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Abstract

Differences in light sources are common in animal facilities and potentially can impact 

experimental results. Here, the potential impact of lighting differences on skin transcriptomes has 

been tested in three aquatic animal models commonly utilized in biomedical research, 

(Xiphophorus maculatus (platyfish), Oryzias latipes (medaka) and Danio rerio (zebrafish). 

Analysis of replicate comparative RNA-Seq data showed the transcriptional response to commonly 

utilized 4,100 K or “cool white” fluorescent light (FL) is much greater in platyfish and medaka 

than in zebrafish. FL induces genes associated with inflammatory and immune responses in both 

medaka and zebrafish; however, the platyfish exhibit suppression of genes involved with immune/

inflammation, as well as genes associated with cell cycle progression. Furthermore, comparative 

analyses of gene expression data from platyfish UVB exposures, with medaka and zebrafish after 

exposure to 4,100 K FL, show comparable effects on the same stress pathways. We suggest the 

response to light is conserved, but that long-term adaptation to species specific environmental 

niches has resulted in a shifting of the wavelengths required to incite similar “genetic” responses 

in skin. We forward the hypothesis that the “genetic perception” of light may have evolved 

differently than ocular perception and suggest that light type (i.e., wavelengths emitted) is an 

important parameter to consider in experimental design.
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INTRODUCTION

Specific guidelines exist for fish care regarding temperature, noise levels, feeding schedules, 

food composition, water quality, and light cycle; however, little information exists regarding 

the required lighting conditions in regard to intensity or emitted wavelengths (Goodwin et 

al., 2016; Lawrence and Mason, 2012; Matthews et al., 2002; Sanders, 2012; Varga, 2016). 

The light sources utilized, the wavelengths emitted by each, and the potential effects of 

different light sources on gene expression seem not to have been studied. Intensity and 

wavelength differences between commonly utilized fluorescent bulbs vary greatly, and this 

parameter of animal care has not been examined to assess what effect, if any, the emission 

spectra may have on the genetic state of the animal despite the potential impact on research 

results. Fluorescent lights (FL) came into common use in the last ~60 years as a primary 

light source for homes, businesses, laboratories and animal facilities due to low cost of 

operation and long bulb life; however, specific wavelength spectral requirements have not 

been a major concern. Each FL source produces a different spectral output and none emits a 

spectrum resembling that of sunlight (Figure 1). FL spectra contain sharp peaks and valleys 

rather than a broad relatively equal distribution of visible wavelengths. It has become clear 

that light source and duration may have serious effects on vertebrate animals, and in humans 

may be linked to depression, obesity, sleep cycle alterations and illness (Badia et al., 1991; 

Borisuit et al., 2014; Lewy et al., 1980; Münch et al., 2006; Scheer et al., 1999; Veitch and 

McColl, 2001). In biomedical applications, specific light wavebands are being examined to 

improve clinical efficacy and reduce inflammation, and treat a growing list of human health 

issues (de Morais et al., 2010; Münch et al., 2006). For example, light emitting diodes 

(LEDs) of 400–550 nm are used to treat jaundice in infants (Agati et al., 1993; Vreman et 

al., 1998). Other examples include phototherapy between 300–325 nm used for psoriasis, 

phototherapy of 415 and 660 nm for treatment of acne vulgaris, and light of ~650 nm is used 

to treat inflammation (Papageorgiou et al., 2000; Parrish and Jaenicke, 1981; Qadri et al., 

2007; Van Weelden et al., 1988). Because many of the studies consist of survey data, are 

based on external observations, or assess modulation of only a few known circadian 

oscillators, the effects of light exposure on gene expression begs further investigation, and in 

particular for animals utilized to model human disease.

Fish are widely used as biomedical models and use light for timing breeding cycles, incite 

feeding, as cues for migration, etc. (Degani, 1989; Jonsson, 1991). Xiphophorus fish species 

and interspecies hybrids represent a long standing melanoma cancer model (Meierjohann 

and Schartl, 2006; Nairn et al., 1996; Walter and Kazianis, 2001). Our recent studies indicate 

that varying light types, and specifically 50 nm light wavebands, can substantially impact the 

transcriptional profiles of Xiphophorus skin in unanticipated and source dependent ways. 

However, once a specific light induced transcriptional response has been discerned, the 

induced effect by that light source becomes predictable (Chang et al., 2015; Walter et al., 

2015). For example, Chang et al. (2015) determined that specific transcriptional expression 

changes may be induced by light exposure within 50 nm intervals between 300–600 nm. 

