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ABSTRACT 

 

 Over the past decade, chemical pollution has increased in freshwater systems, 

including increases in endocrine disrupting compounds. One of the most prevalent of 

these chemical pollutants is 17α-ethinylestradiol (EE2), a synthetic estrogen used for 

contraceptives.  Exposure to EE2 under laboratory conditions has been demonstrated to 

alter reproduction, development, and behavior of aquatic organisms. Most water quality 

assessments, however, have detection thresholds that are substantially higher than most 

observed concentrations of EE2. Furthermore, detection thresholds are higher than 

biologically relevant concentrations of EE2 as understood from laboratory studies. In this 

study, I used a sensitive assay to quantify EE2 concentrations in water and red shiner 

fish, Cyprinella lutrensis, collected from five central Texas rivers. I detected EE2 in all 

rivers at concentrations that have been shown to cause adverse effects in aquatic 

organisms. The observed concentrations of EE2 in water and fish suggest that aquatic 

organisms in central Texas commonly experience non-trivial exposure to EE2. 

Additionally, given that EE2 can influence reproduction and disrupt development, EE2 

exposure could represent a substantial selective pressure for aquatic organisms. I used a 

Genotype-Environment-Association (GEA) approach to ask whether genomic variation in 

red shiners was associated with variation in EE2 concentrations. For this, I generated 

33,902 single nucleotide polymorphisms (SNPs) for 152 red shiners from 14 localities in 

five rivers. GEA analysis using Redundancy Analysis included EE2 concentrations in 

water and fish as predictors of genomic variation as well as other environmental 



 

 x 

predictors of water quality and patterns of land use in watersheds. Variance partitioning 

revealed significant proportions of genomic variation explained by my predictors and 

complex interactions among them. My results indicate that EE2 is not substantially 

associated with genotypic variation but represents a significant contaminant in central 

Texas rivers.
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USING GENOTYPE-ENVIRONMENT-ASSOCIATION ANALYSIS TO ASSESS 

THE IMPACT OF ENDOCRINE DISRUPTING COMPOUNDS ON RED 

SHINERS, CYPRINELLA LUTRENSIS, FROM CENTRAL TEXAS RIVERS 

 

 

I.  INTRODUCTION 

 

Increasing chemical pollution of freshwater resources has become a global 

conservation concern (Tang et al., 2021). Of particular interest in this investigation are 

endocrine disrupting compounds (EDCs), a class of chemical pollutants that include 

natural hormones and synthetic compounds that have the ability to disrupt endocrine 

systems by mimicking, inhibiting, or disrupting hormonal pathways in aquatic organisms 

(Dodds, 1938; EPA, 2002; Bhandari et al., 2015). EDCs have been demonstrated to alter 

reproduction, development and physiology of fishes and other aquatic organisms in 

laboratory studies (Schultz et al., 2003; Guillette Jr and Edwards, 2008). However, while 

EDCs potentially represent a major challenge for aquatic conservation, to date few 

studies have quantified the influence of EDCs in natural systems. Here, we begin to 

explore the influence of EDCs on aquatic organisms by quantifying how an EDC affects 

a widespread fish from central Texas using the framework of Genotype-Environment-

Association (GEA) analysis.  

We focused on a specific EDC, 17α-ethinylestradiol (EE2) found in fish and 

waters of five central Texas rivers. EE2 is a synthetic estrogen used in contraceptives and 

can cause adverse physiological, developmental and reproductive effects in aquatic 

organisms even at low concentrations. For example, in rainbow trout (Oncorhynchus 

mykiss), short-term exposure to EE2 results in reduced fertility (Schultz et al., 2003; 
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Guillette Jr and Edwards, 2008) and the production of intersex individuals (Nash et al., 

2004; Depiereux et al., 2014). In a previous study (Guzman and Nice, in prep), we 

reported EE2 concentrations in the water of five central Texas rivers that equaled or 

exceeded concentrations shown to cause adverse effects in laboratory experiments 

(Guzman and Nice, in prep) (Table 1). We also observed EE2 in detectable 

concentrations in tissues of the fish, red shiner, Cyprinella lutrensis, sampled at several 

sites within each of the five rivers. Here we use a Genotyping-By-Sequencing approach 

to generate genotypes from across the genomes of sampled red shiners. These multi-locus 

genotypes we then used in a Genotype-environment association (GEA) analysis. GEA 

analysis is used to address how populations of organisms may be adapted, or are 

adapting, to their environment by identifying genomic signatures associated with 

environmental variation (Savolainen et al., 2013; Menamo et al., 2021; Seetharam et al., 

2021; Postolache et al., 2021). GEA identifies associations between single nucleotide 

polymorphisms (SNPs) and environmental parameters (Grummer et al., 2019), including 

EE2. Any such associations are interpreted as potential evidence of the influence of 

selection by the environmental variables incorporated in the model.  

