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EXISTENCE OF LARGE SOLUTIONS FOR A SEMILINEAR
ELLIPTIC PROBLEM VIA EXPLOSIVE SUB- SUPERSOLUTIONS

ZHIJUN ZHANG

Abstract. We consider the boundary blow-up nonlinear elliptic problems

∆u ± λ|∇u|q = k(x)g(u) in a bounded domain with boundary condition
u|∂Ω = +∞, where q ∈ [0, 2] and λ ≥ 0. Under suitable growth assump-

tions on k near the boundary and on g both at zero and at infinity, we show

the existence of at least one solution in C2(Ω). Our proof is based on the
method of explosive sub-supersolutions, which permits positive weights k(x)

which are unbounded and/or oscillatory near the boundary. Also, we show the

global optimal asymptotic behaviour of the solution in some special cases.

1. Introduction

The purpose of this paper is to investigate existence and global optimal asymp-
totic behaviour of solutions to the problems

∆u + λ|∇u|q = k(x)g(u), x ∈ Ω, u|∂Ω = +∞, (1.1)

∆u− λ|∇u|q = k(x)g(u), x ∈ Ω, u|∂Ω = +∞, (1.2)

where the boundary condition means u(x) → +∞ as d(x) = dist(x, ∂Ω) → 0, Ω is a
bounded domain with smooth boundary in RN (N ≥ 1), q ∈ [0, 2] and λ ≥ 0. The
solutions to the above problems are called ‘large solutions’ or ‘explosive solutions’.
Our assumptions on the function g are as follows:

(G1) g ∈ C1([0,∞)) is non-decreasing on [0,∞), g(s) ≤ C1s
p1 , for all s ∈ (0,∞)

and g(s) ≥ C2s
p2 for large s, with p1 ≥ p2 > 1 and C1, C2 are positive

constants.
(G2) g ∈ C1(R) is non-decreasing on R, g(s) ≤ C1e

p1s, for all s ∈ R and g(s) ≥
C2e

p2s for large |s| with p1 ≥ p2 > 0 and C1, C2 are positive constants.
We assume that k ∈ Cα

loc(Ω) for some α ∈ (0, 1), is positive in Ω, and satisfies
(K1) There exist constants C1, C2 such that C1(d(x))γ2 ≤ k(x) ≤ C2(d(x))γ1 ,

for all x ∈ Ω with −2 < γ1 ≤ γ2.
When λ = 0, problems (1.1), (1.2) become

∆u = k(x)g(u), x ∈ Ω, u|∂Ω = +∞. (1.3)
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For k(x) ≡ 1 on Ω, f(u) = eu and N = 2, problem (1.3) was first considered
by Bieberbach [21] in 1916. In this case, problem (1.3) plays an important role
in the theory of Riemannian surfaces of constant negative curvatures and in the
theory of automorphic functions. Rademacher [21], using the ideas of Bieberbach,
showed that if Ω is a bounded domain in R3 with C2 boundary, then problem
(1.3) has a unique solution u ∈ C2(Ω) such that |u(x) + 2 ln d(x)| is bounded
on Ω. In this case, this problem arises in the study of an electric potential in a
glowing hollow metal body. For general increasing nonlinearities f(u), k(x) ≡ 1
on Ω and a bounded smooth domain Ω, Keller [18] and Osserman [27] supplied a
necessary and sufficient condition

∫∞ 1/
√

G(s) ds < ∞ where G′(s) = g(s) for the
existence of large solutions to problem (1.3). Later, Loewner and Nirenberg [23]
showed that if g(u) = up0 with p0 = (N + 2)/(N − 2), N > 2, then problem (1.3)
has a unique positive solution u satisfying limd(x)→0 u(x)(d(x))(N−2)/2 = (N(N −
2)/4)(N−2)/4. In this case, the problem arises in the differential geometry. The
asymptotic behaviour and uniqueness of solutions to (1.3) have been established in
[1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 22, 24, 25, 26, 29], where the uniqueness
was derived through an analysis of the asymptotic behaviour of solutions near the
boundary.

