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ABSTRACT 

The recent focus on conserved genes expressed through development has allowed 

for great headway in understanding the molecular mechanisms responsible for the 

variation seen among organisms. The expression of these integral developmental genes 

has implications with respect to evolutionary processes. The south central Texas Eurycea 

clade presents a unique continuum of karst phenotypes, having species representative of 

both subterranean and surface phenotypes. By describing the adult ocular morphology 

and the developmental processes leading to it, I hope to lay the foundation for better 

understanding the molecular mechanisms responsible for generating subterranean 

phenotypes in a karst salamander system.   

Three species of salamanders (Eurycea rathbuni, Eurycea nana, and Eurycea 

sosorum) from the south central Texas Eurycea clade were obtained for examining adult 

ocular histology. All specimens were mortalities obtained from the U.S. Fish and 

Wildlife Service San Marcos Aquatic Resource Center. The adult histology revealed an 

underdeveloped eye in the subterranean species E. rathbuni and well-developed eyes in 

the surface species E. nana and E. sosorum. Interestingly, a prominent optic nerve was 

found in both surface and subterranean species. The optic nerve of the subterranean 

species E. rathbuni was further examined using transmission electron microscopy. A 

number of myelinated axons were observed, suggesting functional capability of the optic 

nerve.   

  I have described the adult ocular histology in three species of south central Texas 

Eurycea, and I am interested in describing the developmental processes leading to the 

divergent anatomy between the two morphotypes. Furthermore, I aim to understand how 

differences in gene expression influence the divergent outcomes of eye development 

between the two morphotypes; therefore, expression of genes involved in ocular 

development (pax6 and shh) was examined in E. rathbuni embryos and E. sosorum 

embryos. The proteins Pax6 and Shh are conserved among all animals and share similar 
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expression patterns through development in species in which their expression has been 

examined. I found that both E. rathbuni and E. sosorum express Pax6 and Shh, but the 

time course and location of Pax6 and Shh expression in the developing eye of E. rathbuni 

differed from that in E. sosorum.  Furthermore, I observed unexpectedly that the lens, 

which functions in inducing development of the retina in other organisms, persists in the 

latest stage of E. rathbuni, suggesting that they maintain a lens after hatching and 

potentially well into the juvenile state.  

The two morphotypes examined share similar ontogeny, yet different spatial and 

temporal expression of Pax6 and Shh. Interestingly, a similar pattern can be seen by a 

cave adapted fish (Astyanax mexicanus), suggesting a degree of convergent evolution 

both through ontogeny and the expression of Pax6 and Shh.  I conclude that these 

salamanders present an ideal system in which to study the evolutionary and 

developmental mechanisms that lead to the variation in subterranean morphotypes seen in 

the Eurycea clade. Moreover, this system represents an innovation from the fish system 

for understanding the evolutionary processes responsible for subterranean adaptation.
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PREFACE 
 

“There is grandeur in this view of life, with its several powers, having been originally 

breathed into a few forms or into one; and that, whilst this planet has gone cycling on 

according to the fixed law of gravity, from so simple a beginning endless forms most 

beautiful and most wonderful have been, and are being, evolved.” –Charles Darwin,  

On The Origin of Species (1859). 

 

The variation observed in organisms has long fascinated scientists and compelled 

them to understand the mechanisms underlying the incredible menagerie exhibited by 

organisms. As so eloquently stated by Charles Darwin in the Origin of Species, I set out 

to understand the underpinnings responsible for variation seen among organisms. From 

the seemingly simple beginnings of development to elaborate adult forms, I too set out to 

understand the variation seem among organisms. An organism’s adaptation to a niche via 

evolutionary processes can result in variable forms. Thus, the variation of a habitat into a 

number of microhabitats may facilitate the specialization of organisms to those specific 

conditions. 

Multiple habitats are exemplified by the Balcones escarpment and fault zone, 

which is located in south central Texas, is a unique system derived from many geological 

events including carbonate deposition, uplifting, down faulting, and volcanic activity 

(Longley, 2003). Combinations of geological and hydrological events have contributed to 

the formation of a region above the Balcones escarpment known as the Edwards Plateau, 

which is composed of the carbonate rock, limestone. The Edwards Aquifer was formed 

after years of erosion via dissolution and is described as a porous, honeycombed, 

cavernous limestone region, and is a source of fresh water for millions of residents 

throughout south central Texas (Longley, 1981). The aquifer is also a source of fresh 

water to many endemic species of the region.  