Empirical reviews have compared the results of GEA studies implemented using 

several alternative statistical methods and have found redundancy analysis (RDA) to be 

most powerful. When comparing distance-based redundancy analysis (GEA-dbRDA) 

with redundancy analysis of components (cRDA), GEA-dbRDA was found to be the 

most powerful and successful multivariate method in reducing rates of false positives by 

accounting for neutral processes shaping underlying population genetic structure 

(Forester et al., 2018). Thus, herein we use the GEA-dbRDA framework to address two 
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questions: 1) are concentrations of EE2 in river water correlated with patterns of genetic 

variation observed in red shiners, and, if so, 2) how much of the total genetic variance in 

red shiners is attributable to EE2 concentrations compared to other factors including 

spatial variables, and sample site specific variation in land cover, water temperature (°C), 

pH, dissolved oxygen (mg/L), specific conductance (uS/cm), and flow (ft3/s), and 

potential sources of EE2 contamination such as wastewater treatment plants (count)? The 

answers to these questions provide a foundation for future investigations of the potential 

influence of EDCs on aquatic organisms.   

 

 

II. MATERIALS AND METHODS 

Fish Biology 

The red shiner, Cyprinella lutrensis is a widely distributed and abundant primary 

freshwater fish found in the central US (Matthews and Hill, 1977; Marsh-Matthews and 

Matthews, 2000). Red shiners can tolerate a variety of harsh and fluctuating 

environmental conditions and have the ability colonize degraded habitats (Matthews and 

Hill, 1977; Marsh-Matthews et al., 2011). We chose to focus on red shiners in our study 

because of their tolerance to a variety of conditions, reasoning that evidence of EDC 

influences in a freshwater species might indicate that these influences extend to more 

specialized, or less tolerant, aquatic species. 

 

Data Collection 

Fish (n = 1-18/site) were collected from 14 sites as a part of a previous study 

quantifying EE2 concentrations in both water and fish across the San Antonio, 

Guadalupe, San Marcos, Colorado and San Gabriel rivers (Guzman and Nice, in prep) in 
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central Texas (Figure 1.). Fish were collected using seines and euthanized with MS-222 

(Tricaine Methanesulfonate, Western Chemical, Inc.). We obtained mass (g) and standard 

length (SL, mm) of each individual using a digital balance and dial calipers, respectively, 

and placed each fish into individual ziplock bag. At the time of collection, we obtained a 

water sample and obtained additional measurements at each site including longitude, 

latitude, and altitude (alt; m). Fish and water samples were transported back to the 

laboratory on ice and stored at -20C for later EE2 quantification. We also retrieved 

historical water quality metrics: (water temperature (temp; °C), pH, dissolved oxygen 

(DO; mg/L), specific conductance (SpC; uS/cm), and flow discharge (ft3/s) for years 

2018-2021. These water quality data were obtained from Texas Commission on 

Environmental Quality (TCEQ) surface water reporting tool. Flow discharge values are 

obtained from water monitoring stations located within 33 km of sampling sites, 

however, given the sparseness in water quality metrics, the data used is information 

available for river segments where sites are located. 

 

Potential sources of EE2 

Riverine systems are highly influenced by surrounding landscapes and in-stream  

processes (Poole, 2002) and these processes might influence EE2 concentrations in 

waters. A recent review revealed land development to be one of the primary factors 

negatively impacting biodiversity and ecosystems (Elmqvist et al., 2013). Anthropogenic 

factors including land development can affect water quality and the intensity of the 

impact can vary over spatial and temporal scales (Poole, 2002; Vrebos et al., 2017). 

Texas is one of the leading states in rapid land development which has led to the largest 

increase in impervious cover in the U.S. over the past 35 years (Xian et al., 2011; 
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Lombardi et al., 2020). Impervious cover (IC) associated with land development has been 

shown to increase run-off and associated pollutant loads into waterways (Page et al., 

2015). Therefore, we calculated the percent of undeveloped (%), developed (%), 

agriculture (%), and water (%) within subwatersheds (HUC12) for each site. To quantify 

IC near rivers and sampling sites, we obtained and imported maps of the United States 

and World Imagery from ESRI, Texas watersheds (HUC12; from USDA), and land cover 

raster data from the National Land Cover Database (NLCD, 2019) (http://www.mrlc.gov) 

into ArcMap 10.6.1 (ESRI). All layers were projected in Albers Conical Equal Area 

using NAD 1983 to match the NLCD raster and clipped into the shape of Texas before 

calculations. We calculated the percent of impervious cover within subwatersheds 

(HUC12) for each site. We chose to analyze impervious cover at the HUC12 level 

because data is readily available across the US conterminous and at the level water 

quality management decisions at made (EPA, 2017). To calculate the amount of 

impervious cover for each site, we reclassified land cover classes into four categories: 

water (%), undeveloped (%), developed (%), and agriculture (%). Using the tabulate area 

tool, reclassified land cover classes were calculated per subwatershed polygons were sites 

were located. This was calculated dividing area of reclassified land cover class by 

subwatershed area, multiplied by 100, and included these attributes in our analyses.  

