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Abstract. In this article, we study the approximate controllability for quasi-
linear differential equations with deviating arguments in a Hilbert space. We

establish sufficient conditions for the existence of a mild solution. We also ob-

tain sufficient conditions for the controllability of quasilinear equations. Fur-
ther, we use it to establish the approximate controllability for quasilinear dif-

ferential equations with deviating arguments. We discuss examples in which

the analytical results are applied.

1. Introduction

Controllability refers a mathematical problem that deals with the possibility of
driving the system from an initial state to an arbitrary final state with the help of
suitable control input. The concept of controllability is of great importance in the
mathematical theory of control of finite or infinite dimensional dynamical systems
[2, 4]. In the controllability theory, we try to find a control function that drives the
system from its initial state to an arbitrary final state in a finite time. Basically,
in an infinite dimensional system, the two types of controllability can occur, one
is exact and another is approximate controllability. Exact controllability enables
to steer the system to the arbitrary final state from the initial state of the system.
On the other hand, approximate controllability enables to steer the system to the
arbitrary small neighbourhood of the final state from the initial state of the system.
As far as the applications are concerned, the approximate controllability is more
applicable to dynamical systems and the area got much attention in the recent
years [5, 6, 7, 27, 10, 11, 13, 14, 15, 21, 23, 24, 25, 30, 33].

If we want to analyze a problem that occurs in our surroundings mathematically,
the very first tool that comes to our mind is the differential equations. Through
a suitable mathematical formulation we try to convert the actual problem into a
differential equation. The formulation as well as finding a solution to the differential
equation is not a hard task if we do not bother about any external factor that effects
the problem. To be more accurate we have to take care of those factors which gives a
better situation to the problem. That is why the deviating arguments are considered

2010 Mathematics Subject Classification. 35K59, 35K90, 93B05, 93C25.
Key words and phrases. Quasilienar equations; approximate controllability;

deviating arguments; Krasnoselskii’s fixed point theorem.
c©2019 Texas State University.

Submitted July 30, 2018. Published May 8, 2019.

1



2 D. CHUTIA, R. HALOI EJDE-2019/63

in differential equations. Differential equations with deviating arguments are a
special class of differential equations where the unknown quantity and its derivative
appear in different values of their arguments [5, 6, 8, 16, 18, 15, 22, 26]. Such type
of differential equations has had a huge importance from the 1960 onwards and
some remarkable research has been done in this area. Differential equations with
deviating arguments occur in the theory of self-oscillating systems, the theory of
automatic control, the problems of long-term planning in economics, the systems
in biophysics, the study of problems related with combustion in rocket engines, and
many other areas of science and technology. Considering the plentiful applications
of the differential equation with deviating arguments, many author have studied
differential equation with deviating arguments extensively e.g. [5, 6, 8, 12, 16,
17, 18, 22, 26]. Differential equations with deviating arguments are also known as
functional differential equations.

The simpler and the most important version of differential equations with devi-
ated arguments are differential equations with retarded arguments. It is also known
as delay differential equations. This class represents a differential equation in which
highest order derivative of the unknown function is evaluated at a certain values
and the lower order derivatives are evaluated at a lesser or equal values. One most
familiar delay problem is the hot shower problem where delay is occurred due to
the time required for water to become hot and to flow from the tap to the shower
head. In some of the models, the information is transferred from the input to the
output after a finite time. Such systems are called the system with finite delay. In
this case, the deviated argument is the finite delay in the differential equations.

The class of quasi-linear differential equations is another most important class
that arises in the study of gas dynamics, continuum mechanics, traffic flow mod-
els, nonlinear acoustics and groundwater flows. Thus the theory of quasi-linear
differential equations and their generalizations become as one of the most rapidly
developing areas in applied mathematics [1, 19, 31]. In this article we plan to study
the approximate controllability for the following system in a complex Hilbert space
(H, ‖ · ‖). We consider the following system consisting of quasilinear differential
equation with deviating arguments in H,

[
d

dt
+A(t, x(t))]x(t) = f(t, x(t), x([h(x(t), t)])) +Bu(t), t ∈ I = [0, T ],

x(0) = x0.
(1.1)

Here, we assume that −A(t, x), for each t ≥ 0 and x ∈ H generates an analytic
semigroup of bounded linear operators on H, u(·) is the control function in L2(I, U)
for a Hilbert space U , B is a bounded linear operator on U into H. The functions
f and h satisfy suitable conditions in their arguments stated in Section 2.

