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OPTIMAL BILINEAR CONTROL FOR GROSS-PITAEVSKII
EQUATIONS WITH SINGULAR POTENTIALS

KAI WANG, DUN ZHAO

ABSTRACT. We study the optimal bilinear control problem of the generalized
Gross-Pitaevskii equation

1

0w = —Au+ U(z)u + ¢(t)wu + Nul|?u, = €R3,

T
where U(z) is the given external potential, ¢(¢) is the control function. The
existence of an optimal control and the optimality condition are presented for
suitable a and o. In particular, when 1 < a < 3/2, the Fréchet-differentiability
of the objective functional is proved for two cases: (i) A <0, 0 < o < 2/3; (ii)
A > 0,0 < o < 2. Comparing with the previous studies in [6], the results fill
the gap for o € (0,1/2).

1. INTRODUCTION

In the study of optimal control of partial differential equations [10], optimal con-
trol of Gross-Pitaevskii (GP) equations is a new topic [B] [6], [7, [8 O] 11, 12] which
was originated from the experiments of quantum control for Bose-Einstein conden-
sates. In this article, we consider the optimal bilinear control problem governed by
the generalized GP equation

10 = —Au+ Uz)u + qs(t)@u M () € 0,00 < B

w(0,x) = up(x).
where U(z) is the given external potential to confine the atoms in the experiment,
AER, ¢:[0,400) = R is the control function to manipulate the the control poten-
tial 1/]z|®. In the whole text, we assume U € C*®°(R3;R) and U is subquadratic,
i.e.,
OFU € L*°(R?), for all |k| > 2.

In [7], the mathematical frame for the study on the optimal control of GP
equation is established for the first time, the existence of an optimal control with
bounded controlled potential is obtained, and under the assumption A > 0, 0 € N
with ¢ < 2/(d — 2), the first-order optimality conditions is derived by virtue of
the Gateaux-differentiability of the objective functional. After that, in [6], similar
results are extended to Coulombian potential (o = 1) with 1/2 < o < 2/3 for
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A<O0orl1/2 <o < 2for A > 0. Furthermore, the Fréchet-differentiability with
respect to the control of the objective functional is proved. However, both the
Gateaux-differentiability in [7] and the Fréchet-differentiability in [6] of the objec-
tive functionals are dependent on the local Lipschitz continuity of the solution u(¢)
with respect to the control ¢. However, when 0 < o < 1/2, the local Lipschitz con-
tinuity no longer holds, the method becomes invalid, and the corresponding results
are absent.

In this note, we consider a more general unbounded control potential |z|~* with
1 < a < 3/2 rather than « = 1 in [6]. With the aid of %2 regularity of the solution,
through a rather elaborate analysis, we obtain a new kind of continuity estimate
for the state v with respect to the control ¢ when 0 < o < 1/2 (see equation
below ). Based on this estimate, we prove that the Fréchet-differentiability of the
objective functional is still true for 0 < o < 1/2. This fills the gap in the results of
[@].

This article is organized as follows: in section 2, some estimates and inequalities
are given. In addition, we show the global existence and X2 regularity of the
solution; in section 3, the property of continuity of the 3 solution is discussed; and
in section 4, the first-order Fréchet-differentiability of the objective functional is
obtained. Besides, the rigorous characterization of the optimal control is derived.

Notation and conventions. Throughout this article, we use the abbreviations
L™ = L"(R3), W™ = W™ (R3), and L? which is equipped with the scalar product

€8 =R [ (@),
where Rz denotes the real part of a complex number z. We define
Y= {u € L*: 27V*u € L? for all multi-indices j and k with || + |k| < m},

with the norm

fullsm = > (27 VFul| 2,

l7]+[k|<m
we will write ¥ in stead of !, and set
Y= {u€ L":xu,Vu e L}

Recall that [2] a pair of exponents (g, r) is admissible on RV if 2/q = N(1/2—1/7)
with ¢ > 2. In what follows, C' > 0 will stand for a constant that may be different
from line to line when it does not cause any confusion.

2. PRELIMINARIES

In this section, we firstly recall a Gronwall-type estimate (see [4]), which would
be invoked throughout the paper. Thereafter, we study the existence and regularity
of the solution of system (|1.1)).

