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ESTIMATES FOR THE MIXED DERIVATIVES OF THE GREEN
FUNCTIONS ON HOMOGENEOUS MANIFOLDS OF NEGATIVE

CURVATURE

ROMAN URBAN

Abstract. We consider the Green functions for second-order left-invariant
differential operators on homogeneous manifolds of negative curvature, being
a semi-direct product of a nilpotent Lie group N and A = R+. We obtain
estimates for mixed derivatives of the Green functions both in the coercive and
non-coercive case. The current paper completes the previous results obtained
by the author in a series of papers [14, 15, 16, 19].

1. Introduction

Let M be a connected and simply connected homogeneous manifold of negative
curvature. Such a manifold is a solvable Lie group S = NA, a semi-direct product
of a nilpotent Lie group N and an Abelian group A = R+. Moreover, for an H
belonging to the Lie algebra a of A, the real parts of the eigenvalues of Adexp H |n,
where n is the Lie algebra of N , are all greater than 0. Conversely, every such
a group equipped with a suitable left-invariant metric becomes a homogeneous
Riemannian manifold with negative curvature (see [8]).

On S we consider a second-order left-invariant operator

L =
m∑

j=0

Y 2
j + Y.

We assume that Y0, Y1, . . . , Ym generate the Lie algebra s of S and Y ∈ s. We
can always make Y0, . . . , Ym linearly independent and moreover, we can choose
Y0, Y1, . . . , Ym so that Y1(e), . . . , Ym(e) belong to n (write L as

∑dim n
i,j=0 αi,jEiEj +∑dim n

j=0 βjEj , E0 ∈ a, {Ej} is a basis of n, αi,j , βj ∈ R and then rewrite L as a sum
of squares). Let π : S → A = S/N be the canonical homomorphism. Then the
image of L under π is a second-order left-invariant operator on R+,

π(L) = (a∂a)2 − γa∂a,

2000 Mathematics Subject Classification. 22E25, 43A85, 53C30.
Key words and phrases. Green function; second-order differential operators; NA groups;
Bessel process; evolutions on nilpotent Lie groups.
c©2004 Texas State University - San Marcos.
Submitted October 17, 2003. Published December 7, 2004.
Partly supported by grant 1PO3A01826 from KBN, and by contract HPRN-CT-2001-

00273-HARP from RTN Harmonic Analysis and Related Problems.

1



2 R. URBAN EJDE-2004/145

where γ = γL ∈ R. We say that a second order differential operator L on a
Riemannian manifold is non-coercive (coercive resp.) if there is no ε > 0 such that
L+εId admits the Green function (if such an ε exists resp.). It is worth noting that
our definition of coercivity is slightly different than that used e.g. in [1]. Namely,
for us, L is coercive if it is weakly coercive in Ancona’s terminology. There is a
relation between the notion of coercivity property in the sense used in the theory
of partial differential equations (i.e., that an appropriate bilinear form is coercive,
[9]) and weak coercivity. For this the reader is referred to [1].

In this paper we shall study both coercive and non-coercive operators. In this
case L can be written as

L = Lγ =
∑

j

Φa(Xj)2 + Φa(X) + a2∂2
a + (1− γ)∂a, (1.1)

where γ = γL ∈ R, X, X1, . . . , Xm are left-invariant vector fields on N , moreover,
X1, . . . , Xm are linearly independent and generate n,

Φa = Adexp(log a)Y0 = e(log a) adY0 = e(log a)D,

where D = adY0 is a derivation of the Lie algebra n of the Lie group N such that
the real parts dj of the eigenvalues λj of D are positive. By multiplying Lγ by a
constant, i.e., changing Y0, we can make dj arbitrarily large (see [5]).