The south central Texas Eurycea clade is endemic to the Edwards Aquifer and its 
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associated environments (Baker, 1961). The aquifer provides a subterranean habitat for E. 

rathbuni, E. waterlooensis, E. robusta and E. tridentifera. Subterranean habitats differ 

dramatically from surface environments by having little or no light, consistent 

temperatures, and fewer food resources (Barr and Holsinger, 1985). Adaptations to 

subterranean living are exemplified by the Texas blind salamander (Eurycea rathbuni) 

which completes its entire life cycle this aquatic, subterranean environment (Mitchell and 

Reddell, 1965).  The species that have adapted to living under subterranean conditions 

have unpigmented skin, large heads, wide mouths, gracile limbs, eye and lung reduction, 

and vision loss - characteristics common to many subterranean organisms (Chippindale, 

2000). Environments associated with the Edwards Aquifer include many spring systems, 

which provide habitat for surface species.  These epigean species (E. nana, E. 

troglodytes, E. tridentifera, E. spp. Comal complex, E. latitans, E. sosorum, E. tonkawae, 

E. chisholmensis, E. neotenes, E. naufragia, E. pterophila) have contrasting 

characteristics, including pigmented skin and seemingly fully developed eyes 

(Chippindale and Price et al. 1998). 

Despite the striking morphological differences between the surface and 

subterranean species, phylogenetic analyses suggest a close relationship between epigean 

salamander species that possess functional eyes (e.g., E. nana) and stygobiont species 

that possess non-functioning eyes (e.g., E. rathbuni) (Fig. 1: Wiens et al., 2003). Genetic 

data also suggest multiple invasions of cave habitats by the central Texas salamanders, 

resulting in numerous species possessing a range of cave adaptations (Chippindale, 

2000). Together, thirteen species in the genus Eurycea are recognized as constituting a 

monophyletic clade, which can be subdivided into three, genetically distinct groups 

associated with specific geographic regions (Chippindale et al., 2000). The Texas blind 

salamander and the San Marcos salamander are sympatric while the Barton Springs 

salamander is endemic to a spring system found in the city of Austin, Texas 

approximately 30 miles north of San Marcos. Together, these salamanders present 

themselves as an interesting group in which to study the developmental phenomena that 
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lead to the former having a reduced eye and the latter two as having fully developed eyes. 

Evolutionary developmental biologists have identified several genes governing 

eye development in invertebrates and vertebrates (Carroll, 2005). Interestingly, 

comparisons of these genes across distantly related taxa have revealed that versions of the 

same genes appear to strongly regulate eye development in all animals (Gilbert, 2010). It 

appears that the master-coding gene pax6 is integral to ocular development and lends 

itself to evolutionary inquiry when compared across taxa. When pax6 is over-expressed, 

non-functional, or mutated in some ways, it can cause eye malformation or vision loss in 

many organisms, including humans (Prossor, 1998: Tzoulaki, 2005). Given the homology 

of master coding genes for eyes, it is would be unexpected to see differences in eye 

development in two closely related species. On the other hand, the morphology exhibited 

by these salamanders does suggest developmental differences and an ideal opportunity to 

test the question “Does pax6 expression differ through development between two 

polymorphic sister species in a way that could account for vision loss in the Texas blind 

salamander?”  In order to address this question, a strong foundation must be built that 

describes the differences in morphology and charts the course of events during 

embryogenesis that leads to the deviations in ocular morphology.  

Herein, I describe the adult ocular histology of three paedomorphic species of 

salamanders from the south central Texas Eurycea clade to better understand the ultimate 

result of development and to establish a foundation for future investigation of the 

system’s divergent morphotypes. Adult ocular histology was complemented with the 

examination of expression of genes integral to ocular development, specifically pax6 and 

shh. These genes have been shown to be important for eye development (Gilbert, 2010). 

Furthermore, a previous study examining a cavefish population of the species Astyanax 

mexicanus has shown the importance of both pax6 and shh in ocular development, and 

specifically lack thereof in the cave population exhibiting reduced eyes (Jeffery, 2008). 

We can therefore ask the question “Are the same molecular mechanisms responsible for 

subterranean phenotypes in this vertebrate, tetrapod system?” 
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CHAPTER I 

Comparative Ocular Histology of Three South Central Texas Paedomorphic 

Salamander Species (Eurycea nana, E. sosorum, and E. rathbuni) 

 

Introduction 

The dissolution of limestone formed in what is now the Edwards Plateau in the 

Cretaceous period has led to the formation of subterranean habitats, which in turn have 

supported the evolution of stygobitic organisms, that is, organisms for which the entire 

life cycle is carried out underground in aquatic habitats. Stygobitic vertebrates are 

represented by two lineages; Teleost (boney fish) (Jeffery, 2012: Sket, 1996: Humphreys, 

1993: Holsinger, 2000) and Caudata (salamanders). Importantly the order Caudata 

represents the only stygobitic tetrapods (Goricki et al., 2012).  

The morphology of stygobionts is exemplified by the Texas blind salamander 

(Eurycea rathbuni), having a large head, wide mouth, gracile limbs, pigment reduction 

and vestigial eyes, characteristics widely accepted as cave adaptations (Mitchell and 

Redell, 1965). In contrast, the San Marcos salamander (E. nana) and Barton Springs 

salamander (E. sosorum) are epigean species and have pigmented skin, short robust 

limbs, and seemingly well-developed eyes. Importantly, phylogenetic analyses suggest a 

close relationship between epigean salamander species and stygobitic species (Wiens et 

al., 2003). The close relationship between the south central Texas Eurycea species and 

the tremendous divergence in morphotypes found in this genus makes it an ideal 

biological system in which to compare disparate ocular morphologies.    

