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NULL CONTROLLABILITY OF POPULATION DYNAMICS
WITH INTERIOR DEGENERACY

IDRISS BOUTAAYAMOU, YOUNES ECHARROUDI

Communicated by Jerome A. Goldstein

ABSTRACT. In this article, we study the null controllability of population
model with an interior degenerate diffusion. To this end, we proved first a
new Carleman estimate for the full adjoint system and then we deduce a suit-
able observability inequality which will be needed to establish the existence of a
control acting on a subset of the space which lead the population to extinction
in a finite time.

1. INTRODUCTION

Consider the system

= T % - (k(‘r)yz)z + u(t,a,m)y = 19Xw in Qv
y(t,a,1) =y(t,a,0) =0 on (0,T) x (0, A),

y(0,a,2) = yo(a,z) in Qa, (1.1)

A
y(t,0,2) = /0 B(t,a,2)y(t.a,2)da in Qr,

where @Q = (0,T) x (0, 4) x (0,1), Q4 = (0, A) x (0,1), Qr = (0,T) x (0,1) and we
will denote ¢ = (0,7T) x (0, A) X w, where w = (x1,22) CC (0, 1) is the region where
the control ¥ is acting. This control corresponds to an external supply or to removal
of individuals on the subdomain w. Since models the dispersion of gene of
a given population, x represents the gene type and y(t,a,x) is the distribution of
individuals of age a at time ¢t and of gene type x. The parameters 3(t, a,x) and
u(t, a, x) are respectively the natural fertility and mortality rates, A is the maximal
age of life and k is the gene dispersion coefficient. yo € L?(Q4) is the initial
distribution of population. Finally, fOA O(t, a,z)y(t,a,z)da is the distribution of
the newborns of the population that are of gene type = at time ¢. As usual, we will
suppose that no individual reaches the maximal age A. We note that in the most
works concerned with the diffusion population dynamics models, x is viewed as the
space variable.

2010 Mathematics Subject Classification. 35K65, 92D25, 93B05, 93B07.

Key words and phrases. Population dynamics model; interior degeneracy; Carleman estimate;
observability inequality; null controllability.

(©2017 Texas State University.

Submitted January 9, 2017. Published May 12, 2017.

1



2 I. BOUTAAYAMOU, Y. ECHARROUDI EJDE-2017/131

The population models in their different aspects attracted many authors that in-
vestigated them from many sides (see for example [I8] 20] 211 25 28] 29]). Among
those questions, we find the null controllability problem or in general the control-
lability problems for age and space structured population dynamics models which
were studied in a intensive literature basing, in general, on the references interested
on the controllability of heat equation (see for instance [12} [13| [14] 15} 16, 9] for
a different controllability problems of heat equation). In this context, we can cite
the pioneering items of Barbu and al. [7], Ainseba and Anita [II, 2 B} 4]. In [7], the
authors proved the null controllability for a population dynamics model without
diffusion both in the cases of migration and birth control for T > A showing di-
rectly an appropriate observability inequality for the associated adjoint system and
they concluded that in the case of the migration control, only a classes of age was
controlled in contrary with the birth control which allows to steer all population to
extinction. In [T}, 2 [3, 4], the diffusion was taken into account in a age-space struc-
tured model and the null controllability of for classes of age was established
in the case where k = 1 and for any dimension n by means of a weighted estimates
called Carleman estimates and exploiting the results gotten for heat equation in
[26]. Ainseba et al. [5] studied a more general case allowing the dispersion coef-
ficient to depend on the variable x and satisfies k£(0) = 0 (i.e, the coefficient of
dispersion k degenerates at 0). The authors tried to obtain in such a situation
with G € L® basing on the work done in [6] for the degenerate heat equation to
establish a new Carleman estimate for the full adjoint system and afterwards
his observability inequality. However, the null controllability property of this paper
was showed under the condition T' > A (as in [7]) and this constitutes a restrictive-
ness on the “optimality” of the control time T since it means, for example, that
for a pest population whose the maximal age A may equal to a many days (may
be many months or years) we need much time to bring the population to the zero
equilibrium. In the same trend and to overcome the condition T' > A, Maniar et al.
[T7] suggested the fixed point technique in which the birth rate 8 must be in C?(Q)
specially in the proof of [I7, Proposition 4.2]. Such a technique consists briefly to
demonstrate in a first time the null controllability for an intermediate system with
a fertility function b € L?(Q7) instead of fOA B(t,a,x)y(t, a,x)da and to achieve the
task via a Leray-Schauder Theorem.

Thereby, the main goal of this article is to sutdy the null controllability property
with a minimum of regularity of 3 (see (2.2)) and a positive small control time T
taking into account that k depends on the gene type and degenerates at a point
o € w, e k(xzg) = 0, e.g k(z) = |r — z9|* To be more accurate, for a fixed
T € (0,9) with 6 € (0, A) small enough, we investigate the existence of a suitable
control ¥ € L?(g) which depends on yo and § and such that the associated solution

y of satisfies
y(T,a,2) =0, a.e. in (4,A4) x (0,1). (1.2)

If k(xog) = 0 in a point gy € w, we say that is a population dynamics model
with interior degeneracy. Genetically speaking, the meaning of k(xg) = 0 is that
the gene of type zo € (0,1) can not be transmitted from the studied population to
its offspring. This objective will be attained via the classical procedure following
the strategy in [22]. On other words, we will establish an appropriate observ-
ability inequality for the full adjoint system of which is an outcome of a
suitable Carleman estimate. We highlight that such a result can be shown if we
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replace the homogeneous Dirichlet boundary conditions by the ones of Neumann,
ie, y.(t,a,0) = y.(t,a,1) = 0,(t,a) € (0,T) x (0, A) using the same way done
in [10]. Another interesting null controllability problem of can be elaborate
using the work of Fragnelli et al. [23] arising in the case when the potential term
admits an interior singularity belonging to gene type domain.

