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DIRICHLET PROBLEMS FOR SEMILINEAR ELLIPTIC
EQUATIONS WITH A FAST GROWTH COEFFICIENT ON

UNBOUNDED DOMAINS

ZHIREN JIN

Abstract. When an unbounded domain is inside a slab, existence of a posi-

tive solution is proved for the Dirichlet problem of a class of semilinear elliptic
equations that are similar either to the singular Emden-Fowler equation or

a sublinear elliptic equation. The result obtained can be applied to equa-

tions with coefficients of the nonlinear term growing exponentially. The proof
is based on the super and sub-solution method. A super solution itself is

constructed by solving a quasilinear elliptic equation via a modified Perron’s
method.

1. Introduction and Main Results

Let Ω be an unbounded domain in Rn (n ≥ 3) with C2,α (0 < α < 1) boundary.
We assume that Ω is inside a slab of width 2M :

Ω ⊂ SM = {(x, y) ∈ Rn : |y| < M}
where x = (x1, x2, . . . , xn−1) and throughout the paper, y will be identified with
xn. We consider the existence of positive solutions for the Dirichlet problem

−
n∑

i,j=1

aij(x, y)Diju = p(x, y)uγ in Ω;

u = 0 on ∂Ω

(1.1)

where (aij) is a positive definite matrix in which each entry is a local Hölder con-
tinuous function on Ω, p(x, y) is also local Hölder continuous on Ω, γ < 1 is a
constant. We note here that (aij) is not required to be uniformly elliptic on Ω.

When the principal part in (1.1) is the Laplace operator, γ < 0, (1.1) becomes a
boundary-value problem for the singular Emden-Fowler equation

−∆u = p(x, y)uγ in Ω;
u = 0 on ∂Ω.

(1.2)

The singular Emden-Fowler is related to the theory of heat conduction in electrical
conduction materials and in the studies of boundary layer phenomena for viscous

2000 Mathematics Subject Classification. 35J25, 35J60, 35J65.
Key words and phrases. Elliptic boundary-value problems; positive solutions;

semilinear equations; unbounded domains; Perron’s method; super solutions.
c©2005 Texas State University - San Marcos.

Submitted February 11, 2005. Published October 10, 2005.

1



2 Z. JIN EJDE-2005/109

fluids ([1], [15]) . The existence of positive solutions of the equation on exterior
domains (including Rn) has been widely considered (for example, see [3], [4], [7],
[10], [11], [14], and references therein). The main approach used to prove existence
results is to construct super and sub solutions. A super solution is usually found
in the class of radial symmetric functions. If Ω is an exterior domain (not inside a
slab), γ < 0 and there is C such that p(x, y) ≥ C

(1+|x|2+y2) for |x|2 + y2 large, then
(1.2) has no positive solutions ([10]). On the other hand, if there are constants
σ > 1 and C, such that 0 ≤ p(x, y) ≤ C

(1+|x|2+y2)σ for |x|2 + y2 large, (1.2) has a
positive solution ([7]). When Ω is an unbounded domain inside a slab, the situation
is quite different since now one cannot construct a super solution which is a radial
symmetric function. In addition, the generality of the coefficient matrix (aij) in the
equation in (1.1) also makes finding a radial symmetric super solution impossible.
However a super solution still can be constructed when Ω is a domain inside a slab.
In [8], the author combined an idea from [12] and a family of auxiliary functions
constructed in [9] to construct a super solution which is then used to prove the
following existence result.

Theorem 1.1. Assume

(1) p(x0, y0) > 0 for some (x0, y0) ∈ Ω;
(2) there is a positive constant C such that

0 ≤ p(x, y) ≤ C(|x|+ 1)−γ for (x, y) ∈ Ω; (1.3)

(3) Trace(aij) = 1 and there is a constant c1 > 0, such that

ann(x, y) ≥ c1 on Ω. (1.4)

Then for γ < 0, (1.1) has a positive solution u ∈ C2(Ω) ∩ C0(Ω).