Surprisingly, two of these exhibited considerably more effect on gene expression patterns 

(350–400 nm and 500–550 nm) than the other wavelength ranges tested. Exposure at 500–

550 nm appears to induce cellular stress as a major response. Exposure to either 300–350 or 
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500–550 nm wavebands led to modulation of circadian gene activity and altered the activity 

of p53 gene targets, but via different mechanisms (atm at 350–400 and atr at 500–550 nm). 

Further, the effects of exposure to each 50 nm waveband is unique in modulating distinct 

genes in a manner expected to incite differential functions within key cellular pathways. For 

example, exposure of Xiphophorus males with two 50 nm wavebands only 100 nm apart 

results in transcriptional suppression, or activation, of genes involved in necrosis (i.e., 

suppression at 350–400 nm, activation at 450–500 nm), and apoptosis (i.e., suppression at 

450–500 nm and activation at 550–600 nm). The ability to use waveband intervals to 

oppositely regulate transcriptional activity of genetic pathways is a novel observation and 

may lead to many practical applications. Of course, no commonly used FL source emits 

exclusively 50 nm wavebands, but these sources do emit a much less complex spectrum than 

sunlight, and often exhibit FL source specific peaks that correspond to one or more very 

narrow wavebands (Figure 1). Given these observations, we sought to compare the global 

transcriptional response in the skin of three commonly utilized biomedical fish models 

(Xiphophorus maculatus (platyfish), Oryzias latipes (medaka) and Danio rerio (zebrafish)) 

after exposure to 4,100 K “cool white” FL. Zebrafish have been used as neurological disease 

models (Burgess and Granato, 2007; Galvin, 2006; Montoya et al., 2006; Newman et al., 

2007), hematological disease models (Shafizadeh et al., 2002; Taylor and Zon, 2011), tumor 

models (Liu and Leach, 2011; Avery-Kiejda, 2011; Santoriello et al., 2010), and many organ 

disease models including heart, muscle, kidney and eye (Bassett and Currie, 2003; 

Bibliowicz et al., 2011; Diep et al., 2011; Gieger et al., 2011; Kawahara et al., 2011; Knöll et 

al., 2007; Milan et al., 2009; Moosajee et al., 2008; Morris, 2011; Norton et al., 2011; 

O’Toole et al., 2010; Rihel et al., 2010; Sun et al., 2004; Swanhart et al., 2011). In addition, 

zebrafish have been used to investigate circadian regulation (Moore and Whitmore, 2014; 

Noche et al., 2011; Vatine et al., 2011) and light entrainable circadian control of internal 

organs (Whitmore et al., 1998). Likewise, medaka is also a popular human disease model 

especially throughout Europe and Asia. Medaka has been widely used to look at human 

disease states including heart disease (Murata et al., 2009; Shimada et al., 2009), 

Parkinson’s disease (Matsui et al., 2012, 2009) and cancer (Hasegawa et al., 2009; Schartl et 

al., 2012) to name a few. Knowing the response of Xiphophorus to a wide array of light 

sources, we sought to investigate these other two widely used human disease aquatic models.

RNA-Seq analyses employed to compare changes in gene expression after light exposure 

showed platyfish and medaka modulate about three times more skin genes than zebrafish. 

Further, the viviparous platyfish oppositely regulated both cellular proliferation and immune 

response compared to the oviparous medaka and zebrafish. Both oviparous fishes appeared 

to induce pathways leading to an immune and inflammatory response, but only zebrafish 

skin showed up-modulation in genes involved in the classical complement pathway for 

immune induction.

METHODS

Fishes Utilized and FL Exposure

Three mature adult male fish were used for FL exposure (40 min, 35 kJ/m2) for each fish 

species (Xiphophorus maculatus Jp 163 A (platyfish), Danio rerio (zebrafish), Oryzias 
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latipes (medaka), Figure 2). Platyfish and medaka were both supplied by the Xiphophorus 
Genetic Stock Center at Texas State University and the zebrafish were from the Howard 

Hughes Medical Institute in Seattle, WA. All experimental and bioinformatics protocols 

were carried out as previously described (Walter et al., 2014, 2015; Yang et al., 2014). Three 

weeks prior to exposure, all animals were housed in a single aquarium per species in a 

common location under 10,000 K FL. The location where fish used in this study were 

maintained receives 99.5 kJ/m2 of 10,000 K FL light over the diurnal cycle. The 35 kJ/m2 of 