Lemma 2.1 ([]). Assume that B = (B1,Ba,...,B,), p = (p1,p2,--.,Pn) and
q=(q1,92,---,qn) satisfy B; >0,1<p; <gq; <oo, forj=1,2,...,n. Then fore
ach A, T >0, there exists ' =T'(T, B,p,q), such that if f; € L9 (0,T) satisfy

S llfilluon < A+ Billfilliron forall0<t<T,
j=1 j=1
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then
n
Z I fillLai 0.y < AT
j=1
Next, we establish the existence and regularity of the solution for system (|L.1J).

Lemma 2.2. Assume that 1 <a<2,0<0<2/3ifA<0,0r0<o<2ifX>0.
Let ¢ € H\(0,00) be a real Ualued function, U € C*(R3) be subquadratic. Then
for every ug € X, system admits an unique mild solution u € C([0,00),%) N
L .((0,00), El’p) for all admzsszble pair (7, p). Moreover, for every T > 0, we have

IVu(®)[172 + lzu(t)|72 < Coexp {C(T + T2 (¢ | 120.m)) } (2.1)

for all t € [0,T], where Co depends continuously on E(0), ||uolls, ||9ll#10,7) and
T.

Furthermore, if ug € 2, then for every admissible pair (q,r), the solution of
([ satisfies u € C([0, 00), £2) N C1([0, 00), L) N W-?((0, 00), L").

Proof. Firstly, we prove the local well-posedness for (1.1)). The Duhamel’s formu-
lation for (1.1f) reads

w(t) =S(t)uo — i /0 S(t— )6(s) s i / St — $)ulu(s)ds,  (2.2)

where S(t) = e " with H = —A + U. Since [V, H] = VU and [z, H] = V, then

we have
IV, S(8)] = —i / S(t— $)VUS(s)ds, [, S(t)] = —i / S(t— $)VS(s)ds. (2.3)
0 0

We denote ®(u) the right hand side of (2.2). It follows from (2.3) that

Vo (u)(t) = Vuo—z/ S(t—s)o |x|a (Vu—%u)(s)ds
. (2.4)
—i/ S(t—s)V(|u|2"u)(s)ds—i/ S(t — $)VUD(u)(s)ds,
0 0
and
x®(u)(t) = S({t)xug —i | St —s) au+ ul*7zu)(s)ds
’ / e (2.5)

i / S(t— )VD(u)(s)ds
Let 1/]z|* = Vi(z) + Va(z), where

m(x):{1/|x|a <1 VQ(x):{o z[ <1

0 |z > 2, Vlz[™ [z > 2

are nonnegative. Apparently, Vo € L* and V] € L7 for any 0 < e < min{1/2,2—

at.

We denote
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:—z/St—s ()dS,

Ix\“

and let (qo, r0) = (4(c+1)/30,20+2), by Strichartz’s estimates (see [T, Proposition
2.2]) and Holder’s inequality, there exists { > 0, such that

G|y Lz SCL2 ]
+ Cl[o| L

Ll € L1+2f (O l) (26)
||L°°||7-"HL;’°L§(O,I)~

Similarly, we have

G2 (W)L Le00) < Cle/?

Ll EL1+2E (O l) (2.7)
+ Cl\|<l5||Loo(o,z)||V2HL°c \|$U||L§°Lg(o,l)~

and
1Ge(Wllzyeon < ClloViVull 13 5(071)+C||¢2VUHL1L2(O,I)
+C 6 + C||o V-
||¢ 1 | L2L§(0,) llo 2| |||L%L2,(0J) (2.8)
< ClI/? . v
< O ollmlonl o IVl

+ Cl| Bl o< 0, | V2l L ||VUHL$°L§(O,I)7

where the second inequality in holds by using Hardy’s inequality (see [2]
Lemma 7.6.1]).

Set X := C((0,1),%) N L((0,1),5170) 0 LT ((0,1), S5 7%). It is easily to
deduce that ® defines a contraction mapping from a suitable ball in X7 into itself
by Choosing [ sufficiently small. Then, the local-existence holds by a standard
contraction mapping argument. One can find more details in [2] [©].

Now, we show the global existence. For every T' > 0, the only obstruction to
well-posedness on [0, 77 is the existence of a time 0 < Ty < T such that ||Vu(t)||2, +
lzu(t)]|2, — +o0 as t — Ty. So the key is to prove (2.1)).

