions of

— div(Ase(u3) = £° in ©,

uy =0 on 0N (3:5)
and (A -
—div(A4se(us)) = f in Q,
(u;:( 06))0n (;EQ (3.6)
respectively. We consider now the following sets:
Us = {us : us is the solution of for some As € W}, 37)

Vs = {The set of weak limit points of ASe(u5) in L*(2)" as ¢ — 0}.
One has the following result:
Lemma 3.1. One has
Vs = {Ase(us) : As € W5 and us is the solution of }

Proof. Tt is clear that, if As € Ws and us is the solution of (3.6]), then Ase(us)
belongs to V5. On the other hand, let v € V5. Then, there exists a subsequence
{&m} of € such that

Asme(us™) — v weakly in L*(Q)", (3.8)

as €, — 0. But the compactness property of the H.-convergence shows that there
exists a subsequence {e],} of {&,,} and a forth-order tensor As such that

i
AZ?!L ¢ A6
This implies in particular
A?"e(u?") — Ase(us) weakly in L*(Q)™.
This, together with (3.8)), gives v = Ase(us). ]
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Remark 3.2. Let us show that in view of Theorem there exists {e,,} C {e}
and for all 6 > 0 a tensor As such that

H —_
A5 < As. (3.9)
Let us also point out that in Theorem [£.1] we will consider a more general situation,

where for every § > 0, there exists {5} and a tensor A such that A3’ He As.

Let us prove (3.9)). Using the diagonal subsequence procedure and the compact-
ness property of the H.-convergence, one extracts a subsequence {g,,} of {e¢} such
that, for every § € Q7 , one has

A5™ H-convergences to a limit As. (3.10)
Since a.e in §2 one has
|A5 — A < Blo1 — 62|, V61, 62 € Q7
A5 € M (min(1,61)a, max(1,01)3,9Q),
Ag;" € M (min(1,d2)c, max(1,d2)0, Q).
Then, from Theorem it follows

2
s - ap) <P \/max(1,51)max(1,52) 61— Gl

! min(1, ;) min(1, d2)

This implies that the mapping 0 € Q% — As € L>°(2) is uniformly continuous.
Hence, it can be extended to a mapping (still denoted by & +— As) defined and
uniformly continuous on all R% (since Q% is dense in RY).

Let now ¢ be a strictly positive real and {d,} be a sequence of Q% which converges
to 6 as s — 0o. Then, there exists a sub-subsequence {e/ } of {e,,} such that

A?” H.-converges to some A. (3.11)

In view of Theorem this give, together with 1) and the fact that |A§:” —
Ag;n

< Bl6 — d5], the following inequality:

$% [max(1,d) max(1,dy) .
A—As | < — — .e. in Q.
| .l = ! min(1, §) min(1, d,) [9=0,] ae. in

Using the continuity of the mapping § — As on R%} and passing to the limit in this
inequality as s — 0o, one finds

A=As, ae. in Q.

The uniqueness of the limit implies then that the whole subsequence A§™ H.-
converges to Ay, for every 6 > 0.

The following results state some a priori estimates that we will need in the
following:

Proposition 3.3. Let u® and u§ the solutions of (2.2) and (3.5|) respectively. Then,
there exists ¢ > 0 independent of ¢ and § such that

1P# (5 ) — P g < 0™+ |(fe PA(u, ) — u5)[2),

e P, ) — u) 1), (3.12)

[A5e(us) — A%e(u®) || p2qapmen < e(8%2 + |(fe, PP (ufy, ) — u§)|"/?).

||e(u§)|\L2(TE)an S C(l + 5
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Proof. Observe that the variational formulations of problems (2.2)) and (3.5) are

Vw € HY(Q /<y u).e(w)dz = (fo, P (), ) (3.13)
and

Yw € HE(Q /AEE wydz +6 [ Afe(us).e(w)dr = (f.,w)

T:

respectively. Then, for every w € HE(Q)", one has
A;A%d@)—d cm+5/‘A€ ug)-e(w)dr = —(fe, P*(w)g_) —w).
In pa;ticular, for w = uj — P*u®, this gives
/Q A®(e(u§) — e(u®)).(e(us) — e(Puf))dx + 5/ Afe(uf).(e(us) — e(Puf))dx
= U PP — Pru), ) — PRt
Using that Pu®|, = u®, one deduces

/Af((f)—ew))(( 5 - dx+6/ Ae(u).c(uf)dx
_6/ AE 5 PE g)dx_<f67 ( )|Q _U’6>'

In view of the fact that A € M.(a, 3,), this gives

/| |m+w/| 2da

(3.14)
<6|/ Ae(u) e Peus)de] + (£, PF(3,) 3.