FL exposure is equivalent to 295 minutes of FL exposure in our standard animal housing 

conditions. Prior to light exposure, fish were placed individually into 100 mL of filtered 

home aquaria water and kept in the dark for 14 hr. FL exposure occurred in UV-transparent 

cuvettes (9 cm × 7.5 cm × 1.5 cm) in 90 mL of water. The exposure cuvettes were suspended 

10 cm between two banks of two (total of 4 lights) unfiltered 4,100 K fluorescent lights 

(Philips F 20T12/CW 20 watts, Alto) mounted horizontally on each side of a wooden 

exposure chamber. Unexposed control fish (3 for each species) were dissected immediately 

after the 14 hr dark period. After FL exposure or sham treatment (no lights on), all fish were 

returned to the dark in 100 mL filtered aquaria water for 6 hrs to allow time for 

transcriptional remodeling (Gonzalez et al., 2017 this edition) and then euthanized and 

dissected for RNA isolation. All tissues (brain, liver, testes, heart, gill, fin, eyes, muscle and 

skin) were dissected into 300 μL RNAlater (Life Technologies, Grand Island, NY, USA) and 

stored in the −80 °C freezer except for skin samples which were immediately placed in 300 

μL TRI Reagent (Sigma Inc., St Louis, MO, USA) and flash frozen in an ethanol dry ice 

bath for immediate RNA isolation.

RNA Isolation and Sequencing

Total RNA was isolated from skin using a TRI Reagent (Sigma Inc., St Louis, MO, USA) 

chloroform extraction followed by the Qiagen RNeasy mini RNA kit (Qiagen, Valencia, CA, 

USA) isolation protocol. Skin was homogenized in 600 μL TRI Reagent using a handheld 

tissue disruptor followed by addition of 120 μL of chloroform. Samples were vigorously 

shaken and then phases partitioned by centrifugation (12,000 × g for 15 min at 4 °C). After 

extraction, the RNA was precipitated with 500 μL 70% EtOH and further purified using a 

Qiagen RNeasy mini RNA kit following the manufacturer’s protocol. Residual DNA was 

eliminated with an on-column DNase treatment at 25 °C for 15 min. RNA quality was 

assessed with an Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA), and 

quantified with a Qubit 2.0 fluorometer (Life Technologies, Grand Island, NY, USA). All 

samples sent for sequencing had RIN scores ≥ 8.0.

Differentially Expressed Gene (DEG) Analysis

RNA sequencing was performed on libraries constructed using the Illumina TrueSeq library 

preparation system that employs a polyA selection. RNA libraries were sequenced as 100 bp 

paired-end fragments using an Illumina Hi-Seq 2000 system (Illumina, Inc., San Diego, CA, 

USA). 70–80 million raw reads were generated for each fish skin RNA sample. All raw 

reads were subsequently truncated by similarity to library adaptor sequences using a custom 

Perl script and short reads were filtered based on quality scores by using a custom filtration 

algorithm that removed low-scoring sections of each read and preserved the longest 

remaining fragment (Table 1) (Garcia et al., 2012). Filtered reads were mapped using 
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GSNAP (Wu and Nacu, 2010) to either the X. maculatus (Ensembl v71), Oryzias latipes 
(Ensembl v79) or the Danio rerio (Ensembl v79) reference transcriptome. The percentage of 

reads mapped and nucleotide coverage were identified by SAMtools flagstat and depth, 

respectively (Li et al., 2009). Gene expression was assessed by eXpress (Roberts and 

Pachter, 2013), and differentially modulated genes were determined using the R-

Bioconductor (www.bioconductor.org) package for pairwise comparison done with the 

exactTest in edgeR (Robinson et al., 2010) with a log2(fold change) ≥ |2.0| (p-adj < 0.05), 

(Table 2). Biological variance following gene expression analysis was calculated and plotted 

(Figure S1).

Genes identified as being differentially modulated in response to FL (excluding any sham 

effected genes) were further analyzed for species specificity. Venny 2.1 (Oliveros, 2007) was 

used to compare differentially expressed genes from each species to the other two and 

Ingenuity Pathway Analysis (IPA, Qiagen, Redwood City, CA) was used for functional 

specificity analysis. IPA-based gene expression analysis yielded gene clusters, genetic 

pathways, functional classes, and potential up-stream regulators to aid in mechanistic 

interpretation. Herein, the term “pathways” is short for canonical pathways assigned by IPA 

based on the light exposure input DEG data. In IPA, known pathways are drawn as pictures 

with input DEGs overlaid onto them that are identified by symbols and colors indicating 

known functions and direction of modulation. A z-score algorithm is used to determine if a 

pathway is up or down regulated based on the genes that fall into that particular pathway. 