In addition, EE2 contamination of surface waters can occur through discharge 

from wastewater treatment plants (WWTPs) that are unable to completely remove many 

of these compounds (Llamas, 2015; Lesser et al., 2018). To examine whether some sites 

are more vulnerable to contamination from these discharges, we analyzed the number of 

surrounding WWTPs with active permits that can discharge contaminates. To locate 
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WWTPs near rivers and sampling sites, we obtained and imported maps of the United 

States and World Imagery from ESRI, Texas watersheds (HUC12; from USDA), and 

WTTP location data (https://www.esri.com). We counted the number of WWTPs within 

subwatersheds (HUC12) for each site and were included in analysis. 

 

Sample preparation, extractions, and EE2 quantification  

Fish and water samples were stored at -20°C until thawed for EE2 extraction and 

analyses following US Environmental Protection Agency (EPA, 2009), (Gabor et al., 

2016), and manufacturers kit protocol (Abraxis Ecologiena, Tokiwa Chemical Industries, 

Tokyo, Japan). Due to the chemical function and structure of EE2, ELISAs have a higher 

probability of detecting the biological activity of this environmental pollutant and so were 

used.   

Fish and water samples were extracted with C18 Single Phase Extraction (SPE) 

columns (SepPak Vac 3cc/500mg; Waters Inc., Milford, MA, United States), using 

vacuum manifold pressure. Sample pre-treatment using SPEs is a common analytical 

procedure applied to increase the sensitivity and thus, quantification and detection of EE2 

as recommended by the kit manufacturer. SPE columns were primed with 4 ml of HPLC 

grade methanol, followed by 4 ml of distilled water. Whole fish samples were 

homogenized with 4 ml of distilled water and 4 ul HPLC grade acetic acid using a 10 ml 

borosilicate glass cell tissue homogenizer (WSF Industries, Inc., Tonawanda, NY, USA). 

We pulled homogenates and water samples through primed SPE columns. Fish samples 

were eluted with 4 ml of HPLC grade ethyl acetate whereas; water samples were eluted 

with 4ml of methanol. Elutions were collected in 13 x 10 mm borosilicate test tubes.  

We dried fish and water sample elutants by placing sample tubes into a 37°C 
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water bath under nitrogen gas (Airgas., Austin, TX USA). Dried fish and water samples 

were resuspended in 900 ul distilled water, 100 ul 100% methanol to a total volume of 

1000 ul. EE2 standards (0, 0.05, 0.15, 0.5, 3.0 ng/L; all containing 10% methanol) and 

resuspended samples were then pipetted in duplicates on MoAb-Coated 96-well EE2 

ELISA plates (Abraxis Ecologiena; assay range of 8.2 pg/ml - 5000 pg/ml; sensitivity 

(80% B/Bo) of 30 pg/ml) containing 100 ul of antigen-enzyme conjugate solution. We 

read ELISA sample absorbances on a spectrophotometer at 450nm (BioTex 800XS), and 

then quantified EE2 concentrations in surface waters (ng/L) and whole fishes (ng/g).   

We generated sample standard curves for each plate and calculated means, 

standard deviations (SDs), and coefficients of variation (CVs). EE2 analyses using 

ELISA methods are highly reproducible with a CV maximum of < 10% across samples 

(Gomes et al., 2021). As a precautionary measure, we processed all water samples and 

randomly fish number of fish per site on one plate to ensure EE2 concentrations were 

detectable in our sites and enough variation was present. For this plate, the intra-assay 

CV was 0.75%. Six other plates were used for the remaining fish samples, the intra-assay 

CV ranged from 3.07% to 5.66%, while the inter-assay CV was 4.44%. For all seven 

plates (first and fish only plates), the intra-assay CV ranged from 0.75% to 5.66% and the 

inter-assay CV was 3.82%.   

 

III. MOLECULAR GENETIC METHODS 

DNA sequencing and data collection  

DNA was extracted from fin clips taken from 152 individual fish using QIAgen’s 

DNeasy Blood and Tissue kit (QIAgen Inc.). We used the GBS protocol described by 

(Meyer and Kircher, 2010; Parchman et al., 2013; Gompert et al., 2014; Mandeville et al., 
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2015) to generate a genomic library for each individual fish. Briefly, DNA samples were 

fragmented using two restriction enzymes (EcoRI and Msel) (New England Biolabs; 

NEB Inc), and a unique 8- to 10-bp barcoded adapter was ligated to the restriction 

fragments for each individual. Using iProof high fidelity polymerase (Biorad, Inc.), we 

performed two rounds of PCR on the restriction-ligation products and pooled the 

resulting individual libraries into a single multiplexed library which was then sequenced 

at the University of Texas at Austin Genomic Sequencing and Analysis Facility (GSAF; 

Austin, Texas, USA). The library was processed via Pippen Prep quantitative 

electrophoresis unit (Sage Science, Beverly, MA) with size selection of fragments 

between 300 to 400 base pair (bp) and then sequenced with a full run of Illumina 

Novaseq SR100 SP. The choice of a fragment size range between 300 and 400bp was 

based on previous GBS library preparation insert what organism using this range which 

successfully produced sequence data (V. A. Sotola, pers. Comm.). 