Comparing Theorem 1 with the known results when the domain is an exterior
domain, we see a new phenomena appearing. That is, when the domain is inside
a slab, (1.1) has a positive solution even if the coefficient p(x, y) of the nonlinear
term is unbounded, while if the domain is an exterior domain, to assure that (1.1)
has a positive solution, the coefficient p(x, y) of the nonlinear term must go to zero
no slower than some functions ([10]). In this paper, we improve Theorem 1 in two
aspects. One is to allow the exponent γ in (1.1) to be any number less than 1. The
other is to allow the coefficient p(x, y) of the nonlinear term to grow exponentially!
Here is the statement of the main result of the paper.

Theorem 1.2. Assume γ < 1, Trace(aij) = 1 and there is a constant c1 > 0, such
that

ann(x, y) ≥ c1 in Ω. (1.5)

Then there is a positive constant α0 depending only on c1, M and n, such that for
any positive constant C, (1.1) has a positive solution u ∈ C2(Ω) ∩ C0(Ω) for all
p(x, y) that is not identical to zero and satisfies

0 ≤ p(x, y) ≤ Ce(1−γ)α0|x| for (x, y) ∈ Ω. (1.6)

Furthermore, there are constants c6 and c7 depending only on n, M and c1 such
that

u(x, y) ≤ c6e
c7|x| in Ω. (1.7)
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The idea of the proof of this theorem is as follows: Consider the boundary-value
problem

−
n∑

i,j=1

aij(x, y)Diju0 = p(x, y)uγ
0 in Ω;u0 = 1 on ∂Ω. (1.8)

For any positive constant k0 > 0, that u0 > 0 satisfies (1.8) is equivalent to that
v0 = 1

k0
lnu0 (i.e. u0 = ek0v0) satisfies

−
n∑

i,j=1

aij(x, y)Dijv0 = k0|∇v0|2 +
1
k0
p(x, y)e(γ−1)k0v0 in Ω

v0 = 0 on ∂Ω,

(1.9)

where |∇v0|2 =
∑n

i,j=1 aij(x, y)Div0Djv0.
We will show that for an appropriately chosen k0, (1.9) has a positive solution

v0. Then (1.8) has a positive solution u0 ≥ 1 that will be a supersolution to (1.1).
From there the existence of a positive solution of (1.1) follows from a standard
procedure that approximates the solution by solutions on a sequence of bounded
domains.

The proof of the existence of a positive solution of (1.9) is very similar to that of
the existence of the supersolution in [8]. The main difference is that in [8], a super
solution is constructed directly for (1.1) while in this paper, a super solution is
constructed through a solution of (1.9). Therefore, the proofs here will be parallel
to that in [8] except we need to make some necessary changes to deal with different
equations. We give full details of the proofs here so that the paper is self contained
and convenient for readers to follow the argument. However for some technical
constructions we still refer readers to the paper [8].

2. A Family of Auxiliary Functions

In this section, we use a family of auxiliary functions constructed in [9] to con-
struct families of sub-domains Ωx0 of SM , constants Tx0 and functions zx0 (see
definitions below) such that Tx0 + zx0 satisfies

−
n∑

i,j=1

aij(x, y)Dij(Tx0 + zx0)

≥ k0|∇(Tx0 + zx0)|2 +
1
k0
p(x, y)e(γ−1)k0(Tx0+zx0 ) in Ωx0 ∩ Ω

(2.1)

and the graphs of the functions Tx0 +zx0 have special relative positions (see below).
We first extend aij (1 ≤ i, j ≤ n) to be continuous functions on SM in such a

way that we still have Trace(aij) = 1 and

ann(x, y) ≥ c1 in SM . (2.2)

It was proved in [9] (the construction of the functions was inspired by [13] and
the details of the construction were also repeated in the appendix in [8]) that there
are positive decreasing functions χ(t), ha(t) and a positive increasing function A(t)
(χ(t) depending on c1 only, ha(t) and A(t) depending on c1 and M only), such that
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for any number K, there is a number H0, depending only on K, M and c1, such
that for H ≥ H0, we have (for 0 < t < 2M)

A(H) ≤ h−1
a (t) ≤ A(H)eχ(H), 22MH ≤ c1A(H)eχ(H) ≤ 66MH, (2.3)

