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UNIQUENESS OF CRITICAL POINTS FOR SEMI-LINEAR
DIRICHLET PROBLEMS IN CONVEX DOMAINS

JAIME ARANGO

Abstract. We establish sufficient conditions for the existence of a unique
critical point for the solution to the semi linear elliptic problem ∆u = f(u)+w

with zero Dirichlet boundary condition.

1. Introduction

Regarding the St. Vennat elastic torsion problem
∆u = w in Ω,

u = 0 on ∂Ω,
(1.1)

in a convex domain Ω, Makar-Limanov [10] proved that for a solution u, the func-
tion z =

√
−u is concave provided w is a positive constant. From this, it follows

immediately that u has exactly one critical point (point of vanishing gradient),
which turns out to be an absolute minimum of u on Ω.

The elastic torsion problem (1.1) is a classical issue in PDE with references
dating back to St. Vennat (1856). In addition to its importance in elasticity, it
arises in fluid mechanics, where it describes the steady unidirectional flow of a
viscous fluid down a pipe of cross section Ω, the pressure of the gradient along the
pipe being constant. It appears also in connection with vortex streets (see [5, 6])
and isoperimetrical inequalities [11].

An important question related to problem (1.1) is to determine the minimum of
u and its location in Ω. This task can be greatly simplified if it is assured – and
here lies the importance of Makar-Limanov’s result – that u has a single minimum.
In this paper we consider the following generalization of the above problem,

∆u = f(u) + w in Ω,

u = 0 on ∂Ω,
(1.2)

and the question of whether u possesses a unique critical point. Addressing this
question, Kawohl [4] shows the concavity of g ◦ u (for an appropriated choice of g).
Yet Kawohl’s results are strongly based on conditions on the second derivative of
the nonlinearity f . In a more recent paper Ma [9] showed, in a slightly different
context, the convexity of the solution u for specific nonlinearities.
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The aim of this paper is to show that the solution to (1.2) possesses a unique
critical point (a fortiori an absolute minimum) provided the following assumptions
hold:

(A1) Ω is convex planar domain with a C2 smooth boundary ∂Ω having a positive
curvature.

(A2) w > 0, f ∈ C∞(R, R), f(0) = 0, f ′(x) > 0 for x < 0.
Our approach is strongly based in the geometrical properties of eigenfunctions of
some Laplace-related operators, and is very closed to the one used by Cabré and
Chanillo in [1].

Before going into details, we remark that the solution of (1.2) could be inter-
preted as the deflection of a membrane fixed in its border hanging under the force
f(u) + w, where w > 0 is a constant proportional to the density of the membrane.
Having this in mind it seems very plausible that u has a single minimum.

2. Preliminaries

Existence, uniqueness and regularity of solutions to semilinear elliptic differen-
tial equation of second order are relatively well understood issues in the theory of
PDE. We refer the reader to the classical work of Gilbarg and Trudinger [3] for
a thorough treatment of these topics. For instance, the existence of a negative
solutions u to the problem (1.2) follows from standard techniques of upper and
lower solutions, whereas the uniqueness of negative solutions can be obtained via
maximum principle. We limit ourselves to analyze negative solutions to (1.2) for
they plausibly model the deflections of membranes under its own weight. Therefore
until further notice, all solutions to (1.2) we consider are supposed to be negative
on Ω. Regarding the regularity, it can be shown that a solution u to the problem
(1.2) satisfies u ∈ C∞(Ω) ∩ C1(Ω).

To begin the discussion of critical points let us suppose xm ∈ Ω is an absolute
minimum of a solution to (1.2). Then for all x ∈ Ω we have

0 ≤ ∆u(xm) = f(u(xm)) + w ≤ f(u(x)) + w = ∆u(x), (2.1)

the last inequality being a consequence of assumption (A2).
We go on by proving that the solution u has no critical points on ∂Ω. The

argument is based on Hopf’s boundary point lemma. For the reader’s convenience
we present here a slightly modification of Hopf’s result (see[12] and [3]):

Lemma 2.1 (Hopf, 1952). Let G ⊂ R2 be a bounded region. Further assume that
u ∈ C2(G)∩C(G) satisfies ∆u ≥ 0 and u ≤ 0 in G. If G fulfills an interior sphere
condition 1 at x0 ∈ ∂G, and u ∈ C1(G ∪ {x0}), with u(x) < u(x0), for x ∈ G, then
for every direction ν pointing into an interior sphere we have

∂u

∂ν
(x0) < 0.

We remark that the region Ω along with every point x0 ∈ ∂Ω and the solution u
to (1.2), satisfy the assumptions of Hopf’s lemmas. Therefore it may be concluded
that there are no critical points of u at the border ∂Ω. The reader may have noticed
that the border ∂Ω is a level set of u. Unfortunately we cannot repeat the same
argument for any level set of u−1(c) since there is no guaranty that such level sets
fulfill the interior sphere condition.