IPA assignment of DEGs into “functions” or “functional classes” relates the input DEGs to 

known disease states and biological functions as published in the scientific literature. 

Functional classes are visualizations of the biological trends in the light effected DEG 

dataset and may be used to predict the effect of gene expression changes of the entire dataset 

on biological processes and known cellular functions. Function assignment uses an 

algorithm to assess the dataset as a whole and predict what is collectively occurring on a 

larger downstream scale.

Validation of RNA-Seq

NanoString (NanoString Technologies, Inc., Seattle, WA) with a custom panel for each 

species was used as an independent technology to confirm the DEGs identified using RNA-

Seq. Aliquots of the RNA (500 ng) used for RNA-Seq were also used for the NanoString 

nCounter assay. Hybridization protocols were strictly followed according to manufacturer’s 

instructions (Geiss et al., 2008). Samples were hybridized overnight at 65 °C with custom 

probes and transferred to the NanoString Prep Station. The NanoString cartridge containing 

the hybridized samples was immediately evaluated with the NanoString nCounter based on 

unique color-coded signals. Probe counts were quantified through direct counting with the 

nCounter Digital Analyzer. Data analysis was performed by lane normalization using a set 

of standard NanoString probes followed by sample normalization using a set of 10 

housekeeping genes. Fold changes were calculated on normalized counts and plotted using 

Microsoft Excel.
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RESULTS/DISCUSSION

Comparison of DEG Numbers

Skin from three species; platyfish, medaka and zebrafish were compared following exposure 

to 35 kJ/m2 4,100 K fluorescent light (FL). The number of genes differentially modulated as 

determined by EdgeR (log2(FC) > |2.0|, p-adj < 0.05) in skin was considerably greater in 

medaka (2277) than in the other two species (1757 and 613 in platyfish and zebrafish, 

respectively; Table 2 column 2). To compare the differentially modulated genes between 

each species, all fish Ensembl IDs were converted to HUGO IDs (Table 2 column 5). The 

dynamic range of modulation for differentially expressed genes (DEGs) in skin did not differ 

significantly among the three species (Figure 3, A); however, each fish species expressed a 

unique set of DEGs (Figure 3, B). Only 25% DEGs are shared between any two species and 

overall only 58 DEGs were shared among all three species. To confirm the DEGs in each 

species, NanoString’s nCounter analysis was used. In total, 96% of the 74 differentially 

modulated transcripts tested were confirmed in both magnitude and direction (R2 = 0.83, 

Figure 4).

Species Specific Analyses of DEGs

After 4,100 K FL exposure, platyfish skin DEGs analyzed by IPA showed modulation of 35 

canonical pathways (Table S1). The most significant pathway change noted in skin after FL 

exposure, reflected by high z-score, was suppression of the insulin-like growth factor (IGF)-I 

signaling pathway. This change is consistent with a suppression of cell growth and 

proliferation (Figure 5) (Denduluri et al., 2015; Kennedy et al., 1997; LeRoith and Roberts 

Jr, 2003). Comparison of results from the different species indicates that cell growth and 

proliferation is the most enriched molecular and cellular function following 4,100 K FL 

exposure in platyfish skin, comprising 707 (40%) of the 1,757 modulated genes analyzed by 

IPA.

O. latipes skin showed 13 canonical pathways (11 up and 2 down) effected by 4,100 K FL 

exposure despite modulating ~25% more genes than platyfish. The most significant of the 13 

pathways modulated involves the acute phase signaling pathway (Error! Reference source 
not found.). The remaining canonical pathways (Table S2) are associated with the acute 

phase signaling pathway and involve induction of an inflammatory response. For example, 

as shown in Figure 6, IL-6 signaling serves as a regulator of the acute phase signaling 

pathway (Gabay and Kushner, 1999; Heinrich et al., 1998), the ILK signaling pathway 

shares TNF-α induction into the JNK pathway (Bode et al., 1999; Brown et al., 1995; 

Wegenka et al., 1993), PPARA signaling is involved with acute phase signaling through the 

