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ASYMMETRIC ROBIN BOUNDARY-VALUE PROBLEMS WITH
p-LAPLACIAN AND INDEFINITE POTENTIAL

SALVATORE A. MARANO, NIKOLAOS S. PAPAGEORGIOU

Communicated by Vicentiu D. Radulescu

ABSTRACT. Four nontrivial smooth solutions to a Robin boundary-value prob-
lem with p-Laplacian, indefinite potential, and asymmetric nonlinearity super-
linear at 400 are obtained, all with sign information. The semilinear case is
also investigated, producing a nonzero fifth solution. Our proofs use variational
methods, truncation techniques, and Morse theory.

1. INTRODUCTION

Let Q be a bounded domain in R™ with a C?-boundary 99, let a € L>°(Q), and
let f:Q xR — R be a Carathéodory function such that f(-,0) = 0. Consider the
Robin problem

~Apu+ a(x)|ulP?u = f(z,u) in Q,
Ou

on, + B(z)|ufP2u =0 on 09,

(1.1)

where 1 < p < 400, A, indicates the p-Laplacian, (%; = |Vu|P~2Vu - n, with n

being the outward unit normal vector to 9Q, and 3 € C%(99, R(J{). We say that
u € WHP(Q) is a (weak) solution of (I.1)) provided

/|Vu|p*2Vu~Vvdx—|— ﬁ|u|p*2uvda+/a|u|p*2uvdac:/f(x,u)vdm
Q Q Q

ble)
for all v € W1P(Q).
This paper studies the existence of multiple solutions to (|1.1)) when

e the potential function « — a(x) is indefinite, i.e., sign changing, and
e the reaction term (z,t) — f(x,t) exhibits an asymmetric behaviour as ¢
goes from —oo to +oo.

For (z,&) € Q x R, we define

13
F(m>§) ::/ f(.f(:,T)dT, H(‘T>£) = f($7£)§_pF(m»€) (1.2)
0
Roughly speaking, our assumptions on the rate of f at infinity are the following.
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(1) limesqoo F(x,8)§P = 400 uniformly in 2 € Q and there exists ¢; > 0
such that
H(z,&) < H(z,&)+c1 whenever 0< & <&.
(2) For appropriate ¢y € R one has

. f(l',t) . f(:E,t) N :
e < fminf sy Stmsup iS5y <h - Jim H(@,8) =

uniformly in x € Q.

Here A, denotes the nth-eigenvalue of the problem

0
—Aputa(z)|uf"?u = AulP?u in Q, a%+ﬁ(x)\u|p—2u =0 ondQ. (1.3)
P

It should be noted that a possible interaction (resonance) with A1 is allowed and
that f(z,-) grows (p — 1)-super-linearly near +o0o. Nevertheless, contrary to most
previous works, we do not need here the stronger unilateral Ambrosetti-Rabinowitz
condition.

Under (1), (2), and some additional hypotheses, one of which forces a p-concave
behaviour of t — f(x,t) at zero, there are four C'*-solutions to , two positive,
one negative, and the remaining nodal; see Section 3. If p := 2 then becomes

—Au+a(z)u= f(z,u) in Q,

1.4
g%—!—ﬂ(x)u:() on Of. (14

As in [6] [T4], the assumptions on a and S can be significantly relaxed. However, we
obtain five nontrivial smooth solutions; cf. Theorem

The adopted approach exploits variational methods, truncation techniques, and
results from Morse theory. Regularity is a standard matter, unless p := 2, in which
case [24, Lemmas 5.1, 5.2] are employed.

Problem has been widely investigated under various points of view; see, for
instance, [6 [14] and the references given there. On the contrary, the equation

—Apu+ a(x)|ulP2u = f(z,u) in Q,

with Dirichlet, Neumann, or Robin boundary conditions, did not receive much
attention when p # 2, a sign-changing potential appears, and ¢ — f(z,t) is asym-
metric. Actually, we can only mention [I6], where the Dirichlet problem is studied,
[18], dealing with symmetric reactions and Neumann boundary conditions, [4], [9],
devoted to (p — 1)-super-linear reactions. The situation looks somewhat different if
a = 0; vide, e.g., [8, [15] 20} 21] and their bibliographies.

2. PRELIMINARIES

Let (X, |- ||) be a real Banach space. Given a set V C X, write V for the closure
of V, OV for the boundary of V', and int x (V') or simply int(V'), when no confusion
can arise, for the interior of V. If z € X and § > 0 then

Bs(z):={2€ X : ||z — x| < é}.

The symbol (X*,| - ||x+) denotes the dual space of X, (-,-) indicates the duality
pairing between X and X*, while x,, — x (respectively, x,, — z) in X means ‘the
sequence {z,} converges strongly (respectively, weakly) in X’.



EJDE-2018/127 ASYMMETRIC ROBIN BV PROBLEMS 3

We say that @ : X — R is coercive if
lim ®(z) = +oc.

llzll—+o0
A function @ is called weakly sequentially lower semi-continuous when

Ty, =2 InX = ®(x)<liminf ®(x,).

Let ® € C'(X). The classical Cerami compactness condition for ® reads as follows.
(C) Every sequence {z,} C X such that {®(z,)} is bounded and

Hm (14 |22 (zn)[[x- =0
n—-+oo

has a convergent subsequence.
For ¢ € R, we define
P ={2c X :0(zx)<c}, K. (P):=K(@)Nd (),
where, as usual, K (®) denotes the critical set of ®, i.e.,
K(®):={z e X: ®(x)=0}.
We say that A : X — X* is of type (S)4 if

Tp =2 inX, limsup(A(z,),z,—2)<0 = z, —x.
n—-+o0o
Given a topological pair (A, B) fulfilling B C A C X, the symbol H,(A, B), ¢ € Ny,
indicates the q"™-relative singular homology group of (A, B) with integer coeffi-
cients. If xy € K.(®) is an isolated point of K(®) then

Co(®,20) := Hy(®°NV, NV \{z0}), ¢€No,
are the critical groups of ® at xy. Here, V stands for any neighborhood of xg
such that K(®) N ®°NV = {zo}. By excision, this definition does not depend on

the choice of V. Suppose ® satisfies condition (C), ®|x(¢) is bounded below, and
¢ < infyek(a) ®(z). Put

Cy(®,00) := Hy(X,2°), ¢eNp.

