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REGULARIZATION AND ERROR ESTIMATES FOR
NONHOMOGENEOUS BACKWARD HEAT PROBLEMS

DUC TRONG DANG, HUY TUAN NGUYEN

Abstract. In this article, we study the inverse time problem for the non-
homogeneous heat equation which is a severely ill-posed problem. We regu-

larize this problem using the quasi-reversibility method and then obtain error

estimates on the approximate solutions. Solutions are calculated by the con-
traction principle and shown in numerical experiments. We obtain also rates

of convergence to the exact solution.

1. Introduction

For a positive real number T , consider the problem of finding the temperature
u(x, t), such that

ut − uxx = f(x, t), 0 ≤ x ≤ π, 0 < t < T, (1.1)

u(0, t) = u(π, t) = 0, 0 < t < T, (1.2)

u(x, T ) = g(x), 0 ≤ x. ≤ π (1.3)

where g(x), f(x, t) are given functions. This problem is called the backward heat
problem (BHP), or final-value problem. As is known, such problem is severely ill-
posed; i.e., solutions do not always exist, and when they exist, they do not depend
continuously on the given data. In fact, for small noise contaminating physical
measurements, the corresponding solutions have large errors. This makes difficult
to use numerical calculations with inexact data. Hence, a regularization is needed.
When f = 0, we have a homogenous problem,

ut +Au = 0, 0 < t < T,

u(T ) = ϕ.
(1.4)

that has been considered by several authors in the previous four decades. Lattes
and Lions [12], Miller [14], Payne [16], Huang and Zheng [10], and Lavrentiev [13]
have approximated (1.4) by perturbing the operator A. This approach called the
“quasi-reversibility method”. The main idea of this method is that by perturbing
the equation in the ill-posed problem, one may obtain a well-posed problem. Then
use the solution of the well-posed problem as an approximate solutions of the ill-
posed problem.
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Lattes and Lions [12] regularized the problem by adding a “corrector” to the
main equation. They considered the problem

ut +Au− εA∗Au = 0, 0 < t < T,

u(T ) = ϕ.

Alekseeva and Yurchuk [1] considered the problem

ut +Au+ εAut = 0, 0 < t < T,

u(T ) = ϕ.
(1.5)

Gajewski and Zaccharias [8] consider a problem similar to (1.5). Their error esti-
mate for the approximate solutions is

‖uε(t)− u(t)‖2 ≤ 2
t2

(T − t)‖u(0)‖ (1.6)

Note that these estimate can not be used at the time t = 0. Showalter [17, 18]
presented a different method for regularizing (1.4), which is a stability estimate
better than the previous ones. Using Showalter’s idea, Clark and Oppenheimer [5]
used the quasi-boundary method to regularize the backward problem with

ut +Au(t) = 0, 0 < t < T,

u(T ) + εu(0) = ϕ .

A similar approaches known as quasiboundary method was given in [15]. Also, we
have to mention that nonstandard conditions for the parabolic equation have been
considered in some recent papers [2, 3]. Denche and Bessila [7] approximated this
problem by perturbing the final condition (1.2) with a derivative of the same order
as the equation:

ut +Au(t) = 0, 0 < t < T,

u(T )− εu′(0) = ϕ .

Huang and Zheng [9] considered problem (1.5) where operator −A is the generator
of an analytic semigroup in a Banach space. However, they do not give error
estimates and effective methods of calculation.