Let Gγ(xa, yb) be the Green function for Lγ . Gγ is (uniquely) defined by two
conditions:

(i) LγGγ(·, yb) = −δyb as distributions (functions are identified with distribu-
tions via the right Haar measure),

(ii) for every yb ∈ S, Gγ(·, yb) is a potential for Lγ , i.e, is a positive superhar-
monic function such that its largest harmonic minorant is equal to zero (cf.
[2]).

Let
Gγ(x, a) := Gγ(e, xa), (1.2)

where e is the identity element of the group S. Since Lγ is left-invariant it is easily
seen that

Gγ(xa, yb) = Gγ(e, yb(xa)−1) = Gγ(yb(xa)−1).

In this article we call Gγ(x, a) defined in (1.2) the Green function for Lγ .
The main goal of this paper is to give estimates for derivatives of the Green

function (1.2) for Lγ .
To illustrate the general set up, before we proceed further, we would like to give

a simple and explicit example of the operator L in coordinates. Consider S = Rn×
R+. Let d1, . . . , dn be positive constants. For every a > 0, define Φa(∂xj

) = adj ∂xj
.

Then Φa on Rn becomes Φa(x) = Φa(x1, . . . , xn) = (ad1x1, . . . , a
dnxn) and we get

on Rn a structure of the homogeneous group with the homogeneous dimension Q =∑
dj (see [7]). The multiplication law in S is given by the formula (x, a)·(y, b) = (x+

Φa(y), ab). In this example the operator (1.1) is L =
∑

j a2dj ∂2
xj

+a2∂2
a+(1−γ)a∂a.

The Green function for L is G((x, a), (y, b)) =
∫∞
0

pt(x, a; y, b)dt, where pt(x, a; y, b)
is the heat diffusion kernel on S, such that u(t, y, b) := pt(x, a; y, b) is the minimal
solution of Lu = ∂tu, u(0, y, b) = δ(x,a)(y, b) and δ(x,a)(·) stands for Dirac’s delta.

Let us go back to the general setting. We are going to prove (or at least to sketch
the proof of) the following estimates. Let γ ≥ 0. For every neighborhood U of the
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identity e of NA there is a constant C = C(γ) such that we have

|∂k
aX IG−γ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γa−k

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ U)c,

Ca−k for (x, a) ∈ Q \ U
(1.3)

and

|∂k
aX IGγ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γaγ−k

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ U)c,

Caγ−k for (x, a) ∈ Q \ U ,

(1.4)

where | · | stands for a “homogeneous norm” on N , Q = {|x| ≤ 1, a ≤ 1}, ‖I‖ is a
suitably defined length of the multi-index I and ‖I‖0 is a certain number depending
on I and the nilpotent part of the derivation D. In particular, ‖I‖0 is equal to 0 if
the action of A = R+ on N , given by Φa, is diagonal or, if I = 0. X1, . . . ,Xn is an
appropriately chosen basis of n. For the precise definitions of all the notions that
have appeared here see Sect. 2.

It should be said that the estimate for the Green function itself (i.e., I=0) with
γ > 0, also from below, was proved by E. Damek in [4] and then by the author
for γ = 0 in [19] but at that time it was impossible to prove analogous estimate
for derivatives. The reason was that we did not have sufficient estimates for the
derivatives of the transition probabilities of the evolution on N generated by an
appropriate operator which appears as the “horizontal” component of the diffusion
on N ×R+ generated by a−2L−γ (cf. [5]). These estimates have been obtained by
the author in [20] and eventually led up to the estimates for derivatives of the Green
functions in the non-coercive case, i.e., γ = γL = 0 (see [15] for derivatives with
respect to N and A-variables separately and [16] for the mixed derivatives which
required a slightly different approach). Next, in [14] the results from [15] have been
used to get estimates for derivatives in the coercive case. This note completes the
previous works of the author in that we provide a proof of the estimates which is
valid for both the coercive and non-coercive cases.

The proofs of (1.3) and (1.4) require both analytic and probabilistic techniques.
Some of them have been introduced in [6, 5] and [19].