The second deformation lemma [I0, Theorem 5.1.33] implies that this definition
does not depend on the choice of ¢. If K(®) is finite, then setting

+o0 foo
M(t,z) = Zranqu(@,x)tq , P(t,o0) := Zranqu(@, 00)t?
q=0 q=0
for (t,x) € R x K(®), the following Morse relation holds
> M(t,x) = P(t,00) + (1+)Q(t), (2.1)
zeK(P)

where Q(t) denotes a formal series with nonnegative integer coefficients; see for
instance [I7, Theorem 6.62].

Now, let X be a Hilbert space, let z € K(®), and let ® be C? in a neighborhood
of z. If ®”(x) turns out to be invertible, then x is called non-degenerate. The
Morse index d of x is the supremum of the dimensions of the vector subspaces of X
on which ®”(z) turns out to be negative definite. When z is non-degenerate and
with Morse index d one has

Co(®,2) = 6,4%, q€Ny. (2.2)
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The monograph [I7] represents a general reference on the subject.

Throughout this article, 2 denotes a bounded domain of the real Euclidean N-
space (R, |- |) whose boundary 9 is C? while n(z) indicates the outward unit
normal vector to 92 at its point 2. On 9 we will employ the (N — 1)-dimensional
Hausdorff measure . The symbol m stands for the Lebesgue measure, p € (1, +00),
p :=p/(p—1), |- |l; with ¢ > 1 is the usual norm of L¢(Q), X := WP(Q), and

hull == (I7ully + ullp)” - we X

Write p* for the critical exponent of the Sobolev embedding WP(Q2) C LI(Q).
Recall that p* = Np/(N —p) if p < N, p* = 400 otherwise, and the embedding
turns out to be compact whenever 1 < g < p*.

Givent e R, u,v: Q2 — R, and f: Q) xR — R, define

t* = max{+t,0}, uF(z):=u(x)E, Ni(u)(z):= f(z,u(r)).

u < v (respectively, u < v, etc.) means u(x) < v(z) (respectively, u(x) < v(z),
etc.) for almost every z € . If u, v belong to a function space, say Y, then we set

v i ={weY : u<w<w}, Yy ={weY:w>0}.
Putting C := C1(Q),, int(Cy) := intcl(ﬁ)(CJr), Dy = intco(ﬁ)(CJr), and

ou

Cy = {ueCy:u(x)>0ve e, %|6Qﬁu_1(0)

<0if 0QNu 1 (0) # 0},
one evidently has D, = {u € C; : u(z) > 0 Vz € Q} as well as
D+ g é+ g 1nt(C+) .

Let A, : X — X* be the nonlinear operator stemming from the negative p-
Laplacian A,, i.e.,

(Ap(u),v) = /Q \Vu(2)|P~?Vu(z) - Vo(z)de  Yu,v € X.

A standard argument [I7), Proposition 2.72] ensures that A, is of type (S)4.

Remark 2.1. Given u € X, w € L¥' (), and § € C%*(dQ,R}), the assertion

(Ap(u),v) + /{m B(2)|u(z) P 2u(z)v(x)do = /Qw(x)v(x)dx, veX,

is equivalent to

ou
ony,
This easily stems from the nonlinear Green’s identity [I0, Theorem 2.4.54]; see for
instance the proof of [I9, Proposition 3].

—Apu=win Q, + B(2)|ufP"2u=0on ON.

We shall employ some facts about the spectrum of the operator
u i —Apu+ a(r)|ulPu

in X with homogeneous Robin boundary conditions. So, consider the eigenvalue
problem (1.3]), where, henceforth,

a € L(Q) and 3 € C**(9Q,RY) with a € (0,1). (2.3)
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Define
E(u) == ||Vulh +/Qa(m)|u(x)\de + /89 B(z)|u(z)|Pde Yu € X. (2.4)

The Liusternik-Schnirelman theory provides a strictly increasing sequence {Xn} of
eigenvalues for (|1.3). Denote by E(\,,) the eigenspace corresponding to A,. As in
[18, [19], one has

E(u)

5\1 is isolated and simple. Further, ;\1 = in —
uex\{0} ||u|b

(2.5)
There exists an LP-normalized eigenfunction 4; € D, associated with AL (2.6)

Let p := 2. It is known [6} 4] that H'(Q) = &, E()\,) and that, for any n > 2,

&(u)
ull3

j\n:inf{m:uef[n,u#O}:sup{ :ueﬁn,u;«éO}, (2.7)

where B R N Q
H,, = @?:1-5‘()‘71)7 Hy, = @?zo:mE()‘”)

3. EXISTENCE RESULTS

To avoid unnecessary technicalities, for every = € €2’ will take the place of ‘for
almost every = € ) while ¢y, ca,... indicate positive constants arising from the
context.

Henceforth, f : QxR — R denotes a Carathéodory function such that f(-,0) = 0.
Let F and H be given by . We shall make the following assumptions.