It is easily to check that system enjoys mass conservation, i.e., |u(t)||rz =
lluo||r2 for all ¢ € R. However, the energy is not conserved. Indeed, the energy
corresponding to may be written as:

E“):/Rs (Va6 + (U) + 60 |a)|u<t @)?)do

(2.9)
t 20+2d
and its evolution reads
1
E't) = ¢/'(1) / st )P, (2.10)
R3

Since U(z) is subquadratic, there exists a constant Cyy > 0, such that

| [, U@t 2)Pds| < Co (Jeu(t) s + Juoli:).
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When 0 < 0 < 2/3 and A € R, it follows from (2.9)) that

VU < B0+ [ B 6)ds + Cullentdl + ool

N ) (2.11)
o] [ crluta)lde + 2 JulE.
By Hardy’s inequality, we have
[, mlutta)ae < o) Vul g ful=. (212)
Gagliardo-Nirenberg’s inequality implies that
||u<t>||2;;if2 < CGN||Vu<t>||i% luol32° forallt€[0,7).  (2.13)

Substituting - into 7 and using Young’s inequality, we infer that
t
[Vu(t)|[72 < C1 +2Cy ||lzu(t)||72 +/ [0 (s)[IVu(s)Z:ds, (2.14)
0

with

C1 < |E(0)] + Culluollz: + CT%IIUollizlld)’lle (0,7) (215)

2(
+ C(ll¢llL=(0,1) +1)2 * + Clluoll K (Il L 0,1 +1)2 &,

where C in (2.15) depend on «, 0. Hence Cy depends continuously on E(0), ||uo|| 2,
]l 10,7 and T
On the other hand
1
| eu(t) 3] = 4]J/ Pa(t)Vu(t)dz| < Sleu(d)F: + 3 IVa()Fe,  (216)

where Sz denotes the imaginary part of a complex number z.

Combining (2.14) and -, we have

| [Jzu(t ||iz|+§IIVU(t)Il2L2

¢ d 1
<+ Cllaugls + [ 2(C+ 16/ (| hru(s) s+ 5 IVuo3: ) s

Then, using Gronwall’s inequality twice, we obtain (2.1)).
When A > 0 and 0 < o < 2, it follows from (2.9)) that

VU < BO)+ [ B 6)ds + Cu(lentdl + ool

+|¢(t)|/RS W|u(t,x)\ dz.

Then, by a similar but slightly simpler argument as above, we obtain .
Finally, combining [6] Proposition 2.5], [2l Theorems 4.8.1 and 5.3.1], we can ob-

tain the X2 regularity of the mild solution, we omit the details here. This completes

the proof. O
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3. CONTINUITY WITH RESPECT TO THE CONTROL

In [7], the Lipschitz property of the mild solution w with respect to the control
¢, which is heavily depended on the nonlinearity, was used in the heart of the
argument. In order to get the same property of u(¢), the authors in [6] considered
the problem under the assumption o > 1/2. When 0 < o < 1/2, the Lipschitz
estimate is failed by following the methods of [6l [7]. In this section, we will establish
a new kind of continuity estimate for the mild solution with respect to the control
¢. Our result reads

Theorem 3.1. Assume that 1 < a <2, 0< 0 <2/3ifAER, or0 <o <2if
A>0. Let ug € X, U € C®(R?) be subquadratic, and uy, us be two mild solutions
of corresponding to control parameters ¢y, ¢o € H*(0,T), respectively. Then
there exists 6 > 0, such that when ||¢1 — ¢2| 10,1y < 9, we have

Jur —w2llLy o) < Cllor — d2llaro,1) (3.1)
Furthermore, when o > 1/2, we have

[Vur — Vual|lprpe oy + llzur — zuzllLy e o,r)

3.2
< Cllp1 — b2l mr0,1) (3:2)
for any admissible pair (v, p), where C = C(T,, [luolls, |61z (0,1))-
Let 0 < 0 < 1/2, if we assume further that ug € ¥2, then
Vur — Vual|lprpe oy + llzur — zuzllLy e o,r) (3.3)

< Cllgr — pallmro.1) + Cllér — 2131 0.1y
where C = C(T,, |luolls, |1l 51 0,1), w1l Lo ((0,1),52))-

Proof. Since uy = u(¢1) and ug = u(¢p2) are two mild solutions of system (1.1)), we
have