The remainder of this paper is organized as follows: in Section 2] we will provide
the well-posedness of and give the proof of the Carleman estimate of its adjoint
system. The Section [3] will be devoted to the observability inequality and hence
we obtain the null controllability result . The last section will take the form
of an appendix where we will bring out a Caccioppoli’s inequality which plays an
important role to show the desired Carleman estimate.

2. WELL-POSEDNESS AND CARLEMAN ESTIMATE RESULTS

2.1. Well-posedness. For this section and for the sequel, we assume that the
dispersion coefficient k satisfies

Jzo € (0,1), k€ C([0,1]) N CH([0,1]\{z0}), & > 0 in [0,1]\{zo} and k(zq) = 0,

Fy € [0,1): (x — z0)k (z) < vk(x), x € [0,1]\{xo}.
(2.1)
It is well-known in the literature of degenerate problems that there exist two kinds
of degeneracy namely the weakly degenerate and the strong degenerate problems, in
our study we will restrict ourselves to the first one and this fact explains the choice
of v € [0,1) which in fact are associated to the Dirichlet boundary conditions (see
[22, Hypothesis 1.1]). On the other hand, the last hypothesis on k means in the
case of k(z) = |z — zo|* that 0 < o < 1.
The investigation of needs also the following assumptions on the natural
rates 8 and pu:

w,B€LXQ), PBt,ax),u(t,a,z) >0, ae. inQ,
B8(-,0,-) =0 a.e. in (0,7) x (0,1).

The last assumption in is natural since the newborns are not fertile. Also, it
is worth mentioning to point out that, as in [5] we do not need to require that p
satisfies an hypotheses like fOA u(t —s,A—s,x)ds = +o0, (t,z) € [0,T] x [0,1]
since it does not play any role on the well-posedness result and the computations
concerning the proofs of our controllability result as well. However, we will suppose
that no individual can reach the maximal age A as mentioned in the introduction.
In the same context, we emphasize that in [I7], the L>°—regularity of /3 is sufficient
to prove the well posedness of the studied model which is exactly our case. To this
end, we introduce the following weighted Sobolev spaces:

H}(0,1) := {u € L*(0,1) : u is abs. cont. on [0,1] :
Vku, € L2(0,1),u(1) = u(0) = 0},
HZ(0,1) := {u € Hy(0,1) : k(z)u, € H'(0,1)},

(2.2)

endowed respectively with the norms
laliZrs 0,1y = lullZo,1) + IVEUa T2y, w € Hi(0,1),

FulBgs = ol 0.y + Ik (@u)elFo ) w € HEO,1).
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We recall from [24, Theorem 2.2] that the operator (P, D(P)) defined by Pu :=
(k(x)ug)z, u € D(P) = HZ(0,1), is closed self-adjoint and negative with dense
domain in L?(0,1). Consequently, from [32, Theorem 5] the operator A := —% +P
generates a Cp-semigroup on the space L2((0, A) x (0,1)). Then, the following well-
posedness result holds.

Theorem 2.1. Under assumptions and , for all 9 € L*(Q) and yo in
L?(Qa), system admits a unique solution y. This solution belongs to
E :=C([0,T],L*((0,A) x (0,1))) N C([0, A], L*((0, T) x (0,1)))
NL2((0,T) x (0, A), HL(0,1)).
Moreover, the solution of satisfies

1 A T
s 0o+ s W@ + / / / (VR(@)y.)? dt dade

tel0,T

gO /192—1—/ ygdxdm).
q Qa

2.2. Carleman estimates. As we said in the introduction, we will show the main
key of this paper namely the Carleman type inequality. In general, it is well-
known that to prove a controllability result of a studied model through this a priori
estimate, we must show this last for the associated adjoint system. In our case, this
adjoint system takes the form

E + % + (k‘(x)wm)w - //l/(t7a‘"r)w = —ﬁ(t,a,x)w(t, O,l‘),
w(t,a,1) = w(t,a,0) =0, (2.3)
w(T,a,x) = wr(a, ),
w(t, A, x) =

where T' > 0 and assume that wr € L?(Qa). Of course, assumptions (2.1)) and
(2.2) on k, p and [ are perpetuated. To attaint our goal, we will introduce the
weight functions

@(t’ a, 17) = @(t, a)¢(x),

1
O =gyt 24
Y(x) = cl( Tk_(:)co dr — 02>.

For the moment, we will assume that c; > max{ k(ﬁ)éo)q)’ k(O)(Q 5 } and ¢; > 0.