(A1) There exist a; € L*°(Q) and r € (p,p*) such that
If(z, )] < ar(z)(1+ [t V(x,t) € QxR.
(A2) lime 400 F(2,£)€ P = 400 uniformly in x € Q. Moreover, for appropriate
az € LY(Q) 4,
0<& <& = H(z,&) < H(x,&) +axx) Vre. (3.1)

(A3) There exists @ € D fulfilling

ou

an loq

and esssup,co[f(z,u(z)) — a(z)u(z)P~1] < 0.
(A4) For some a3 € L°°(2) one has

o ) fl@,t) _ :
a3() < Yminf frpmay < msup =gy <A lim H(n ) = oo

<0, AyuelL”(Q), (Ay(a),v)>0 YoeWhP(Q),,

uniformly with respect to = € Q.
(A5) There exist g € (1,p) and d; > 0 satisfying

0 < fz,8)§ < qF(2,§) inQx([=01,61]\{0})

as well as essinf,cq F(x,01) > 0.
(A6) To every p > 0 there corresponds 4, > 0 such that t — f(z,t) + p,tP~! is
nondecreasing on [0, p] for all z € .

Remark 3.1. The assumption limg_ 4 F(z,§){™P = +oo is weaker than the
unilateral Ambrosetti-Rabinowitz condition below.
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(AR) For appropriate 6 > p and M > 0 one has essinf,cq F(x, M) > 0 and
0 < OF(2,€) < f(@,)¢ in Q x [M,+00).
A standard example is f(x,t) :=tP"tlogt, t > M > 1.

Remark 3.2. Property (3.1]) has been thoroughly investigated in |11}, Lemma 2.4].
Among other things, this result ensures that (A2) forces lim; ., o f(z,t)t P+ =
+00, i.e., f(x,-) turns out to be (p — 1)-super-linear at +oo.

Remark 3.3. Assumption (A3) implies A,@ < 0. Indeed, via the nonlinear Green’s
identity [I0, Theorem 2.4.54] we get
9
/ v(z) Apu(x) de = —(Ap(a),v) + <%,’U>ag <0 Yoe Wr(Q), .
Q P

Here, (-,-)pq denotes the duality pairing between W*ﬁ’p'(ag) and Wﬁ’p(aQ).
Moreover,

Up(@).0)+ [ @iy @ de > [ faa@)eds, ve W@,

whence @ is a super-solution of (L.1)).
Remark 3.4. Reasoning as in [0, Lemma 3.1] shows that (A4) entails
¢ lim [\ €] — pF(x,€)] = 400  uniformly with respect to 2 € Q.

Problem (1.1)) is thus coercive in the negative direction, and direct methods can be
used to find a negative solution.

Remark 3.5. After integration, (A5) easily leads to
0¢]" < F(x,€) V(x,§) € Qx [=61,01], (3.2)
with suitable # > 0. Consequently, f(z,-) exhibits a concave behaviour at zero.
We start by pointing out some auxiliary results.

Proposition 3.6. Suppose 0 < a. If h; € L°°(2), u; € C1(Q), i = 1,2, fulfill
o —Ayu; + a(@)|w;[P~%u; = h; in Q,
e essinf ek [ho(z) — hi(x)] > 0 for any compact set K C Q,
o up < us and%<0 on 02,

then us —uq € C’+,

Proof. Recall that a € L*(€2). The first conclusion, namely ug(x) — u;(z) > 0 for
all z € Q, is achieved arguing exactly as in the proof of [3, Proposition 2.6], while
the other directly follows from [22, Theorem 5.5.1]. O

Proposition 3.7. Let (A3) and (A6) be satisfied. Then each nontrivial solution
€ [0,a] to (1.1) lies in int(Cy) N (a— CL).
Proof. Standard regularity arguments ensure that @ € C; \ {0}. Fix

p = oo > lllloe > 0.

Assumption (A6) provides p, > ||a||~ fulfilling
—Ayi(e) + (a(a) + g = (5 5(@) + ppi@)P >0 ae i Q.
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Therefore, by [23, Theorem 5], @ € Cy C int(C;). Next, define us := @ + 6,
where 6 > 0. Since
— A+ (a+ p,)aP ™t < —Ayi+ (a+ pp)ul "
= —Apii+ (a+ p,)a"~ + o(d)
= f(, @) + p, @ + 0(6),
using (A6) and (A3), with appropriate ¢; > 0, we obtain
—Api+ (a4 p,)aP "t < fla,@) + pa? ! + 0(0)
< (a+ pp)u" ™t = e+ 0(0)

<(atp) =5

< —Apu+ (a+ p,)aP "t — %1,
for any § > 0 small enough, because A,z < 0; cf. Remark [3.3} Proposition [3.6] now
gives 4 —u € C’+, as desired. O

To simplify notation, write X := W'?(Q). The energy functional ¢ : X — R
stemming from problem (1.1 is

1
() =~ Ela) ~ / Fla,u(z))dz, ue X, (3.3)
Q
with £ and F' given by (2.4)) and , respectively. One clearly has ¢ € C*(X).
Proposition 3.8. Under (2.3), (Al), (A2), and (A4), the functional ¢ satisfies
condition (C).

The proof is rather technical but standard (see, e.g., [I4, Proposition 3.2]). So,
we omit it.
Henceforth a will denote a real constant strictly greater than ||alco-

3.1. Positive solutions. Truncation-perturbation techniques and minimization
methods produce a first positive solution whenever (A3) is assumed.

Theorem 3.9. Let (2.3), (Al), (A3), (A5), and (A6) be fulfilled. Then (1.1)
has a positive solution uy € inte g ([0,a]). Moreover, ug turns out to be a local
minimizer of p.

Proof. For x € Q and t,£ € R, we define

- flz,tt) +a(tt)r—t if t+ < u(x),
Flat) = { ) waltr |

fz,a(z)) + agu(x) otherwise, (3.4)
F(z,8) = /O f(z,t)dt.