8K ≤ A(H)eχ(H), 0 < χ(H) < 1, (2.4)

and the non-negative function

z = zx0 = A(H)eχ(H) − {(h−1
a (y +M))2 − |x− x0|2}1/2 (2.5)

satisfies
n∑

i,j=1

aij(x, y)Dijz ≤
−3c1

22eMH
in Ωx0,H,K , (2.6)

z ≥ K on ∂Ωx0,H,K ∩ {|y| < M}, z(x0, y) ≤
2M
H

for |y| ≤M, (2.7)

|Dxz(x, y)| ≤ 2(
c1K

M
)1/2 1√

H
, |Dyz(x, y)| ≤

2
H

on Ωx0,H,K , (2.8)

where

Ωx0,H,K =
{
(x, y) : |y| < M, |x− x0| <

√
2K

A(H)eχ(H)
h−1

a (y +M)
}
. (2.9)

Now we set

K = 100, H = H0 + 4M, c2 =
3c1

22eMH
, Ωx0 = Ωx0,H,K . (2.10)

Then from (2.7), we have

z ≥ 100 on ∂Ωx0 ∩ {|y| < M}, z(x0, y) ≤ 1 for |y| ≤M. (2.11)

For two points x0 and x1 in Rn−1, when Ωx1 either covers the whole segment of
the set {(x0, y)||y| ≤ M} or does not intersect with the set, from (2.3) and (2.9),
we have either

|x1 − x0| ≤
√

200A(H)e−χ(H) or |x1 − x0| ≥
√

200A(H)eχ(H). (2.12)

When Ωx1 covers part of the set {(x0, y) : |y| ≤M}, we have√
195A(H)e−χ(H) ≤ |x1 − x0| ≤

√
205A(H)eχ(H). (2.13)

Let x1 and x0 satisfy (2.13) and δ0 be a small positive number such that 2δ0 <√
195A(H)e−χ(H). If (x, y) ∈ Ωx1 for some y and |x−x0| ≤ δ0, by (2.3), (2.5) and

(2.13), we have

zx1(x, y)

≥ A(H)eχ(H) − {A(H)2e2χ(H) − |x− x1|}1/2

≥ A(H)eχ(H) − {A(H)2e2χ(H) − (
√

195A(H)e−χ(H) − δ0)2}1/2

≥ A(H)eχ(H) − {A(H)2e2χ(H) − 195A(H)e−χ(H) + 2δ0
√

195A(H)e−χ(H)}1/2

≥ A(H)eχ(H)(1− (1− 195
A(H)e3χ(H)

+
2δ0

√
195A(H)e−χ(H)

A(H)2e2χ(H)
)1/2)
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(by the inequality
√

1− t ≤ 1− 1
2 t for 0 < t < 1 and (2.4))

≥ A(H)eχ(H)(
195

2A(H)e3χ(H)
− 2δ0

√
195A(H)e−χ(H)

2A(H)2e2χ(H)
)

=
195

2e2χ(H)
− δ0

√
195A(H)e−χ(H)

A(H)eχ(H)
> 10− δ0

√
195A(H)e−χ(H)

A(H)eχ(H)
.

Thus there is a δ0 small such that for all |x− x0| ≤ δ0 with (x, y) ∈ Ωx1 , if x1 and
x0 satisfy (2.13), we have

zx1(x, y) ≥ 8. (2.14)
From (2.9) and (2.11), we can choose a number δ2(x0) > 0 such that for all x ∈ Rn−1

with |x0 − x| ≤ δ2(x0), we have (x, y) ∈ Ωx0 for all |y| < M , and

zx0(x, y) ≤ 2. (2.15)

Now if we set δx0 = min{δ0, δ2(x0)}, from (2.14) and (2.15), we have

zx0(x, y) ≤ 2 < 8 ≤ zx1(x, y) (2.16)

for all x0 and x1 satisfying (2.13), |x0 − x| ≤ δx0 and (x, y) ∈ Ωx1 .
Since Trace(aij) = 1, we have

∑
aijξiξj ≤ 1 for any unit vector ξ = (ξ1, . . . , ξn).

Then from (2.8), we have

|∇z|2 =
∑

aijzizj ≤ |Dxz|2 + |Dyz|2

≤ 400c1
MH

+
4
H2

≤ 400c1
MH

+
1

HM
=

400c1 + 1
MH

= c3 .