For λ 6= 0 and k(x) ≡ 1 on Ω, Bandle and Giarrusso [2] and Giarrusso [15, 16]
established the asymptotic behaviour and uniqueness of solutions of (1.1) and (1.2).
For more investigations of explosive problems for elliptic equations, we refer the
reader to [5, 19, 20, 28, 30, 31, 32, 33].

Recently, the author [32] established an explosive sub-supersolution method for
the existence of solutions to general elliptic problems with nonlinear gradient terms.
Garcia-Melian [13] also established an explosive sub-supersolution method for the
existence of solutions to (1.3). By constructing explosive subsolutions and explosive
supersolutions, he showed the following results.

(I) If (K1) and (G1) are satisfied, then (1.3) has at least one positive solution
u ∈ C2(Ω) and satisfies

m[d(x)]−(2+γ1)/(p1−1) ≤ u(x) ≤ M [d(x)]−(2+γ2)/(p2−1), ∀x ∈ Ω; (1.4)

where m,M are positive constants with m ≤ M .
(II) If (K1) and (G2) are satisfied, then (1.3) has at least one solution u ∈ C2(Ω)

and satisfies

−m− (2 + γ1)/p1 ln d(x)) ≤ u(x) ≤ M − (2 + γ2)/p2 ln d(x), ∀x ∈ Ω. (1.5)

In this paper, we extended the above results to problems (1.1) and (1.2). Let
w ∈ C2+α(Ω)

⋂
C1(Ω) be the unique solution of the problem

−∆u = 1, u > 0, x ∈ Ω, u
∣∣
∂Ω

= 0. (1.6)

As is well known, ∇w(x) 6= 0, for all x ∈ ∂Ω and C1d(x) ≤ w(x) ≤ C2d(x), for all
x ∈ Ω, where C1, C2 are positive constants. Thus (K1) is equivalent to

(K2) c1(w(x))γ2 ≤ k(x) ≤ c2(w(x))γ1 , for x ∈ Ω with −2 < γ1 ≤ γ2.
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For convenience in the following, we denote

|u|∞ = max
x∈Ω̄

|u(x)|; u ∈ C(Ω̄); β1 =
2 + γ1

p1 − 1
; β2 =

2 + γ2

p2 − 1
;

c0 = min
x∈Ω

[|∇w(x)|2 + w(x)]; C0 = max
x∈Ω

[|∇w(x)|2 + w(x)];

cβ = min
x∈Ω

[(1 + β)|∇w(x)|2 + w(x)]; Cβ = max
x∈Ω

[(1 + β)|∇w(x)|2 + w(x)]

for β > 0.
Our main results are summarized in the following theorems.

Theorem 1.1. Under assumptions (G1) and (K2), if 0 ≤ q < min{p2,
2p2+γ2

p2+γ2+1},
then problem (1.1) has at least one positive solution uλ ∈ C2(Ω) for each λ ≥ 0,
and satisfies

m[w(x)]−(2+γ1)/(p1−1) ≤ uλ(x) ≤ M [w(x)]−(2+γ2)/(p2−1), ∀x ∈ Ω; (1.7)

where m,M are positive constants with m ≤ M .

Theorem 1.2. Under assumptions (G1) and (K2), if 1 < q ≤ 2p1+γ1
p1+γ1+1 , then

problem (1.2) has at least one positive solution uλ ∈ C2(Ω) for each λ ≥ 0, and
satisfies (1.7).

Theorem 1.3. Under assumptions (G2) and (K2), if 0 ≤ q ≤ 2, then problem
(1.1) has at least one solution uλ ∈ C2(Ω) for each λ ≥ 0, and satisfies

−m− (2 + γ1)/p1 lnw(x)) ≤ uλ(x) ≤ M − (2 + γ2)/p2 lnw(x), ∀x ∈ Ω, (1.8)

Theorem 1.4. Assume (G2) and (K2).
(I) If 1 < q ≤ 2, then problem (1.2) has at least one solution uλ ∈ C2(Ω) for

each λ ≥ 0, and satisfies

−m− β ln d(x) ≤ u(x) ≤ M − (2 + γ2)/p2 ln d(x), ∀x ∈ Ω; (1.9)

where β ∈ (0, (2 + γ2)/p2) is small enough.
(II) If 0 < q ≤ 1, then problem (1.2) has at least one solution uλ ∈ C2(Ω) for

each λ ∈ [0, λ0], and satisfies (1.8), where

λ0 = ((2 + γ1)/p1)1−q cc0

|w|2−q
∞ |∇w|q∞

,

with c ∈ (0, 1).