We used BOWTIE version 1.1.2 to identify and exclude PhiX control sequences  

(Langmead and Salzberg, 2012). We then used a combination of custom scripts, 

BCFTOOLS and SAMTOOLS (Li et al., 2009) to process the sequence reads. We 

removed unique adapter and barcode sequences from the raw sequence reads, corrected 

up to one mutation within barcodes, and attached individual IDs to reads using a custom 

Perl script. There is no reference genome for Cyprinella lutrensis, therefore, we used a de 

novo assembly strategy in combination with a clustering strategy from the dDOCENT 

variant calling pipeline (Puritz et al., 2014). The dDOCENT pipeline identifies unique 

sequence reads for each individual and we retained sequences with at least four copies 

per individual and that were shared by at least four individuals. The assembly of these 
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reads were carried out using CD-hit (Li and Godzik, 2006; Fu et al., 2012) with an 80% 

similarity threshold. Consensus reads from the resulting contigs then served as scaffolds 

for a reference-based assembly of all reads using aln and samse algorithms from BWA 

0.7.5a-r405 (Li and Durbin, 2009). Next, we used SAMTOOLS ver. 0.1.19 and 

BCFTOOLS ver. 0.1.19 to call Single Nucleotide Polymorphisms – SNPs) and to 

calculate Bayesian posterior probabilities that a site is variable (Li et al., 2009). We 

required 80% of individuals to have at least one read at a specific locus for that locus to 

be included in the dataset. If a contig had more than one SNP, one was randomly selected 

and used for subsequent analyses, to maximize independence among markers. For every 

individual, the resulting genotype likelihoods from BCFTOOLS was used to calculate 

allele frequencies and loci with minor allele frequency (MAF) less than 0.05 were 

excluded. Lastly, we used the VCFFILTER ver. 0.1.1.9 to filter individuals containing a 

maximum number < 20 of missing data, a base quality score < 30, and a mapping quality 

score < 30.  

 

IV. COMPUTATIONAL METHODS 

Genetic structure 

We examined the genetic structure of red shiner populations distributed within 

and among the five stream systems in central Texas using Entropy (Gompert et al., 2014; 

Mandeville et al., 2015). Entropy is a hierarchical model that estimates an individual’s 

ancestry to a user-determined number of clusters or populations using a Bayesian 

framework. The Entropy approach is analogous to Structure (Pritchard et al., 2000; 

Falush et al., 2003) but differs in that Entropy accounts for uncertainty in genotype 

estimates resulting from sequence depth, alignment variation, and genotyping errors 
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(Gompert et al., 2014). Entropy estimates posterior genotype probability distributions, 

population allele frequencies and admixture proportions. We ran models with numbers of 

clusters, k, ranging from k = 2-16. Two Markov Chain Monte Carlo (MCMC) 

simulations were run for each k with 100,000 iterations, sampling every 10th iteration 

and, excluding the first 5,000 iterations of each run. We used Gelman-Rubin diagnostic 

statistics (Gelman and Rubin, 1992) and effective sample sizes to check the MCMC 

chains for convergence and stabilization (using the CODA package in R) (Plummer et al., 

2006). Posterior probability parameter estimates from model runs were averaged across 

chains and k’s for genotype estimates and illustrated as means, medians, and 95% 

credible intervals. The estimates of mean posterior genotype probabilities were used to 

summarize the distribution of genetic variation among individuals through principal 

component analysis (PCA) using the prcomp function (VEGAN package in R). Patterns 

of population structure across sampled populations were visualized by plotting admixture 

proportions in barplots.  

 

Genotype-environment association (GEA)  

One caveat with GEA is the need to account for spatial autocorrelation of allele 

frequencies and environmental data. Ecological and population genetic studies have 

traditionally used Mantel tests (Mantel, 1967) to test for spatial autocorrelation. However, 

the Mantel test has been shown to be problematic because the test assumes a regular 

sampling design that is almost never achieved in real studies (Legendre et al., 2015). 

Comparative simulations performed by Legendre and Fortin (2010) and Legendre et al. 

(2015) examined the comparative power of the Mantel test and distance-based Moran’s 

Eigenvector Mapping (dbMEM) functions, formally known as principal coordinates of 
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neighbor matrices (Borcard and Legendre, 2002; Borcard et al., 2004, 2018; Dray et al., 

2006). Simulations demonstrated that the Mantel test assumptions of linearity and 

homoscedasticity are likely violated for non-regular (i.e. real) sampling designs 

(Legendre and Fortin, 2010; Legendre et al., 2015). In comparison, dbMEM analysis was 

found to be successful in its ability to detect signals of spatial structure in univariate and 

multivariate geographical datasets across varying spatial scales and with non-regular 

designs (Legendre et al., 2015), while controlling for spatial correlations in species-

environment relationships (Dray et al., 2006; Legendre et al., 2015). While many studies 

on riverine systems have used dbMEMs to control for space (Cilleros et al., 2017; 