The approximate controllability for the following nonlocal delay system with
deviating arguments in a Hilbert space X is recently studied by Das et al. [5],

dx

dt
−Ax(t) = f(t, xt, x([h(x(t), t)])) +Bu(t), t ∈ J = [0, b],

x(t) = φ(t), t ∈ [−a, 0].
(1.2)

Here, we assume that −A generates a strongly continuous semigroup of bounded
linear operators on X, u(·) is the control function in L2(J, U) for a Hilbert space U ,
B is a bounded linear operator on U into X. The functions f : J×X×X → X and
h : X×J → J satisfy Lipschitz conditions in their arguments[5] and xt(τ) = x(t+τ)
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for τ ∈ [−a, 0]. The results for existence of mild solution is established by the
Schauder fixed point theorem. They showed that the mild solution is approximately
controllable. Further, Haloi [15] discuss the sufficient conditions for the approximate
controllability of the following problem with deviating arguments in a Hilbert space
X,

dx

dt
+A(t)x(t) = f(t, x(t), x([h(x(t), t)])) +Bu(t), t ∈ J = [0, b],

x(t) = φ(t) + g(x)(t), t ∈ [−a, 0].
(1.3)

Here, we assume that −A(t), for each t ≥ 0 generates a compact analytic semi-
group of bounded linear operators on X, u(·) is the control function in L2(J, U)
for a Hilbert space U , B : U → X is a bounded linear operator. The functions
f : J × X × X → X, h : X × J → J and g : C([−a, b], X) → C([−a, 0], X) are
assumed to satisfy suitable conditions in their arguments.

We mentioned that the approximate controllability of the quasilinear systems
with deviating arguments have not been considered so far. We devote this article for
the study of the approximate controllability of quasilinear systems with deviating
arguments (1.1) in an arbitrary infinite dimensional Hilbert space. The results in
this articles are new and contribute to the theory of mathematical control.

We organize the article as follows. In Section 2, we provide preliminaries, as-
sumptions and lemmas that will be needed for proving the main results. We prove
the local existence of a solution in Section 3. The approximate controllability re-
sults are established in Section 4. Finally, we provide an example to illustrate the
application of the results.

2. Preliminaries and assumptions

In this section, we collect notation, assumptions and lemmas that are used in
the remaining sections. We refer to the book by Bensoussan et al. [2], Curtain and
Zwart [4], Friedman [9], Pazy [28], Tanabe [29] and Yosida[32] for more details.

Let H and U be two complex Hilbert spaces. Let T ∈ [0,∞) and {A(t) : 0 ≤ t ≤
T} be a family of closed linear operators on H. Let ∆ = {(t, s) ∈ I × I : 0 ≤ s ≤
t ≤ T} and L(H) denotes the Banach space of all bounded linear operator on H.

Definition 2.1. An operator U : ∆ → L(H) is said to be a compact evolution
family if the following holds:

(a) U(s, s) = I is the identity operator in H for s ∈ I,
(b) U(t, r)U(r, s) = U(t, s), 0 ≤ s ≤ r ≤ t ≤ T ,
(c) U is strongly continuous on ∆,
(d) U(t, s) satisfies

∂U(t, s)

∂t
+A(t)U(t, s) = 0,

∂U(t, s)

∂s
− U(t, s)A(s) = 0, (t, s) ∈ ∆,

(e) U(t, s) are completely continuous for (t, s) ∈ ∆.

Suppose the family {A(t) : 0 ≤ t ≤ T} satisfies the following properties,

(1) The domain D(A(t)) of A(t) is dense in H and is independent of t.
(2) For each t ∈ [0, T ], the resolvent R(λ;A(t)) exists for all Reλ ≤ 0 and there

exists a constant C1 > 0 (independent of t and λ) such that

‖R(λ;A(t))‖ ≤ C1

|λ|+ 1
, Reλ ≤ 0, t ∈ [0, T ].
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(3) There are constants C2 > 0 and α ∈ (0, 1] such that

‖[A(t1)−A(t2)]A−1(t3)‖ ≤ C2|t1 − t2|α,
for t1, t2, t3 ∈ [0, T ]. Here C2 and α are independent of t1,t2 and t3.

With the properties (1)–(3), there exists a fundamental solution {U(t, s) : 0 ≤ s ≤
t ≤ T} corresponding to A(t).