Ocular histology in Caudata has been examined in a number of taxa including the 

groups Cryptobranchidae, Ambystomatidae, Salamandridae, and Proteidae (Fite, 1976), 



 

2 

but not Plethodontidae. Most terrestrial caudate species have larger eyes than aquatic 

species. Moreover, the species representing neotenic or paedomorphic life strategies have 

small eyes considered to be in a state of degeneration (Walls, 1942). Differing degrees of 

ocular regression are especially obvious in the stygobitic genera Eurycea, Typhlotriton, 

and Proteidae (Walls, 1942; Moller, 1951; Eigenmann, 1900).  

The largely inaccessible and fragile habitat of the Edwards Aquifer (Tovar and 

Solis, 2012) has doubtless contributed to the paucity of studies concerning this clade’s 

ocular histology. Only one study describing the ocular histology of a species from this 

clade, E. rathbuni (Eigenmann, 1900) has been published to date. Moreover, E. rathbuni 

ocular histology was undertaken by Eigenmann because of its stygobitic morphology, and 

it cannot be considered representative of the majority of the species in the clade. The 

remaining species’ ocular histology warrants a thorough review, particularly keeping 

their associated habitats in mind. Herein we present the ocular histology of three species 

of south central Texas Eurycea representing two morphotypes: the stygobitic E. rathbuni, 

and epigean E. nana and E. sosorum.      

 

Material and Methods 

 The U.S. Fish and Wildlife Service Aquatic Resource Center San Marcos, Texas 

(SMARC) donated newly deceased specimens of Texas blind salamander (Eurycea 

rathbuni), San Marcos salamander (E. nana), and Barton Springs salamander (E. 

sosorum). The specimens’ heads were removed and transported to Texas State University 

for further processing under scientific permit number SPR-0390-045, issued to Thomas 
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M. Brant (SMARC). General measurements along with tissue samples were taken of the 

remaining body, which was then preserved in 95% ethanol and cataloged at the SMARC. 

The heads of the specimens were placed in 4% buffered paraformaldehyde for 

approximately 24 hours and washed 3 times for 10 minutes for each wash with phosphate 

buffered saline. The heads were placed in a 30% sucrose solution prepared in phosphate 

buffered saline for cryoprotection and stored at 4° C for 24 hours or until sectioning took 

place. Sections (20 µm) were collected using a Shandon Cryotome at -28° C, mounted on 

a slide using 90% glycerol, and stored at -20° C (Saul et al. 2010). Images were acquired 

using an Olympus FV1000 equipped with differential interference contrast optics and a 

10X objective.  

 

Results 

Examination of histological sections taken from two epigean species and a 

stygobitic species reveal markedly different histology between the stygobitic and epigean 

species. Features previously described by Eigenmann (1900) for Eurycea rathbuni were 

identified and included optic nerve (ON), ganglion layer (GL), inner reticular layer (IRL), 

outer and inner reticular layer (O/IRL), and pigment epithelium (PE). A well-defined 

optic nerve was observed emanating from the eyes of E. rathbuni (Fig. 4-C). The entire 

eyeball is surrounded by melanized tissue, both internal and external to the sclera and 

cornea.  

  Histological sections from the epigean species Eurycea nana and E. sosorum 

revealed well-defined retinal layers, corneal layers, iris, lens, and pigment epithelium. 

Furthermore, retinal layers were identified as pigment epithelium (PE), photoreceptors 
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(PR), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), 

inner plexifrom layer (IPL), and retinal ganglion layer (RGL). Importantly, a well-

defined optic nerve was observed in both species. In the epigean salamanders, melanized 

tissue is restricted primarily to the PE, the choroid, the ciliary body of the iris; however, 

some dark pigmentation can also be observed outside the sclera and surrounding the optic 

nerve.   

 

Discussion 

  This study provides a description of ocular histology comparing among three 

closely related species and two ecotypes, epigean and stygobitic. Eurycea rathbuni has 

drastically reduced optic anatomy, a characteristic widely accepted as reflecting cave-

adapted morphology and exemplified by other stygobitic animals including other cave-

dwelling salamanders (e.g., Proteus anguius), cave-dwelling fish (e.g., Astyanax 

mexicanus), as well as extremely phylogenetically divergent invertebrates (Romero, 

2009). Furthermore, E. rathbuni exhibits a few vestigial retinal layers surrounded by 

pigment epithelium. These results suggest light would be unable to pass through the 

pigment epithelium to be utilized by photoreceptors if there were any. Interestingly, the 

optic nerve is still present in E. rathbuni, suggesting possible sensory function, but not 

necessarily vision. 