Zhukov et al., 2019; Ramos et al., 2021), these methods might not fully account for 

spatial autocorrelation in systems which possess inherent directionality and stream order 

such as flows in riverine systems. A modification of the MEM approach is Asymmetric 

eigenvector maps (AEMs), an eigen-based spatial filtering method, which considers 

geographical space asymmetrically and therefore may be better suited to account for 

directional processes found in rivers (Blanchet et al., 2008, 2011). AEMs may also be 

more effective at modeling spatial structure at different scales (Blanchet et al., 2008) and 

has been shown to outperform MEM on an empirical dataset under directional processes 

(Blanchet et al., 2011). Given the geographical asymmetry of riverine systems (flow 

direction is upstream-downstream), we controlled for spatial autocorrelation on allele 

frequencies associated with the geographic distribution of populations by using AEMs 

(Blanchet et al., 2008, 2011) to measure the proportion of genotypic variance explained 

by spatial autocorrelation among sampling localities.   

Following Blanchet et al. (2008, 2011), we first constructed a connection 
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diagram, similar to a minimum spanning tree, to link sites to one another in an upstream-

downstream (unidirectional) flow pattern within their corresponding river network. Using 

this connection diagram, we constructed a site-by-edge matrix, representing a sequence 

of edges connecting each site to the river network origin influencing it (i.e., if site A is  

connected to the river network origin, site A = 1, if not, site A = 0; Figure 2C). We built 

the site-by-edge matrix using the aem.build.binary function (ADESPATIAL package) on 

the site coordinates and edge possibilities identified from the connection diagram (site 0 

in Figure 2B). We then used the site-by-edge matrix to generate weights based on the  

differences in distance between sites within each river using inverse squared distances. 

For this, we first created a matrix of Euclidean distances from the site geographical  

coordinates (as performed in MEMs) and then removed edges directly linked to the river  

network origin in the site-by-edge matrix. Next, we created a vector to determine the  

length of each edge (i.e., distance from site saa to sab) and calculated weights by dividing 

by the maximum length of the network, this resulting value was squared and then 

subtracted from 1. AEM eigenfunctions were constructed using the aem function 

(ADESPATIAL package) on the site-by-edges matrix with weighted vectors for each site. 

We also ran AEM without weights but there were no differences (results not shown). 

To limit multicollinearity among environmental predictors we calculated variance 

inflation factors (VIF) (see Table 2 for predictors) before the GEA-RDA analyses. 

Following best practices we required a VIF threshold of < 10. Individual fish mass, fish 

[EE2], water [EE2], water (%), developed (%), altitude, pH, DO, specific conductance, 

flow, and WWTPs were scaled and were incorporated as predictors in GEA using RDA. 

For GEA-RDA with AEMs, we first collapsed the genotype probability matrix using the 
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vegdist function (in the VEGAN; (Oksanen et al., 2013)) into a pairwise Euclidean 

genetic distance matrix among individuals to reduce computational time. To determine 

whether any AEM axes were significantly associated with among-individual distances, a 

distance-based (dbRDA) RDA using the dbrda function (in the VEGAN package; 

(Legendre and Anderson, 1999)) was performed. When this model was found to be 

significant, a permutational ANOVA was then used to identify significant AEM axes. We 

then implemented forward step-wise model selection with 9999 permutations using the 

ordiR2step function. The ordiR2step function computes similar statistics as AIC model 

selection but is used for ordinations. To understand the explanatory power of the 

geographical variables, environmental variables, and [EE2] on genomic variation in red 

shiners (GEA-RDA), we performed variance partitioning using the varpart function with 

9999 replicates in the VEGAN package (Oksanen et al., 2013)). Variance partitioning 

was performed for combinations of predictors, specifically: all spatial predictors, all 

environmental site variables (excluding EE2), and water [EE2] and fish [EE2]. Venn 

diagrams were used to visualize the partitioning of variance for each of these analyses. 

 

V. RESULTS 

Sequencing generated an average of 1.8 million sequence reads per individual. 

Following filtering, retained 33,902 SNPs which form the basis for inspection of 

population genetic structure and GEA-RDA for 152 individuals in our study.  

 

Population genetic structure  

Four groups were identified among all individuals based on PCA of individual 

genotypes and admixture proportions calculated from Entropy. Results from PCA using 
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individual genotype probabilities of red shiners revealed four major clusters: 1) Colorado, 

2) San Gabriel, 3) Guadalupe and San Marcos, 4) San Antonio (Figure 3). Principal 

component (PC) axes I and II together explained 42.2% of total genetic variation and 

divided individuals into groups by river. The first PC axis divided individuals from 

eastern rivers (Colorado and San Gabriel) from individuals from western rivers (San 

Antonio, San Marcos and Guadalupe) and explained 39.7% of the genotypic variance, 

while the second PC axis explained 2.5% of the variation and further divided individuals 

from eastern rivers into distinct groups by river basin.   