Using the Young’s inequality, one obtains

/1r ) lfsdﬂ<ﬁ/)k%|HP5ﬂwx

<= /|eu5|dm+—/|P58|dx
< ) /TE le(u$)|?dx + % /Q le(Peuf)|*dz.

But, taking w = Pu® in , one finds
/Q le(Pfu®)|dz < ¢,
with ¢; > 0 independent of € and §. Then
| ).e(P*u®)dz| < le(u$)|?dz + ca,

T
where co > 0 independent of € and §. This, together with (3.14)), gives

o [ letwn)—etw )P+ G [ le(u)Pde < cald (e Py, ) -3))- (319)

=
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with ¢3 > 0 independent of ¢ and 4. From this, (3.12))ii) follows immediately.
Moreover, since uj ——u® € H} ()", Definition shows that
le(P* (usla. —u))lloe < Clle(us —u)lo.q.-
Hence, by virtue of the Korn inequality, (3.15)) gives also (3.12)1).
On the other hand, since A5 = A® a.e. in Q. and Aj = 0A® a.e. in T¢, one has

| 1e(u) — A%elur) e < [ A%e(u) ~ Ae(u)Pdo + 8 [ | A4%(u5) P
Q Qe T:

§ﬂ2/ﬂ le(u§) — e(u)Pdx + 5262 | le(uf)[*da,
T

which, together with (3.12))(i) and (3.12))(ii), gives (3.12))(iii). O
Proposition 3.4. Let u° the solution of (2.4). Then

sup [lu—u’|| gz < ¢ 67,
ueUs

(3.16)
sup |lv — AOS(UO)HLQ(Q)an <ot/
veV;s

Proof. Let be ug in Us. This means that there exists A5 € Wy such that us is
the solution of (3.6). But the fact that As is in W implies that there exists a
subsequence {e,, } of € such that Aj™ H.-converges to As. Hence, the solution uj

of
—div(ASme(us™)) = f in Q,
(Aiets5) -
u;™ =0 on 0N
satisfies as €,,, — 0
us™ — us  weakly in Hj(Q)",
Asme(us™) — Ase(us) weakly in L2(€)"*™.

Estimate (3.16)(i): By Lemma (3.18)1) implies that, for every fixed 6 > 0,

(3.18)

P. (u5m|o. ) —us weakly in Hg ()" (3.19)
Hence, by (3.4]), one has
I (e P (5 ) ) =0, (3.20)
From this and (3.12))(i), it comes
tm [P, ) = Pt gy oy < 82, (3.21)

But, (3.19) and i) imply
P, (u5™ ‘Qa) —P., (u"™) = us —u’  weakly in H}(Q)™.
This gives, by using the weak lower semi-continuity of the H}-norm,
Jus — 1|l ) < 5,13130 [P (U?”mm) = P utm | gy yns
where u° is the solution of . Hence, gives
lus = u®l| gy () < 8/,

This is still valid for every us € Us, which implies (3.16])(i).
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Estimate ii): From (3.12))(iii) and (3.20)), it comes

lim A5 e(u5™) — AT e(usn) ||y @y < 82,

Em—
But ([2.3))(ii) and (3.18)(ii) imply, as &,, — 0, that
(A e(usm) — Asme(usm)) — (Ase(ug) — Ae(u®))  weakly in L2(Q)"*".