 Our results complement those reported by Eigenmann (1900). Upon close 

examination of E. rathbuni histology, the feature identified by Eigenmann as an optic 

nerve penetrating to the center of the eye resembles the hyaloid canal. The hyaloid canal 

provides vascularization to the developing lens during embryogenesis. I suspect the 
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hyaloid canal forms in the eye and progressively develops until the formation of the lens 

is either stunted or lost via apoptosis. In future studies, immunohistochemistry techniques 

will be used to stain for vascularization markers characteristic of the hyaloid canal to 

confirm its identity.  

 The epigean species E. nana and E. sosorum have well developed retinal layers 

including photoreceptors and pigment epithelium, thus exhibiting ocular anatomy 

expected of above ground species (Linke et al., 1986; Heatwole, 1998). The epigean 

species also exhibit a lens, cornea, and iris. Furthermore, E. nana and E. sosorum have a 

well-developed optic nerve. Thus it appears that all the ocular structures necessary to 

support vision are in place. Fundamental knowledge of ocular anatomy has implications 

to current research on these salamanders and their biology. The full extent of visual 

function in the epigean species has implications regarding mate choice and predator/prey 

recognition (Roth, 1987). Future quantification of photoreceptors including rods, cones, 

and their associated wavelength optima could elucidate the extent of light and dark 

adaption, and color perception (Roth, 1987).  

In conclusion, our comparative examination of ocular histology suggests that full 

development of the retina in E. rathbuni is aborted during ontogeny and that the lens is 

lost.  Furthermore, our results raise questions about the stage of development at which 

these events occur and the molecular processes that lead to this outcome. 
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Figure 1. A consolidated phylogeny of allozyme, morphological, and mtDNA data 
for the south central Texas Eurycea clade. Modified from Wiens et al. 2003 to 
highlight (in bold) the species examined in this study. Furthermore, the phylogeny 
illustrates a monophyletic clade (E. multiplicta as the out group) and two different species 
within the clade, which exhibit stygobitic morphology suggesting multiple subterranean 
invasions. 
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Figure 2. Photographs of adult Eurycea rathbuni (A), E. nana (B), and E. sosorum 
(C). Respective sketches of their heads modified from Mitchell and Reddell (1965), and a 
picture of the most current ocular histology (from left to right with each species boxed in 
a unique color). E. rathbuni ocular histology image taken from (Eigenmann, 1900).  E. 
rathbuni is the only species for which ocular histology has been described. 
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Figure 3. Sections of adult E. nana (A 1-4) and E. sosorum (B 1-4) eye. Illustrating regions of 
the posterior eye showing well-developed retinal layers and pigment (A1, B1). The lens, cornea, 
and iris are also visible (A2, B2).

A1 

 
 

B1 

 
 

A2 

 

B2 
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Figure 3. Ocular sections of adult E. nana (A 1-4) and E. sosorum (B 1-4) eye. Continued: 
Identification of retinal layers is as follows: retina ganglion cell layer (RGC), inner plexiform 
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), 
photoreceptor (PR), lens, iris, cornea (A3, B3). The optic nerve is pigmented and visible 
stemming from the posterior region of the pigment epithelium (A4, B4), optic nerve, pigment 
epithelium (PE).  
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A. 

 

 

B. 

 
C. 

 

D. 

 
Figure 4. Adult E. rathbuni ocular sections. Sketch modified from Mitchell and Reddell, 1965) 
(A). Showing undifferentiated tissue layers surrounded by pigment epithelium (B&C). Evidence of 
optic nerve also attached to the posterior region of the vestigial eye (C), and an optic nerve image 
taken at higher magnification and outlined in yellow (D). Identification of labels is as follows: 
optic nerve (ON), pigment epithelium (PE), ganglion layer (GL), inner reticular layer (IR), outer 
and inner reticular layer of the retina (O/I).  

E.#rathbuni 

PE ON 
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CHAPTER II 
 

Embryogenesis and Examination of pax6 and Shh in Eye Development of Two 

Salamander Morphotypes (Eurycea rathbuni and E. sosorum) 

 

      Introduction 

 

Together, Eurycea rathbuni and E. sosorum represent two extremes in a 

continuum of phenotypes exhibited by the south central Texas Eurycea clade of 

salamanders living in a karst environment.  The Texas blind salamander (E. rathbuni) is 

considered a stygobiont because it completes its life cycle in the aquatic subterranean 

habitat of the Edwards Aquifer where it lives in perpetual darkness (Fenelio, 1999). 

Consequently, E. rathbuni exemplifies what is widely accepted as subterranean features, 

including a broad head, gracile limbs, limited pigmentation and highly reduced eyes (Fig. 