Admixture proportions were calculated in Entropy for k = 2 – 16. We did not find 

support for biologically meaningful clusters and model convergence was poor at and after 

k = 5, therefore, we present results for only k = 2–4 models. For k = 2, individuals were 

separated based on river basin (Figure 4A). The model at k = 2 also shows individuals in 

the Guadalupe and San Marcos rivers share ancestry with individuals from the adjacent 

San Antonio, Colorado, and San Gabriel rivers. At k=3, individuals from the Colorado, 

and San Gabriel rivers form a distinct group, but individuals from the Guadalupe and San 

Marcos rivers maintain a pattern of admixture (Figure 4B). At k = 4, San Gabriel river 

individuals are assigned to the fourth genetic cluster with Colorado river individuals 

sharing ancestry with the San Gabriel group (Figure 4C).   

 

GEA-RDA  

We identified three AEM spatial variables. Permutational ANOVA revealed that 

all three AEM variables (AEM axes 2, 5, and 10) were significantly associated with 

genomic variation in red shiners (Table 2). These AEM’s were then included in the full 

RDA model. A forward step-wise model selection procedure was then implemented for 



 

 15 

the dbRDA analysis selecting among all 10 environmental predictors and the three 

significant AEM variables. The most parsimonious model contained eight environmental 

variables and two AEM as predictors. This selected model explained 42.35% of the total 

genomic variation (Table 4; adjusted R2 = 0.4235). Permutational ANOVA (9999 

replicates) performed on the model selected from forward step-wise model selection 

indicated that water temperature, DO, specific conductance, flow, water (%), developed 

(%), EE2 concentration in water, WWTP, and AEM 2 and 5 were significant predictors 

of among-individual genetic distances. Notably, EE2 concentration in water was 

identified as a significant predictor, but not EE2 concentrations in fish.  

Variance partitioning was used to examine how much genotypic variance was 

attributable to each environmental site variables, water [EE2], and AEM spatial variables 

in red shiners. The full model explained 42.35% of the total genotypic variation. Of this, 

spatial predictors (AEM 2 and 5) explained only 1.2%, [EE2] in water explained 0.1%, 

and all other site variables (water temperature, DO, specific conductance, flow, water 

(%), developed (%), and WWTP) explained 31.3% of the total genomic variation. A total 

of 59.2% of the total genomic variation was unexplained (Figure 5B). Further, 3.5% of 

the genotypic variation could not be disentangled from site variables and EE2 

concentrations in water. There was also 4.1% of genomic variation shared between 

(confounded with) spatial and site variables and EE2 concentrations. Given the 3.5% 

shared genotypic variance between site variables and EE2 concentrations in water, we 

also inspected the proportion of variance attributed to between individual site variables 

including EE2 concentrations in water as a site variable and EE2 concentrations in fish, 

while including spatial predictors.   
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While we noted that EE2 concentrations in fish were not significant predictors in 

explaining the among-individual genetic variation, we examined the associations between 

the eight significant predictors in the permutational ANOVA with EE2 concentrations in 

fish (Figure 5A). Variance partitioning with EE2 concentrations in fish did not explain 

any genomic variation and no variance was shared between EE2 concentrations in fish 

and space (AEM 2 and 5). Despite the lack of variance explained, there is similar and an 

increase in genomic variance attributed to space and site variables. Space explained 

similar genotypic variance at 1.2%, with an increase of shared variance of 4.8% for space 

and site variables. While site variables (water temperature, DO, specific conductance, 

flow, water (%), developed (%), WWTP, and EE2 concentrations in water) showed an 

increase in genomic variance from 31.3% to 34%. 

 

VI. DISCUSSION 

Quantifying the extent of genetic variation associated with chemical pollution is 

an important step toward understanding how organisms are responding or might respond 

to future chemical pollutant exposure. In a previous study (Guzman and Nice, in prep), 

we found concentrations of EE2 in red shiner whole body tissue and water samples that 

were equal to, or greater than, concentrations that have been shown to cause adverse 

effects in aquatic organisms. The current study used GEA-RDA analysis to investigate 

the potential influence of EE2 concentrations in natural populations. The GEA-RDA 

analysis explored possible associations between fish genotypic variation and predictor 

variables including EE2 concentrations (reported by (Guzman and Nice, in prep), other 

site environmental variables, and spatial variables across 14 red shiner populations 
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distributed among five central Texas rivers. GEA-RDA analysis using the final dbRDA 

model revealed that EE2 concentrations in water only accounted for only 0.1% of the 

total genotypic variation present in red shiners. The lack of a selective response to EE2 

concentrations might suggest that the red shiner populations sampled lack heritable 

genomic variation to respond to selection induced by variable EE2 concentrations. 

Alternatively, our results could indicate that EE2 might not represent a selective force for 

red shiners. Since the Cyprinella genera is widespread and abundant, our results could 

imply that other species in this genera do not possess heritable genomic variation for 

response to EE2 or in the case that EE2 does not represent a selective force, other species 

of Cyprinella are potentially able to persistent in waterways with EE2 exposures.  