(2.17)

Here we have used that H > 4M . If we set k0 = c2
2c3

, then the function zx0 satisfies
that on Ωx0

k0|∇z|2 ≤
c2
2c3

c3 =
1
2
c2. (2.18)

Now we set c4 =
√

205A(H)eχ(H), c5 =
√

200A(H)eχ(H), α0 = 1
c4
k0 and assume

that for some constant C, p(x, y) satisfies (1.6). Furthermore we set

Tx0 =
1
c4

(|x0|+A)

where A = c5 − c4
(1−γ)k0

ln(min{ c2k0
2C , 1}). Since on Ωx0 , |x| ≤ |x0|+ c5, from (1.6),

we have that on Ωx0 ∩ Ω,
1
k0
p(x, y)e(γ−1)k0(Tx0+z) ≤ C

k0
e

1
c4

k0(1−γ)|x|e(γ−1)k0Tx0

≤ C

k0
e

1
c4

k0(1−γ)(|x0|+c5)e(γ−1)k0
1

c4
(|x0|+A)

=
C

k0
e

1
c4

k0(1−γ)c5e(γ−1)k0
1

c4
A ≤ 1

2
c2

(2.19)

by the definition of A. Combining (2.6), (2.18) and (2.19), we have that on Ωx0 ∩Ω,
Tx0 + z satisfies

k0|∇(Tx0 + z)|2 +
1
k0
p(x, y)e(γ−1)k0(Tx0+z) ≤ c2 ≤ −

n∑
i,j=1

aij(x, y)Dij(Tx0 + z) .
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That is, Tx0 + zx0 satisfies (2.1). As x0 varies, we get a family of such functions.
Now for all x0 and x1 satisfying (2.13),

Tx0 = Tx1 + Tx0 − Tx1

= Tx1 +
1
c4

(|x0| − |x1|)

≤ Tx1 +
1
c4
|x0 − x1| ≤ Tx1 + 1.

Then for all x0 and x1 satisfying (2.13), |x0 − x| ≤ δx0 and (x, y) ∈ Ωx1 , from
(2.16), we have

Tx0 + zx0(x, y) ≤ Tx1 + 1 + 2 < Tx1 + zx0(x, y). (2.20)

Finally we define a family of open subsets of Ω that will be needed in next section.
For each point (x0, y0) ∈ Ω, we define an open set O(x0, y0) as follows:

1) If (x0, y0) ∈ Ω, we choose a ball B with center (x0, y0) and a radius less than
δx0 so that B ⊂ Ω. We then set O(x0, y0) = B;
2) If (x0, y0) ∈ ∂Ω, since Ω has C2,α boundary, there is a ball B with center (x0, y0)
and a radius less than δx0 , such that there is a C2,α diffeomorphism Φ that satisfies

Φ(B ∩ Ω) ⊂ Rn
+, Φ(B ∩ ∂Ω) ⊂ ∂Rn

+; Φ(x0, y0) = 0.

Now we choose a domain J with C3 boundary with following properties: (a)
J ⊂ Φ(B ∩ Ω); (b) ∂J ∩ ∂Rn

+ is a neighborhood of 0 in ∂Rn
+. Certainly there are

many different J ’s having those properties. One example on how to construct J is
given in the Appendix II [8].

Now we set O(x0, y0) = Φ−1(J). It is easy to see that O(x0, y0) ⊂ B ∩ Ω,
O(x0, y0) has a C2,α boundary and ∂O(x0, y0) ∩ ∂Ω is a neighborhood of (x0, y0)
in ∂Ω.

Let Π be the collection of all such open sets O(x0, y0) defined in 1) and 2).

3. A Solution of (1.9)

In [12], a modified version of the Perron’s method has been used to prove the
existence of solutions. In the modified version of the Perron’s method, one uses a
family of local upper barriers to replace the role played by the supersolution in the
normal version of the Perron’s method (the local upper barriers in [12] were inspired
by [5]). The modified version has been used in [8] to prove the existence of a super
solution by using a family of auxiliary functions similar to the one constructed in
section 2. In this section, we will follow the same part in [8] with the necessary
modifications. We will show that there is a positive function v0 ∈ C2(Ω) ∩ C0(Ω),
satisfies

−
n∑

i,j=1

aij(x, y)Dijv0 = k0|∇v0|2 +
1
k0
p(x, y)e(γ−1)k0v0 in Ω, (3.1)

v0 = 0 on ∂Ω. (3.2)