(5% (t) — Ug(t)
K 1
_ —i/ (¢ = 5) (1 (v — )+ A 711 — 102 (5)ds.
0
Let (g, r0) = (4(c+1)/30,20+2) and (¢1,71) = (2/(1—¢€),6/(142¢)) be admissible
pairs. For every t € [0, T], applying Strichartz’s estimate to (3.4)), we have

lur —uallLy Lo, < ClIVi(drur — ¢2U2)|\L2Lg(0 ) + C|[Va(drur — d2u2)| L1120,
tx )

(3.4)

2 2
+ C[[ur[*u1 — |ug| 0U2||L36L;’o(07t)-

It then follows from Holder’s inequality that
lur —w2llzy o0 < Cllur —uzll o prio,) + Cllvr — uallprrz 0,0

+ Clluy — U2||L33L;0(O}t) +Cllo1 — b2l a1 (0,0)-
This and Lemma [2.1] imply
lur — w2y o0,y < Cllor — b2llm10.1), (3.6)

where C' depends on T', v, |[u1||L(0,1),5), u2llz>=(0,1),), 1]l 0,7)-
On the other hand, combining (2.4) and (2.5)), we obtain

Vu1 (t) - VUQ (t)
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. t 1 oz ax
= —z/o S(t— S)W<¢1 (Vu1 — Wul) — 9 (VUQ - WUQ))(S)dS
—i/o St — ) (V(|ur[7wr) — ¥ (Jua|*u)) (s)ds
- i/o S(t —s)VU(u1 — uz2)(s)ds,
and
xuy(t) — zus(t)
= fi/ S(t — 8) ——($rur — douz)(s)ds fi/ St — 8)(Vuy — Vo) (s)ds
0 |z] 0

- i/t S(t — 8)(Jur|*7zur — |ug|® us)(s)ds.
Considerothe complex-valued function g(§) = |£|*¢ with a > 0, the first-order
Wirtinger derivatives 9,¢(§) and 0:g(§) satisfy the follow properties [3]:
10:9(&)| < ClEI%, 10:9(8)] < CI¢]°,
10:6{1) = Bugila)] < {gﬁéﬂaé}lu €276 — & ;EZZ?.< '
This estimate also holds for 9;¢g(£). Thus if 0 < a < 1, we have
[Vg(&i(a)) — Vg(&2(a))| < Clér — &|* V& + Cl&|*|VE — V.
And if @ > 1, then
V(& (x)) = Vg(&(2))]
< O] + |&]* Y16 — &]IVE] 4 Cl&|* | VE — VE.

Therefore, when 0 < o < 1/2, applying Strichartz’s estimates and Hardy’s inequal-
ity, we obtain

[Vur = VuallLyreo.n < Cllér = d2llmro,r) + ClIVur — Vug|[pa g o
+ C||’LL1 — UQHLI((O’t)le) + C’||a:u1 — xu2||L%Li(07t)

Cllur — ua|3% ;- \4 -
# Ol =l oIVl e,

2
+ Cllugll7% pro o Ve — VUQHLSGLQO(o,t)'

Since 0+ 1 < 4(0 +1)/(4 + 0 — 602) < +o0, it follows that

||VU1HL%L;O(O’T) < Clluall Lo (0,7),52)-
It thus follows from that
[Vur = Vual| Ly e 0,0
< Cll¢1 = dallmro.r) + Clior = ¢2ll37 0,7
+ C||[Vuy — VU2HL31 Lo T ClIVur = Vua| iz 0.4 (3:7)

+ Cllazur — wuz|l L1204 + ClIVur — V“2HLQ6LTO(O "
01700,

where C' depends on T, v, |[u1||Le((0,1),52), [[U2|l£o=(0,7),5), |01l 51 0,1)-
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On the other hand, we have

lzur — zuzl[Ly e,
< Cll¢r = G2llmio,m) + CllVur = Vuz|| po pri .4 (3.8)

+ C||lzuy —a:uQHL + C||Vuy —VuQHLng(O’t),

q/
O L70(0,t)

where C' depends on 7, ||u1||L°°((O,T),Z)a HU2HL°°((0,T),2)-
Collecting (3.7) and (3.8)), using Lemma [2.1} we deduce that

[Vur — Vua|lprpe oy + llzur — zuzllzy e o,r)
< Cllgr — d2llaro,1) + Clldr — ¢2||%{01(0,T)7

where C' depends on T, 7, [[u1| e ((0,7),22)s U2l (0,1),5) |01l 0,7)-

To prove and (3-3)), we firstly notice that E(0) = E,(0) depends on |lugl|s
and |¢(0)|, thus it depends on T, |lug|ls and |@||g10,r). So it remains to show
that there exists § > 0 such that if |[¢1 — ¢z g1 0,7y < 9, then [Juz| L (0,r),5) <
C(T, E4,(0), |uolls, ¢1llzr1(0,7))- Indeed, by (2.1), we know that u depends con-
tinuously on ¢, so it can be obtained by choosing § sufficiently small.