Remark 2.2. The evolution semigroup U(t, s) is strongly continuous on the com-
pact set ∆, there exists a constant K > 0 such that

‖U(t, s)‖ ≤ K for any (t, s) ∈ ∆. (2.1)

We make the following assumptions:

(A1) Let the operator A0 = A(0, x0) be closed with dense domain D0 in H and
there exists a constant C3 > 0 independent of λ such that

‖(λI −A0)−1‖ ≤ C3

1 + |λ|
; for all λ with Reλ ≤ 0. (2.2)

From this inequality it follows that the negative fractional powers A−ρ0 , for ρ > 0
of A0 is well defined [9] and

A−ρ0 =
1

Γ(ρ)

∫ ∞
0

e−tA0tρ−1dt.

Then A−ρ0 is bijective on H. Thus we define positive fractional powers of A0 by

Aρ0 = [A−ρ0 ]−1. Then Aρ0 is closed linear operator with dense domain D(Aρ0) in H
and D(Aµ1

0 ) ⊂ D(Aµ2

0 ) if µ1 > µ2. For 0 < ρ ≤ 1, let Hρ = D(Aρ0) and equip this
space with the graph norm

‖x‖ρ = ‖Aρ0x‖.
Thus Hρ becomes a Hilbert space with respect to the above norm. We define, for
each ρ > 0, H−ρ = (Hρ)

∗, the dual space of Hρ, endowed with the natural norm

‖x‖−ρ = ‖A−ρ0 x‖.

Let M,M̃ > 0 and Wρ = {x ∈ Hρ : ‖x‖ρ < M},
Wρ−1 = {y ∈ Hρ−1 : ‖y‖ρ−1 < M̃}. We shall also use the following assumptions:

(A2) For some ρ ∈ [0, 1) and for any x ∈Wρ, the operator A(t, x) is well defined
on D0 for all t ∈ I. Furthermore, for any t, s ∈ I and x, y ∈ Wρ the
following condition holds

‖[A(t, x)−A(s, y)]A−1(s, y)‖ ≤ R(M)‖x− y‖ρ. (2.3)

(A3) For every t, s ∈ I; x, y ∈ Wρ and x′, y′ ∈ Wρ−1 there exists constants

df = df (t,M, M̃) > 0 s.t. the nonlinear map f : I ×Wρ ×Wρ−1 → H
satisfies the condition

‖f(t, x, x′)− f(s, y, y′)‖ ≤ df (‖x− y‖ρ + ‖x′ − y′‖ρ−1),

‖f(0, x(0), x([h(x(0), 0)]))‖ ≤ df0 , for all t, s ∈ I.
(2.4)

(A4) There exist constants dh = dh(t,M) > 0 such that

|h(x, t)− h(y, s)| ≤ dh‖x− y‖ρ, for all x, y ∈Wρ; t, s ∈ I, h(·, 0) = 0. (2.5)

(A5) For some µ > ρ we assume that x0 ∈ Hµ and ‖x0‖ρ < M .

(A6) A−10 is completely continuous on H.
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Remark 2.3. Since, H is a Hilbert space, the assumption (A6) implies that A−10

is compact on H. Thus, R(λ;A0) is compact for Reλ ≤ 0.

For some 0 ≤ ρ ≤ 1, we define

Xρ = {φ ∈ C(I;Hρ) : ‖φ(t)− φ(s)‖ρ−1 ≤ dρ|t− s|, t, s ∈ I}.

where dρ is a positive constant. Then Xρ is a Hilbert space with the sup-norm of
C(I;Hρ). Let y ∈ Xρ. If T > 0 is sufficiently small, then we have

‖y(t)‖ρ < M, for t ∈ I.

Hence,

Ay(t) = A(t, y(t))

is well defined for each t ∈ I. Also we have

‖(λI −Ay(t))−1‖ ≤ C̃

1 + |λ|
, for all λ with Reλ ≤ 0, (2.6)

‖[Ay(t)−Ay(s)]A−1y (η)‖ ≤ C̃. (2.7)

Thus there exists a fundamental solution Uy(t, s) corresponding to Ay(t). We also
use the following assumption.

(A7) Choose T > 0 small enough such that R(λ;Ay(t)) is compact for t ∈ I, Re
λ ≤ 0. So A(t, y(t)) generates a compact evolution family.