It is evident that the corresponding functional

%, '—1 u allul||P) — z,u(x))dxr, u
plu) =+ (E(w) + alul) /QF<, (@) de, uwe X,

belongs to C'(X). A standard argument, which exploits Sobolev’s embedding
theorem besides the compactness of the trace operator, ensures that @ is weakly
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sequentially lower semi-continuous. Since, by (2.3)), the choice of @, and (3.4), it is

coercive, we have

nf ¢(u) = @(uo) (3.5)
for some ug € X. Set § := min{d;, min_ g u(x)}, where é; is asin (A5). If 7 € (0,1)
complies with 74, < §, then

TP—4q

A = Ol 2

thanks to (3.4), (3.2), and (2.6). Thus, for 7 small enough, @(741) < 0, which

entails

N T .
@(Tul) < ;S(ul) — 97’q||u1Hg — TQ(

P(uo) <0 =(0).
Consequently, ug # 0. Through (3.5) we get @’(ug) = 0, namely

(Ap(uo),v>+/(a+d)|u0|p_2uovdx+/ Blug|P~2ugv do = / f(z,up)vdz, (3.6)
Q o0 Q

for v € X. Using (3.4) and (3.6) written for v := —uy produces
min{1, @ — flafloc} [Jug [[” < E(ug) + allug [ = 0,

whence ug > 0. Now, choose v := (ug — @)™ in (3.6) and observe that
/ f(z,u)(ug — u)tdx
Q

= [ [f(z,a) + @’ (uo — u) T da
Q

< / (a+a)a? " (uo — @) de + | Bl (uo— @) do
Q o0
because of (3.4)), (A3), and (2.3). This yields
(Ay o) = Ay(@), (w0 = 0)") + (@ = lallc) [ (7" = @Yo — 0) e <0,
Q

i.e., ug < u. Therefore, both ug € [0,4] \ {0} and ug solves problem (L.I]), so that,
due to Proposition up € int(Cy )N (a@—Cy), which implies ug € inten g, ([0, a]).
Finally, since

@L[O,a]: @L[O,a]’
Equation , combined with [I9] Proposition 3], ensures that ug is a local mini-
mizer for . a

Critical point arguments produce a second positive solution.

Theorem 3.10. If (2.3), (A1)—(A3), (A5)~(AG6) hold, then possesses a solu-
tion uy € int(Cy) \ {uo} such that ug < uy.

Proof. For x € Q and t,£ € R, we define

flx,ug(x)) + aug(z)P~1 if t < wg(z),
fla,t) +atP=! otherwise,

fO(mvt) = {

3
F()({E,f) 2:/0 f()(x,t)dt.
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It is evident that the corresponding truncated functional

wo(u) := % (E(u) + d||u||£) - /QFO(x,u(x)) dr, ue€X, (3.8)

belongs to C'(X) also. A standard argument, which exploits Sobolev’s embedding
theorem and the compactness of the trace operator, ensures that gy is weakly
sequentially lower semi-continuous.

Claim 1: (g satisfies condition (C). Let {u,} be a sequence in X be such that
lpo(un)| <e1 VneN, (3.9)
Jtim (14 Db ) - =0. (3.10)

Through (3.10)) one has

‘<Ap<un)7w> + / B'un|p_2unwd0
o0

+/(a+a)|un\p_2unwdw—/ fo(x,un)wdx’ (3.11)
Q Q
< _Enflwll Yw € X,

L [fun |

where €, — 0%. We first show that {u,} is bounded. This evidently happens once
the same holds for both {u,} and {u}}. By (3.7), choosing w := —u,, in
easily yields

E(uy,) +allu, [ < ca.
From and the choice of a it thus follows ||u;, || < c3. As n was arbitrary, the
sequence {u } turns out to be bounded. So, in particular, on account of ,

e +alui - p [ Foloui@)do < e
Since
/FO dx—/[Fo(x,uI)—Fo(x,uo)}dm—i—/[f(%uo)+du871]u0dw7
Q Q

an easy computation shows that

n

€(u+)—p/F(a: uwl(z))dr <cs, neN. (3.12)
Q

Now, (3.11) written with w := u;} furnishes

— e~ + [ (o) + g Yutde+ [ 7o)+t do

Q1 Qo
< éen,

where Q1 = {2 € Q: 0 < up(z) < up(x)} and Qg := {z € Q : up(x) > up(x)}.
Hence,

—&(u / flz,uHutde < ce. (3.13)

Inequalities (3.12] - lead to

/H ))dx <c¢; VneN.
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Via the same arguments used in the proof (Claim 1) of [I4, Proposition 3.2], with 2
replaced by p, we achieve ||u|| < cg. Therefore, {u,} C X is bounded. As before,
and along a subsequence when necessary, one has u, — u in X.

Claim 2: K(pg) C{ue X : up <u}. If u€ K(pp) then

Aya).0)+ [
Q
for all v € X. Letting v := (ug — u)" and recalling that ug solves (1.1)) yields

(A (o) — Ap(us), (up — u)*) + /Q (a+a) (™" — ulP~2u)(uo — u)* da

(a + a)|uP~%uv dz + BlulP~?uv do = / fo(z,w)vde,
1) Q

B ) o ) do =0,
By this entails
(Ap(uo) — Ap(u), (ug —u)™) + /gz(a +a)(uf " — |ulP %) (up — w)tdz <0,
whence ug < u, because @ > ||a||oo-
We may evidently assume
K(po) N[0, a] = {uo}, (3.14)

otherwise, thanks to Claim 2, there would exist u1 € K () N [ug, 1] \ {uo}, i-e., a
second solution of (L.1)). Moreover, Proposition 3.7 would give u; € int(C4) N (@ —
(), and the conclusion follows.