A more precise restriction on ¢; will be given later. On the other hand, using the
relation satisfied by ¢y and with the aid of [22] Lemma 2.1] one can prove that
P(z) < 0 for all z € [0,1]. Observe also that O(a,t) — +oc as t — T~,0" and
a — 07. To demonstrate our Carleman estimate, we require that k fulfills, besides
the following hypothesis

k
i& is non-increasing on the left of
|z — o] (255)

x = x¢ and nondecreasing on the right of x = z,

30 € (0,+] such that z —
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where v is defined by (2.1). The first Carleman estimate result is the following
result.
Proposition 2.2. Consider the following two systems with h € L?(Q),

ow  Ow

ot =+ Da + (k(x)wr)z = h,

w(a,t,1) = w(a,t,0) =0, (2.6)
w(T,a,x) = wr(a,zx),
w(t, A, x) =0,
and
O 0 (k)i — it a2y =
w(t,a,1) =w(t,a,0) =0, (2.7)
w(T,a,x) = wr(a,x),
w(t, A, x) =0.
Then, there exist two positive constants C' and sg, such that every solution of
and satisfy, for all s > sg, the inequality

2
33/ ®3Mw2623“"dtdadm+s/ @k(x)wiekgpdtdadx
Qo k@) 0
A T (2.8)
< C(/ | h |2 %% dtdadw+s/ / [k;@e%“’(x —$o)w§]izé dtda).
Q o Jo

Proof. Firstly, we prove ([2.8)) for system (2.6) and replacing h by h + pw we will
get the same inequality for (2.7). So, let w be the solution of (2.6)) and put

v(t,a,x) = e**H3Py(t, a, ).
Then, v satisfies the system
Liv+Liv= esPba)py
v(t,a,1) =v(t,a,0) =0,
v(T,a,z) =v(0,a,x) =0,
v(t,A,x) =v(t,0,z) =0,
where
Lv:= (k(@)ve)s — s(0a + @) + s03k(2)r,
Lyv :=v + v, — 28k(2)pavy — s(k(z)pr) v
Passing to the norm in , one has
LIV G2(q) + ILs vlZaiq) + 2{LEv, Liv) = [ @HDh] T2 ),

where (-,-) denotes here the inner product in L?(Q). Then, the proof of step one
is based on the calculus of the inner product (LTv, L7 v) whose a first expression
is given in the following lemma.

Lemma 2.3. The following identity holds
(Lyv,Lv) = Si+ Ss,
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with
S = s/ (k(2)v2)* Qe dt da dz — 53/ (k(2)ps)ck(x)p2v? dt da dx
Q Q
+ 52 / (0o + 1) (k(z)py)v? dt da dx
Q
+ s/ k(x)ve((k(2) o) et + (E(2)0g)2vs) ,dt dade
< (2.10)
+ 53/ (K*2),v* dtdadx — s / (k(2)(¢a + ©1) @ )2V? dt da dx
Q Q

2
+f/(§0at+g0tt)l/2dtdadxfi/(@i)tk(x)zﬁdtdadx
2 Jo 2 Jo

2
+f/(90atJrsﬁcm)1/2dtdadx*i/(c,o?c)ak(:v)yzdtdadz,
2 Jq 2 Jg

and

So

:/A/T[k( 2)vaval} dtda+/ / 2)veulb dt da

+s// ) (Pa + 1)V dtda—s/ / (k2 (x Ldtda 211)
~s / / v (h()pa)o b dt da — s / / [((2)s) Pl dt da.

For the proof of Lemma see [I7, Lemma 3.2]. The previous expressions of
Sp and Ss can be simplified using the functions ¢ and 9 given in (2.4)) and also the
homogeneous Dirichlet boundary conditions satisfied by v. Hence, one has

51235 [ ©uut O i vda+s [ Ouinddads
Q Q

+ sc / O(2k(x) — (x — o)k (x))v2 dt da dx
(2.12)
— 252 / Ocy 2 (@a + 0,)v? dt da dx

s /Q@3(::1)’< ) 0)2 (2k(x)—(m—xo)k’(x))u2dtdada:,
and

A T
Sy = —sc1 / / [kOe**? (x — xo)V2]2=L dt da.
o Jo
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Accordingly,
(Liv.Liv)
- / (Oaa + O )Yv2dr dt da + s / Our? dt da dx
2 Jq Q
+ sc1 / O(2k(z) — (x — xo)k (x))v? dt da dx
Q
. 2 2.13
— 257 / GC%M(@Q + 0,)v? dt da dx (213)
Q k()
3 / @30?(32?;0 )2(2k(a:) — (x — x0)K'(x))v? dt da dx
A 4T
—s¢q / / [kOe**? (x — xo)w?]2=} dt da.
o Jo
Thanks to the third assumption in (2.1]), we have
S > % / (Oua + O )yv? dt dada + s / O tr/? dt da da
Q Q
+ 861/ Ok(x)v; 2 dt da dx
s (2.14)
—25? / Ocy 2 (@a+®t)1/2 dt da dx
+ s° / @Sc?ﬂyz dtdadx.
Q k()
Observe that |©(0, + ©;)| < cO3; for s large we infer that
’ - 282/ 902M(9 + 0,)v? dt da dx
Yok T
(2.15)

)2
< 2s clc/ M@‘%Q dt da dx
Q@ Fk(x)

< c%s?’/ M@3V2 dt da dx

On the other hand, the mapping r — |T;(fn (;w is nondecreasing at the right of x.
Ty —x0
dr
/zo k(r)