The structure of the paper is as follows. In Sect. 2 we set the notation and give
all necessary definitions. In particular, we recall a definition of the Bessel process
which appears as the“vertical” component of the diffusion generated by a−2L−γ on
N × R+ as well as the notion of the evolution on N generated by an appropriate
operator which appears as the“horizontal” component of the diffusion on N × R+

mentioned in the above (cf. [5, 15]). Moreover, we state Theorem 2.1 which is the
main tool in the proof of Theorem 3.1.

Finally, in Sect. 3 we state the estimates (1.3), (1.4) precisely (see Theorem 3.1)
and we give a sketch of its proofs.

2. Preliminaries.

NA groups. Good reference for this topic are [6, 5] and [7]. Let N be a connected
and simply connected nilpotent Lie group. Let D be a derivation of the Lie algebra
n of N . For every a ∈ R+ we define an automorphism Φa of n by the formula

Φa = e(log a)D.
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Writing x = expX we put
Φa(x) := expΦa(X).

Let nC be the complexification of n. Define

nC
λ = {X ∈ nC : ∃k > 0 such that (D − λI)k = 0}.

Then
n =

⊕
Imλ≥0

Vλ, (2.1)

where

Vλ =

{
Vλ̄ = (nC

λ ⊕ nC
λ̄
) ∩ n if Imλ 6= 0,

nC
λ ∩ n if Imλ = 0.

We assume that the real parts dj of the eigenvalues λj of the matrix D are strictly
greater than 0. We define the number

Q =
∑

j

Re λj =
∑

j

dj (2.2)

and we refer to this as a “homogeneous dimension” of N . In this paper D = adY0

(see Introduction). Under the assumption on positivity of dj , (2.1) is a gradation
of n.

We consider a group S which is a semi-direct product of N and the multiplicative
group A = R+ = {exp tY0 : t ∈ R} :

S = NA = {xa : x ∈ N, a ∈ A}

with multiplication given by the formula

(xa)(yb) = (xΦa(y) ab).

On N we define a “homogeneous norm”, | · | (cf. [6, 5]) as follows. Let (·, ·) be a
fixed inner product in n. We define a new inner product

〈X, Y 〉 =
∫ 1

0

(
Φa(X),Φa(Y )

)da

a
(2.3)

and the corresponding norm

‖X‖ = 〈X, X〉1/2.

We put
|X| = (inf{a > 0 : ‖Φa(X)‖ ≥ 1})−1

.

One can easily show that for every Y 6= 0 there exists precisely one a > 0 such that
Y = Φa(X) with |X| = 1. Then we have |Y | = a.

Finally, we define the homogeneous norm on N . For x = expX we put

|x| := |X|.

Notice that if the action of A = R+ on N (given by Φa) is diagonal the norm we
have just defined is the usual homogeneous norm on N and the number Q in (2.2)
is simply the homogeneous dimension of N (see [7]).

Having all that in mind we define appropriate derivatives (see also [6]). We fix
an inner product (2.3) in n so that Vλj , j = 1, . . . , k are mutually orthogonal and
an orthonormal basis X1, . . . ,Xn of n. The enveloping algebra U(n) of n is identified
with the polynomials in X1, . . . ,Xn. In U(n) we define 〈X1⊗· · ·⊗Xr,Y1⊗· · ·⊗Yr〉 =
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j=1〈Xj ,Yj〉. Let V r

j be the symmetric tensor product of r copies of Vλj
. For

I = (i1, . . . , ik) ∈ (N ∪ {0})k let

X I = X (i1)
1 . . .X (ik)

k , where X (ij)
j ∈ V

ij

j .