Although there are many publication on the backward problem, most of them
are for the homogeneous case, and the literature of the non-homogeneous case
is quite scarce. In this paper, we consider backward heat problem in the non-
homogeneous case. Our results generalize many results in previous papers; see for
example [1, 2, 3, 4, 5, 9, 8, 17]. We use quasi-reversibility to approximate Problem
(1.1)–(1.3) as the follows:

uε
t − uε

xx − εuε
xxxx =

∞∑
n=1

e−εn4(T−t)fn(t) sin(nx), 0 ≤ x ≤ π, 0 < t < T, (1.7)

uε(0, t) = uε(π, t) = uε
xx(0, t) = uε

xx(π, t) = 0, 0 < t < T, (1.8)

uε(x, T ) = g(x), 0 ≤ x ≤ π, (1.9)

where ε is a positive parameter and

fn(t) =
2
π
〈f(x, t), sin(nx)〉 =

2
π

∫ π

0

f(x, t) sin(nx)dx ,
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where 〈·, ·〉 is the inner product in L2(0, π). First, we shall prove that, the (unique)
solution uε of (1.6)–(1.8) is

uε(x, t) =
∞∑

n=1

(e(T−t)(n2−εn4)gn −
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s)ds) sin(nx),

(1.10)
where gn = 2

π

∫ π

0
g(x) sin(nx)dx.

In Section 2, we shall prove that (1.7)–(1.9) is well-posed. In Section 3, we
estimate the error between an exact solution u of (1.1)–(1.3)) and the approximation
solution uε of (1.7)–(1.9). In fact, we shall prove that

‖u(., t)− uε(., t)‖ ≤ ε(T − t)

√
8
t4
‖u(., 0)‖2 + t2‖∂

4f(x, t)
∂x4

‖2
L2(0,T ;L2(0,π)). (1.11)

Note that with this inequality, the error can be estimated at t = 0. Note also that
(1.11) is similar (1.6) when f = 0. In Section 3, we obtain also some other results,
including converges rates.

2. The well-posed Problem

In this section, we shall study the existence, uniqueness and stability of a (weak)
solution to (1.7)–(1.9). In fact, one has the following result.

Theorem 2.1. Let f(x, t) ∈ L2(0, T ;L2(0, π)) and let g(x) ∈ L2(0, π). Then
(1.7)–(1.9) has unique a weak solution uε(x, t) which is in C([0, T ];L2(0, π)) ∩
L2(0, T ;H1

0 (0, π) ∩ H2(0, π)), and is given by (1.10). Furthermore, the solution
depends continuously on g in C([0, T ];L2(0, π)).

Proof. The proof is divided into three steps. In step 1, we prove that the function
uε(t) given by (1.10), is a solution of (1.7)–(1.9). In Step 2, we prove the uniqueness.
Finally in Step 3, we prove the stability of the solution.
Step 1: Functions given by (1.10) are solutions of (1.7)–(1.9). Let uε(x, t) be
given by (1.10). Then we can verify directly that uε(x, t) ∈ C([0, T ];L2(0, π)) ∩
L2(0, T ;H1

0 (0, π) ∩H2(0, π)). In fact, uε ∈ C∞((0, T ];H1
0 (0, π))). Moreover,

uε
t(x, t) =

∞∑
n=1

(
(−n2 + εn4)(e(T−t)(n2−εn4)gn

−
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s)ds) sin(nx)
)

+
∞∑

n=1

∫ T

t

e−εn4(T−t)fn(s)ds sin(nx),

uε
xx(x, t)

=
∞∑

n=1

(−n2)(e(T−t)(n2−εn4)gn −
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s)ds) sin(nx),

uε
xxxx(x, t)

=
∞∑

n=1

n4(e(T−t)(n2−εn4)gn −
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s)ds) sin(nx).
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Hence

uε
t(x, t)− uε

xx(x, t)− εuε
xxxx(x, t) =

∞∑
n=1

e−εn4(T−t)fn(t) sin(nx).

We also have

uε(x, T ) =
∞∑

n=1

gn sin(nx) = g(x).