2-A). In contrast, the Barton Springs salamander (E. sosorum) is considered epigean and 

is endemic to surface habitats; it exhibits small robust limbs, pigmentation, and well 

developed eyes (Fig. 2-C). Based on phylogenetic studies the species of the south central 

Texas Eurycea clade share close relationships (Chippindale et al. 2003, and Fig. 1). The 

two species (E. rathbuni and E. sosorum) provide a platform for comparing the sequence 

of events during development that lead to such disparate phenotypic outcomes. These 

differences are expected to be subtle because the two species are closely related.  

Studies carried out on the Mexican blind cavefish (Astyanax mexicanus) by William 

Jeffery and colleagues provide an excellent model for understanding the development of 

morphotypes with and without eyes (Jeffery, 2009; Alessandro et al., 2007; Jeffery, 2008 

and 2005; Yamamoto et al. 2004). The Astyanax system comprises a surface morphotype 

with pigmented skin and fully developed eyes and a cave morphotype lacking pigment in 



 

12 

the skin and an obvious eye.  Through their pioneering work, they have shown that 

development of the eye in the cavefish proceeds to a fairly advanced stage until the 

developing lens undergoes apoptosis, at which point the retinal development stops and 

the eye regresses (appropriate references).  These changes are accompanied by 

progressive decreases in the expression of the Pax6 protein and increases in Shh proteins 

as compared to the expression levels observed at similar stages in development in the 

surface-dwelling fish (appropriate references).  To determine whether similar events 

occur in E. rathbuni, I will track ocular development and the expression of genes integral 

to ocular development (pax6 and shh) through embryogenesis. 

  

Materials and Methods 

Specimens and Staging 

Eggs laid by the two species of salamanders were collected from the U.S. Fish 

and Wildlife Service, San Marcos Aquatic Resource Center (SMARC). Incubation time 

was recorded and developmental staging followed Duellman and Trueb (1994).  

Samples mainly consisted of three three-day intervals post ovipostion starting 

with day 6 (stage 21). Many eggs were preyed upon (mainly by snails found in the 

aquaria containing adults); therefore, not all stages are represented for the two species. 

Embryos were preserved in 4% paraformaldehyde, cryoprotected in 30% sucrose, frozen, 

mounted and sectioned at 10 µm using a Shandon Cryotome at -19°C.  

 

Antibodies, Immunohistochemistry, and Imaging 

Immunohistochemistry was accomplished by blocking with bovine serum 

albumin (Sigma Aldrich, A7030-10G) for two hours then washed three times at ten 
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minutes each. Each primary and secondary antibody was incubated separately as follows, 

Pax6 primary, Pax6 secondary, Anti-Shh primary, Anti-rabbit IgG (Anti-Shh secondary). 

Two fifteen-minute washes were implemented between each incubation period. Finally, 

the nuclear stain Hoechst was applied last and incubated for one hour, after which the 

samples were given two fifteen minute washes. All washes were accomplished using 

PBST (0.05% tween).  

  Images were obtained using an Olympus FV-1000 scanning confocal microscope. 

Each of the three lasers were optimized and continuously used to acquire each image, 

with a 20X water emersion lens. The only exception to this is the image seen in Fig. 7, in 

which settings were manipulated for a 60 X oil emersion lens.  

 

Results 

Development 

A description of the development and staging was accomplished using specimens 

provided by the SMARC. The staging scheme by Duellman and Trueb (1986) was used 

to identify embryo morphology, and the developmental stages of embryos obtained as 

well as the days post-oviposition at which the stage was achieved are listed in Table1. I 

obtained specimens of E. rathbuni at stages including Stage 21 at day 6 post-oviposition. 

The Stage 21 embryos were defined by having neural folds closed to form neural tube 

(white line) (Fig. 5, A). Stages 22-23 at day 9 were characterized as having a head, an 

optic vesicle (star) and a hyomandibular groove (arrow) (Fig. 5, B). Stages 25-26 at day 

11 are defined as having a prominent head, ear spot dorsal to the hyomandibular groove 

(arrow), and 9-10 somites (white outline) (Fig. 5, C). Stage 27 embryos at day 13 have a 
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visible stomodeum (arrow), mandibular arch (star), and optic vesicle (star) (Fig. 5, D). 

Stage 29 at day 15 is defined as having the same features at the Stage 27 embryo plus a 

nasal vesicle (star) and hyoid arch (star) which occurs between the mandibular arch and 

maxillary arch (Fig. 5, E). Stage 31 at day 17 adds distinct gill folds (white lines) to the 

features observed in the Stage 29 embryo (Fig. 5, F). At Stage 37-38 at day 34 prominent 

gill folds, forelimb buds, and pigment migration from neural tube become evident (Fig. 5, 

G and H). Additionally, a sagittal view of late stage development (Stage 37-38) exhibits a 

prominent forelimb and hind limb bud, elongated and laterally compressed tail, 

pigmentation, and prominent eye spot. The spread of pigmentation and concentrated 

pigmentation of the eye suggest some degree of ocular development (Fig. 5, I1 and I2). 