Let v ≥ 0 be a continuous function on Ω, for a point (x0, y0) ∈ Ω, we define a
new function M(x0,y0)(v), called the lift of v over O(x0, y0) as follows:

M(x0,y0)(v)(x, y) =

{
v(x, y) if (x, y) ∈ Ω \O(x0, y0)
w(x, y) if (x, y) ∈ O(x0, y0)
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where w(x, y) is the non-negative solution of the boundary-value problem

−
n∑

i,j=1

aij(x, y)Dijw = k0|∇w|2 +
1
k0
p(x, y)e(γ−1)k0w in O(x0, y0), (3.3)

w = v on ∂O(x0, y0). (3.4)

We claim that this system has a solution in C2(O(x0, y0)) ∩ C0(O(x0, y0)), which
is positive and unique. Indeed the uniqueness and positivity of a solution easily
follow from a standard maximum principle. For existence, we notice that m1 =
min{v(x, y)|(x, y) ∈ ∂O(x0, y0)} is a sub-solution, m2+Tx0 +zx0 is a super solution
by (2.1), where m2 = max{v(x, y)|(x, y) ∈ ∂O(x0, y0)}. We set a change of variable

u = ek0w.

Then w satisfies (3.3)-(3.4) if and only if u satisfies

−
n∑

i,j=1

aij(x, y)Diju = p(x, y)uγ in O(x0, y0), (3.5)

u = ek0w on ∂O(x0, y0). (3.6)

Then ek0m1 and ek0(m2+Tx0+zx0 ) are sub- and super- solutions of (3.5)-(3.6). It is
then well known that (3.5)-(3.6) has a positive solution u (see [2]). Then w = 1

k0
lnu

solves (3.3)-(3.4).
We define a class Ξ of functions as follows: A function v is in Ξ if

(1) v ∈ C0(Ω), v ≥ 0 on Ω and v ≤ 0 on ∂Ω;
(2) For any (x0, y0) ∈ Ω, v ≤M(x0,y0)(v);
(3) v ≤ Tx0 + zx0 on Ωx0 ∩ Ω for any (x0, y0) ∈ Ω.

An application of a maximum principle implies that the function v = 0 is in Ξ.
Thus Ξ is not empty. Now we set

v0(x, y) = sup
v∈Ξ

v(x, y), (x, y) ∈ Ω.

We will show that v0 is positive on Ω, in C2(Ω) ∩ C0(Ω) and satisfies (3.1)-(3.2).
First we present some lemmas.

Lemma 3.1. Let D be a bounded domain, If w1, w2 are in C2(D)∩C0(D), w1 ≤ w2

on ∂D, and

−
n∑

i,j=1

aij(x, y)Dijw1 ≤ k0|∇w1|2 +
1
k0
p(x, y)e(γ−1)k0w1 in D,

−
n∑

i,j=1

aij(x, y)Dijw2 ≥ k0|∇w2|2 +
1
k0
p(x, y)e(γ−1)k0w2 in D

then w1 ≤ w2 on D.

Since 1
k0
p(x, y)e(γ−1)k0t is decreasing on t, a straightforward application of a

maximum principle to w1 − w2 gives the proof of the above lemma.

Lemma 3.2. If 0 < v1 ≤ v2, then M(x0,y0)(v1) ≤M(x0,y0)(v2) for any (x0, y0) ∈ Ω.
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Proof. Let w1, w2 be the positive solutions for the following problems, respectively,

−
n∑

i,j=1

aij(x, y)Dijwq = k0|∇wq|2 +
1
k0
p(x, y)e(γ−1)k0wq in O(x0, y0),

wq = vq on ∂O(x0, y0), q = 1, 2.

Since w1 = v1 ≤ v2 = w2 on ∂O(x0, y0), from lemma 1, we see w1 ≤ w2 on
O(x0, y0). However, on Ω \ O(x0, y0), M(x0,y0)(v1) = v1, M(x0,y0)(v2) = v2. Thus
M(x0,y0)(v1) ≤M(x0,y0)(v2). �

Lemma 3.3. If v1 ∈ Ξ, v2 ∈ Ξ, then max{v1, v2} ∈ Ξ.