However, considering we found that out of the total 42.35% explained variance we were 

able to explain, a large portion of it, 31.3%, was attributable to eight site variables. This 

suggests that red shiners have experienced and responded to selective pressures from 

water temperature, DO, specific conductance, flow, water (%), developed (%), and 

WWTP. However, of these, all except water (%) were significant predictors. Because 

water temperature, DO, specific conductance, and flow are water quality variables that 

vary across different temporal and spatial scales, it is predictable that environmentally 

tolerant red shiners, possess the genomic variation to respond to different and changes in 

environmental conditions.  

Overall, our results suggest that red shiners might lack the heritable genetic  

variation to respond to EE2, but not for other variables that drive among site variation. It 

is also worth noting that although EE2 concentrations did not show patterns that indicated 

it is a selective agent, there were proportions of genomic variance could not be 
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disentangled from other site variables and EE2 concentrations. Due to general 

fluctuations in water quality and limited knowledge on how EE2 and other environmental 

variables interact, patterns that might indicate selection might not be detected until 

significant exposure has occurred. Given that EE2 exposure has important consequences 

for aquatic organisms and given the potentially complex dynamics of EE2 in natural 

waterways, we feel more study of the consequences of EE2 exposure on genomic 

variation is warranted. 

 

VII. CONCLUSION 

This is the first population-level analysis of wild populations to explore whether  

chemical pollutant EE2 is a potential driver of selection. While our GEA-RDA analysis 

did not suggest EE2 to be a potential driver of selection in red shiners, this approach did 

allow us to effectively examine genomic patterns attributed to complex environmental 

variables. Furthermore, the observed patterns of among site variation in EE2 

concentrations in this study indicate further research extending to other aquatic 

organisms, including those in the genus Cyprinella, that inhabit EE2 polluted waters is 

warranted. Studies on other aquatic organisms experiencing exposure to EE2 is crucial to 

understanding whether the lack of heritable for a response is common and thus represents 

a serious conservation challenge. Regardless, if other aquatic organisms are able to 

respond, the concentrations found across central Texas rivers itself justify emphasis on 

management efforts to protect freshwater systems. 
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Table 1. Collection site details. River, site code and coordinates of sites for water and fish 

collections are provided. Water and fish EE2 concentrations found at each site are reported. 

River Site Longitude Latitude n EE2 (ng/L) n Mean EE2 (ng/g) SD (±) 

San Antonio SAA 29.3817 -98.4945 1 0.1358 16 0.054 0.096 

San Antonio SAB 28.9776 98.0100 1 0.2179 10 0.012 0.009 

San Antonio SAC 28.6626 -97.3887 1 0.14 11 0.014 0.029 

Guadalupe GDA 29.5358 -97.8810 1 0.2256 15 0.026 0.044 

Guadalupe GDB 29.4845 -97.4477 1 0.2081 16 0.009 0.013 

Guadalupe GDC 28.8239 -97.0305 1 0.1674 - - - 

San Marcos SMA 29.8571 -97.8970 1 0.1187 18 0.008 0.01 

San Marcos SMB 29.7525 -97.7811 1 0.1453 14 0.01 0.012 

San Marcos SMC 29.6686 -97.6996 1 0.1145 2 0.003 0.001 

Colorado COA 30.2092 -97.4997 1 0.1405 3 0.023 0.025 

Colorado COB 30.1120 -97.3251 1 0.1534 11 0.004 0.004 

Colorado COC 29.7052 -96.5354 1 0.1551 16 0.008 0.02 

San Gabriel SGA 30.6943 -97.2788 1 0.1923 1 0.025 - 

San Gabriel SGB 30.7020 -97.8775 1 0.1289 15 0.007 0.011 

San Gabriel SGC 30.6227 -97.8627 1 0.1253 4 0.015 0.02 

Abbreviations: Site = Code to distinguish each site, EE2 ng/L = Observed EE2 concentration in  water sample, 

Mean EE2 ng/g = Mean EE2 concentration found in fish per respective site, SD = Standard deviation of mean EE2 

in fish per respective site, and n = sample size or number of samples per site. 
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Table 2. Sampling locality water quality measurements. Measurement values for temperature, DO, pH, specific conductance, and  

flow are historical data medians over the years 2018-2021. 