For every x € Q, t,£ € R, we put

. { fol(z,t) if t < a(x),

_ £
folz,t) := folw, @(x))  otherwise, Fo(z,§) ::/O fol(z,t) dt. (3.15)

The associated truncated functional
1 _
pofu) = (E(w) + alulp) [ Folo,u()do, e X,
Q

belongs to C'(X) and is coercive. A standard argument, based on the Sobolev
embedding theorem and the compactness of the trace operator, ensures that @g is
weakly sequentially lower semi-continuous. So,

ulélg( (ﬁo(u) = @0(@10) (316)

for some g € X. Since, like in the proof of Theorem [3.9] one has K(@g) C [ug, ],

(3.14)—(3.16)) produce @y = ug. Observe now that

#olio.a1= ¢olo.al
while, by Theorem ug € intcl(ﬁ)([(), @]). Thus, due to [19, Proposition 3], ug is
a local minimizer for ¢g. Without loss of generality, suppose ug isolated in K(¢g),
or else (|1.1)) would possess infinitely many solutions bigger that ug; cf. Claim 2 and

(3.7). The same reasoning made in the proof of [I, Proposition 29] provides here
p > 0 fulfilling

< inf .
o (UO) uealélp(uo) (‘DO(U)
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From (3.7) and (A2) it easily follows that

rll»rfoo wo(T1) = —o0.

Claim 1 guarantees that condition (C) holds for ¢g. Hence, the mountain-pass
theorem gives a point u; € K(¢o) \ {uo}. Obviously, up < uy by Claim 2 and
u1 solves . Through the regularity arguments used above we then achieve
up € C1(Q). Tt remains to check that u; € int(C,), which can be performed
arguing as in the proof of Proposition O

3.2. Negative solutions. The minimization method yields a negative solution
whenever (A4) is assumed.

Theorem 3.11. Let (2.3)), (Al), (A4), and (Ab) be satisfied. Then (1.1)) possesses
a solution ug € —int(Cy).

Proof. For x € Q and t,£ € R, we define

7 J fa ity +altpt it ¢ <0, L
flet= {0 otherwise, F(z,¢) '7/0 [z, t)dt

It is evident that the corresponding functional

o(u) ::%(5( +allul?) /Fx u(z))dr, weX,

3

belongs to C*(X). A standard reasoning, which exploits Sobolev’s embedding
theorem besides the compactness of the trace operator, ensures that ¢ turns out to
be weakly sequentially lower semi-continuous. Moreover, ¢ is coercive. Indeed, if

llun|| = +00 and @(u,) < e Vn €N, (3.17)
then
1 _ _
L)~ [ Fla.—u; (@) da
b Q
1
< Swin{la~ falHud P + SE) — [ Fl-u@)de @1y)
Q
1 -
< L (Eun) + alunl?) - / Fla,—u=(z)dz <1, neN
Q
Suppose ||u,, || — +o0o and write w,, := ||u,, || ~tu,, . From ||w,| = 1 it follows, along
a subsequence when necessary,
w, =~ win X, w, — win LP(Q) and in LP(0Q), w >0. (3.19)
Through (3.18)) one has
1 1 _ C1
—E(wy) — —— / F(z,—u, (z))de < — Vn e N (3.20)
p [Jun |7 [Jun [P

while by (A1) the sequence {||u; || P Np(—u,)} C L*() is uniformly integrable.
Using the arguments made in the proof of [T, Proposition 14], besides (A4), we thus
obtain a function 6 € L>®(Q) such that —co <6 < A;/p and

1

([ [P

Np(—u;) — Lowr i LY(Q). (3.21)
p



12 S. A. MARANO, N. S. PAPAGEORGIOU EJDE-2018/127
Thanks to (3.19)—(3.20) this implies, as n — 400,
E(w) < / 0(z)w(x)Pdx. (3.22)
Q

If & # Ay, then [I8, Lemma 4.11] forces w = 0. From [B-19)-(3:21) it follows
|lwn|| — 0. However, this is impossible. So, suppose 0 = Ai. Gathering (3.22)
and (p2) together leads to w = ta; for some ¢ > 0. The above reasoning shows
that ¢ > 0. Hence, w € int(C4). By the definition of {w,} we actually have
u,, (x) — +oo for every x € Q. Since (A4) easily yields

AL|€]P — pF(x,€)] = +oo  uniformly in z € Q

lim
g0
(cf. Remark [3.4)), Fatou’s lemma gives

lim A (u;)P — pF(z, —u; (x))]dz = +oc0. (3.23)

n—-+oo Q

On the other hand, via (3.18)), besides ([2.5)), we get
[ vty (@)~ pF (o~ @)ldo < per V€
Q

against (3.23). Therefore, the sequence {u;, } C X is bounded. Using (3.18) again
one sees that {u;"} enjoys the same property, which contradicts (3.17).
Let ug € X satisfy

inf $(u) = P(u2).
Arguing as in the proof of Theorem [3.9] we achieve us < 0 and us # 0. So, us solves

problem (1.1)) and belongs to (—=C4)\ {0} by standard nonlinear regularity results.
Finally, (A1) and (A4) provide fi > ||a]|oo such that

flz,t) + @t~ 2t <0, (z,t) € QxRy.
Consequently,
Ap(—u2) + (a+ @)zl uz = f(x,us) + fluzP">uz <0,
whence
Ap(—uz) < (a+ @) (~u2)"™" i Q.

Through [23] Theorem 5] this implies —uy € int(C,), as desired. O
3.3. Extremal constant-sign and nodal solutions. The following stronger ver-
sion of (A5) will be used.

(A5’) There exist ¢ € (1,p), as > 0, and §; > 0 such that

a4|€|q < f(x7§)§ < qF(xvg) V(I,f) € x [_51a51]'

It plays a crucial role in getting useful information on the critical groups of ¢ at zero.
Precisely, the result below, whose proof is analogous to that of [2I Proposition 4.1]
(cf. also [I2, Theorem 3.6]), holds.