TNF-α regulator and has been associated with suppression of adipose differentiation and 

fatty acid oxidation (Varga et al., 2011). In addition, the antioxidant action of the vitamin C 

pathway is also involved with TNF-α regulation of gene expression in concert with NFκβ 
and JAK/STAT (Carcamo et al., 2002; Wilson, 2009). Overall, the most significant upstream 

regulator in medaka is TNF-α (5.8 fold, z-score 5.9) which controls 19 key regulators and 

944 DEGs modulated in medaka skin after 4,100 K FL exposure. Given the high numbers of 

gene targets affected by TNF-α after FL exposure, it is reasonable to predict this highly 
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expressed regulator is largely responsible for inciting the FL inflammation response 

observed in medaka skin (Bradley, 2008).

Upon FL exposure, Danio rerio skin showed modulation of 22 canonical pathways (13 up 

and 9 down; Table S3). The zebrafish response to FL in skin, like medaka, is dominated by 

modulation of a robust set of inflammation associated genes piloted through the oncostatin 

M regulator and induced transcription of the oncostatin M signaling pathway (Figure 7) 

(Wallace et al., 1999; West et al., 2017). Systemic inflammation occurs following up-

modulation of IL-6 after oncostatin signaling (Kordula et al., 1998). This pathway produces 

many of the precursors required for acute phase signaling, as well as necessary components 

for cell proliferation and cytokine signaling (Dey et al., 2013). Also, like medaka, the top 

regulator in zebrafish skin is TNF-α, controlling 30% (180 genes) of the zebrafish skin FL 

modulated DEGs.

Comparative Functional Analyses of DEGs

Upon FL exposure, all three fish models significantly modulated transcription of genes 

involved with cell cycle progression, cell death and/or cell proliferation in skin. However, 

analysis of potential upstream regulators based on the direction of transcriptionally 

modulated gene targets in skin of the oviparous species, medaka and zebrafish, indicate the 

cell functions affected are likely due to induction of the HDAC transcriptional regulator with 

concurrent induction of the telomerase signaling pathway (Figure 8, B and C). In contrast, 

platyfish exhibit suppression of cellular proliferation that is predicted to occur via 

suppression of HDAC with concurrent suppression of the telomerase signaling pathway 

(Figure 8, A) (Kyo and Inoue, 2002; Reichert et al., 2012). Thus, although approximately 

25% of the FL modulated DEGs are shared between at least two of the three species; the 

direction of modulation and the genes not shared among modulated sets suggests the 

oviparous and viviparous species modulate expected functional differences in the same 

pathway.

Another example of species-specific differences in gene expression behavior after FL 

exposure was observed in the PPARα/RXRα signaling pathway. Platyfish significantly 

down-modulated the PPARα/RXRα pathway in skin upon exposure to FL; however, both 

medaka and zebrafish exhibited significant up-modulation of the PPARα/RXRα pathway 

following FL exposure (Figure 9). The PPARα/RXRα pathway is one part of a genetic 

cascade involved in an inflammation response incited by the FL exposure (Dubrac and 

Schmuth, 2011; Núñez et al., 2010; Zandbergen and Plutzky, 2007).

While skin from the viviparous platyfish males behaved differently compared with skin from 

the oviparous species (suppressing cell proliferation and the inflammation response), there 

were also noted differences when comparing medaka and zebrafish. Zebrafish induce genes 

involved in an immune response through both the classical and alternate complement system 

signaling pathways, while medaka only appears to utilize the alternate signaling pathway of 

the complement system (Figure 10). In addition, after 4,100 K FL exposure, the HDAC 

transcription regulator family appears to be inducing cell death (i.e., necrosis and apoptosis 

pathways) (Vashisht Gopal et al., 2006; Zhang and Zhong, 2014) only in the zebrafish. In 

contrast, medaka appears to utilize the HDAC regulator family to increase cellular 
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proliferation, without induction of necrotic genes or regulators. These subtle differences in 

the skin of medaka and zebrafish highlight species-specific gene regulation differences that 

occur in response to light exposure between the oviparous species tested.