Let x(T, x0, u) be the state value of the system (1.1) at terminal time T corre-
sponding to the initial value x0 and the control function u. We define the following
set

R(T, x0) = {x(T, x0, u) : u ∈ L2(I, U)}.
The set R(T, x0) is called the reachable set of the system (1.1) at time T .

Definition 2.4. (1) A controllability map for the system (1.1) on I is the
bounded linear map BT : L2(I, U)→ H which is defined as

BTu :=

∫ T

0

Ux(T, s)Bu(s)ds, for u ∈ L2(I, U). (2.8)

(2) The system (1.1) is exactly controllable on I if R(T, x0) = H, that is for
all y0, y1 ∈ H, there exists u ∈ L2(I, U) such that the mild solution to the
system (1.1) satisfies x(0, x0, u) = y0 and x(T, x0, u) = y1.

(3) The system (1.1) is approximately controllable on I if R(T, x0) = H, that
is for given ε > 0 and y0, y1 ∈ X, there exists a control u ∈ L2(I, U) steers
from the point x(0, x0, u) = y0 to all points at time T within a distance of
ε from y1. More precisely,

x(0, x0, u) = y0, ‖x(T, x0, u)− y1‖ < ε.

(4) The controllability Gramian of the system (1.1) on I is defined by

ΓT0 := BT (BT )∗.

Lemma 2.5. [14] The following properties hold for the controllability map:

(a) (BT )∗z(s) = B∗U∗x(T, s)z, for s ∈ [0, T ], z ∈ H.
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(b) ΓT0 = BT (BT )∗ ∈ L(H) has the following representation:

ΓT0 z =

∫ T

0

Ux(T, s)BB∗U∗x(T, s)zds, for z ∈ H (2.9)

and ΓT0 ≥ 0, where B∗ and U∗x denote the adjoint of B and Ux respectively.

We consider the following control system in H,

[
d

dt
+A(t, x(t))]x(t) = Bu(t), t ∈ I,

x(0) = x0.
(2.10)

We define the resolvent operator associated with (2.10) as

R(λ,ΓT0 ) = (λI + ΓT0 )−1, λ > 0.

We use the following assumption.

(A8) λR(λ; ΓT0 )→ 0 as λ→ 0+ in the strong operator topology.

We use the following characterization.

Theorem 2.6 ([23]). Let X be a separable Banach space with dual X∗. The fol-
lowing are equivalent for a symmetric operator P : X∗ → X:

(i) P is positive,
(ii) xε(h) = ε(εI + PQ)−1(h) → 0 as ε → 0+in the strong operator topology,

where Q : X → X∗ denotes the duality map.

We prove the following theorem of approximately controllability for (2.10).

Theorem 2.7. The system (2.10) is approximately controllable on I if and only if
condition (A8) holds.

Proof. The system (2.10) is the homogeneous part of (1.1). We note that there
exists a unique mild solution to (1.1) [18] and the mild solution xh for (2.10) in Xρ

is given as follows

xh(t) = Ux(t, 0)x0 +

∫ t

0

Ux(t, s)Bu(s)ds, t ∈ I = [0, T ]. (2.11)

For z ∈ H and λ > 0 we define the control function for (2.10) as

uλ(t, x) = B∗U∗xR(λ; ΓT0 ){z − Ux(T, 0)x0}. (2.12)

Put
rh(x) = z − Ux(T, 0)x0.

Then we get
xh(T ) = z − λR(λ; ΓT0 )rh(x).

Thus, xh(T )→ z if and only if λR(λ; ΓT0 )→ 0 as λ→ 0. �

For z ∈ H and λ > 0, we define the control function uλ(t, x) for (1.1) as

uλ(t, x) = B∗U∗x(T, s)R(λ; ΓT0 )
{
z − Ux(T, 0)x0

−
∫ T

0

Ux(T, s)f(s, x(s), x([h(x(s), s)]))ds
}
.

(2.13)

We also recall the Krasnoselskii’s fixed point theorem. We refer the reader for proof
to Burton [3].
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Theorem 2.8. Let P be a map from a closed bounded convex subset S of a Banach
space X into S. Suppose that Px = P1x + P2x for x ∈ S and P1u + P2v ∈ S
for every pair u, v ∈ S. If P1 is contraction and P2 is compact, then the equation
P1u+ P2u = u has a solution in S

3. Existence of solution

In this section, we establish the existence and uniqueness of a local solution to
(1.1) corresponding to a given control function uε. The proof of the theorem is
based on the technique in [14, 21].