Then
(1 — 1‘0)2 C1
< .
ST mE-) T ek 7

+ ci1c2

[9(x)| = leil(z) — crea| < ex

(2.16)
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A simple computations shows that ©qq + Oy + [O44| < C103/2. This yields

E/(@aa—i—@tt)qu dtdadx+s/ Ot/ dt da de|
Q Q

C1 Gaa+®tt 2
< - - e T2
—5((2—7)1@(1) +0102>/Q( 5 +|@m|)l/ dt da dx (2.17)
C1 3/2, 2
< _ .
_Ms((zi’y)k(l) +c1cQ)/Q@ V2 dt da dz

It remains now to bound the term | [ 0 ©3/202 dt da dzx|. Using the generalized Young
inequality we obtain

1 1/3 3/4 _ 2 1/4
| @3/2V2d56’ _ ’/ k _k ) (®3|x Zo| Vz) dx’
0 |z —x |% k
1 0 (2.18)
kY 2 3 |9’j - 330|
S — O—vidx + = @
4 0 ‘fﬂ — I‘0|3
Put
p(x) = (k(z)|x — zo|*)'/%. (2.19)

By hypothesis (2.5)), one can check that z — %7 with ¢ := 4%9 € (1,2) is
nonincreasing on the left of * = zy and nondecreasing on the right of x = x.

Furthermore, we have ‘ kl/Sl =G (;”3)2 and there exists Ca > 0 such that p(x) <
r—xo|3
Cyk(x). Hence, by Hardy-Poincaré inequality (see [22] Proposition 2.3]),
1 1/3
k
/ 0———vidr = @Lﬂdx
0 |z —mzo|3 o (z—m0)?
< C’/ @pl/zdx (2.20)
0

1
SCCQ/ @kuﬁdm,

where C' > 0 is the constant of Hardy-Poincaré. Combining ([2.18]) and -, we
obtain

1
|/ @3/21/2dx|<—03/@k1/ dt da dx + — /@3|x zol” vidtdade. (2.21)
0

Hence, (2.17) and (2.21)) lead to

E/ (Oua + O )y dt da dm—i—s/ O1tp/? dt da de
Q Q

o | : (2.22)
< 301046/ Okv? dt da dz + 56175/ 03 L0 2 4t da da.
Q 46 Q k
Taking e small enough and s large, we conclude that
|§ / (Oua + O )r? dt dadw + 5/ Ot dt da da|
(2.23)

<2 | om?dtdads + 22 /@3uzﬂdtdad:¢.
1 1 /g k

Q
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Taking into account relations (2.14]) and (2.15) we arrive at

2
Sp > K153/ @3w1/2 dtdadx+K2s/ Okv? dt da dz (2.24)
Q Q

Hence,

2ALtv, Lv) >m( /@3%1/ dtdadz+s/ Okv? dtdadx)
(2.25)
—25(:1/ / [k©e**¢ (x — xo)V2]"=5 dt da

This yields to the following Carleman estimate satisfied by the solution v of (2.9)),

/@i’"m v dtdadm+s/@ku dt da dx
(2.26)
< Cg (/ h%e?$% dt da dx + 5/ / [kOe**? (x — x0)V2)2Z) dt da)
Q o Jo
By the definition of v we infer that
Ve = 80,€°Pw + e*Pw,, e**Pw? < 22 + s2p20?). (2.27)

Finally, the Carleman estimate of is obtained.

Now, If we apply the same inequality of Hardy-Poincaré in a similar way as
before to the function v := e*fw, taking into account the hypothesis on p assumed
in , using the Carleman type inequality for the function h+ pw and taking
s quite we achieve the Proposition [

With the aid of the estimate and Caccioppoli’s inequality , we can
now show a w-local Carleman estimate for the system . This result will
be useful to show our main Carleman estimate replacing the second term h by
—B(t, a,x)w(t,0,2). To this end, we introduce the weight functions

O(t,a,z) :==0O(t,a)¥(x),

B(x) = ro®) _ 2nlolle. (2.28)
where © is given by (2.4), k > 0, and ¢ is the function given by
oeC?*[0,1]), o(z)>0 in(0,1), o(0)=0c(1)=0,
(0.1, o) 0.1, o(0) = () 229

ox(x) #0 in [0,1]\wo,

where wy € w is an open subset. The existence of the function ¢ is proved in [26].
On the other hand by the definition of ¢ (2.4]) and taking

E(1)(2 — ) (el — 1) E(0)(2 — 7)(e?slol= — 1)
€1 2 max (Cgk(l)(2 —7) = (1 = x)%’ 2k(0)(2—7) — 22 ), (2.30)

one can prove that
<. (2.31)

Our main theorem is stated as follows.
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Theorem 2.4. Assume that assumptions (2.1), (2.2) and (2.5) hold. Let A > 0

and T > 0 be given. Then, there exist positive constants C' and sy such that for all
s > so, every solution w of (2.7) satisfies

32
/ (sOkw? + Q@fiww?)e?w dt da dx
@ (2.32)

<C ( / h2e?*® dt da dx + / $203w%e?*® dt da dx) ,
Q

q

To prove this theorem, we need the following result which represents the Car-
leman estimate of nondegenerate population dynamics systems. The inequality is
stated as follows.