Differences in Wavelengths May Explain Response Differences

Collectively, these effects suggest that differences between oviparous and viviparous fishes, 

and species-specific differences between medaka and zebrafish, in response to the same 

stimulus (35 kJ/m2 of 4,100 K FL) likely are the result of adaptive evolution to optimize 

survival in the environmental niches specific to each species. We have reported that platyfish 

skin shows very different transcriptional responses after exposure of the intact animal to 50 

nm wavebands between 300–600 nm. Chang et al. (2015) observed that the 500–550 nm 

waveband incited the largest number of DEGs and this waveband region induced cellular 

stress pathway genes as the most significant response (Chang et al., 2015). In addition, we 

have reported previously that exposure to UVB light (311 nm) incites, as the major response 

in platyfish males, the classical compliment pathway and many other genes associated with 

an inflammatory response (e.g., serpins) (Yang et al., 2014). This was not understood at the 

time since the expectation was a more robust DNA damage response after 311 nm UVB 

(ultraviolet B light) exposure. In the results presented here, we note that viviparous platyfish 

incited a robust inflammatory response to UVB exposure but the 4,100 K FL did not 

produce such a transcriptional effect in platyfish.

We have reanalyzed the data from the platyfish UVB exposures and compared this to the 

data presented herein for oviparous species exposed to 4,100 K FL (Table 3). The similarity 

in transcriptional responses, UVB for platyfish and FL for zebrafish, implies the genetics 

involved in light response are conserved between the three species, but the waveband 

intervals needed (311 nm for platyfish and ~550 nm for medaka and zebrafish) to incite a 

similar genetic response may be species specific, and due to long term evolutionary 

adaptation to very different specific environmental niches. For example, platyfish are found 

from the Rio Jamapa in Mexico to Belize and prefer ditches and shallow creeks with muddy 

bottoms and dense vegetation (Kallman, 1975). Medaka and zebrafish can be collected in a 

variety of environments from freshwater ponds to marshes and paddy fields; each of these 

niches has a different degree of turbidity, vegetation and salinity that effect light penetration 

(Hatooka et al., 2013; McClure et al., 2006). Thus, the “genetic perception” of light may 

have evolved under different constraints and in different directions than those involved with 

ocular perception, and suggest light type (i.e., wavebands emitted) and intensities may be an 

important parameter to consider in both animal housing and in biomedical experimental 

design.

In addition, previous studies (Boswell et al., 2015); 2017 this edition) have indicated that 

male and female Xiphophorus have unique genetic responses to light stimuli (UVB and FL). 

To expand on this idea, female medaka and zebrafish need to be exposed to FL to see if they 

have a unique genetic response or rather the response by female Xiphophorus is genetically 

perceived as a different waveband compared to sex matched oviparous species. It is currently 

also unknown how juveniles of any species tested are genetically effected by specific light 

sources and whether or not the effects of juveniles can be changed by altering the light 
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source after the animals reach sexual maturity. In order to assess and ultimately determine 

the best lighting conditions for housing, husbandry and experimental reproducibility each of 

these parameters (sex, species variations and age) will need to be tested under commonly 

used FL as well as specific wavebands.

CONCLUSIONS

In the interest of increasing reproducibility of experiments in different laboratories using 

different lighting conditions for their animals, we have addressed here the question of 

potential differences in transcriptional response to different light sources in three aquatic 

vertebrate species. These three species (platyfish, medaka and zebrafish) were exposed to 

4,100 K “cool white” fluorescent light (FL) and the light induced modulation of their genetic 

profiles assessed in skin by employing RNA-Seq analyses. Notable differences were 

observed between each of the three-species tested. While considerable gene overlap was 

observed between platyfish and medaka in skin, it is clear from pathway and functional 

analysis that the viviparous platyfish responded in a unique manner compared to the two 

oviparous aquatic models in response to FL exposure.

Comparative analyses of data from platyfish UVB exposures, and for oviparous species 

exposed to 4,100 K FL, suggests the three fish species tested show similarity in response 

when the platyfish genetic response to UVB exposure is compared to the medaka and 

zebrafish response to “cool white” FL. We suggest the response to light is conserved, but 

that long-term adaptation to the environmental niche of each fish has resulted in a shifting of 

the wavebands needed to incite a similar “genetic” stress response in skin. We forward the 

hypothesis that the “genetic perception” of light may have evolved differently than ocular 

perception and suggest that light type (i.e., wavebands emitted) and intensities may be an 

important parameter to consider in animal housing and experimental design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of solar spectrum with that of 4,100 K FL light utilized in the reported 

experiments.
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Figure 2. 
Experimental Overview. Three species were individually tested in triplicate following 

exposure to 35 kJ/m2 FL. RNA was isolated and sent for Illumina sequencing. Functional 

analysis was performed on processed reads to determine pathways and up- stream regulators 

effected by FL.
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Figure 3. 
Dynamic range (Panel A) of gene expression in platyfish (left), medaka (center) and 

zebrafish (right). Each red circle indicates a significantly modulated transcript (log2(±1), 

fdr<0.05). Venn Diagrams (Panel B) indicating gene overlap between platyfish, medaka and 

zebrafish in skin following exposure to FL.
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Figure 4. 
NanoString nCounter analysis (x-axis) was used to confirm the RNA-Seq data (y-axis) for 