Step 2: Problem (1.7)–(1.9) has unique solution. Suppose the there are two
solution u(x, t) and v(x, t). Then we need to show that u(x, t) = v(x, t). Let
w(x, t) = u(x, t)− v(x, t). Then w(x, t) satisfies the system

wt(x, t)− wxx(x, t)− εwxxxx(x, t) = 0, (x, t) ∈ (0, π)× (0, T ),

w(x, T ) = 0, x ∈ (0, π),

w(0, t) = w(π, t) = wxx(0, t) = wxx(π, t) = 0.
(2.1)

For k > 0, we define ψ(x, t) = ek(t−T )w(x, t). Note that ψ(x, t) satisfies

ψt(x, t)− ψxx(x, t)− εψxxxx(x, t)− kψ(x, t) = 0, (x, t) ∈ (0, π)× (0, T ),

ψ(x, T ) = 0, x ∈ (0, π),

ψ(0, t) = ψ(π, t) = ψxx(0, t) = ψxx(π, t) = 0.
(2.2)

Multiplying (2.2) by ψ(x, t) and integrating on x from 0 to π, we obtain∫ π

0

d

dt
ψ(x, t)ψ(x, t)dx−

∫ π

0

ψxx(x, t)ψ(x, t)dx

−
∫ π

0

ψxxxx(x, t)ψ(x, t)dx−
∫ π

0

kψ(x, t)ψ(x, t)dx = 0.

Applying the Green formula, we have∫ π

0

ψxx(x, t)ψ(x, t)dx = −
∫ π

0

ψx(x, t)ψx(x, t)dx = −‖∇ψ(x, t)‖2,

∫ π

0

ψxxxx(x, t)ψ(x, t)dx = −
∫ π

0

ψxxx(x, t)ψx(x, t)dx

=
∫ π

0

ψxx(x, t)ψxx(x, t)dx = ‖∆ψ(x, t)‖2.

It follows that
d

dt
‖ψ(x, t)‖2 + ‖∇ψ(x, t)‖2 − ε‖∆ψ(x, t)‖2 − k‖ψ(x, t)‖2 = 0 .

Using Schwartz inequality, we have

‖∇ψ(x, t)‖2 =
∫ π

0

−ψxx(x, t)ψ(x, t)dx

= 〈−∆ψ(x, t), ψ(x, t)〉

≤ ε‖∆ψ(x, t)‖2 +
1
4ε
‖ψ(x, t)‖2.

Therefore,
d

dt
‖ψ(x, t)‖2 ≥ (k − 1

4ε
)‖ψ(x, t)‖2,
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Choosing k = 1/4ε, we have

‖ψ(., T )‖2 − ‖ψ(., t)‖2 ≥
∫ T

t

(k − 1
4ε

)||ψ(., s)||2ds = 0.

Since w(., T ) = 0 it follows that w(., t) = 0 and ψ(., t) = 0 therefore, u(x, t) =
v(x, t).
Step 3: The solution of (1.7)–(1.9) depends continuously on g ∈ L2(0, π). Let
u and v be two solution of (1.7)–(1.9) corresponding to the final values g and h,
respectively. By (1.10),

u(x, t) =
∞∑

n=1

(e(T−t)(n2−εn4)gn −
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−t)fn(s)ds) sin(nx),

v(x, t) =
∞∑

n=1

(e(T−t)(n2−εn4)hn −
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−t)fn(s)ds) sin(nx),

where

gn =
2
π
〈g(x), sin(nx)〉, hn =

2
π
〈h(x), sin(nx)〉

It follows that

‖u(., t)− v(., t)‖2
H =

π

2

∞∑
n=1

e2(n
2−εn4)(T−t)(gn − hn)2.

In view of the inequality n2 − εn4 ≤ 1/(4ε), we have

‖u(., t)− v(., t)‖2 ≤ π

2

∞∑
n=1

e(T−t)/2ε(gn − hn)2

=
π

2
e(T−t)/2ε

∞∑
n=1

(gn − hn)2 = e(T−t)/2ε‖g − h‖2.

Hence
‖u(., t)− v(., t)‖ ≤ e(T−t)/4ε‖g − h‖.

This completes the proof of Step 3 and the proof of the theorem. �

3. Regularization of Problem (1.1)–(1.3)

We first have a uniqueness result.