Definition 3.1. A function x ∈ Xρ is said to be a mild solution to problem (1.1)
if x(t) satisfies

x(t) = Ux(t, 0)x0 +

∫ t

0

Ux(t, s)f(s, x(s), x([h(x(s), s)]))ds

+

∫ t

0

Ux(t, s)Bu(s)ds, t ∈ I = [0, T ].

(3.1)

Theorem 3.2. System (1.1) has a unique mild solution in Xρ for each control
uλ ∈ L2(I, U) if assumptions (A1)–(A8) hold and

K[(df + dfdρ−1dh) + df0 ]T < 1.

Proof. We consider the ball

Vl = {z ∈ Xρ : ‖z‖ρ ≤ l},
where l is a positive constant such that l < M . For each y ∈ Vl, we define the map
Gλ as

Gλy(t) = Uy(t, 0)x0 +

∫ t

0

Uy(t, s)f(s, y(s), y([h(y(s), s)]))ds

+

∫ t

0

Uy(t, s)Buλ(s, y)ds, t ∈ I.

We put

L =
1

λ
‖B‖ sup

t∈I
‖B∗U∗y (T, t)‖.

For t ∈ I, we have the estimate

‖Buλ(t, y)‖ρ

≤ 1

λ
‖BB∗U∗y (T, s)‖

{
‖z‖+K‖x0‖ρ +K

∫ T

0

∥∥∥(f(s, y(s), y([h(y(s), s)]))

− f(0, y(0), y([h(y(0), 0)])) + f(0, y(0), y([h(y(0), 0)]))
)∥∥∥ds}

≤ L
{
‖z‖+K‖x0‖ρ +K

∫ T

0

[df (‖y(s)− y(0)‖ρ

+ ‖y([h(y(s), s)])− y([h(y(0), 0)])‖ρ−1)]ds+KTdf0

}
≤ L

{
‖z‖+KM +K

∫ T

0

df (l +M + dρ−1dh(l +M))ds+KTdf0

}
= L{‖z‖+KM +K[(l +M)(df + dfdhdρ−1) + df0 ]T} = m,

(3.2)
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where,

m = L{‖z‖+KM +K[(l +M)(df + dfdhdρ−1) + df0 ]T}.
Let t1, t2 ∈ I with t1 < t2 and y ∈ Xρ. Using [9, Lemma II.14.1 and Lemma 14.4],
we obtain

‖Gλy(t1)−Gλy(t2)‖ρ−1
≤ ‖[Uy(t1, 0)− Uy(t2, 0)]x0‖ρ−1

+
∥∥∫ t1

0

Uy(t1, s)fy(s)ds−
∫ t2

0

Uy(t2, s)fy(s)ds
∥∥
ρ−1

+
∥∥∫ t1

0

Uy(t1, s)Buλ(s, y)ds−
∫ t2

0

Uy(t2, s)Buλ(s, y)ds
∥∥
ρ−1

≤MM1(t2 − t1) +M2M3(1 + | log(t2 − t1)|)(t2 − t1)

+mM4(1 + | log(t2 − t1)|)(t2 − t1)

≤ dρ(t2 − t1),

where dρ = MM1 + (M2M3 + mM4)(1 + | log(t2 − t1)|), M1,M2, M3 and M4 are
positive constants. Thus Gλ ∈ Xρ. Using estimate (3.2), we obtain

‖Gλy(t)‖ρ ≤ K‖x0‖ρ +

∫ t

0

‖Uy(t,s)fy(s)‖ρds+

∫ t

0

‖Uy(t, s)Buλ(s, y)‖ρds

≤ KM +K[(l +M)(1 + dρ−1dh)df + df0 ]T +KTM ≤ l,
provided

KM +K[(l +M)(1 + dρ−1dh)df + df0 ]T +KTM ≤ l
or

KM +KTm+Kl[(1 + dρ−1dh)df + df0 ]T +KM [(1 + dρ−1dh)df + df0 ]T ≤ l
or

KM +KTm+KM [(1 + dρ−1dh)df + df0 ]T ≤ l[1−K{(1 + dρ−1dh)df + df0}T ].

This is possible only if K{(1+dρ−1dh)df +df0}T < 1. Thus we choose T such that

T <
1

K{(1 + dρ−1dh)df + df0}
.