71 out of 74 transcripts tested in both magnitude and direction (R2 = 0.83) following FL 

exposure.
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Figure 5. 
Platyfish significantly down modulate the IGF signaling pathway leading to a suppression of 

cell proliferation, cell growth and cell survival in skin following FL exposure. Molecules 

shaded in green represent down modulated transcripts and molecules shaded in red represent 

up-modulated transcripts (Fold Change see Table S4). Functions shaded in blue are 

predicted to be suppressed and in orange are induced (IPA z-score -4.1).
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Figure 6. 
The most significantly modulated pathway in medaka skin was the acute phase signaling 

pathway (IPA z-score 3.2) leading to an increase in the inflammation response; other 

pathways that play a role in the inflammation response such as IL-6 (boxed in yellow), ILK 

signaling (light blue), PPAR signaling (pink) and the Vitamin C pathway (dark blue) are also 

found within the acute phase signaling pathway. Genes up-modulated are represented in red; 

down modulated are in green (Fold Change see Table S5).
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Figure 7. 
In zebrafish following FL exposure, the most significantly modulated pathway in skin is the 

oncostatin M pathway. Molecules shaded in green represent down modulated transcripts and 

molecules shaded in red represent up-modulated transcripts (Fold Change see Table S6, IPA 

z-score 3.1).
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Figure 8. 
The telomerase signaling pathway is oppositely modulated in platyfish (A) compared to 

medaka (B) and zebrafish (C) following FL exposure. The opposite modulation of the 

HDAC regulator (boxed in yellow) is predicted to be responsible for the opposite modulation 

of the telomerase signaling pathway. In each plot, molecules shaded in green represent down 

modulated transcripts and molecules shaded in red represent up-modulated transcripts (Fold 

Change see Table S7). Functions shaded in blue are predicted to be suppressed and in orange 

are induced (IPA z-score -2.0 platyfish, 2.1 medaka and 2.3 zebrafish).
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Figure 9. 
Platyfish skin (A) significantly down modulates the PPARα/RXRα signaling pathway in 

response to FL; however, both medaka (B) and zebrafish (C) significantly up-modulate the 

PPARα/RXRα pathway in skin following FL exposure. In each plot, molecules shaded in 

green represent down modulated transcripts and molecules shaded in red represent up-

modulated transcripts (Fold Change see Table S8). Functions shaded in blue are predicted to 

be suppressed and in orange are induced (IPA z-score -2.8 platyfish, 2.3 medaka and 2.3 

zebrafish).
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Figure 10. 
Both medaka (A) and zebrafish (B) up-modulate the complement signaling pathway (IPA z-

score 2.4 in medaka and 2.0 in zebrafish) in skin following FL exposure; however, only 

zebrafish induce both the classical complement pathway (yellow box) and the alternate 

pathway whereas medaka only utilizes the alternate pathway. In each plot, molecules shaded 

in green represent down modulated transcripts and molecules shaded in red represent up-

modulated transcripts (Fold Change see Table S9). Functions shaded in blue are predicted to 

be suppressed and in orange are induced.
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Table 3

Shared regulators in platyfish following UVB exposure and zebrafish following FL exposure. The number 

inside each parenthesis indicates the number of genes controlled by the regulator (Table S10 lists the genes) 

and the color indicates whether the regulator is up (red) or down (green) modulated.

Zebrafish
35 kJ/m2 FL

Platyfish
16 kJ/m2 UVB

NKX2-3 (20) NKX2-3 (20)

AR (20) AR (51)

CREB1 (19) CREB1 (71)

EGR1 (11) EGR1 (29)

EZH2 (7) EZH2 (26)

IRF5 (8) IRF5 (6)

KDM5A (12) KDM5A (10)

NFKB1 (25) NFKB1 (21)

PGR (13) PGR (32)

STAT1 (18) STAT1 (18)
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