Site Alt Seg ID Seg size Temp DO pH SpC Flow Water Undev Dev Ag WWTP 

SAA 173 1911 88.06 23.3 7.7 8 746 59.9 0.26 15.37 79.08 5.27 0 

SAB 81.99 1901 155.34 24.4 7.9 8.2 1105 328 0.67 35.95 4.98 58.37 0 

SAC 48 1901 155.34 24.4 7.9 8.2 1105 328 0.75 51.7 5.68 41.85 1 

GDA 127.01 1804 101.27 20 8.1 8.2 713 358 0.76 55.89 6.68 36.65 1 

GDB 75.98 1803 169.76 23.1 8.2 8.05 532 675 1.44 34.74 15.09 48.7 1 

GDC 13.01 1803 169.76 23.1 8.2 8.05 532 675 3.51 20.72 27.57 48.18 5 

SMA 160.99 1808 77.94 21.7 8.5 8 565 195 0.75 28 14.91 56.31 4 

SMB 127.98 1808 77.94 21.7 8.5 8 565 195 0.53 32.27 6.2 60.98 1 

SMC 106 1808 77.94 21.7 8.5 8 565 195 0.32 49.61 5.83 44.23 0 

COA 112.77 1428 42.37 22.9 8.5 7.9 555 516 3.59 41.55 7.02 47.82 1 

COB 112.47 1434 76.89 19.8 7.9 7.9 489 887 2.32 39.16 24.51 33.99 3 

COC 53.34 1402 152.48 22.6 9.75 8.1 534 820 1.848 46.32 6.39 45.4 1 

SGA 142.95 1214 32.79 19.6 7.7 7.9 439 4.45 0.15 16.36 4.1 79.37 0 

SGB 377.95 1251 41.85 20 8.65 8 541 1.4 3.27 85.27 11.16 0.28 1 

SGC 294.13 1250 41.34 20.5 10.1 8.1 569 5 0.27 75.94 23.55 0.22 1 

Abbreviations: Alt = Altitude (m), Seg ID = Segment identification number for specific site, Seg size = size of river segment (miles), Temp. = Water temperature (°C),  

DO = Dissolved oxygen (mg/L), pH = pH (standard units), SpC = Specific conductance (uS/cm), Flow = flow discharge (ft3/s) or volume (ft) of water moving down a 

stream or river per unit of time (second), Water = percentage of water within watershed of site, Undev. = percentage of undeveloped land cover within watershed, Dev. = 

percentage of developed land cover within watershed of site, Ag.  = percentage of agricultural land cover within watershed of site, WWTP = number of active WTTPs 

within watershed of site.  
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Table 3. Spatial (AEM) variables identified by dbRDA analysis conducted on genetic distances. 

Significant AEMs were used in the final dbRDA. 

 Df Variance F Pr(>F) 

AEM2 1 211 3.287 0.010 ** 

AEM5 1 146.1 2.275 0.040 * 

AEM10 1 1072.3 16.708 0.001 *** 

Significance levels indicated by asterisks: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 



 

 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Significant environmental and spatial variables identified in the forward step-wise 

model selection on collapsed genetic distances. Table output shows significant environmental 

and spatial predictor variables in dbRDA analysis using permutational ANOVA. Water quality 

and landscape variable abbreviations can be found on Table 2. 

 Df Variance F Pr(>F) 

Water 1 61.3 1.4304 0.1583 

DO 1 118.5 2.763 0.0136 * 

WWTP 1 451.1 3.507 0.0001 *** 

Flow 1 159.3 3.716 0.0031 ** 

SpC 1 176.8 4.123 0.0001 *** 

AEM2 1 121.3 2.828 0.0115 * 

Dev 1 184.3 4.299 0.0007 *** 

AEM5 1 141.7 3.304 0.0084 ** 

Temp 1 99.1 2.312 0.0357 * 

EE2(ng/L) 1 92.6 2.16 0.0421 * 
Significance levels indicated by asterisks: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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Figure 1. Water and red shiner sampling sites (n = 15). (A) River study region in Texas, 

(B) Name of river with site of red shiner, EE2, and water quality collections (Refer to 

Table 1 for coordinates). (C) River basin outlined in blue. The Guadalupe and San 

Marcos river are in the same river basin, Guadalupe river basin. 
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Figure 2. Schematic representations of AEM analysis of the 14 study sites. (A) Map of 

sampling sites for reference, (B) connection diagram showing connection of sites. Sites 

are numbered (see (A) for reference) and edges are numbered with enclosed circles. (C) 

sites-by-edges matrix E generated from connection diagram. 
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Figure 3. Principle component analysis of genetic differentiation of all individuals from 

each collection site. Each individual is represented by a dot. Individuals (represented as 

dots) are colored by river: San Antonio = green, Guadalupe = red, San Marcos = orange, 

Colorado = blue, and San Gabriel = purple (See figure legend). 
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Figure 4. Admixture proportions estimated with Entropy for k = 2 (A), 3 (B), and 4 (C).  

Each bar represents an individual (red shiner) and colors represents the individuals 

genotype probability assignment to a group. Tick marks above (A) outline groups 

individuals by river. 
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Figure 5. Venn diagrams of the variance partitioning based on the final dbRDA analysis. 

(A) represents the variance explained by spatial (AEMs) variables in red, site variables 

(see below plus EE2 in water) in blue, and EE2 in fish in green. (B) shows the variance 

explained by spatial (AEMs) variables, site variables, and EE2 in water. Explanatory 

components are: space = AEM2, AEM 5, and AEM 10, site variables = Water, DO, flow, 

specific conductance, developed, water temperature, and Water EE2 = EE2 in water 

found at sites where fish were collected (See Table 2 for abbreviations).
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