Proof. If v1 ∈ Ξ, v2 ∈ Ξ, it is clear that max{v1, v2} ∈ C0(Ω), max{v1, v2} ≥ 0 on
Ω and max{v1, v2} ≤ 0 on ∂Ω. It is also clear that max{v1, v2} ≤ Tx0 + zx0 on
Ωx0 ∩ Ω for any (x0, y0) ∈ Ω. Since

v1 ≤ max{v1, v2}, v2 ≤ max{v1, v2},

by lemma 2 we have that for any (x0, y0) ∈ Ω,

M(x0,y0)(v1) ≤M(x0,y0)(max{v1, v2}),
M(x0,y0)(v2) ≤M(x0,y0)(max{v1, v2}).

Since v1 ∈ Ξ and v2 ∈ Ξ imply

v1 ≤M(x0,y0)(v1), and v2 ≤M(x0,y0)(v2),

we have
max{v1, v2} ≤M(x0,y0)(max{v1, v2}).

Thus max{v1, v2} ∈ Ξ. �

Lemma 3.4. If v ∈ Ξ, then M(x0,y0)(v) ∈ Ξ for any (x0, y0) ∈ Ω.

Proof. By the definition of M(x0,y0)(v), it is clear that M(x0,y0)(v) ≥ 0 on Ω,
M(x0,y0)(v) ∈ C0(Ω) and M(x0,y0)(v) ≤ 0 on ∂Ω. For any (x∗, y∗) ∈ Ω, we first
show that

M(x0,y0)(v)(x, y) ≤M(x∗,y∗)(M(x0,y0)(v))(x, y). (3.7)

We only need to prove (3.7) for (x, y) ∈ O(x∗, y∗).
Since v ≤M(x0,y0)(v), by lemma 2 we have

M(x∗,y∗)(v) ≤M(x∗,y∗)(M(x0,y0)(v)).

Then from v ≤M(x∗,y∗)(v), we have

v ≤M(x∗,y∗)(M(x0,y0)(v)).

Thus for (x, y) ∈ O(x∗, y∗) \O(x0, y0),

M(x0,y0)(v)(x, y) = v(x, y) ≤M(x∗,y∗)(M(x0,y0)(v))(x, y). (3.8)

That is, (3.7) is true on O(x∗, y∗) \O(x0, y0), Now for Ω1 = O(x∗, y∗) ∩O(x0, y0),
if we set

M(x0,y0)(v) = w1, M(x∗,y∗)(M(x0,y0)(v)) = w2
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then

−
n∑

i,j=1

aij(x, y)Dijw1 = k0|∇w1|2 +
1
k0
p(x, y)e(γ−1)k0w1 on Ω1,

−
n∑

i,j=1

aij(x, y)Dijw2 = k0|∇w2|2 +
1
k0
p(x, y)e(γ−1)k0w2 on Ω1.

On ∂Ω1, w1 ≤ w2 on O(x∗, y∗) ∩ ∂O(x0, y0) by (3.8) and w1 ≤ w2 on ∂O(x∗, y∗) ∩
O(x0, y0) since (3.7) is true on Ω \ O(x∗, y∗). Then lemma 1 implies w1 ≤ w2 on
Ω1. Thus (3.7) is true on O(x∗, y∗) ∩O(x0, y0) and on O(x∗, y∗).

Now we prove that M(x0,y0)(v) ≤ Tx1 + zx1 on Ωx1 ∩ Ω for all (x1, y1) ∈ Ω. By
the definition of M(x0,y0)(v), we only need to consider the graph of the function
M(x0,y0)(v) over O(x0, y0). If O(x0, y0) is covered completely by Ωx1 , since v ≤
Tx1 + zx1 and Tx1 + zx1 satisfies (2.1), Tx1 + zx1 is a super solution of (3.3) on
O(x0, y0). Then Lemma 1 implies M(x0,y0)(v) ≤ Tx1 + zx1 on O(x0, y0). In the
case that O(x0, y0) does not intersect with Ωx1 , the conclusion is trivial. Now we
consider the case that O(x0, y0) is partially covered by Ωx1 . First by what we have
just proved, we always have

M(x0,y0)(v) ≤ Tx0 + zx0 on O(x0, y0). (3.9)

By the choice of δx0 and O(x0, y0), the graph of Tx0 + zx0 over O(x0, y0) ∩ Ωx1 is
under the graph of Tx1 + zx1 . Thus the conclusion follows from (3.9). �

Now we are ready to prove that v0 has the desired properties. Let (x0, y0) ∈ Ω.
By the definition of v0(x0, y0), there is a sequence of functions vk in Ξ such that

v0(x0, y0) = lim
k→∞

vk(x0, y0).