Lemma 3.12. Suppose (2.3)), (A1), (A5’) hold and K(p) is a finite set. Then
Ci(p,0) =0 for all k € Ny.
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Combining (A1) with (A5’) we obtain
flz, )t > aqlt|? —aslt]” iIn QxR (3.24)
for an appropriate as > 0. Consider the auxiliary problem

—Apu+ a(x)|[ulP?u = aglu|?*u — as|u/""?u in Q,

ou
P=2, —
™ + B(x)|ulP"?u=0 on 09.

(3.25)

Note that if u is a solution then —u also solves this problem.

Lemma 3.13. If (2.3) holds then (3.25) admits a unique positive solution u, €
Proof. The C'-functional 7 : X — R given by
1 _ _ ay as r
Vlu) =~ (E(u) +allu”ll) - ;||u+||3 + el ue X,
is coercive. Indeed, recalling that 8> 0, @ > ||al|co, and q¢ < p < r, we have
1 as r (o7} 1 _ _ _
P(u) = f(lﬁ) + eIl - ;lllﬁllg ts (@) +alu™})

1 _
> ];IIVWIIZ +ellut [l —ea (Ilu™lIp +1) + esflu™|”

1 _ _
= ];||VU+||§ + [t [P (callu™ ;7P = c2) + eslluT|]P —ea
> cylul|P —c5.

Since v is weakly sequentially lower semi-continuous also, there exists u; € X
fulfilling

Bluy) = inf (u).

ueX
Moreover, uy # 0 because ¥(t) < 0 for any ¢ > 0 small enough. As in the proof of
Theorem we next get uy > 0. Hence, by standard nonlinear regularity results,
uy € C4 \ {0}. The conclusion u4 € int(C4) easily derives from
- -1 -1
Mgy < (lalloe + asllus [157) o2 < cout ™

cf. [23] Theorem 5]. Let us now come to uniqueness. Suppose @ € int(Cy) is
another solution of (3.25)). For u € L1(£2), we put
1 .
Sy o [ VP4 g aud) itu= 0, € X,
+o00 otherwise.
[7, Lemma 1 ] ensures that J : L1(€2) — R U {+o0} is proper, convex, and lower

semi-continuous. A simple computation, chiefly based on [I0, Theorem 2.4.54],
yields

raw =1 [ L, r@w =1 [ D weo @,
QO u Q

while the monotonicity of J’ leads to

—Apu+ . —Apﬂ P ap
/Q( u’fl ﬁpil)(qu u)d:cZO.
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Therefore,

o = ) ot =] o )z

+3

which implies uy = 4, because ¢ < p < r. (]

Remark 3.14. Recall that when u is a solution, so is —u. Then u_ = —u4
represents the unique negative solution of ([3.25).

We define
Y. :={ue X\{0}:0<u, usolves },
Yo i={ue X\{0}:u<0, usolves (LI)}.
We already know (see Sections that these sets are both nonempty and that
Yo, =Y Cint(Cy).

Moreover, ¥4 (resp., X_) turns out to be downward (resp., upward) directed, as a
standard argument shows; see for instance [8, Lemmas 4.2-4.3].

Lemma 3.15. Under assumptions (A1)-(A4), (A5’), and (A6) one has
uy <u Yuedy, u<lu. Yued_.

Proof. Pick w e ¥,. For x € Q, t,£ € R, we define

(z,1) = as(tH)t —ag(tT)rt if tT < wu(z),
gt = agu(z)9™ — asu(x)" ! + au(z)P~!  otherwise,

13
G(x,§) ::/O g(x,t)dt.

Evidently, the functional
1
velw) = < (Ew) +alul}) - [ Gaw@)de, weX,
¢

is O, weakly sequentially lower semi-continuous, and coercive. So, there exists
wo € X such that

¥4 (wo) = Jnf ¥+ (w).

From ¢ < p < r it follows 94 (wg) < 0 = 94(0), whence wy # 0. Via (3.24]),
reasoning as in the proof of Theorem we arrive at

wp € [0,u] Nint(Cy). (3.26)
So, wg turns out to be a positive solution of (3.25). By Lemma one has
wo = U4, and (3.26) then yields us < u. Analogously, u <wu_ forallu e X_. O

Theorem 3.16. Let (2.3), (A1)—(A4), (A5’), (A6) be satisfied. Then (L.1) pos-
sesses a smallest positive solution u, and a biggest negative solution v,. Further,

—Uy, Uy € Int(Cy).
Proof. Recall that ¥, is downward directed. The same arguments employed to
establish [2, Proposition 8] yield

(1) inf X4 = inf, ey up = us for some {u,} C X, us € X;
(2) up — uy in X and in LP(0Q).
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Hence, the function u, solves (1.1]). Through Lemma we next obtain uy < u,,
namely u, € ¥ C int(C,). Finally, 1) ensures that u, is minimal. A similar proof
gives a function v, with the asserted properties. O

Next, for every = € 2 and ¢,£ € R, we define

f@,va(@)) + alos (2) P20 (2) i 1 < va(2),

f(z,t) =< f(x,t) +alt|P~2t if ve(z) <t < wui(x),
f(z,u(z)) :i— Aty (ac)p_A1 if ¢ > u.(x), (3.27)
f:t(xvt) = f(l’,t:t),
R £ . £
Fa9)= [ fana Fu@o)= [ fuwt
It is evident that the corresponding truncated functionals
blu) = (£ +aluly) — [ Plou(e))ds, ue X,
P Q (3.28)

R 1 _ 2
Ox(u) = » (E(u) +allullb) —/ Fy(z,u(z))dz, weX,
Q
belong to C*(X). Moreover, by construction, one has

K(@) C [’U*’u*]a K((ﬁ—) = {O,U*}, K(@-ﬁ-) = {O,U*}; (3'29)
see, e.g., [15}, Lemma 3.1].

Theorem 3.17. If (2.3), (A1)-(A4), (A5’), (A6) hold, then (L.1) possesses a nodal
solution ug € [vy,us] N CL(Q).