Theorem 3.1. Let f(x, t) ∈ L2(0, T ;L2(0, π)). Then (1.1)–(1.3) has at most one
(weak) solution in C([0, T ];L2(0, π)) ∩ L2(0, T ;H1

0 (0, π) ∩H2(0, π)).

The proof of the above lemma can be found in [11]. Despite the uniqueness,
Problem (1.1)–(1.3) is still ill-posed. Hence, a regularization has to be used.

Theorem 3.2. Let f ∈ L2(0, T ;L2(0, π)) be such that ∂4f(x,t)
∂x4 ∈ L2(0, T ;L2(0, π)).

Suppose that Problem (1.1)–(1.3) has a weak solution u in C([0, T ];L2(0, π)) ∩
L2(0, T ;H1

0 (0, π) ∩H2(0, π)). Then

‖u(., t)− uε(., t)‖ ≤ ε(T − t)

√
8
t4
‖u(., 0)‖2 + t2‖∂

4f(x, t)
∂x4

‖2
L2(0,T ;L2(0,π)),

for every t ∈ (0, T ], where uε is the unique solution of (1.7)–(1.9).
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Proof. Suppose u is the exact solution of (1.1)–(1.3). Then, as shown in [6],

u(x, t) =
∞∑

n=1

(
e−tn2

un(0) +
∫ t

0

e(s−t)n2
fn(s)ds

)
sin(nx). (3.1)

where un(0) = 2
π 〈u(x, 0), sin(nx)〉. Then

g(x) = u(x, T )

=
∞∑

n=1

(
e−Tn2

un(0) +
∫ T

0

e(s−T )n2
fn(s)ds

)
sin(nx),

=
∞∑

n=1

ϕn sin(nx).

Hence gn = e−Tn2
un(0) +

∫ T

0
e(s−T )n2

fn(s)ds and

uε
n(t) = e(T−t)(n2−εn4)gn −

∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s)ds,

= e(T−t)(n2−εn4)(e−Tn2
un(0) +

∫ T

0

e(s−T )n2
fn(s)ds)

−
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s)ds,

= e−tn2
e−ε(T−t)n4

un(0) +
∫ t

0

e(T−t)(n2−εn4)e(s−T )n2
fn(s)ds)

+
∫ T

t

e(T−t)(n2−εn4)e(s−T )n2
fn(s)ds

−
∫ T

t

e(s−t)(n2−εn4)e−εn4(T−s)fn(s) ds.

It follows that

uε
n(t) = e−tn2

e−ε(T−t)n4
un(0) +

∫ t

0

e(s−t)n2
e−ε(T−t)n4

fn(s)ds. (3.2)

From (1.10), (2.1), (2.2) and using the inequality 1− e−x ≤ x for x > 0, we have

|un(t)− uε
n(t)|

≤ e−tn2
(1− e−εn4(T−t))|un(0)|+ |

∫ t

0

e(s−t)n2
(1− e−εn4(T−t))fn(s)ds|

≤ e−tn2
(1− e−εn4(T−t))|un(0)|+

∫ t

0

e(s−t)n2
(1− e−εn4(T−t))|fn(s)|ds

≤ e−tn2
εn4(T − t)|un(0)|+

∫ t

0

e(s−t)n2
εn4(T − t)|fn(s)|ds

=
ε

t2
e−tn2

(tn2)2(T − t)|un(0)|+ ε(T − t)
∫ t

0

e(s−t)n2
n4|fn(s)|ds

≤ 2ε
t2

(T − t)|un(0)|+ ε(T − t)
∫ t

0

n4|fn(s)|ds.

(3.3)
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In view of (a+ b)2 ≤ 2(a2 + b2) and using Holder inequality, we obtain

|un(t)− uε
n(t)|2 ≤ 2[

4ε2

t4
(T − t)2|un(0)|2 + ε2(T − t)2(

∫ t

0

n4|fn(s)|ds)2]

≤ 8ε2

t4
(T − t)2|un(0)|2 + ε2(T − t)2t2

∫ t

0

n8|fn(s)|2ds.