Proposition 2.5. Let us consider the system
— + % + (k(x)zg)e — c(t,a,x)z =h in Qp,
z(t,a,b1) = z(t,a,b2) =0 on (0,T) x (0, A),

where Qb = (07T) X (O,A) X (bl,bg), (bl,bg) C [0,%0), or (bl,bg) C (xo,l], h €
L3(Qp), k € C*([0,1)) is a strictly positive function and ¢ € L>(Qy). Then, there
exist two positive constants C' and sg, such that for any s > s, z satisfies

(2.33)

/ (83¢32% + 5622)e**® dt da dx
Qp
o (2.34)
gc( h2e2® dt da dx + / / / 33526250 dtdadx),
Qy wJo Jo

where
o(t,a,z) = O(t,a)e™ @), (2.35)

O and ® are defined by (2.28), and o by (2.29).

Before giving the proof of Theorem [2.4] we note that a similar result was demon-
strated in [2] Lemma 2.1] in the case when k is a positive constant, for any dimension
n without the source term h and with the weight function O(t,a) = ﬁ By
careful computations, the same proof can be adapted to where k is a positive
general nondegenerate coefficient, with our weight function ©(t,a) = m and
the source term h.

Proof of Theorem[2.4). Let us introduce the smooth cut-off function £ : R — R
defined by
0<&(x) <1, ze€]|0,1],

)

() =1, x €[\, (2.36)
(m) =0, =z¢€ [Oa 1]\&),

where A\; = % and \g = % Let w be the solution of (2.7) and define
v := &w. Then, v satisfies the system

dv  Ov -
E + % + (k(f)vx)az - /j’(tv a,x)v - h7
v(t,a,1) = v(t,a,0) =0, (2.37)

U(Tva7x) = ng(a7£L'),
v(t,A,xz) =0,
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where h := ¢h + (k(2)éw), + k(2)wy&,. Using Carleman estimate (2.8)) and the
definition of &, one has

(x — x0)?

0?)? dtdadr < O / RPe®? dtdads.  (2.38)

/ (sOkv? + s°0°
Q Q

On the other hand, using again the definition of £ we can check readily that

Xo A T — )2
/ / / (sOkv? + 53@3wv2)62w dt da dx
a JooJo

N @ an)? (2.39)
= / / / (sOkw? + 53@3711)2)625“’ dt da dz.
a JooJo

Therefore, combining (2.38)) and (2.39)) we have

Xo A T — )2
/ / / (sOkw? + 83@3%102)62390 dt da dx
a JooJo

(2.40)
SC’/ E262S@dtdadl’.
Q

Hence by Caccioppoli’s inequality (4.1]) and (2.40]), we conclude that

Ao A T _ 2
/ / / (sOkw? + 5363Ww2)62w dt da dx
A1 0 0 (241)

< C(/ h2e2s¥ dtdadx—i—/sQ@QwQeQW altdaala:)7
Q

q

where w’ of Lemma here is exactly (21, A1) U (Mg, 22).
Now, let z := nw, with n is the smooth cut-off function defined by

0<nx) <1, ze€]0,1],
A 2
na) =0, wefo, 22

3
n(x) =1, =z € [A,1],

1, (2.42)

where A3 = % We can observe easily that A3 < ’\3'272)‘2 < Ag. Then, z satisfies
the population dynamics equation

dz 0z , ~
% + %0 + k(2)2g0 + K (2)2 — p(t,a,2)z = h, in (A3, 1)

z(t,a,1) = z(t,a,A3) =0, in,(0,T) x (0, A),

(2.43)

where h := nh + (k(z)n,w)s + k(x)wen,. By assumption on k, we have k(z) >
0, = € (A3,1). Hence, (2.43) is a non-degenerate model. In this case, apply-
ing Proposition to the function A with b; = A3 and by = 1 and using again
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Caccioppoli’s inequality (4.1)), we infer that

1 A T
/ / / (830322 + 5¢22)e**® dt da dx
asdo Jo

1 rA T
= C( / / / (nh+ (knpgw)s + kngw,)?e*® dt dadx
Az JO 0

A T
+ / / / $203w?e?*® dt da d:c)
w JO 0
< 5(/ R2e®?® 4 ((knyw)e + knpw,)?e*® dt da dx
Q

A T
+// / 203 w2e?s® dtdadm)
w JO 0

A T
< C(/Q h2e?s?® dtdadm+/ /0 /0 (8(kna)2w? + 2((kna))2w?)e2*® dt da dx
UJ/

A T
+// / s30%w?e?*® dt da dx)
w JO 0

A T
gcl(/ hZ‘e?S‘Pdtdada:+/ / / (w2 + w?)e®? dt da dx
Q w’ JO 0
A T
+// / $30%w2e2s® dtdadx)
w JO 0

A T
§C2(/ h?e?s® dtdadw+// / 53@3w2625‘bdtdadx>,
Q wJO 0
(2.44)

with W’ ;= (’\3272)‘2, A2). By the restriction (2.31)) there exists ¢z > 0 such that, for
(t,a,x) € [0, T] x [0, A] x [A3,1], we have

(v —m9)?

k(z)

Ok(x)e**? < c30e®®, 03 e23% < cq3e?.