By the definition of Ξ, vk ≥ 0 on Ω. We replace vk by M(x0,y0)(vk). Then we have
a sequence of functions wk such that

v0(x0, y0) = lim
k→∞

wk(x0, y0),

−
n∑

i,j=1

aij(x, y)Dijwk = k0|∇wk|2 +
1
k0
p(x, y)e(γ−1)k0wk on O(x0, y0),

wk = vk on ∂O(x0, y0).

Then uk = ek0wk satisfies

−
n∑

i,j=1

aij(x, y)Dijuk = p(x, y)uγ
k on O(x0, y0),

uk = ek0vk on ∂O(x0, y0).

Further, from the fact that for all k,

0 ≤ vk ≤ wk ≤ Tx0 + zx0 on O(x0, y0),

we have
1 ≤ uk ≤ ek0(Tx0+zx0 ) on O(x0, y0).

By [6, Theorem 9.11] and an approximation of the boundary value by smooth
functions, we see that there is a subsequence of uk, for convenience still denoted by
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uk, converges to a C2(O(x0, y0))∩C0(O(x0, y0)) function u∗(x) in C2(O(x0, y0))∩
C0(O(x0, y0)). Thus u∗(x) satisfies

−
n∑

i,j=1

aij(x, y)Diju∗ = p(x, y)uγ
∗ on O(x0, y0)

Then w = 1
k0

lnu∗ satisfies

−
n∑

i,j=1

aij(x, y)Dijw = k0|∇w|2 +
1
k0
p(x, y)e(γ−1)k0w on O(x0, y0)

and v0(x0, y0) = w(x0, y0). We claim that v0 = w on O(x0, y0). Indeed, if there
is another point (x2, y2) ∈ O(x0, y0) such that v0(x2, y2) is not equal to w(x2, y2),
then v0(x2, y2) > w(x2, y2). Then there is a function v∗ ∈ Ξ, such that

w(x2, y2) < v∗(x2, y2) ≤ v0(x2, y2).

Now the sequence max{v∗,M(x0,y0)(vk)} satisfies

vk ≤ max{v∗,M(x0,y0)(vk)} ≤ v0.

In a similar way, M(x0,y0)(max{v∗,M(x0,y0)(vk)}) will produce a function w1 such
that

−
n∑

i,j=1

aij(x, y)Dijw1 = k0|∇w1|2 +
1
k0
p(x, y)e(γ−1)k0w1 on O(x0, y0),

w ≤ w1 on O(x0, y0),

w(x2, y2) < v∗(x2, y2) ≤ w1(x2, y2),

w(x0, y0) = w1(x0, y0) = v0(x0, y0).

That is, w1(x, y) − w(x, y) is non-negative, not identically zero on O(x0, y0) and
achieves its minimum value zero inside O(x0, y0). However, from the equations
satisfied by w and w1, we have that on O(x0, y0),

−
n∑

i,j=1

ai,j(x, y)Dij(w1 − w)− 2k0(∇w + θ1∇(w1 − w)) · ∇(w1 − w)

−(γ − 1)p(x, y)e(γ−1)k0(w+θ2(w−w1))(w − w1) = 0

for some continuous functions θ1 and θ2. Then by the standard maximum principle
(see [6, Theorem 3.5]), we get a contradiction. Thus v0 = w on O(x0, y0). Therefore
v0 ∈ C2(Ω) and

−
n∑

i,j=1

ai,j(x, y)Dijv0 = k0|∇v0|2 +
1
k0
p(x, y)e(γ−1)k0v0 .