It follows that

‖u(., t)− uε(., t)‖2

=
π

2

∞∑
n=1

|un(t)− uε
n(t)|2

≤ π

2
8ε2

t4
(T − t)2

∞∑
n=1

|un(0)|2 +
π

2
ε2(T − t)2t2

∫ t

0

∞∑
n=1

n8|fn(s)|2ds

=
8ε2

t4
(T − t)2‖u(., 0)‖2 + ε2(T − t)2t2

∫ t

0

‖∂
4f(x, s)
∂x4

‖2ds.

This completes the proof. �

Theorem 3.3. Let u be a solution of (1.1)–(1.3) with u ∈ L∞(0, T ;L2(0, π)) ∩
L2(0, T ;H1

0 (0, π)) and such that ‖∆2u(x, t)‖ <∞ for all t in [0, T ]. Then

‖u(., t)− uε(., t)‖ ≤ εT‖∆2u(., t)‖

Proof. From (3.2), we have

un(t)− uε
n(t) = e−tn2

(1− e−εn4(T−t))un(0) +
∫ t

0

e(s−t)n2
(1− e−εn4(T−t))fn(s)ds

= (1− e−εn4T )un(t).

Hence

‖u(., t)−uε(., t)‖2 =
π

2

∞∑
n=1

|un(t)−uε
n(t)|2 ≤ π

2
ε2T 2

∞∑
n=1

n8u2
n(t) = ε2T 2‖∆2u(., t)‖2.

This completes Proof. �

Theorem 3.4. Let Problem (1.1)–(1.3) have exact solution u ∈ C([0, T ];L2(0, π))∩
L2(0, T ;H1

0 (0, π) ∩H2(0, π)), corresponding to g. Assume that

∂4f(x, t)
∂x4

,
∂u

∂t
∈ L2(0, T ;L2(0, π)), ‖∆2u(x, t)‖ <∞ ∀t ∈ [0, T ] .

Let gε be the measured data such that ‖gε − g‖ ≤ ε. Then there exist a function
uβ(ε) satisfying

‖uβ(ε)(., t)− u(., t)‖ ≤ K

ln(1/ε)
+ εt/T , ∀t ∈ (0, T ],

‖uβ(ε)(., 0)− u(., 0)‖ ≤ (1 + C)

√
T

ln(1/ε)
+ C

T

4 ln(1/ε)
,
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where β(ε) = T
4 ln(1/ε) and

K =
1
4
T (T − t)

√
8
t4
‖u(., 0)‖2 + t2‖∂

4f(x, t)
∂x4

‖2
L2(0,T ;L2(0,π)),

M = max
{

sup
0≤t≤T

‖ut(x, t)‖, T sup
0≤t≤T

‖∆2u(x, t)‖
}
.

Proof. Let vβ(ε)(., t) be a solution of (1.7)–(1.9) corresponding g, and wβ(ε) be
solution of (1.7)–(1.9) corresponding gε. We consider the function h(t) = ln t

t − ln ε
T

for ε ∈ (0, T ). We have h(T ) > 0 and limt→0 h(t) = −∞ then h(t) = 0 has solution
in (0, T ). We call tε is smallest solution of it. Apply inequality ln t > − 1

t we get

tε <
√

T
ln(1/ε) . Using Lagrange Theorem for u(., t) and uε(., t) in (0, tε) we have

‖u(0)− u(tε)‖ ≤ tε‖u′(α)‖ ≤ Ctε, ∀α ∈ (0, tε).