So, Gλ maps Vl into itself. We decompose Gλ as Gλ = Gλ,1 +Gλ,2, where

Gλ,1y(t) = Uy(t, 0)x0 +

∫ t

0

Uy(t, s)fy(s)ds, t ∈ I,

Gλ,2y(t) =

∫ t

0

Uy(t, s)Buλ(s, y)ds, t ∈ I.

We begin by showing that Gλ,1 is contraction on Vl. For y1, y2 ∈ Vl and t ∈ [0.T ],
put g1(t) = Gλ,1y1(t) and g2(t) = Gλ,1y2(t). Thus for i = 1, 2, we have

[
d

dt
+Ayi(t)]gi(t) = fyi(t), t ∈ (0, T ],

gi(0) = x0.
(3.3)

Thus,

d

dt
(g1 − g2) +Ay1(t)(g1 − g2) = [Ay2(t)−Ay1(t)]g2 + fy1(t)− fy2(t).
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Note that A0(t)g2(t) is uniformly Hölder continuous for 0 < t ≤ T and that

A0

∫ t
o
Uy2(t, s)fy2(s)ds is a bounded function, and hence we have the bound

‖A0Gλ,1y2(t)‖ ≤ M̃tδ−1

The operator [Ay2(t)−Ay1(t)]A−10 is uniformly Hölder continuous for 0 < β ≤ t ≤ T .
Hence [Ay2(t)−Ay1(t)]g2(t) is uniformly Hölder continuous for 0 < β ≤ t ≤ T .

g1(t)− g2(t) = Uy1(t, β)[g1(β)− g2(β)]

+

∫ t

β

Uy1(t, s)
{

[Ay2(s)−Ay1(s)]g2(t) + [fy1(s)− fy2(s)]
}
ds.

(3.4)

Letting β → 0, we obtain

g1(t)− g2(t) =

∫ t

0

Uy1(t, s){[Ay2(s)−Ay1(s)]g2(t) + [fy1(s)− fy2(s)]}ds.

So

‖Gλ,1y1(t)−Gλ,1y2(t)‖ρ ≤ N1M̃(M)

∫ t

0

(t− s)−ρ‖y1(s)− y2(s)‖ρsδ−1ds

+N2df

∫ t

0

(t− s)−ρ{‖y1(s)− y2(s)‖ρ

+ ‖y1([h(y1(s), s)])− y2([h(y2(s), s)‖ρ−1])}ds

≤ N1M̃(M)

∫ t

0

(t− s)−ρ‖y1(s)− y2(s)‖ρsδ−1ds

+
N2M̃(M)

1− ρ
df (2 + dρdh)T 1−ρ sup ‖y1(t)− y2(t)‖ρ

≤ ÑT δ−ρ sup ‖y1(t)− y2(t)‖ρ,
where

Ñ = max{N1M̃(M)

1− ρ
,
N2M̃(M)

1− ρ
df (2 + dρdh)}.

Choose T > 0 such that

ÑT δ−ρ <
1

2
.

Therefore,
‖Gλ,1y1 −Gλ,1y2‖ρ ≤ ‖y1 − y2‖ρ.

Hence Gλ,1 is contraction on Vl. We next show that the map Gλ,2 is completely
continuous.

Step 1: Let {vn} be a sequence in Vl such that vn → v ∈ Vl as n→∞. It follows
from (A3) and (A4) that

(a) ‖Buλ(s, vn)−Buλ(s, v)‖ρ → 0 as n→∞.
(b) ‖Buλ(s, vn)−Buλ(s, v)‖ρ ≤ 2m.

The dominated convergence theorem allows us to obtain

‖Gλ,2vn(t)−Gλ,2v(t)‖ρ

≤
∫ t

0

‖Uvn(t, s)Buλ(s, vn)− Uv(t, s)Buλ(s, v)‖ρds

=

∫ t

0

‖Uvn(t, s)Buλ(s, vn)− Uvn(t, s)Buλ(s, v)
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+ Uvn(t, s)Buλ(s, v)− Uv(t, s)Buλ(s, v)‖ρds

≤ K
∫ t

0

‖Buλ(s, vn)−Buλ(s, v)‖ρds+

∫ t

0

‖Buλ(s, v)[Uvn(t, s)− Uv(t, s)]‖ρds

→ 0 as n→∞.

Step 2: Let t1, t2 ∈ I such that t1 < t2 and v ∈ Vl. It follows from [9, Lemma II,
14.1, 14.4] that

‖Gλ,2v(t2)−Gλ,2v(t1)‖ρ ≤ N1(t2 − t1)ν ,

for some constants 0 ≤ ν ≤ 1 and N1 > 0. Thus {Gλ,2(Vl)} is equicontinous on I.