 I obtained E. sosorum embryos at the stages shown in Table 2. Embryonic E. rathbuni 

and E. sosorum were obtained at various stages and at various times post-oviposition as 

detailed in Table 2.  In these embryos we observed the hallmark features for the various 

stages described by Duellman and Trueb (1986) and detailed in the table.  Although this 

study was not designed to compare rates of development between the two species, we 

observed that E. sosorum appeared to reach its respective stages earlier than E. rathbuni. 

 
 
Pax6 and Shh Expression 
  
 
 Expression of Pax6 and Shh proteins is observed in both morphotypes represented 

by E. rathbuni and E. sosorum. Five developmental stages of E. sosorum were identified 

and labeled for the gene expression study. Specimens consisted of embryos from stages 

21-46, and juveniles (from E. sosorum only). Pax6 and Shh protein is observed during 

early development of E. sosorum (Stages 25-26, & 31) with prominent labeling of Shh 
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protein in the forebrain and in some surface ectoderm cells and Pax6 protein labeling 

mainly concentrated in three regions of the developing prosencephalon, mesencephalon, 

and optic vesicle (Fig. 7, A-B).  The expression of these genes continues through latter 

developmental stages 34-46, as defined by day’s 25-30 post oviposition (Fig. 7, C-D). At 

stage 34, Pax6 is heavily expressed in the optic cup while faint expression of Shh is 

observed (Fig. 7, C). Interestingly, a lens could be identified at this stage and has the 

highest expression of Pax6 relative to the rest of the eye. The lens is maintained through 

stage 37-38, and continues to heavily express Pax6 while continued expression in the 

optic cup, diencephalon, and mesencephalon are observed (Fig. 7, D). During this stage, 

cells expressing Shh are clearly identified mainly adjacent to the forebrain and the 

surrounding area. Finally, in a newly hatched juvenile expression of Pax6 is maintained 

mainly in the lens, and is absent in the remaining developing retina where Shh is 

observed (Fig. 7, E). 

The expression of Pax6 and Shh can also be observed in the specimens 

representing six developmental stages of E. rathbuni. In early development (stage 22-23) 

expression of Pax6 and Shh is faint and with the exception of Shh not easily seen (Fig. 8, 

A1-4). At stages 25-26, both Shh and Pax6 are observed with expression of Pax6 greatest 

in the developing regions of the brain, including the diencephalon, mesencephalon, and 

the cells migrating to form the optic vesicle (Fig. 8, B1-4) and expressed at a higher level 

than was observed at Stage 22. The labeling of Pax6 is mainly concentrated in the nuclei 

of the cells as can be better appreciated when observed at higher magnification (Fig. 9, 

A-D). Shh protein seems ubiquitous in the early developmental stages, yet specific cells 

are not heavily labeled, contrasting with late stage development (Fig. 8, E3 and F3). At 
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stage 27, Pax6 protein is observed maintaining the same spatial expression as in stage 25-

26 (Fig. 8, C4). Stage 29, Pax6 expression is increased in the developing brain and optic 

cup (Fig. 8, D4). During the late stages (37-38, & 40) of development, Pax6 expression 

has decreased in spatial distribution relative to the above earlier developmental stages 

(Fig. 8, E4, F4, & G4).     

 
 

Discussion  

The ontogeny, and expression of pax6 and shh during ocular development of two 

salamander morphotypes differed in that E. sosorum maintained expression of Pax6 and 

Shh through embryogenesis and into a juvenile stage. Decreased labeling of Pax6 was 

observed during later stages of E. rathbuni development, while Shh labeling was 

increased in a select subset of cells in the head. These results parallel the two 

morphotypes explored in the A. mexicanus (Jeffery 2009). Moreover, this suggests that 

the salamanders examined in this study, and the teleost fish examined by Jeffery (2009) 

share a degree of convergent evolution in development and the molecular mechanisms 

(pax6 and shh) responsible for the final state of vestigial eyes.  

 

Pax6 and Shh Expression 

  
When compared spatially, the expression of Pax6 and Shh proteins through 

development of E. rathbuni and E. sosorum is similar and follow what is expected during 

vertebrate neurulation. Specifically, the genes are expressed in the developing central 

nervous system, including the brain and eye (Gilbert, 2010). The continued expression of 

pax6 and vax1 genes is important as transcription factors which bind the enhancer 
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sequence of the δ-crystallin gene, which encodes the crystalline proteins found in the lens 

(Gilbert, 2010). If pax6 gene expression is down regulated during the development of the 

lens, the lens will cease to develop. In A. mexicanus, the down regulation of pax6 gene 

expression contributes to apoptosis of the lens. The elimination of the lens via apoptosis 

stunts further retinal differentiation and results in the formation of vestigial remnants of 

retina found in A. mexicanus and described by Jeffery (2005, 2008, 2009). 