Using Theorem 3.3 we get

‖vβ(ε)(tε)− u(0)‖ ≤ ‖vβ(ε)(tε − u(tε)‖+ ‖u(0)− u(tε)‖
≤ β(ε)(T − tε)‖∆2u(tε)‖+ Ctε

≤ C (

√
T

ln(1/ε)
+

T

4 ln(1/ε)
)

We put

uβ(ε)(t) =

{
wβ(ε)(t), 0 < t ≤ T,

wβ(ε)(tε), t = 0.
By Step 3 of Theorem 2.1,

‖vβ(ε)(., t)− wβ(ε)(., t)‖ ≤ e
T−t
4β(ε) ‖gε − g‖ = εt/T .

By Theorem 3.2 and applying the triangle inequality, we have

‖uβ(ε)(., t)− u(., t)‖ ≤ ‖vβ(ε)(., t)− wβ(ε)(., t)‖+ ‖vβ(ε)(., t)− u(., t)‖

≤ K

ln(1/ε)
+ εt/T .

On the other hand,

‖uβ(ε)(., 0)− u(., 0)‖ ≤ ‖vβ(ε)(., tε)− wβ(ε)(., tε)‖+ ‖vβ(ε)(., tε)− u(., 0)‖

≤ (1 + C)

√
T

ln(1/ε)
+ C

T

4 ln(1/ε)
.

This completes the proof. �

4. Numerical experiments

Consider the problem

ut − uxx = 2et sin(x),

u(x, 1) = g(x) = e sin(x)
(4.1)

whose exact solution is u(x, t) = et sin(x). Note that u(x, 1/2) =
√
e sin(x) ≈

1.648721271 sin(x). Let gn be the measured final data

gn(x) = e sin(x) +
1
n

sin(nx).



EJDE-2006/04 REGULARIZATION AND ERROR ESTIMATES 9

So that the data error, at the final time, is

F (n) = ‖gn − g‖L2(0,π) =

√∫ π

0

1
n2

sin2 nxdx =
1
n

√
π

2
.

The solution of (4.1), corresponding the final value gn, is

un(x, t) = et sin(x) +
1
n
en2(1−t) sin(nx),

The error at the original time is

O(n) := ||un(., 0)− u(., 0)||L2(0,π) =

√∫ π

0

e2n2

n2
sin2(nx) dx =

en2

n

√
π

2
.

Then, we notice that

lim
n→∞

F (n) = lim
n→∞

||ϕn − ϕ0||L2(0,π) = lim
n→∞

1
n

√
π

2
= 0,

lim
n→∞

O(n) = lim
n→∞

‖un(., 0)− u(., 0)‖L2(0,π) = lim
n→∞

en2

n

√
π

2
= ∞.

From the two equalities above, we see that (4.1) is an ill-posed problem. Approxi-
mating the problem as in (1.7)–(1.9), the regularized solution is

uε(x, t) =
∞∑

m=1

(
e(T−t)(m2−εm4)gm

−
∫ T

t

e(s−t)(m2−εm4)e−εm4(T−s)fm(s)ds
)

sin(mx),

uε(x, t) = e(1−t)(1−ε)+1 sin(x)

− 2
( ∫ 1

t

e(s−t)(1−ε)e−ε(1−s)+1ds
)

sin(x) +
1
n
e(1−t)(n2−εn4) sin(nx).

Hence

uε(x,
1
2
) =

[
e

3−ε
2 − 2

∫ 1

1/2

e2s−1/2−ε/2ds
]
sin(x) +

1
n
e

1
2 (n2−εn4) sin(nx).

Table 1. Approximations and error estimates for several values of ε

ε uε ‖u− uε‖
10−2

√
π
2 1.643563444 sin(x) + 0.8243606355 sin 200x 0.1462051256

10−4
√

π
2 1.648617955 sin(x) + 0.1648721271 sin 10000x 0.02066391506

10−10
√

π
2 1.648721271

(
sin(x) + 10−10 sin(1010x)

)
0.00002066365678

10−16
√

π
2 1.648721271

(
sin(x) + 10−16 sin(1016x)

)
2.066365678× 10−8

10−30
√

π
2 1.648721271

(
sin(x) + 10−30 sin(1030x)

)
2.066365678× 10−15
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