Then

1 A T )2
/ / / (sOkz2 + 53@3w22)e25“’ dt da dx
xsJo o Jo

1 A T (2.45)
<cs / / / (836322 + s¢p22)e**® dt da d.
xsJo o Jo
This inequality and (2.44)) lead to
1 A T 2
/ / / (sOkz2 + SBGBwZQ)EQS@ dtdadx
R0 (2.46)

A T
SCE( / h2e*® dt da dx + / / / $3032e2s® dtdadx).
Q wJO 0
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Taking into account the definition of 1 (2.42)), we can say that

1 A T )2
/ / / (sOkz2 + 33®3Mz2)e25‘p dt da dx
A2 JO 0 k

o @ — 202 (2.47)
= / / / (sOkw? + 5203 " w?)e?*? dt da dz.
A2 Jo Jo k
Hence,
1 A T 32
/ / / (sOkw? + 8393(587:%)102)6%@ dt da dz
A2 JO 0 (248)

A T
SC~3(/ h2e*s? dtdadx+// / s303w?e?® dtdadx),
Q wJo Jo

as a consequence of (2.46) and (2.47). Arguing in the same way for (0, A1), one can
show that

)\1 A T _ 2
/ / / (sOkw? + s°6° wqf)e%“” dt da dx
o Jo Jo

A T
gé}(/ h2e%s® dtdadx—l—// / $303w?e?s® dtdadm)7
Q w JO 0

Finally, summing the inequalities (2.41]), (2.48) and (2.49)) side by side, taking s

large and using again the restriction on c1, (| , we arrive at

1 A T )2
/ / / (sOkw? + s°0° wuﬂ)ezw dt da dz
o Jo Jo

(2.49)

A AT (2.50)
<c3 (/ h?e*** dt da dzx + / / / s20%w?e?*® dt da dx),
Q wJo Jo
and this is exactly the desired estimate ([2.32)). O

Before providing the main Carleman estimate, we make the following remarks.

Remark 2.6. 1. The proof of our distributed-Carleman estimate (2.32)) is based
on the cut-off functions and given by two different weighted functions ¢ and @, in
addition by (2.31]) there is no positive constant C' such that

62SCI> < 062&’0 )

2. Our proof is not based on the reflection method used for the proof of [22]
Lemma 4.1] which is needed to eliminate the boundary term arising in the classical
Carleman estimate for nondegenerate heat equation.

By the Carleman estimate (2.32)), we are able to show the following w-Carleman
estimate for the full adjoint system ([2.3)).
Theorem 2.7. Assume that (2.1)), (2.2) and (2.5) hold. Let A > 0 and T > 0
be given such that 0 < T < 0, where 6 € (0, A) small enough. Then, there exist

positive constants C and sg such that for all s > sqg, every solution w of (2.7)
satisfies

)2
/ (sOkw? + 8393@7330)102)623@ dt da dz
? (2.51)

1 ré
< C( / s30%w?e**® dt da dx + / / w(a,z) dx d:v),
q o Jo
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for all s > so and ¢ verifying (2.2)).

Proof. Applying inequality (2.32) to the function h(t,a,x) = —3(t, a, x)w(t,0,x),
we have the existence of two positive constants C' and sg such that, for all s > s,
the following inequality holds

)2
53/ GSszeQS“’ dt dadx + s/ Ok(x)w2e?*? dt da dx
@ k@) Q

< C(/ ﬁQwQ(t,O,x)eQ@ dtdadx + /33(9311)2625<I> dtda dm) (2.52)

q

<C A||ﬁ||2 / / 2(t,0,x dtdm+/s3®3w2623¢’dtdadm),

q

using (2.2 . On the other hand, integrating over the characteristics lines and after a
careful calculus we obtain the following implicit formula of w, the solution of (2.3]),

S S(A—a— DBt A~ 1 Yw(t,0, )l
ifa>t+(A-T)
w(t,a,-) = (2.53)
S(T — t)ywr(T + (a — 1), —i—ft (I =t)p, a, )w(,0,)dl
ifa<t+(A-T),
where (S(t)):>0 is the semi-group generated by the operator Asw = (kwy)s — pw.
Thus,

w(t,0,~) = S(T — tywr(T — t,), (2.54)

using the last hypothesis in on 3. Inserting this formula in (2.52)) and using
the fact (S(t))i>0 is a bounded semi-group, we obtain

<C’//wT —t:c)dtdx+/363 2S‘I’dtdadx)
// mexdmdx—i—/ s30%w? 2S‘I’dtdadx)
/ / w%(mw)dmdx-l-/53@3w2625¢dtdad1‘),
0o Jo q

since T' € (0,6) with ¢ € (0, A) small enough and this achieves the proof of (2.51)).
(]

IA
Q)

INA
Q>

3. OBSERVABILITY INEQUALITY AND NULL CONTROLLABILITY

1. Observability inequality. The objective of this paragraph is to reach the
observability inequality of the adjoint system . To attain this purpose, we
combine the Carleman estimate with the Hardy-Poincaré inequality stated
in [22, Proposition 2.3] and arguing in a similar way as in [2]. Our observability
inequality is given by the following proposition.