The outline of this article is as follows. In section 2, we prove Theorems 1.1–1.4.
In the final section, we give two examples.

2. Proofs of theorems

First we introduce an explosive sub - supersolution method. We consider the
following general problem

−∆u = f(x, u,∇u), x ∈ Ω, u|∂Ω = +∞, (2.1)

where f(x, s, η) satisfies the following conditions:
(F1) f(x, s, η) is locally Hölder continuous in Ω× I × RN and continuously dif-

ferentiable with respect to the variables s and η
(F2) There exists increasing function h ∈ C1([0,∞), [0,∞)) such that

|f(x, s, η)| ≤ h(|s|)(1 + |η|2), ∀(x, s, η) ∈ Ω× I × RN
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(F3) f is nondecreasing in s for each (x, η) ∈ Ω×RN ; where I = [0,∞) or I = R.
Definition. A function u ∈ C2(Ω) is called an explosive subsolution of (2.1) if

∆u ≥ f(x, u,∇u), x ∈ Ω, u
∣∣
∂Ω

= +∞. (2.2)

Definition. A function u ∈ C2(Ω) is called an explosive supersolution of (2.1) if

∆u ≤ f(x, u,∇u), x ∈ Ω, u
∣∣
∂Ω

= +∞. (2.3)

Lemma 2.1 ([32, Theorem 4.1]). Suppose that (2.1) has an explosive supersolution
u and an explosive subsolution u such that u ≤ u on Ω, then (2.1) has at least one
solution u ∈ C2(Ω) satisfying u ≤ u ≤ ū on Ω.

For proving our main results, we use the above lemma; i.e., we construct an
explosive supersolution u and an explosive subsolution u such that u ≤ u on Ω.

Proof of Theorem 1.1. For 0 ≤ q < min{p2, 2p2+γ2
p2+γ2+1}, let u = m(w(x))−β1 , where

m is a positive constant satisfying C1C2m
p1−1 ≤ β1cβ1 . Then

∆u = mβ1[(1 + β1)|∇w(x)|2 + w(x)](w(x))−2−β1

≥ mβ1cβ1(w(x))−2−β1

≥ C1C2m
p1(w(x))γ1(w(x))−β1p1

≥ k(x)g(u(x)), x ∈ Ω;

i.e, u = m(w(x))−β1 is an explosive subsolution of (1.1).
Let ū = M(w(x))−β2 , where M is a positive constant satisfying

C1C2M
p2−1 ≥ β2Cβ2 + λMq−1β2

q|w|∞2+β2−(1+β2)q|∇w|q∞.

We see that

∆ū + λ|∇ū|q ≤ C1(w(x)γ2C2ū
p2 ≤ k(x)g(ū) + λ|∇ū|q, ∀x ∈ Ω;

i.e., ū = M(w(x))−β2 is an explosive subsolution of (1.1), Clearly M ≥ m, i.e.,
u ≥ u on Ω. Hence the desired conclusion follows by Lemma 2.1. �

Proof of Theorem 1.2. For 1 < q ≤ 2p1+γ1
p1+γ1+1 . Let u = M(w(x))−β2 , where M is a

positive constant satisfying Mp2−1 ≥ β2Cβ2
C1C2

. Then

∆u = Mβ2[(1 + β2)|∇w(x)|2 + w(x)](w(x))−2−β2

≤ C1C2M
p2(w(x))γ2(w(x))−β2p2

≤ k(x)g(ū(x)), x ∈ Ω;

i.e., u = M(w(x))−β2 is an explosive supersolution of (1.2). Let u = m(w(x))−β1 ,
where m is a positive constant satisfying

C1C2m
p1−1 − λmq−1βq

1 |w|2+β1−(1+β1)q
∞ |∇w|q∞ ≤ β1cβ1 .