Then for X ∈ Vλj
,

‖Φa(X )‖ ≤ c exp(dj log a + Dj log(1 + | log a|)),
where dj = Reλj and Dj = dim Vλj − 1, and so

‖Φa(X I)‖ ≤ exp
( k∑

j=1

ij(dj log a + Dj log(1 + | log a|))
) k∏

j=1

‖X (ij)
j ‖ (2.4)

Bessel process. Let σ(t) denote the Bessel process with a parameter α ≥ 0 (cf.
[11]), i.e., a continuous Markov process with the state space [0,+∞) generated by
∂2

a + 2α+1
a ∂a. The transition function with respect to the measure y2α+1dy is given

(cf. [3, 11]) by:

pt(x, y) =

{
1
2t exp

(−x2−y2

4t

)
Iα

(
xy
2t

)
1

(xy)α for x, y > 0,
1

2α(2t)α+1Γ(α+1) exp
(−y2

4t

)
for x = 0, y > 0,

where

Iα(x) =
∞∑

k=0

(x/2)2k+α

k!Γ(k + α + 1)

is the Bessel function (see [10]). Therefore for x ≥ 0 and a measurable set B ⊂
(0,∞):

Px(σ(t) ∈ B) =
∫

B

pt(x, y)y2α+1dy.

If σ(t) is the Bessel process with a parameter α starting from x, i.e. σ(0) = x, then
we will write that σ(t) ∈ BESSx(α) or simply σ(t) ∈ BESS(α) if the starting point
is not important or is clear from the context.

Properties of the Bessel process are very well known and their proofs are rather
standard. They can be found e.g. in [11, 5, 18, 17]. However, in our paper we will
not explicitly make use of any particular property of the Bessel process.

Evolutions. Let X, X1, . . . , Xm be as in (1.1). Let σ : [0,∞) −→ [0,∞) be a
continuous function such that σ(t) > 0 for every t > 0. We consider the family of
evolutions operators Lσ(t) − ∂t, where

Lσ(t) = σ(t)−2
( ∑

j

Φσ(t)(Xj)2 + Φσ(t)(X)
)
. (2.5)

For the main result of the paper we are mainly interested in the operator (2.5) with
σ(t) being a trajectory of an appropriate Bessel process.

Since we assume X1, . . . , Xm being linearly independent, we select Xm+1, . . . , Xn

so that X1, . . . , Xn form a basis of n. For a multi-index I = (i1, . . . , in), ij ∈ Z+

and the basis X1, . . . , Xn of the Lie algebra n of N we write: XI = Xi1
1 . . . Xin

n and
|I| = i1 + · · ·+ in. For k = 0, 1, . . . ,∞ we define:

Ck = {f : XIf ∈ C(N), for |I| < k + 1}
and

Ck
∞ = {f ∈ Ck : lim

x→∞
XIf(x) exists for |I| < k + 1}.
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For k < ∞ the space Ck
∞ is a Banach space with the norm

‖f‖Ck
∞

=
∑
|I|≤k

‖XIf‖C(N).

Let {Uσ(s, t) : 0 ≤ s ≤ t} be the unique family of bounded operators on C∞ =
C0
∞ which satisfy

(i) Uσ(s, s) = I,
(ii) Uσ(s, r)Uσ(r, t) = Uσ(s, t), s < r < t,
(iii) ∂sU

σ(s, t)f = −Lσ(s)U
σ(s, t)f for every f ∈ C∞,

(iv) ∂tU
σ(s, t)f = Uσ(s, t)Lσ(t)f for every f ∈ C∞,

(v) Uσ(s, t) : C2
∞ −→ C2

∞.

Note that Uσ(s, t) is a convolution operator. Namely, Uσ(s, t)f = f ∗pσ(t, s), where
pσ(t, s) is a smooth density of a probability measure. By ii) we have pσ(t, r) ∗
pσ(r, s) = pσ(t, s) for t > r > s. The existence of the family Uσ(s, t) follows from
[12].

For α ≥ 0, on a direct product G = N × R+ we consider the following operator

Lα = a−2
∑

j

Φa(Xj)2 + a−2Φa(X) + ∂2
a +

2α + 1
a

∂a.