Step 3: We show that {Gλ,2v(t) : v ∈ Vl} is relatively compact in H. If 0 < η < t,
then we have

Gηλ,2v(t) =

∫ t−η

0

Uv(t, s)Buλ(s, v)ds

= Uv(t, t− η)

∫ t−η

0

Uv(t− η, s)Buλ(s, v)ds

= Uv(t, t− η)F (t, η),

where F (t, η) =
∫ t−η
0
Uv(t − η, s)Buλ(s, v)ds. We note that F (t, η) is bounded on

Vl. As Uv(t, s) is compact in H, so for each t ∈ (0, T ], the set {Gηλ,2v(t) : v ∈ Vl} is
relatively compact in H. Indeed, we have

‖Gλ,2v(t)−Gηλ,2v(t)‖ρ ≤
∫ t

t−η
‖Uv(t, s)Buλ(s, v)‖ρds ≤ Kmη → 0 as η → 0+.

Thus the set {Gλ,2v(t) : v ∈ Vl} is arbitrarily close to the relatively compact set
{Gηλ,2v(t) : v ∈ Vl} for each t ∈ I. Hence, for all t ∈ I the set {Gλ,2v(t) : v ∈ Vl} is
relatively compact in H.

By Ascoli-Arzela theorem, the set {Gλ,2v : v ∈ Vl} is relatively compact in Xρ.
Thus the map Gλ,2 is completely continuous from Vl into Vl.

Thus the map Gλ has fixed point on Vl by Krasnoselskii’s fixed point theorem.
Hence for each λ > 0, the system (1.1) has a mild solution in Vl corresponding to
each control uλ(s, x). �

4. Approximate controllability

We prove the following theorem of approximate controllability for system (1.1).

Theorem 4.1. Let assumptions (A1)–(A8) hold. Let the functions f : I ×Wρ ×
Wρ−1 → H and h : Wρ × I → I be uniformly bounded. Then system (1.1) is
approximately controllable on I.

Proof. It follows from Theorem 3.2 that Gλ has fixed point yλ in Vl. That is, yλ is
a mild solution for the control

uλ(t, yλ) = B∗U∗yλ(T, t)R(λ,ΓT0 )r(yλ),

where,

r(yλ) = z − Uyλ(T, 0)x0 −
∫ T

0

Uyλ(T, s)fyλ(s)ds, t ∈ I.
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Further, we have

yλ(T ) = Uyλ(T, 0)x0 +

∫ T

0

Uyλ(T, s)fyλ(s)ds

+

∫ T

0

Uyλ(T, s)Buλ(s, yλ)ds,

= z − r(yλ) + ΓT0 R(λ; ΓT0 )r(yλ)

= z − λR(λ; ΓT0 )r(yλ).

(4.1)

As f : I ×Wρ ×Wρ−1 → H and h : Wρ × I → I are uniformly bounded, fyλ(s)
is bounded in L2(I,H). Thus there exists a subsequence denoted by fyλ(s) that
converges to f(s) say. We define

q = z − Uyλ(T, 0)x0 −
∫ T

0

Uyλ(T, s)f(s)ds.

By the compactness of Uyλ(t, s) and Arzela-Ascoli theorem, we have

‖r(yλ)− q‖ ≤ K
∫ T

0

‖fyλ(s)− f(s)‖ds→ 0 as λ→ 0 + . (4.2)

Again from (4.1), we have

‖yλ(T )− z‖ ≤ ‖λR(λ,ΓT0 )(q)‖+ ‖λR(λ,ΓT0 )(q − r(yλ))‖
≤ ‖λR(λ,ΓT0 )(q)‖+ ‖r(yλ)− q‖.

By assumption (A8) and (4.2), we have ‖yλ(T )−z‖ → 0 as λ→ 0+. This completes
the proof. �

5. Applications

Example 5.1. Let X = L2([0, T ] × [0, 1];R). We consider the following system
with deviating arguments in X,

∂y(t, x)

∂t
+ [κ(t, x) + |y(t, x)| ∂

2

∂x2
]y(t, x)

= Bu(x, t) + v(x, y(t, x)) + w(t, x, y(t, x)), T > t > 0, x ∈ [0, 1],

y(t, 0) = y(t, 1), 0 ≤ t ≤ T,
y(0, x) = y0(x).