We see that

∆u + λ|∇u|q ≥ C2(w(x)γ1C1u
p1 ≥ k(x)g(u), ∀x ∈ Ω;

i.e., u = m(w(x))−β1 is an explosive subsolution of (1.2). Clearly M ≥ m, i.e.,
u ≥ u on Ω. Hence the desired conclusion follows by Lemma 2.1. �
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Proof of Theorem 1.3. For 0 ≤ q ≤ 2. Let u = −m− (2 + γ1)/p1 lnw(x), where m
is a positive constant satisfying

e−mp1 ≤ (2 + γ1)c0

C1C2p1
.

Then

∆u = (2 + γ1)/p1(|∇w(x)|2 + w(x))(w(x))−2

≥ C2(w(x))γ1C1e
−mp1(w(x))−2−γ1

≥ k(x)g(ū(x)), ∀x ∈ Ω;

i.e,, u = −m − (2 + γ1)/p1 lnw(x) is an explosive subsolution of (1.1). Let ū =
M − (2 + γ2)/p2 lnw(x), where M is a positive constant satisfying

C1C2e
Mp2 ≥ C0(2 + γ2)/p2 + λ((2 + γ2)/p2)q|w|2−q

∞ |∇w|q∞.

Then
∆ū ≤ k(x)g(u(x)) + λ|∇ū|q, ∀x ∈ Ω;

i.e., ū = M − (2 + γ2)/p2 lnw(x) is an explosive superbsolution of (1.1). Clearly,
u ≥ u on Ω. Hence the desired conclusion follows by Lemma 2.1. �

Proof of Theorem 1.4. For 0 < q ≤ 2. Let u = M − (2 + γ2)/p2 lnw(x), where M
is a positive constant satisfying

C1C2e
Mp2 ≥ C0(2 + γ2)/p2.

Then

∆u = (|∇w(x)|2 + w(x))(2 + γ2)/p2(w(x))−2

≤ C1(w(x))γ2C2e
Mp2(w(x))−2−γ2

≤ k(x)g(ū(x)), ∀x ∈ Ω;

i.e, u = M − (2 + γ2)/p2 lnw(x) is an explosive supersolution of (1.2).
We need to construct an explosive subpersolution of (1.2).

Case (I) 1 < q ≤ 2. Let u = −m − β lnw(x), where β ∈ (0, (2 + γ1)/p1) is small
enough such that

c0β/2 ≥ λβq|w|2−q
∞ |∇w|q∞

and m is a positive constant satisfying

c0β/2 ≥ C1C2e
−mp1 |w|2+γ1−p1β

∞ .

Then

∆u ≥ β(|∇w(x)|2 + w(x))(w(x))−2

≥ C1(w(x))γ1C2e
−mp1(w(x))−p2β + λβqw−q|∇w|q

≥ k(x)g(u(x)), ∀x ∈ Ω;

i.e., u = −M − β lnw(x) is an explosive subsolution of (1.2). Clearly, u ≥ u on Ω.
Case (II) 0 < q ≤ 1 and λ ∈ [0, λ0]. Let u = −m− (2 + γ1)/p1 lnw(x), where m is
a positive constant satisfying

(1− c)c0(2 + γ1)/p1 ≥ C1C2e
−m.

Since λ ∈ [0, λ0], 1.e.,

cc0(2 + γ1)/p1 ≥ λ((2 + γ1)/p1)q|w|2−q
∞ |∇w|q∞;
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we see that

∆u ≥ β(|∇w(x)|2 + w(x))(w(x))−2

≥ C1(w(x))γ1C2e
−m(w(x))−p2β + λβqw−q|∇w|q

≥ k(x)g(u(x)), ∀x ∈ Ω;

i.e., u = −m − (2 + γ1)/p1 lnw(x) is an explosive subsolution of (1.2). Hence the
desired conclusion follows by Lemma 2.1. �

3. Examples

As an applications of Lemma 2.1, we give the following two examples.

Example 3.1. Consider the problem

∆u = C0(R2 − r2)σup, u > 0, x ∈ BR, u
∣∣
∂BR

= +∞, (3.1)

where p > 1, C0 is a positive constant, −2 < σ and BR = {x ∈ RN : ||x|| < R}
with N ≥ 2.