Proposition 3.1. Assume that (2.1), (2.2)) and (2.5) hold. Let A >0 and T > 0
be given such that 0 < T < 0, where 6 € (0,A) is small enough. Then, there
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exists a positive constant Cs such that for every solution w of (2.3), the following
observability inequality holds

/ / 2(0,a, dmdx<05(/w dtdad:rJr/ / w2 (a x)dxdx) (3.1)

q

Proof. Let w be a solution of (2.3]). Then for x > 0 to be defined later, let w = e*lw
be a solution of

- + D + (k(2x)wy) — (p(t, a,x) + kK)w = —Pw(t, 0, x),
w(t,a,1) = w(t, a,0) =0, (3.2)
(T, a,z) = " wr(a, ),
w(t, A, x) =

We point out that the parameter x considered here is not the same as in (2.28)).
Multiplying the first equation of ([3.2)) by w and integrating by parts on
Q¢ = (0,t) x (0, A) x (0,1). Then, one obtains

—1/ (tax)dmdm—l—;/ 2(0,a,2) drde + = / / (7,0,2)drdz
Qa

+ﬁ/// (1,a,x)dT dx dx
2
Hﬁ” /// Taxdrdxdx—i—e’A// (1,0, x)drdz.

(3.3)
Thus, for k = Hﬁ” and € < 5L, integrating over (£, 2L) we obtain
37/4
/ w?(0,a, ) dr dr < C’lgez“T/ / 2(t,a,r) dz dz. (3.4)
Qa

On the other hand, let us prove that there exists a positive constant Cs such that

5—3L  .3T/4
/ / / 2(t,a, dtdadx<C’5/ / wr(a,x) dx dx. (3.5)

For this purpose, we use the implicit formula of w defined by (2.53)) and we discuss
the two cases: when a > t + (A — T) and when a < t + (A —T). In fact, if
a>t+ (A—T) one has

A—a
w(t,a,-) = /0 S(A = a— DA A—1,-Yw(t,0,)dl

A (3.6)
:/ S(A—a-0Bt,A—1,)S(T — t)wp(T —t,-)dl,
0

using (2.54] Since )i>0 is a bounded semi-group and § € L>(Q), one can see

that for T 6 ,9)
6-3L  .3T/4 3T /4
/ / / 2(t,a,x) dtdadx<010/ / T —t,x)dtdx
(3.7)

SCN'm/ / wr(m, ) dm dz,
o Jo
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Now, if a <t+ (A —T) one has
w(t,a,) = S(T — tywr(T + (a— 1), / S(L =18, a, Yw(l,0,-)dl
=S(T — wr(T + (a — t), (3.8)
/ S — )31, a,)S(T — Dwr(T — 1, -)dl.

Thanks to the same argument employed to get (3.7)), we conclude that

6—3T  .3T/4
/ / / t a,x)dt dadz

63T

-3 .3T/4
<2CM// / 2(T + (a —t), z) dt da da (3.9)

+/0 /t wi(T — 1, 2) dl dx).

On the one hand, we can check that

53T

///SM (T + (a—t),2) dt dadz

3T

§—3L  3T/4
/ / / 7(a +m,x)dmdx dz
5-3L a+3T
/ / / (z,2)dz dx dx (3.10)

/ / / (z,2)dz dx dx
§(5/ / wh(z,x) dz dz.
o Jo

On the other hand, we have the inequality

1 T 1Tt
// w%(T—l,x)dldm:// w(z, x) dz dx
0o Ji o Jo
1 0
S/ / wh(z,x) dz dz.
o Jo

Combining inequalities (3.9 @ (3.10) and (3.11) we obtain

63T

-3 .37/4
/ / / 2(t,a,x) dtdadm<012/ / w3 (z,x) dz d. (3.12)

Subsequently, (3.5) occurs in both studied cases. Therefore, in light of inequality
(13.4) we conclude that

/ w?(0, a, z) dx dx
Qa

1 e
§C13/ /
o Jo

(3.11)

(3.13)

T 1 pA 3T/4
/ / / t a,x)dtdadz.
o Js-3T
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Now, let p defined by (2.19). Then, using the hypotheses (2.1) on k the function

z— & (w)) is non-increasing at the left of xy and nondecreasmg at the right of .

Hence, applying Hardy-Poincaré inequality (see [22] Proposition 2.3]) and taking
into account the definition of ¢ stated in (2.4)) we have

1 p6
/ w?(0,a,z) dx dr < 013/ / w(a,z) dx dx
A 0 Jo

1 A 3T/4
(%3/ / / sOk(z)w(t, a, r)e**? dt da da.
o Js-3L

Therefore, using Carleman estimate (2.51)) we infer that
1 6
/ w?(0,a, ) dr dr < C’gs(/s?’@?’wQe%@ dt dadz + / / wa(a, ) dx d:c),
Qa q o Jo
and then the proof is complete using the fact that sup(; , zeq 599%e25? < 40 for
all d inRR. O

3.2. Null controllability. In the previous paragraph, we obtained the observabil-

ity inequality of system (2.3). Such a tool will be very useful to prove the null
controllability of the model (1.1)) in the case where T' € (0,0) as we emphasized in

the introduction. Our main result is provided in the following theorem.

Theorem 3.2. Assume that the dispersion coefficient k satisfies and the
natural rates B and p verify . Let A, T > 0 be given such that 0 < T < 6,
where § € (0, A) small enough. For allyo € L*(Q4), there exists a control 9 € L*(q)
such that the associated solution of satisfies

y(T,a,z) =0, a.e. in (5, A)x(0,1). (3.14)

Furthermore, there exists a positive constant C1o which depends on & such that 9
satisfies the inequality

/192(t7a,x) dtdadx < C1o/ ya(a, ) dz da. (3.15)
q Qa

The constant Cqq 1s called the control cost.
Before proving , we make the following remark.