For f ∈ C∞c (G), we define on G the following function

u(t, x, a) := EaUσ(0, t)f(x, σ(t)), (2.6)

where the expectation is taken with respect to the distribution of the Bessel process
σ(t) starting from a. The following theorem, which gives the formula for the solution
of the heat equation for Lα in terms of the evolution on N driven by the Bessel
process, is one of the main tool in the proof of our results.

Theorem 2.1. Let u = u(t, x, a) be a function on G defined by (2.6). Then

Lαu = ∂tu, u(0, x, a) = f(x, a). (2.7)

Moreover, there exists the only one bounded from below solution u of (2.7).

Proof. For the proof of the first part of Theorem 2.1 see [5]. The uniqueness of
the bounded from below solution u follows by some kind of the maximum principle
which is a modification of Theorem. 3.1.1 in [13]. The proof for a diagonal action
given in [17] can be easily generalized. �

3. The main result and its proof.

In this section we obtain pointwise estimates for derivatives of the Green function
(1.2).

For a positive δ < 1/2 define

Tδ ={(x, a) ∈ N × R+ : 1− δ < a < 1 + δ, |x| < δ},
Q ={(x, a) ∈ N × R+ : |x| ≤ 1, a ≤ 1}.

Theorem 3.1. For a multi-index I = (i1, . . . , ik), γ ≥ 0, k ∈ Z+ and all operators
X I = X (i1)

1 . . .X (ik)
k , where X (ij)

j ∈ V
ij

j , with ‖X I‖ ≤ 1, there are constants C such
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that

|∂k
aX IG−γ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γa−k

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ Tδ)c,
Ca−k for (x, a) ∈ Q \ Tδ

and

|∂k
aX IGγ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γaγ−k

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ Tδ)c,
Caγ−k for (x, a) ∈ Q \ Tδ

where ‖I‖ =
∑k

j=1 ijdj, dj = Reλj, and ‖I‖0 =
∑k

j=1 ijDj, Dj = dim Vλj
− 1.

Let α ≥ 0 and γ ≥ 0. Along with the operator L−γ defined in (1.1) we consider
the corresponding operator Lα,

Lα = a−2
∑

j

Φa(Xj)2 + a−2Φa(X) + ∂2
a +

2α + 1
a

∂a = a−2L−γ ,

where α = γ/2. The Green function Gα for Lα is given by

Gα(x, a; y, b) =
∫ ∞

0

pt(x, a; y, b)dt,

where

Ttf(x, a) =
∫

f(y, b)pt(x, a; y, b)dyb2α+1db

is the heat semigroup on L2(N × R+, dyb2α+1db) given by Theorem 2.1 with the
infinitesimal generator Lα .

On N × R+ we define dilations:

Dt(x, a) = (Φt(x), ta), t > 0.

It is not difficult to check that although the operator Lα is not left-invariant it has
some homogeneity with respect to the family of dilations introduced above:

Lα(f ◦Dt) = t2Lαf ◦Dt.

This implies that

Gα(x, a; y, b) = t−Q−2αGα(Dt−1(x, a);Dt−1(y, b)). (3.1)

It turns out (see (1.17) in [5]) that

G−γ(x, a) = Gγ/2(e, 1;x, a) = G∗γ/2(x, a; e, 1), (3.2)

where G∗α is the Green function for the operator

L∗α = a−2
∑

j

Φa(Xj)2 − a−2Φa(X) + ∂2
a +

2α + 1
a

∂a

formally conjugate to Lα with respect to the measure a2α+1dadx. Moreover,

G∗α(x, a; e, 1) = lim
η→0

∫ ∞

0

E1p
σ(t, 0)(x)mα(Ia,η)−11Ia,η

(σt)dt,

where

mα(I) =
∫

I

a2α+1da
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and the expectation is taken with respect to the distribution of the Bessel process
with the parameter α starting from 1, i.e., BESS1(α) on the space C((0,∞), (0,∞)),
pσ(t, 0) is the transition function of the evolution generated by the operator (2.5)
and Ia,η = [a− η, a + η].