When (x0, y0) ∈ ∂Ω, ∂O(x0, y0) ∩ ∂Ω is a neighborhood of (x0, y0) in ∂Ω. Since
max{0, vk} = 0 on ∂Ω, v0 = 0 on ∂Ω and w = 0 on ∂O(x0, y0) ∩ ∂Ω. Since w is
continuous up to the boundary of O(x0, y0), v0 is continuous on ∂O(x0, y0) ∩ ∂Ω
from inside O(x0, y0). Thus v0 ∈ C0(Ω) and v0 = 0 on ∂Ω. Now from the definition
of Tx0 and v ≤ Tx0 + zx0 on Ωx0 for all v ∈ Ξ, we have

v0(x0, y) ≤ Tx0 + zx0(x0, y) ≤
1
c4
|x0|+A+ 3
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for all (x0, y) ∈ Ω. If we let x0 vary, we get

v0(x, y) ≤
1
c4
|x|+A+ 3 on Ω. (3.10)

Then u0 = ek0v0 satisfies (1.8), u0 ≥ 1 and u0 ≤ c6e
c7|x| for some constants c6 and

c7 depending only on n, M and c1.

4. The Proof of Theorem 1

Since Ω is an unbounded domain with C2,α boundary, we can choose a sequence
of subdomains in Ω, denoted by Ωm, m = 1, 2, 3, . . . , such that

(1) Ωm ⊂ Ωm+1 ⊂ Ω for all m;
(2) ∪Ωm = Ω;
(3) Each Ωm is a bounded domain with C2,α boundary;
(4) dist(0, ∂Ω \ ∂Ωm) →∞ as m→∞.

We can find a number µ, such that the eigenvalue problem

−
n∑

i,j=1

aij(x, y)Dijφ = λ(µp(x, y))φ on Ωm

φ = 0 on ∂Ωm

has a first eigenvalue λ1(m) < 1 with eigenfunction φm. We assume maxφm = 1.
Let δ be a number such that 0 < δ ≤ 1/2 and t ≤ tγ for 0 < t < δ. Let u0 ≥ 1 be
a positive solution to (1.8) with p(x, y) replaced by µp(x, y). Then

−
n∑

i,j=1

aij(x, y)Dijw = µp(x, y)wγ on Ωm

w = 0 on ∂Ωm

(4.1)

has a pair of super and sub solutions u0(x, y), δφm, and u0(x, y) ≥ 1 ≥ δφm. Thus
(4.1) has a positive solution wm. Since wm is also a super solution of the equation
in (4.1) on Ωs for all m > s, δφs is a subsolution of the equation in (4.1) on Ωs,
δφs = 0 ≤ wm on ∂Ωs, we have

δφs ≤ wm on Ωs (4.2)

for all m > s. We also have wm ≤ u0 on Ωs. Therefore a subsequence of wm

will converge to a positive C2(Ω) function u that satisfies the equation in (1.1).
Furthermore u satisfies (1.7) since u0 satisfies (1.7). Now we still need to prove
that u ∈ C0(Ω) and u = 0 on ∂Ω.

If (x0, y0) ∈ ∂Ω, we let O(x0, y0) ∈ Π be the C2,α domain chosen in section 2.
Then ∂O(x0, y0) ∩ ∂Ω is a neighborhood of (x0, y0) in ∂Ω. Now we choose a C1

function ψ on ∂O(x0, y0) so that ψ ≥ 0, ψ = 0 in a neighborhood of (x0, y0) ∈
∂O(x0, y0) and ψ ≥ u0 on ∂O(x0, y0) ∩Ω. Let w0 ∈ C0(O(x0, y0)) ∩C2(O(x0, y0))
be the solution of the problem

−
n∑

i,j=1

aij(x, y)Dijw0 = µp(x, y)wγ
0 on O(x0, y0),

w0 = ψ on ∂O(x0, y0).

(4.3)

Then for all m with O(x0, y0) ⊂ Ωm, from wm ≤ u0 ≤ ψ on ∂O(x0, y0), we have

wm ≤ w0 on O(x0, y0).
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Thus combining this with (4.2), we have that for large fixed s,

δφs ≤ u ≤ w0 on O(x0, y0).

Since w0 and δψs are in C0(O(x0, y0)) and w0(x0, y0) = δψs(x0, y0) = 0, u is
continuous near (x0, y0) and u(x0, y0) = 0. Since (x0, y0) ∈ ∂Ω can be arbitrary,
we get u ∈ C0(Ω) and u = 0 on ∂Ω.
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