1There is a ball B ⊂ G with x0 ∈ ∂G
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In a very influential paper, Cheng [2] studies the topology of particular level
sets, more precisely he studies the set v−1(0), called nodal lines of v, when the real
valued function v is a solution to an elliptic equation on a Riemann manifold. The
following summarizes Cheng’s results when Ω is a bounded domain of R2:

Theorem 2.2 (Cheng, 1976). Let h be C∞ on Ω. If v satisfies

(∆ + h(x)) v = 0 in Ω, (2.2)

then for all p ∈ Ω, there exist a spherical harmonic PN in R2 of degree N ≥ 1,
and a C1 diffeomorphism Φ from a neighborhood of p in Ω onto a neighborhood of
Φ(p) = 0 in R2, such that

v(x) = PN (Φ(x)).

For the proof we refer the reader to [2]. Roughly speaking, Theorem 2.2 says
that the nodal lines of v are locally diffeomorphic to the nodal lines of spherical
harmonics of degree N at the origin, for some N ≥ 1. Now, as it is well known, the
nodal lines of spherical harmonics are a system of equiangular rays at the origin.
Accordingly, if v satisfies (2.2), then following are true:

(a) The critical points on the nodal lines are isolated.
(b) The nodal lines meet only at critical points forming there an equiangular

system of more than three angles.

3. Main results

Let τ ∈ S1 ⊂ R2 and assume u solves problem (1.2). We shall consider the nodal
lines of uτ defined by (cf. Cabré and Chanillo [1])

uτ (x) = Du(x) · τ, x ∈ Ω.

Let us write J(x) ≡ D2u(x). A regular point p ∈ Ω of the nodal lines uτ satisfies
J(p) τ 6= 0, and the nodal lines can be locally parametrized at p by the ODE

ẋ(t) = R J(x(t)) τ, x(0) = p, (3.1)

where R is the π
2 rotation 2× 2-matrix.

Lemma 3.1. Fix τ ∈ S1 and denote by U the nodal lines of uτ . If p ∈ U ∩ ∂Ω,
then p is a regular point of U and U is nowhere tangent to ∂Ω. Moreover, U split
Ω in a finite number of connected subregions.

Proof. Since ∂Ω has a positive curvature (assumption (A1)), for all p ∈ ∂Ω we have
|J(p) α ·α| > 0, where α is any unitary tangent vector to ∂Ω at p. On the one hand,
Du(p) is orthogonal to α; on the other hand Du(p) is orthogonal to τ since p ∈ U ,
and therefore α and τ are collinear and |J(p) τ · τ | > 0. Thus J(p) τ 6= 0, and this
implies that p is a regular point of U .

Let us locally parametrize U at p ∈ U ∩ ∂Ω by ODE (3.1). If U is tangent
to ∂Ω at p then R ẋ(0) · τ = 0. From this it follows −J(p) τ · τ = 0 which is a
contradiction. �

We remark that that uτ satisfies

(∆ + h(x))uτ = 0 in Ω, wherequadh(x) ≡ −f ′(u(x)). (3.2)

Since any solution of (1.2) is C∞ we have, in view of assumption (A2), that h is
C∞ and negative on Ω. Notice that uτ cannot vanish on the border ∂G of a sub
domain G ⊂⊂ Ω. For in that case, uτ satisfies elliptic equation (3.2) in G and the
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boundary condition uτ

∣∣
∂G

= 0, then a straightforward application of the maximum
principle (recall that h is negative) yields uτ ≡ 0 on G, and a fortiori, uτ ≡ 0 on
the whole domain Ω̄ which contradicts Hopf’s lemma.

Lemma 3.2. There are no critical points of uτ along the nodal lines uτ (x) = 0.
Moreover, the nodal lines uτ (x) = 0 reduces to the trace of a single C∞ curve which
intersects ∂Ω in exactly two points.

Proof. Let us denote by U the nodal lines of of uτ and let G be one of the subregions
in which U splits Ω. We may rule out the case G ⊂⊂ Ω, hence ∂G contains a non-
trivial connected subset of ∂Ω.

By assumption (A1) and lemma 3.1 there are exactly two points on ∂Ω having
a unit normal direction orthogonal to a fixed τ ∈ S1. Hence, U intersects ∂Ω in
exactly two points.

Now suppose there is a critical point of uτ along U . By remark (b) there are at
least four different regions, say Gj for j = 1, . . . 4, in which in which U splits Ω.
Since for any j = 1, . . . 4 we may rule out the case Gj ⊂⊂ Ω, we conclude that U
intersect ∂Ω in at least four different points, which is again a contradiction.