Note that in the case of Ω = BR, w(x) = w(r) = (R2 − r2)/2N . We see
that u = M(R2 − r2)−(2+σ)/(p−1) is an explosive supersolution to (3.1) and u =
m(R2 − r2)−(2+σ)/(p−1) is an explosive subsolution to (3.1), where

C0M
p−1 =

2(2 + σ)R2

p− 1
max

{
N,

2(p + σ + 1)
p− 1

}
;

and

C0m
p−1 =

2(2 + σ)R2

p− 1
min

{
N,

2(p + σ + 1)
p− 1

}
.

Thus (3.1) has at least one positive solution u satisfying

m(R2 − r2)−(2+σ)/(p−1) ≤ u(x) ≤ M(R2 − r2)−(2+σ)/(p−1).

In particular, if N = 2(p+σ+1)
p−1 , i.e., p = N+2(σ+1)

N−2 with N ≥ 3, M = m, then
u = m(R2 − r2)−(2+σ)/(p−1) is an exact solution to (3.1).

We remark that u(x) is radially symmetric, as shown in [4].

Example 3.2. Consider the problem

∆u = C0(R2 − r2)σeu, x ∈ BR, u
∣∣
∂BR

= +∞, (3.2)

where C0 is a positive constant, −2 < σ and BR = {x ∈ RN : ‖x‖ < R} with
N ≥ 2.

We see that u = M − (2 + σ) ln(R2 − r2) is an explosive supersolution to (3.2)
and u = m− (2 + σ) ln(R2 − r2) is an explosive subsolution to (3.2). Where

C0e
M = 2N(2 + σ)R2 and C0e

m = 4(2 + σ)R2.

Thus (3.2) has at least one solution u satisfying

m ≤ u(x) + (2 + σ) ln(R2 − r2) ≤ M.

In particular, if N = 2, M = m, then u = m − (2 + σ) ln(R2 − r2) is an exact
solution to (3.2).



EJDE-2006/02 EXISTENCE OF LARGE SOLUTIONS 7

References

[1] C. Bandle, M. Marcus; Large solutions of semilinear elliptic equations: existence, uniqueness
and asymptotic behavior, J. Anal. Math. 58 (1992), 9-24.

[2] C. Bandle, E. Giarrusso; Boundary blowup for semilinear elliptic equations with nonlinear

gradient terms, Adv. Differential Equations 1 (1996), 133-150.
[3] C. Bandle; Asymptotic behavior of large solutions of quasilinear elliptic problems, ZAMP. 54

(2003), 731-738.

[4] M. Chuaqui, C. Cortazar and M. Elgueta, On an elliptic problem with boundary blow-up and
a singular weight: redial case, Proceedings of the Royal Society of Edinburgh 133A (2003),

1283-1297.
[5] F. -C. Cirstea, C. Niculescu and V. D. Radulescu, Explosive solutions of elliptic equations

with absorption and nonlinear gradient term, Proc. Indian Acad. Sci. 112 (2002), 441-451.
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[29] L. Véron, Semilinear elliptic equations with uniform blowup on the boundary, J. Anal. Math.
59 (1992), 231-250.

[30] Z. Zhang, A remark on the existence of explosive solutions for a class of semilinear elliptic

equations, Nonlinear Anal. 41 (2000), 143-148.
[31] Z. Zhang, S. Tao, On the existence and asymptotic bahavior of explosive solutions for semi-

linear elliptic problems, Acta Math. Sinica 45A (2002), 493-700. (in Chinese)

[32] Z. Zhang, On the existence and asymptotic bahavior of explosive solutions for nonlinear
elliptic problems with convection terms, Chinese Annals of Math. 23A (2002), 395-406. (in

Chinese )

[33] Z. Zhang, Nonlinear elliptic equations with singular boundary conditions, J. Math. Anal.
Appl. 216 (1997), 390-397.

Zhijun Zhang

Department of Mathematics and Informational Science, Yantai University, Yantai, Shan-
dong, 264005, China

E-mail address: zhangzj@ytu.edu.cn


	1. Introduction
	2. Proofs of theorems
	3. Examples
	References