The histology of the adult eye suggests that Eurycea sosorum develops a well-

organized, functional eye, suggesting the continued expression of Pax6 protein well into 

the late stages of development. Moreover, in newts, Cynops pyrrhogaster, that pax6 gene 

expression is persistent through adulthood and plays an important role in regeneration 

when the animal is subjected to retinal injury (Del Rio-Tsonis et al., 1995). The 

expression of the pax6 gene in E. sosorum persists through all developmental stages to 

the latest stage acquired (juvenile), at which point it is concentrated in the lens. The 

expression of the pax6 gene in E. sosorum follows the canonical developmental 

expression of a sighted vertebrate. In particular its expression is continued in the juvenile 

anticipating proper retinal development. The expression of the Shh protein is also 

observed in E. sosorum, as expected in vertebrate development, yet it does not appear to 

be highly expressed, as would down regulate pax6 gene expression and impede lens and 

retinal development.  

In E. rathbuni the expression of Pax6 protein is noted in early development and is 

spatially distributed in the developing brain and eye in a pattern similar to that seen in E. 

sosorum. The expression of Pax6 protein strongly persists through most stages with the 

exception of the later stage at day 34. Moreover, labeling of Pax6 is almost unidentifiable 
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at day 37, suggesting little expression. Interestingly, during these late stages Shh is highly 

expressed when compared to the earlier stages of conspecifics. The expression of Shh at 

days 34 and 37 is associated with select cells with high expression relative to adjacent 

cells. Some of these cells that express Shh are in close proximity to the developing eye 

(Fig. 8, E3, F3, & G3). The high expression of Shh during late stage development in E. 

rathbuni, particularly its concentration in specific cells surrounding the eye and forebrain, 

plus the reduced expression of Pax6, is consistent with down regulation of the pax6 gene 

by Shh protein. Thus, the pattern seems to parallel that observed in cave fish (Jeffery, 

2008), raising the possibility that down regulation of the pax6 gene leads to apoptosis and 

a stunted development of the retina in E. rathbuni.  I plan to address this question in 

future studies.  

 

Development 

The ontogeny of both species is relatively similar including migration of 

pigmented cells, cranial development, and limb bud development. Interestingly, the 

tempo of E. rathbuni development seems to be slower than E. sosorum. Moreover, 

organisms that exhibit neotenic or paedomorphic life strategies, such as E. rathbuni and 

E. sosorum, develop at a slower rate (Armstrong and Malacinski, 1989). Therefore, it is 

not surprising that the development of the two species (E. rathbuni and E. sosorum) is 

slower than Ambystoma as illustrated by Duellman and Trueb (1986). Interestingly, 

pigment migration through ontogeny is similar between the two species, specifically 

regarding the cranium, eye, and neural tube. Pigment migration begins soon after the 

neural tube closes signifying the end of gastrulation and the beginning of neurulation.  
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Conclusions 

I found that the expression of Pax6 declined earlier in E. rathbuni and Shh was 

maintained compared to E. sosorum. The expression of these genes suggests their 

potential for being the mechanisms driving differences in ocular development. Observing 

Pax6 and Shh proteins in later stages of E. sosorum and E. rathbuni is needed to 

understand the completion of retinal development in E. sosorum and lens degeneration in 

E. rathbuni. Moreover, later stages would allow understanding of the molecular 

underpinnings in lens degeneration and specifically address the potential of apoptosis as a 

means to eye regression as seen in A. mexicanus. Importantly, the overall ontogeny and 

expression of Pax6 and Shh proteins during ocular development of two salamander 

morphotypes share a parallel with the two morphotypes explored in the A. mexicanus 

(Jeffery 2009). This parallel suggests that the salamanders examined in this study, and the 

teleost fish examined by Jeffery (2009) share a degree of convergent evolution in 

development and the molecular mechanisms (pax6 and shh) responsible for the ultimate 

state of vestigial eyes. 
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Figure 5. Staging of the Texas blind salamander (E. rathbuni). Stages are assigned via 
morphology, and follow descriptions by Duellman and Trueb (1986). Stages are as follows: Stage 
21:Day 6 (A). Stage 22-23: Day 9 (B). Stage 25-26: Day 11 (C). Stage 27: Day 13 (D). Stage 29: 
Day 15 (E). Stage 31: Day 17 (F). Stage 37-38: Day 34 (G). Stage 37-38: Dorsal view of the head at 
day 34 (H). Stage 40: Sagittal view of late stage development at day 37 (I1). Stage 40: Sagittal view 
of cranium at late stage development at day 37 (I2). 
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Figure 6. Staging of the Barton Springs salamander (E. sosorum). Stages are assigned 
via morphology, and follow descriptions by Duellman and Trueb (1986). Stages are as 
follows: Stage 21:Day 4 (A). Stage 25-26: Day 10 (B). Stage 31: Day 13 (C). Stage 34: 
Day 25 (D). Stage 37-38: Day 30 (E). Stage 40: Day 35 (F1). Stage 40: Sagittal view of 
the head at day 35 (F2). Stage 46: Yolk completely absorbed; fourth finger bud distinct; 
juvenile hatchling (G). 
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Figure 7. Five stages of E. sosorum ocular development with Pax6 and Shh labeling. One 
stain and two antibodies were used to visualize genes integral to ocular development (A1-
E1), and included; Hoechst, nuclear stain (A2-E2), Shh (A3-E3), and Pax6 (A4-E4). 
Respective days post oviposition (P.O.) on the left and each wavelength split to show 
labeling. 
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Figure 7. Five stages of E. sosorum ocular development with Pax6 and Shh labeling. 
Continued: One stain and two antibodies were used to visualize genes integral to ocular 
development (A1-E1), and included; Hoechst, nuclear stain (A2-E2), Shh (A3-E3), and Pax6 
(A4-E4). Respective days post oviposition (P.O.) on the left and each wavelength split to 
show labeling.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