If U contains no critical points of uτ , then by theorem 2.2, U is locally diffeo-
morphic to the nodal lines of an spherical harmonic of degree 1. Therefore, U is
either diffeomorphic to a circle or is the trace of a single C∞ curve intersecting
∂Ω in exactly two points. But the first case does not apply since this would imply
G ⊂⊂ Ω, where G is the region bounded by U . �

We can rephrase Lemma 3.2 as follows:

uτ (q) = 0 implies J(q) τ 6= 0.

Next observe that any critical point of u belongs to any of the nodal lines uτ (x) = 0
for τ ∈ S1. Hence

Du(q) = 0 implies J(q) τ 6= 0 for all τ ∈ S1.

In other words, if q is a critical point of u then the 2×2 matrix J(q) is nonsingular.
We have thus proved the following result.

Lemma 3.3. The negative solution u to 1.2 possesses a finite number of critical
points.

By lemma 3.2 the nodal lines are in fact the trace of a single C∞ curve, thus
it makes senses to to write nodal line instead of nodal lines. For now on we shall
adhere to this renaming.

Suppose a nodal line Du(x) · τ = 0 passes through p ∈ ∂Ω, i. e., Du(p) · τ = 0.
It follows then τ = ±Rn(p), where n(p) is the unit normal outward directions at
p ∈ ∂Ω. In view of (3.1), the nodal line passing through p ∈ ∂Ω can be parametrized
by the solution to the initial value ODE problem

ẋ(t) = R J(x(t))Rn(p), x(0) = p. (3.3)

We are now in a position to show the main result of this paper.

Theorem 3.4. The negative solution u to 1.2 possesses a single critical point which
is an absolute minimum to u in Ω.
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Proof. We begin by recalling that the solutions to (3.3) have a uniformly continuous
dependence on p ∈ ∂Ω. Furthermore, notice that any level set meets all critical
points, thus by lemma 3.3 it makes sense to define f(p), for p ∈ ∂Ω, to be the first
critical point met by the solutions to (3.3). By a standard continuity argument f
must be constant on the whole border ∂Ω.

By lemma 3.2 any nodal line intersects ∂Ω in exactly two points, hence, for a
given p ∈ ∂Ω there exists a unique p̄ ∈ ∂Ω, with p̄ 6= p, such that p̄ and p belong to
the same nodal line. It is clear that f(p) 6= f(p̄) unless u possesses a single critical
point. �
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[1] Cabré, X. and Chanillo S.; Stable solutions of semilinear elliptic problems in convex domains.

Sel. math., New ser. 4, 1998, pp. 1-10.
[2] Cheng S. Y.; Eigenfunctions and nodal sets, Comment. Math. Helvetici, 51, 1976, pp.43-55.
[3] Gilbarg, G. and Trudinger, N.; Elliptic partial differential equations of second order. Springer,

1983.
[4] Kawohl, B.; When are solutions to nonlinear elliptic boundary value problems convex? Comm.

in partial differential equations 10(10), 1985, pp. 1213-1225.

[5] Dragomir, S. and Keady, G.; A Hadamard-Jensen inequality and an application to the elastic
torsion problem. J. App. Anal. 75, 2000, pp. 285-295.

[6] Keady, G. and McNabb, A.; The elastic torsion problem: solutions in convex domains. N.Z.

Journal of Mathematics, 22, 1993, pp. 43-64.
[7] Kosmodem‘yanskii, Jr.; Sufficient conditions for the concavity of the solution of the Dirichlet

problem for the equation Laplacian u =-1. Math. Notes of Acad. Sci. of U.S.S.R. 42 (translation

1987), 798-801.
[8] Kosmodem‘yanskii, Jr.; The behavior of solutions of the equation Laplacian u =-1 in convex

domains. Soviet. Math. Doklady. 39 (translation 1989), pp. 112-114.

[9] Ma X.-N.; Concavity estimates for a class of nonlinear elliptic equations in two dimensions.
Math. Z. 240, 2002, pp. 1-11.

[10] Makar-Limanov; Solutions for the Dirichlet’s problem for the equation u = 1 in a convex
region, Math. Notes of Acad. Sci. of U.S.S.R. 9 (1971), pp. 52-53.

[11] Payne, L. E.; Some isoperimetric inequalities in the torsion problem for multiple connected

regions. Stud. Math. Anal. related Topics, Essays in Honor of G. Polya (1962), pp. 270-280.
[12] Protter, M, and Weinberger H.; Maximum principles in differential equations. Springer, 1984.

Jaime Arango

Universidad del Valle, Departamento de Matemáticas, A. A. 25 360 Cali, Colombia
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