When ¢ > 1/2, it holds that

(3.9)

IVur = Vua|lLyrer < Cllér — d2llmo,r) + Cl[Vur = Vua | Lo prio
+ C||[Vur — Vsl g2 0,0y + Cllzun — zual|pp2 0,0
+ C’||Vu1 - V’LLQHL

al 7 .
L L0 (0,t)

Together with (3.8), we can obtain (3.2)). This completes the proof. O

4. MINIMIZERS OF THE OPTIMAL CONTROL PROBLEM

For T' > 0, we consider H'(0,T) as the real vector space of control parameter ¢.
We denote by ©* the dual of the energy space . Let X(0,7) := L?((0,7),%) N
WL2((0,T),%*). then we set

A0,T) := {(u,¢) € X(0,T) x H'(0,T) : w is a mild solution of (LI
with ¢(0) € BR},

where R > 0 is a given constant and By := {¢(0) € R : |¢(0)| < R}.
Following [7], we define the objective functional as

T T
F(u, ¢) := (u(T), Au(T))7 +71/ |B'(t)|dt +72/ |/ (1) dt. (4.1)
0 0
Then our optimal problem is to study the following minimizing problem
F* = min F 4.2
Jmin, F(u, @) (4.2)

With the same argument as in [6], we can obtain the existence of a minimizer
for the optimal control problem (4.2)) as follows.

Lemma 4.1. Let 1 < a < 2, and U € C®(R3) be subquadratic. Assume that
0<o0<2/3ifAeER, or0<o<2ifX>0. Then, for any T >0, R > 0 and
ug € X, the optimal control problem (4.2) has a minimizer (u, ¢.) € A0, T).
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Using the Lagrange methods in [I0], we define the Lagrangian of the optimal

control problem (4.2)) as
L(u7v7 (Z)) = F(u7 ¢) - <U7P(u7 ¢)>L%’L§(O,T)7
where

P(u, ) :=i0u + Au — U(x)u — ¢(t)

u — Mul*?

[

Then we can derive the adjoint equation

1
v + Av — U(z)v — (b(t)wv — Mo+ D|ul*?v — Ao|u|?” " *u?s

_ 0F(u,9)
=5 (4.3)
OF (u, ¢
o) =1 &E(T))’
where M;g?t;b and 55(2}‘? denote the first variation of F'(u, ) with respect to u(t)
and u(T') respectively. Easily, we have
6F(u7 ¢) / 2 1 1
T\ oy
o = (@ 02 ( [ | plu(ta)Pds) o
0F (u, ¢)

Sa(r) — Hu(T), Au(T)) 2 Au(T).

Thus, (4.3]) defines a cauchy problem for v with the initial data v(T) € L?. And
we have the following existence results for the adjoint system.

Lemma 4.2. Assume that 1 < a« <3/2,0< 0 <2/3ifAeER, or0 <o <2 if
A > 0. Let U € C(R?) be subquadratic. Then, for every T >0, ¢ € H*(0,T) and
up € X2 | the cauchy problem admits a unique mild solution v € C([0,T]; L*)N
L7((0,T), LP) for all admissible pair (v, p).

Proof. Tt follows from Lemma that v € C([0,7],%2%) is a mild solution for
(1.1). And then, when o = 1, by the Hardy inequality, it is easily to check that

I;ul(‘t;b) € LY((0,7),L?). When 1 < o < 3/2, there exists €y > 0, such that for

every ball By(r) C R3, it holds 1/|z|?*72 € LT (Bo(r)). Combining Holder’s
inequality and the Strichartz’s estimates, we have

Ju(t, z)[? 2
[ e < Ozl v g 190 1
Hence we deduce that 61;(’&;5) € LY((0,7), L2) for 1 < o < 3/2. Then, we can get
the local existence in time by a standard contraction mapping argument.
Multiplying (4.3]) by v, integrating over R® and taking the imaginary part, we
obtain

_+ C||Vul3. (4.4)

d oF
%Hv(t)H%Q = Ao /]R3 lu| 2>~ 2u?03dx + S‘y/ (v, ¢) vdx.