D1.!

!

D2.!

!

D3.!

!

D4.!

!
E1.!

!

E2.!

!

E3.!

!

E4.!

!

Day-30 
(P.O.) 

Juvenile 

Hoechst Shh Pax6 Pax6/Shh/Hoechst 



 

24 

 

Figure 8. Six stages of E. rathbuni ocular development in with Pax6 and Shh labeling. One 
stain and two antibodies were used to visualize genes integral to ocular development (A1-G1), 
and included; Hoechst, nuclear stain (A2-G2), Shh (A3-G3), Pax6 (A4-G4). Respective days 
post oviposition (P.O.) on the left, and each wavelength split to show expression.
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Figure 8. Six stages of E. rathbuni ocular development in with Pax6 and Shh labeling. 
Continued: One stain and two antibodies were used to visualize genes integral to ocular 
development (A1-G1), and included; Hoechst, nuclear stain (A2-G2), Shh (A3-G3), Pax6 (A4-
G4). Respective days post oviposition (P.O.) on the left, and each wavelength split to show 
expression. 
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Figure 9. Day 11, stage 25-26 of ocular development in E. rathbuni with Pax6 and 
Shh labeling. One stain and two antibodies were used to visualize genes integral to 
ocular development, and included; Hoechst, a nuclear stain (B), Pax6 (C), and Shh (D). 
Respective days on the left and each wavelength split to show expression. Note the co-
localization of Pax6 and Hoechst (A), suggesting Pax6 expression in the nucleus and 
reduced labeling of Shh (D). 
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Table 1. Stage description and number of specimens. Stage number as reference to 
Duellman and Trueb (1986), corresponding morphological description, and number of 
days post oviposition (p.o.). Note that representative stages were not acquired for every 
species due to difficulty of breeding and paucity of adult specimens. 

Stage, and 
corresponding 

figure 

 
Description 

Number of days post oviposition (p.o.) 
 

Eurycea sosorum 
 

Eurycea rathbuni 
21 

(Fig. 5, A) 
(Fig. 6, A) 

Neural folds close to 
form neural tube, and 
the beginning of 
neurulation. 

 
 

4 (n=4) 

 
 

6 (n=5) 

 
22-23 

(Fig. 5, B) 

Head with optic 
vesicle, hyomandibular 
groove. 

 
 

N/A 

 
 

9 (n=3) 
25-26 

(Fig. 5, C) 
(Fig. 6, B) 

Prominent head with; 
ear spot dorsal to 
hyomandibular groove, 
9-10 somites. 

 
 

10 (n=3) 

 
 

11 (n=5) 

27 
(Fig. 5, D) 

Stomodeum appears, 
mandibular arch, optic 
vesicle. 

 
N/A 

 
13 (n=5) 

 
29 

(Fig. 5, E) 

Stomodeum,mandibular 
arch, optic vesicle + 
nasal vesicle, hyoid 
arch. 

 
N/A 

 
15 (n=4) 

 
31 

(Fig. 5, F) 
(Fig. 6, C) 

Stomodeum, 
mandibular arch, optic 
vesicle, nasal vesicle, 
hyoid arch + gill folds  
becoming distinct. 

 
 

13 (n=6) 

 
 

17 (n=3) 

34 
(Fig. 6, D) 

Prominent gills and 
forelimb buds 

 
25 (n=6) 

 
N/A 

 
37-38 

(Fig. 5, G and H) 
(Fig. 6, E) 

Prominent gills and 
forelimb buds, and 
pigment migration from 
the neural tube 
becomes apparent.  

 
 

30 (n=5) 

 
 

34 (n=15) 

 
40 

(Fig. 5, I) 
(Fig. 6, F) 

Forelimb bud 
prominent, hind limb 
bud prominent, 
elongated and laterally 
compressed tail, 
pigment migration 
ventrally and prominent 
around the eye. 

 
 
 

35 (n=6) 

 
 
 

37 (n=2) 

46 
(Fig. 5, G) 

Yolk completely 
absorbed; fourth finger 
bud distinct; Newly 
hatched juvenile. 

 
40 (n=3) 

 
N/A 
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