Since L−γ(·) = a−γLγ(aγ ·) it follows that

Gγ(xa, yb) = aγG−γ(xa, yb)b−γ (3.3)

and therefore, by (3.2) and (3.3),

Gγ(x, a) = G∗γ/2(x, a; e, 1)aγ .

Before we go to the proof of our main result we note the following important
proposition which gives estimates on the set Q \ Tδ of some functional of the evo-
lution pσ which plays the crucial role in the proof of Theorem 3.1.

Proposition 3.2. i) For every 1 > δ > 0 and for every multi-index I such that
|I| > 0 there exists a constant C > 0 such that for every (x, a) ∈ (Q\Tδ)∩{(x, a) ∈
N × R+ : a ≤ 1− δ} and for every 0 ≤ l ≤ k − 1,

sup
0<η<δ/2

|
∫ ∞

0

E1X
Ipσ(t, 0)(x)∂l

amα(Ia,η)−1∂k−l
a 1Ia,η

(σt)dt| ≤ Ca−k.

ii) For every 0 < χ0 ≤ 1, 0 < r0 ≤ 1 and for every multi-index I such that
|I| > 0 there exists a constant C > 0 such that for every χ ≤ χ0, for every (x, a) ∈
{0 < a ≤ 1, r0 ≤ |x| ≤ 1}, and for every 0 ≤ l ≤ k − 1,

sup
0<η<1

|
∫ ∞

0

EχXIpσ(t, 0)(x)∂l
amα(Ia,η)−1∂k−l

a 1Ia,η
(σt)dt| ≤ Ca−k.

iii) For every 1 > δ > 1/2 and for every multi-index I such that |I| > 0 there
exists a constant C > 0 such that for every χ ≤ 1/2− δ, for every (x, a) ∈ {(1− δ)/
2 ≤ a ≤ 1/2} and for every 0 ≤ l ≤ k − 1,

sup
0<η<δ/4

|
∫ ∞

0

EχXIpσ(t, 0)(x)∂l
amα(Ia,η)−1∂k−l

a 1Ia,η (σt)dt| ≤ Ca−k.

Sketch of the proof. The case α = 0 has been proved in [16]. (See the proof of
Proposition 3.1 in [16]. We take the opportunity to say that the formulation of
Proposition 3.1 in [16] is wrong and that it should have been stated exactly as
above with α = 0.) The generalization from α = 0 to an arbitrary α > 0 is (almost)
straightforward. One only needs to imitate the proof of Proposition 3.1 in [16]. �

After this preparatory facts we are ready to give

Sketch of the proof of Theorem 3.1. Let 0 < δ < 1/2, k ∈ Z+ and a multi-index I
be fixed.
Case 1. We consider the set

S1 = Q \ Tδ.

By Proposition 3.2 and Theorem 2.1 it follows that there exists a positive constant
C such that

|∂k
aX IG∗γ/2(x, a; e, 1)| ≤ Ca−k (3.4)
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for every (x, a) ∈ S̃1 := S1 ∩ {(x, a) ∈ N × R+ : a ≤ 1 − δ}. But S1 \ IntS̃1 is a
compact set and G∗γ/2 is a continuous function so we get (3.4) on S1. Therefore, on
S1 we have that

|∂k
aX IG−γ(x, a)| = |∂k

aX IG∗γ/2(x, a; e, 1)| ≤ Ca−k

and

|∂k
aX IGγ(x, a)| = |∂k

aX IG∗γ/2(x, a; e, 1)aγ | ≤ Caγ−k.

Case 2. Outside the set S1 we imitate the proof of Theorem 3.1 in [14], where
derivative with respect to X have been considered. The homogeneity (3.1) of the
Green function plus (2.4) play the crucial role. �
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