In view of the weak lower semi-continuity of the L?-norm, these two last relations
give

| (Ase(us) — A%(u®))|z(ymrn < 812,
for every us € Us. Hence,

sup ||(Ase(us) — A(u®))||p2(q)nxn < '3,
us€Us

which, together with Lemma (3.1} gives the claimed result. (I
4. MAIN RESULTS
Theorem 4.1. Let As € Ws. Then, the solution us of satisfies as 6 — 0
us — u’  strongly in Hg(Q)™,
Ase(us) — A%(u®)  strongly in L*(Q)"*",
where u¥ is the solution of , Moreover, one has the convergence:
Vpe[l,00f, As— A, (4.2)

strongly in LP(Q) and weakly * in L>=(Q).
Theorem 4.2. Let f¢, f be in H=1(Q)" satisfying . Suppose that

Ve >0, (f,,v)=0, YveH} ()", v=0onQ.. (4.3)
Then, as 6 — 0,

(4.1)

u§ — u®  strongly in Hi(Q:)",
Se(us) — AE(XJE/) strongly in L*(Q)™ ™, 44)
where u® and u§ are the solutions of and respectively.
Theorem 4.3. Let ¢, f € H-1(Q)" satisfying and . Then, as (g,9) —
0 us — u’  weakly in H}(Q)",
ce(uf) — A (u’)  weakly in L*(2)™*",

where u® and u§ are the solutions of (2.4) and (3.5) respectively.

(4.5)

To prove these results we use similar arguments as those used in [3]. Before
giving these proofs, we recall the following lemmas:

Lemma 4.4 ([3]). Let {tm} be a sequence of L*(Q). Suppose that there exists
¥, ¢ € L*(Q) such that

Y — 1 strongly in L7 (Q),
VmeN, |y <é a.e in Q.
Then, b, — 1 strongly in L*(9).
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Proof of Theorem[/-1. Observe first that (4.1)) follows immediately from Proposi-
tion On the other hand, taking in (2.2)) and (3.5, f¢ = f = — div(A%(pAz))
with ¢ € D(Q) and A € RY*", then (2.4) reads

—div (A%(u®)) = —div(A%(pAz)) in Q,
u’ =0 on 9Q.

This implies, in view of the fact that A° € M (&=, 3,9), that u® = pAz. This,
together with , gives
us — oAz strongly in Ha(Q)",
Ase(us) — Ae(pAx)  strongly in L?(€)"*".
Taking now ¢ € D() such that ¢ =1 on w and where w CC , one obtains
us — A strongly in H*(w)",
Ase(us) — A°A  strongly in L?(w)™ ™. (4.6)

On the other hand, one has almost everywhere in w,
|AsA — APA| < |AsA — Ase(us)| + |Ase(us) — APA|
< BIA — e(ug)| + |Ase(us) — AYAl.
Then, using , one gets
AsA — A°A  strongly in L?(w)"*",

for every w CC Q. Since |45, A| < B|A[, this gives by Lemma written for
Ym = As,, A (with 6, — 0),

AsA — A°A  strongly in L*(Q)"*".

By the symmetric properties of As and A°, this convergence is still valid for every
matrix A € R*"*™. Thus

As — AY  strongly in L?(Q)"*".

From this convergence and the fact that ||As| ;=) < 3, one obtains convergence

2. O

Proof of Theorem[{.Z From hypothesis (4.3)), Proposition and the fact that
Ps(ugln ) —u§ =0 in ., it follows that

4510, = w iy < IP(uf),, ) — Poufll gy < 6"/,
| ASe(us) — A%e(ue) ||p2(qymen < 52,
Passing to the limit as § — 0, one obtains (4.4]). ([l

Proof of Theorem[/.3 (i) Under hypothesis (4.3), Proposition gives

e m P (g, = Pl = 0

and the fact that A= 7€ A0 implies
Pouf —u® — 0 weakly in Hy(9Q).
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Hence, by passing to the weak limit in H}(Q) as (g,d) — (0,0) in the following
equality:
Pu(uf,, )~ = (Po(ufy, ) — Pout) + (P — o),
one deduces
P (v, ) = u®  weakly in Hp ()", (4.7
On the other hand, using (4.3]) and Proposition one gets
1P (u5), ) = Pouf|pa ey < 62,

le(us) |2 ynxn < c.
This implies
il a0y < 1P2 (i, )y < €82 4 P20 g e
H@(UE)HLz(TE)an S C.

Since Pfuf is bounded independently of ¢ in H}(2)", one deduces that u§ is
bounded independently of ¢ and § in H}(Q)". This, together with (4.7) and Propo-
sition [2.7] gives (£.5)i).

(ii) Using Proposition the fact that A5 Z¢ A9 and

—_ —~—

se(us) — Ae(u’) = (Afe(uf) — Ae(u)) + (A%e(u®) — A%(u)),
one obtains the convergence [4.5(ii). O
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