(5.1)

We assume that

(1) κ ∈ C1([0, T ]× [0, 1],R);
(2) v : [0, 1]→ R→ R defined as

v(x, y(t, x)) =

∫ x

0

F (x, x1)y(g̃(t)|y(t, x1)|, x1)dx1,

for (t, x) ∈ (0, T ) × [0, 1], where g̃ : R+ → R+ is locally Hölder continuous
in t with g̃(0) = 0 and F ∈ C1([0, 1]× [0, 1];R);

(3) w : R+ × [0, 1] × R → R is measurable in x, locally Hölder continuous
in t, locally Lipschitz continuous in t, locally Lipschitz continuous in y,
uniformly in x.
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We define

A(t, y)y(t) = [κ(t, x) + |y(t, x)| ∂
2

∂x2
]y(t, x),

where ∂2

∂x2 is the distributional derivative of y.

Then A0y = [κ(0, x) + y0(x) ∂2

∂x2 ]y. So D(A0) = H2(0, 1) ∩H1
0 (0, 1).

It is known that that −A(t, y) generates a compact analytic evolution semigroup

of bounded operators U(t, s) on L2[0, 1] [9]. Now X 1
2

= D(A
1
2
0 ) = H1

0 (0, 1), X− 1
2

=

H−1(0, 1). For x ∈ (0, 1) we define f : R+ ×H1
0 (0, 1)×H−1(0, 1)→ X by

f(t, φ1, φ2) = v(x, φ2) + w(t, x, φ1),

where

v(x, φ2(x, t)) =

∫ x

0

F (x, x1)φ2(x1, t)dx1.

Then we have

‖w(t1, x, φ)− w(t2, x, φ2)‖ ≤ C‖φ1 − φ2‖.
Thus f defined as above satisfies required assumptions (A3) and (A4), [15].

We consider the infinite dimensional control space

U =
{
w : w =

∞∑
0

wnen(x),

∞∑
0

|wn|2 <∞
}

equipped with the norm ‖w‖ = (
∑∞

0 |wn|2)
1
2 . We define B as B : U → X as

Bw = 4w2e1(x) +

∞∑
n=2

wnen(x).

Here B is a bounded linear map and the adjoint of B is

B∗u = (4u1 + u2)e2(x) +

∞∑
n=3

unen(x).

If B∗U∗(t, s)u = 0, then u = 0. Thus (5.1) is approximately controllable on [0, T ].

Example 5.2. Let X = L2([0, T ] × [0, 1];R) be the same space as defined in the
first example. Let us consider the following system in X,

∂w(t, x)

∂t
+

∂

∂x
[ψ(t, x)

∂

∂x
]w(t, x) = f(t, x, w(t, x), w(t− t0, x)) +Bu(x, t),

T > t ≥ t0 > 0, x ∈ [0, 1],

w(t, 0) = w(t, 1), 0 ≤ t ≤ T,
w(0, x) = w0(x),

(5.2)

where

f(t, x, w(t, x), w(t− t0, x))

=

∫ 1

0

K(x, y)[w(g(t)|w(t, y)|, y) + w(g̃(t− t0)|w(t− t0, y)|, y)]dy.

We assume that

(a) ψ is a positive bounded function, Lipschitz continuous in the first variable
and has bounded and continuous partial derivatives for all 0 ≤ t < T and
x ∈ [0, 1].
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(b) B is a bounded linear map from a Hilbert space U to X and we define B
as exactly similar to the previous example.

(c) K ∈ C1([0, 1]× [0, 1];R).
(d) g, g̃ : R+ → R+ are two Hölder continuous functions with g(0) = 0 = g̃(0).

We define

A(t, w)w(t) = − ∂

∂x
[ψ(t, x)

∂

∂x
w(t, x)].

Then domain of the operator A0 is D(A0) = H2(0, 1) ∩ H1
0 (0, 1), and domain of

the fractional power operator A
1/2
0 is X1/2 = D(A

1/2
0 ) = H1

0 (0, 1). Also the family
{A(t, w) : 0 ≤ t ≤ T} satisfies all the conditions to generate a compact analytic
evolution semigroup of bounded operators U(t, s) on L2(0, 1) for the system 5.2
[17]. We consider the space U as defined in the first example, then we can show
that the system 5.2 is approximate controllable in the interval [0, T ].
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