Proof. X compactly embeds in LP(€)) while the Nemitskii operator N 7, turns out
to be continuous on LP(Q2). Thus, a standard argument ensures that ¢ is weakly

sequentially lower semi-continuous. Since, on account of (3.27)), it is coercive, we
obtain

nf ¢4 (u) = ¢+ (o)
for some uy € X. Reasoning as in the proof of Theorem produces ug € int(C)
and, by 7 up = Uy. Since ¢|lc, = P4|c, , the function u, turns out to be a
C1(Q)-local minimizer for . Now, [I9, Proposition 3] guarantees that the same
remains true with X in place of C1(Q). A similar argument applies to v.. Conse-
quently, u,, v, are local minimizer for ¢.

We may assume K () finite, otherwise infinitely many nodal solutions do exist
by [(:29). Let ¢(vi) < @(u.) (the other case is analogous). Without loss of
generality, the local minimizer u, for ¢ can be supposed proper. Thus, there exists
p € (0, ]|us — vi]|) such that

Puy) < cp = ueaigpf(u*) &(u). (3.30)
Moreover, ¢ fulfills condition (C) because, by , it is coercive; vide for in-
stance [I3] Proposition 2.2]. So, the mountain-pass theorem yields a point uz € X
complying with ¢'(uz) = 0 and

< @ =1 D .
cp < @(us) iréfr Jnax o(v(1)), (3.31)
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where
I:={yeC0,1],X) : 7(0) = vy, v(1) = u,}.
Obviously, ug solves ([L.1)). Through (3.30)—(3.31)), besides (3.29)), we get
UB € [U*,U*] \ {U*,U*},

while standard regularity arguments yield us € C'*(Q). The proof is thus completed
once one verifies that us # 0. This will follow from

Ci($,0) =0, (3.32)
because C1 (@, uz) # 0 by [I7, Corollary 6.81]. We claim that
Ci($,0) = Cr(p,0) Vk e Ny. (3.33)

Indeed, consider the homotopy
h(t,u) == (1 —8)p(u) +tp(u), (t,u)€0,1] x X.
If there exist {¢,} C [0,1] and {u,} C X satisfying
tn —t, up—0, uy#u, form#n, hl(t,u,)=0VneN (3.34)

then the same arguments of [20, Proposition 7] give ||un||co < ¢1. By regularity,
the sequence {u,} is bounded in C1%(Q) for some «a € (0,1), whence u,, — 0 in
C'(Q). Thus, u, € [v.,u,] provided n is large enough, and (3.27), (3.29), besides
(3-34), lead to u, € K(¢). However, this contradicts the assumption K (¢) finite.
Now, [5, Theorem 5.2] directly yields . Combining with Lemma
we finally arrive at , as desired. (I

If f(z,-) exhibits a (p — 1)-linear behavior at zero then the problem’s geometry
changes, and another technical approach is necessary. We will use the hypothesis
(A5”) There exist ag > A2 and a7 > 0 such that
) S

[tP=2¢ = oo [HPRE T

ag < liminf ar
t—0

uniformly in z € Q.
Via (A1) and (A5”) one has
flz, )t > as|t]P —aglt|”, (x,t) € QA xR,
for appropriate ag > 5\2, ag > 0. Consider the auxiliary problem

—Apu + a(@)ulP~?u = aglulP"?u — aglu|""?u in Q,

88:,, + B(x)|uP"2u =0 on ON.

(3.35)

Note that if u is a solution then —u also solves this problem. Reasoning as above
we see that:

e Problem admits a unique positive solution uy € int(Cy).
e u_ := —uy represents the unique negative solution of .
e Under assumptions (A1)-(A4), (A5”), (A6) and (2.3), problem pos-
sesses both a smallest positive solution u, and a biggest negative solution
v,. Further, —v,, u, € int(Cy.).
Now, the same arguments used in the proof of [I5, Theorem 3.3] yield the following
result.
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Theorem 3.18. Let (2.3), (Al)—(A4), (A5”), and (AG) be satisfied. Then

admits a nodal solution uz € [v.,u.] N C ().

3.4. Existence of at least four nontrivial solutions. Gathering the results in
Sections 3.1-3.3 we directly obtain the next one.

Theorem 3.19. If (2.3), (A1)-(A4), (A5’)—(A6) hold, then (L.1)) possesses at least
four solutions ug,u1 € int(Cy), ug € —int(C4), and uz € [ug, ug] N C*(Q) nodal.
Moreover, ug < uq.

Remark 3.20. Hypothesis (A5’) can be substituted by (A5”) without changing
the conclusion.

4. SEMILINEAR CASE

From now on we shall assume p = 2. Then the regularity results of [24] allow to
weaken ([2.3)) as follow, see [6], [I4],

a € L*(Q) for some s > N, a™ € L>=(Q), BcWH™®(0Q), and 3>0. (4.1)
Further, the energy functional ¢ given by (3.3)) fulfills condition (C) once (4.1),
(A1), (A2), and (A4) hold; see Proposition
Lemma 4.1. Under assumptions (4.1)), (A1), and

(A7) Amt? < flz,t)t < 5\m+1t2 in Q X [—0d2, 02|, with appropriate m € N, 09 > 0,
one has
Ck(gﬁ, 0) = 5k,dmZ vk € No,
where d,, = dim(H,,), provided ¢ satisfies (C) and 0 € K (i) is isolated.
Proof. Tt is similar to that of [6, Lemma 3.3]. So, we only sketch the main points.
Pick a 6 € (A, Am+1) and define
1

Y(u) = 3 (E(U) — 0||u||§) , ueX.