R3 5u(t)
Noting that u € L>([0,T] x R?), it then holds that

d
POz < C+ Cllo@)]7a-
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By Gronwall’s inequality, we infer that v € C([0,7],L?). And v € L7((0,T), L")
can be concluded by Strichartz’s estimates. This proves the existence of a global
solution. (]

According to the argument of well-posedness for equation and Theorem 3.1
for any given initial data ug € ¥, u behaves as a continuous function of ¢. Then
the objective functional can be treated as a functional of ¢, i.e., F(¢) = F(u(¢), d).
In the following theorem, we consider the Fréchet differentiability of the objective
functional F.

Theorem 4.3. Assume that 1 < a < 3/2,0< 0 <2/3ifANER, or0 <o <2
if A > 0. Let ug € ¥2, ¢ € HY(0,T) and U € C®(R3) be subquadratic, then
the objective functional F(p) is Fréchet differentiable, and for any direction h €
HY(0,T),

T
F(é)h = §R/ h(t)/ ﬁﬂ(t,x)v(t,x) da dt
0 rR3 |T @
T (4.5)
2 [ OH 0+ ),
0
where v € C([0,T]; L2(R3)) is the solution of the adjoint equation and w(t) is
a weight factor defined as

wlt) = /R Lt 2)2da (4.6)

5 Ja]®
Proof. Recalling the definition of Fréchet differentiability, we need to verify that
F(¢1) — F(¢) = linear terms in (¢1 — @) + o([|¢1 — ¢l (0,1)),

then as ||¢1 — @[/ g1(0,7) — 0, the desired result can be obtained.
Consider the difference of F(¢1) and F(¢), which can be written as a sum of
three terms

F(p1) — F(¢) = F1+ Fo + Fs,

where

Fi o= (un(T), Aug (T))22 — (u(T), Au(T))2.,
Frmn [ 10N - @0)

T
Fy=m /0 ((G1(0)*wn (1) = (& (1)) Pw(t)?)dt,

where wy (t) defined as (4.6) with u replaced by w;.
Firstly, we consider the case 0 < o < 1/2, we start from the term F7, which can
be written in the form

Fi =20u(T), Au(T)) 2 (01 (T), Aus(T) 12 — (u(T), Au(T)) .2)
+ ((w (D), Awr(T)) 2 = (u(T), Au(D)) 2)".
By the essential self-adjointness of A, we have
(ur(T), Aur (T)) 2 — (u(T), Au(T)) L2
= 2(u1 (T) — u(T), Au(T)) 2 + (ur(T) = w(T), A(ur(T) = w(T))) L2

(4.7)
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It follows from Theorem [B.1] that
[(ur(T) = w(T), A(ur(T) = w(T))) 2| <lJus(T) = u(T)l| 2| All e |ur (T) = (D)5
<Cllér = 8l o.1) + Cllor = SlIHTo.1-
Substituting this into (4.7]), we obtain
F1=4u(T), Au(T)) 2 (ur (T) — w(T), Au(T)) 2 + o(l¢1 — b2l a2 0,1))- (4.8)
The quadratic expansion of ¢ is given by
2
(@1(0)* = (¢/(1))” + 26/ (1) (¢ (1) — & (1)) + (1 (1) — & (1))
It then holds that
T
Fama [ 00O - ¢©)dt+ 061~ bl (49
0
Finally, we consider F3. Note that
1 1
wi(t) = w(t) + 2§R/ W(ﬂ(ul —u))(t,z)dx +/ e |a lup — ul?(t, z)d.
R3
Using Holder’s inequality, Hardy’s inequality and Theorem |3.1} we deduce that
1
/ sl (ta)ds
< C|[Vur = Val gz flur —uf 72