Remark 3.3. Inequality (3.15) shows us clearly that the control that we want
depends on ¢ and the initial distribution .

Proof Theorem[3.4 Let ¢ > 0 and consider the cost function

Je( 28/ / AT, a,z)drdx + = /ﬁQtax)dtdadm

We can prove that J. is continuous, convex and coercive. Then, it admits at least
one minimizer 9, and we have

Ve = —we(t,a,2)xw(z) in Q, (3.16)
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with w, is the solution of the system

ow, Ow,

5t T ag T k@) (we)s)s — ult, @, 2)we = —Pfuwe(t,0,2) inQ,

we(t,a,1) = we(t,a,0) =0 on (0,T) x (0, A),

X (3.17)
wE(Ta a,x) = gyE(Ta aﬂx)X((S,A) (CL) in QAa
we(t,A,z) =0 in Qr,

and y. is the solution of the system (|1.1)) associated to the control ¥.. Multiplying
(3.17) by vy, integrating over @, using (3.16|) and the Young inequality we obtain

1 1 A

*/ / y?(T,a,w)dxder/z‘)ﬁ(t,a,x)dtdadx

€Jo Js q

=/ yo(a, x)w.(0, a, z) dz dz (3.18)
A

w?(O,a,x)dzderC(s/ ve(a, ) de da,

Qa
with Cj is the constant of the observability inequality (3.1)). This again leads to

< —
4Cs Qa

7/ / yg(T,a,x)dxdz+/19§(t,a,x) dtda dx
c A “ (3.19)

< f/w2dtdadm+05/ ve(a, x) dx da.
4 q Qa

Keeping in the mind (3.16[), we conclude that

1A 3
f/ / y?(ﬂa,x)d:vdm—l—f/ﬁg(t,a,a:)dtdadasgC’(;/ yg(a,a:)dxdx.
€Jo Js 4Jq Qa

Hence, it follows that

1 A
/ / y?(T,a,x)dxdzgng/ ya(a,z) de dx
0 7o " Qa (3.20)
/ﬁg(t, a,z)dt dadr < = vi(a,x) dx d.
q 3 Qa
Then, we can extract two subsequences of y. and . denoted also by ¥. and y.
that converge weakly towards ¢ and y in L*(g) and L*((0,7) x (0, 4); HL(0,1)
respectively. Now, by a variational technic, we prove that y is a solution of (1.1
corresponding to the control ¥ and, by the first estimate of (3.20)), y satisfies (3.14
for T € (0,0) and this shows our claim. O

4. APPENDIX

As we said in the introduction, this Appendix concerns a result which plays
an important role to show the w-Carleman estimate associated to the full adjoint
system (2.3)) namely the Caccioppoli’s inequality which is stated in the following
lemma.
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Lemma 4.1. Let w' CC w and w be the solution of ([2.7). Suppose that xo ¢ w'.
Then, there exists a positive constant C' such that w satisfies

A T
// / w2e*? dt da dx
w’ JO 0 (41)

< c( / $20%w2e?*% dt da dx + / h2e25% dt da dz).
q q

Proof. Define the smooth cut-off function ¢ : R — R by
0<((z)<1, z€eR,
() =0, z<x and x> 9, (4.2)
((r)=1, zed.
For the solution w of 7 we have

T d 1 A
oz/ 7[/ / e i da di
o dtlJo Jo
1 A T 1 A T
:25/ / / Cow?e?s? dtdadx+2/ / / Cww e dt da dx
o Jo Jo o Jo Jo
1 A T
= 25/ / / Coyw?e®? dt da dx

+2// / Cw(—(kwy)y — wa + h + pw)e**? dt da d.

Then, integrating by parts we obtain

(4.3)

2/ k¢?e*s¢w? dt da dx

Q

= —23/ Cwh(O4 + 0,)e?*? dt da dx — 2/ CCwhe?s? dt da dx
Q Q

— 2/ Craw?es? dt da dx + / (k(C%e*%),) pw? dt da dx.
Q Q

On the other hand, by the definitions of ¢, ¢ and ©, thanks to Young inequality,
taking s quite large and using the fact that z¢ ¢ w’, one can prove the existence of
a positive constant ¢ such that

/ k¢2e**Pw? dt da dx > 2 min k(x / / / 2e25¢ dt da dx,
Q TCEwW’ w!

/(k(C2€2w)x)zw2 dtdadx < C// / s20%w?e*? dt da dx,
Q wJo Jo
A T
2 / (O, + 0,)e®* dt dadz < / / / 20202629 i da du,
w JO 0

—2/ CCwhe®s? dt da dx

A T
<ec /// s20%u? QSSOdtdadx—f—// / thQS“’dtdadx),
w JO 0
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A T
—2/ C2uw262w dtdadx < c// / $202%w?e?% dt da dzx.
Q w JO 0

This implies that there is C' > 0 such that

A T
/ / / wieQ‘w dt dadx < C’(/52@2w262w dtdada:—&—/thQS‘p dtdadm).
w Jo Jo

q q

Thus, the proof is complete. (I

Remark 4.2. Lemma remains valid for any function = € C([0, 1], (—o00,0)) N
C'([0,1]\{z0}, (—o0,0)) satisfying

c

\/E’

|7z | < for z € [0, 1]\{z0},

where ¢ > 0. see [22, Proposition 4.2] for more details.
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