Thanks to (AT), zero is a non-degenerate critical point of ¢ having Morse index
dp,, which entails

Ck(w, 0) = 5k,dmZ Vk € No;
see . Now, recall that every v € X admits a unique sum decomposition v =
O+ 0, With 0 € Hy, 0 € Ayt If u € C1(Q) and 0 < [|ul| o1 ) < 82 then

(' (u), i — @) = E(0) — £(@) /Q Fou)(i — @) dz . (4.2)

By (A7) again, one arrives at

o flwu) Amat1 (62 —a2) if u(a —u) >0,
f(@,u)(@ ) = u i) < {—S\m(ug —42) otherwise.
Hence,
f (@ u(@)(@(x) — w(z)) < Amgra(x)? — Apa(z)? in Q. (4.3)

From (4.2)), (4.3), and (2.7) it follows that
(' (u), & — @) > E(@) — Ampallill3 — [E(@) — Amllal|3] > 0.
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Using [0, Lemma 2.2] we obtain
(W (), i — a) = (@) — Ol — [Ea) — Ollall3] = exul?
for some ¢; > 0. Therefore, the homotopy
h(t,v) .= (1 —=t)e(v) +t(v), (t,v)€0,1] x X
fulfills the inequality
(Rl (t,u), 0 — @) > tey||ul|® Ve 0,1],

and [, Theorem 5.2] can be applied. By that result Ci(y,0) = Ck(¢,0), which
completes the proof. O

The same arguments made in [20, Proposition 15] yield the next result.

Lemma 4.2. Assume (4.1)), (A1), and (A2) hold. If ¢ satisfies (C) and is bounded
below on K (p), then Ci(p,00) =0 for all k € Ny.

The condition below will take the place of (Al).

(A1") f(x,-) € CH(R) for every = € Q. There exist a; € L>=(Q2), r € (2,2*) such
that
|fi(x, )] < ar(x)(14[t"72) V(z,t) € Q xR,

Remark 4.3. An easy computation shows that (Al’) implies (A6).

We are now in a position to establish a five-solutions existence result. It com-
plements those previously obtained in [6, [14].

Theorem 4.4. Let ({4.1), (A1), (A2)-(A4) be satisfied. Suppose also that
(A7) either

arot? < flz, )t < Ast?, (@) € Q x [0, 3],
for some ayg > Ao and 65 > 0, or
Amt? < f(@, )t < Angat?,  (x,t) € Q x [—83, 3],

where m > 3.

Then (1.4]) possesses at least five nontrivial solutions u; € C1(Q), i = 0,...,4,
with ug, w1, uz, us as in Theorem[3.19

Proof. Thanks to Remarks and the conclusion of Theorem holds for
the present framework. So, it remains to find a further solution uy € C*(Q) \ {0}.
Without loss of generality, we assume that ug, ug are extremal (see Section ,
while a standard argument based on (A6) and yields ug € intu g ([u2, uol);
vide, e.g., [14, Theorem 3.2]. Still we write f for the function defined in
but with v, and w, replaced by us and wg, respectively. [6] Lemma 2.1] provides
a,b > 0 fulfilling
E(u) + allull3 = bllul® Vue X

Pick any a > a and consider the functional ¢ given by . The same reasoning
adopted in the proof of Theorem ensures here that Cy(p,u3) = Ci(p,us3).
Thus

Ci(p,us) #0,
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because uz is a mountain-pass type critical point for @; cf. [I7, Corollary 6.81]. By
(A1) one has ¢ € C*(X) as well as

(0" (uz)u,v) = /Q(Vu - Vv + auv)dz + /89 Buv do — /th’(am ug)uvdz,  (4.4)

for u,v € X. Hence, if the Morse index of w3 is zero, then
| Vul3 +/ pu*do > /[ft/(l',’U,3) —aju’dr Yu € X. (4.5)
2Q Q

Write o := [f/(x,u3) —a]™ and observe that a € L*(£2). Two situations may occur.

1) = 0. Due to (4.4), for every u € kerp” (us) we get
( ’ y 2 g
IVul3+ [ B(x)u(z)?do <0,
o0

which implies u constant.
(2) a # 0. From it follows A;() > 1 and by the assertion kerep” (ug) #
{0} forces A () = 1, whence dim kery” (us) = 1.
In both cases we arrive at dim kery” (u3) < 1. So, on account of [I7], Proposition
6.101],
Ok(gO, Ug) = 5k71Z Vk € Np. (46)
Next, we define

pr(0) 1= 38 = [ Fulou@)ds, ueX,

where F (z,§) := fof f(z,t)" dt. Assumption (A7) easily leads to ¢lc, = ¢+|c,»
which entails

Ck(@Lcuﬁ)’“l) = Cr(p+ Lm(ﬁyul)
because u; € int(Cy); see Theorem By denseness one has Ci(p,u) =
Ci(ps,u1). Now, observe that ¢, = g + ¢, with appropriate ¢ > 0 and ¢
as in , on a neighbourhood of u;. Consequently, Ck(p4,u1) = Ck(po,u1).

Since 1 is a mountain-pass type critical point for ¢ (cf. the proof of Theorem
, the same argument made above gives

Cr(p,u1) =0p1Z, k€ Ng. (4.7
Gathering Theorem and [I7, Proposition 6.95], we derive
Cr(p,uo) = dk,0Z VEk € Np. (4.8)
Likewise,
Cr(p,u2) = 0k0Z, Yk € Ny, (4.9)
while Lemmas [I.IH4.2] yield
Ci(p,0) = k.0, Z, Ci(p,00)=0 VYkeNg. (4.10)

Finally, if K(¢) = {0, ug, u1, u2,us} then , witht = —1, and 7 would
imply
(=1)% 4+ 2(=1)° + 2(-=1)* =0,
which is impossible. Thus, there exists uqs € K(p) \ {0, uo, u1, uz,us}, i.e., a fifth
nontrivial solution to (I.I)). Standard regularity results [24] ensure that us € C*(€2).
O
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