< Cllgn = @ll3n 0.0 (161 = Sll a0,y + 161 = BII772 (0,7
= o(||¢1 — @l m10,1))-

1
s |T]|*

wi(t)? = w(t)? 4+ 4w(t)R (ﬂ(ul — u))(t7 z)dx + o(||¢1 — Dl 0,1))-

Therefore,

Fs :'Yl/o (¢>’1(t))2(Wf(t)—wz(t))dt+'n/0 ((@5(5)? = (¢'(1)*)w? (t)dt

1

T (a(uy —w))(t,z) dwdt
R |7

T
— i [ @O R

12y, / &' () ($1(1) — & (1) ()t + o(l|é1 — Ollm o.1)-

The adjoint equation (4.3 yields

T
471/0 (¢/(t))2w(t)8?/R3 ﬁ(a(ul — u))(t,x) dx dt

" (4.10)
= §R/ / 1Q(uy —u)(t,z)dedt —R | 0(T,z)(uy — u)(T,x)dz,
0 R3 R3
where v is the solution of and
Q(ur — u) =i0¢(u1 —u) + Aug —u) — U(x)(ug — u) — ¢(¢) | 1|a (u1 — u)

— Mo+ D|ul* (ug — u) — Ao|ul* "2u? (u; — u).
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Sine u, u; € C([0,T]; £2) N W12°((0,T); L?), the right hand side of (4.10)) is well
defined. Moreover, it is easily to check that the last term of the right hand side of
(4.10) is equal to —F1 + o(|[¢1 — b2l m1(0,1))-

By the fact that u and u; are solutions of (1.1), we infer that

1
Qur —u) = (¢1(t) — ¢(t))| it R(u1,u), (4.11)
where the remainder is given by
1 -
~R(ut,u) = |u1|*7uy — |u|*7u — (o + 1)|ul®* (u1 —u) — olul** " 2u?(u; — u).

A
Since 0 < 0 < 1/2, the remainder R(u1,u) can be bounded by

[R(u1,u)| < Cluy —uf**

Let (qo,70) = (4(c 4+ 1)/30,20 + 2), and in view of Theorem [3.1] we obtain
‘?R/ / TR (u1, u)(t, x) dxdt‘
R3
< Wl 10y 1 = Wl szoiom s = W00y qaz2)

< Cll¢1 — ¢HH1(0,T)(||¢1 = Ol omy) + 161 = 0ll37 0,m) )*7
=o([l¢1 = Bl zr0,1))-
On the other hand,

<¢1<t>—¢<t>>@u1=<¢1<t>—¢<t>>| 1| ~ () = 90 s ﬁaml—u) (4.13)

Thus, using (4.4) for 1 < o < 3/2 and Hardy’s inequality for o = 1, from Theorem
[311it follows that

[ @i - st [ ot — e de i

rs [2]*
T 1
g — ul? 3 (4.14)
<c [ @0 -o)l®ls( [ Hataas) @
=o(ll¢1 — Bl zr(0.1))-
Combining —, we deduce that
T
Fom=Fit [ @0 =00 | vt dea
0 R (4.15)

T
+2m / ¢'(t) (1 (t) — ¢ (1)) ()t + o(l|¢1 — Pl 0.1))-
0
Collecting (4.8), (4.9) and (4.15), we obtain (4.5)) by taking |[¢1 — &/ g1 (0,7 — 0.

When o > 1/2, the argument is slightly simpler. Indeed, by Theorem [3.1} u; —u
has the Lipschitz property as and . Therefore, any higher order (at least
quadratic) error of [|uy — ul| is bounded by O([|¢1 — |31 1)) Then can be
derived by the same argument as above. This completes the proof. ([l

Assume that (u., @) is a minimizer of the optimal control problem (4.2)), and if
¢ € HY(0,T) satisfies (¢ — ¢+)(0) = (¢ — ¢«)(T) = 0, it holds that F'(¢.)(¢— ¢.) =

0, see [7]. Furthermore, if we assume that the ¢, is sufficiently smooth, we have
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the following characterization, which is the control equation corresponding to our
optimal control problem.

Corollary 4.4. Assume that (u., ¢) € A(0,T) be a minimizer of the control prob-
lem . Let v, be the corresponding solution of the adjoint equation . Also,
denote by w, the function defined in with u replaced by u,. Then ¢, € C?[0,T]
is a classical solution of the following ordinary differential equation

d
L (B0 +med(D) = 3R /R 3 #w,m*@,x) dz,

subject to the initial data ¢.(0) = ¢o and ¢, (T) = 0.
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