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NULL CONTROLLABILITY OF NONLINEAR CONTROL

SYSTEMS GOVERNED BY COUPLED DEGENERATE

PARABOLIC EQUATIONS

FENGDAN XU, JINGXUE YIN, MINGJUN ZHOU, QIAN ZHOU

Abstract. This article concerns the null controllability of a nonlinear control
system governed by coupled degenerate parabolic equations. We first establish

the Carleman estimate and the observability inequality for solutions to the

conjugate problem. Then we can prove the observability inequality and the
null controllability of the linear control system. Finally, the nonlinear control

system is shown to be null controllable by a fixed point argument and compact
estimates.

1. Introduction

In this article, we study the null controllability of the following nonlinear system
governed by coupled degenerate parabolic equations

ut − (xα1ux)x + g1(x, t, u) = h(x, t)χω, (x, t) ∈ QT , (1.1)

vt − (xα2vx)x + g2(x, t, v) = b(x, t)u, (x, t) ∈ QT , (1.2)

u(0, t) = 0 if 0 < α1 < 1, (xα1ux)(0, t) = 0 if 1 ≤ α1 < 2, t ∈ (0, T ), (1.3)

v(0, t) = 0 if 0 < α2 < 1, (xα2vx)(0, t) = 0 if 1 ≤ α2 < 2, t ∈ (0, T ), (1.4)

u(1, t) = v(1, t) = 0, t ∈ (0, T ), (1.5)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, 1), (1.6)

where 0 < α1, α2 < 2 and T > 0 are constants, QT = (0, 1)× (0, T ), g1 and g2 are
Lipschitz functions satisfying

g1(x, t, 0) = 0, |g1(x, t, u)− g1(x, t, v)| ≤ K|u− v|, (x, t) ∈ QT , u, v ∈ R, (1.7)

g2(x, t, 0) = 0, |g2(x, t, u)− g2(x, t, v)| ≤ K|u− v|, (x, t) ∈ QT , u, v ∈ R (1.8)

where K > 0 is a constant, b ∈ L∞(QT ), u0, v0 ∈ L2(0, 1), h is a control function,
ω is a nonempty open subset of (0, 1), and χω is the characteristic function of ω.
Since the null controllability of v is controlled by bu, it is reasonable to assume that
there exists a nonempty set ω̌ ⊂⊂ ω and a constant b0 > 0 such that

inf
ω̌×(0,T )

b ≥ b0 > 0 or sup
ω̌×(0,T )

b ≤ −b0 < 0. (1.9)

2010 Mathematics Subject Classification. 93B05, 93C20, 35K65.
Key words and phrases. Null controllability; coupled degenerate parabolic equations;

Carleman estimate.
c©2019 Texas State University.

Submitted November 11, 2018. Published November 21, 2019.

1



2 F. XU, J. YIN, M. ZHOU, Q. ZHOU EJDE-2019/123

See [16] for details.
The coupled parabolic equations (1.1) and (1.2) are degenerate at the bound-

ary x = 0, and they are some version of the following Volterra-Lotka model in
mathematical biology

ut = (a1(x)ux)x + b1u+ uf1(x, t, u, v), (x, t) ∈ QT , (1.10)

vt = (a2(x)vx)x + b2v + vf2(x, t, u, v), (x, t) ∈ QT , (1.11)

where a1 and a2 are positive functions in (0, 1) [11, 22]. Under suitable assumptions
on b1, b2, f1 and f2, the equations (1.10) and (1.11) describe the time evolution of
two competing species when space diffusion effects are taken into account. Here, u
and v denote the population densities of the two species, respectively. Additionally,
there are other mathematical applications that appear in mathematical biology and
in a wide variety of physical situations [3, 4, 21, 25, 26, 27, 28].

Controllability theory has been widely investigated for nondegenerate parabolic
equations for almost five decades and there have been a lot of results (see for
instance [2, 12, 14]). The study on the degenerate parabolic equations just began
ten years ago and a few results have been known. In particular, the following system
governed by a single degenerate parabolic equation has been widely studied

wt − (xαwx)x + k(x, t)w = h(x, t)χω, (x, t) ∈ QT , (1.12)

w(0, t) = 0 if 0 < α < 1, (xαwx)(0, t) = 0 if α ≥ 1, t ∈ (0, T ), (1.13)

w(1, t) = 0, t ∈ (0, T ), (1.14)

w(x, 0) = w0(x), x ∈ (0, 1), (1.15)

where k ∈ L∞(QT ). The system is null controllable if 0 < α < 2 ([1, 7, 20]), while
not if α ≥ 2 ([6]). It is noted that the degeneracy of (1.12) is weak if 0 < α < 1 and
strong if α ≥ 1. The null controllability of the system (1.12)–(1.15) for 0 < α < 2
is based on the Carleman estimate for solutions to its conjugate problem

−Wt − (xαWx)x + k(x, t)W = F (x, t), (x, t) ∈ QT , (1.16)

W (0, t) = 0 if 0 < α < 1, (xαWx)(0, t) = 0 if 1 ≤ α < 2, t ∈ (0, T ), (1.17)

W (1, t) = 0, t ∈ (0, T ), (1.18)

W (x, T ) = WT (x), x ∈ (0, 1). (1.19)

Although the system (1.12)–(1.15) is not null controllable for α ≥ 2, it was proved
in [6] and [23] that it is regional null controllability and approximate controllability
for each α > 0, respectively. Moreover, the controllability on a single degenerate
parabolic equation with linear or semilinear lower order terms have also been studied
in [10, 13, 24], while the null controllability of the system governed by a degenerate
equation in nondivergence form was considered in [5]. The controllability for the
nondegenerate coupled systems has been studied in [15, 16, 19]. There is also a
few results concerning with the controllability of the system governed by coupled
degenerate parabolic equations. In [8], Cannarsa and de Teresa studied the system

ut − (xαux)x + c1(x, t)u = ξ + hχω1
, (x, t) ∈ QT , (1.20)

vt − (xαvx)x + c2(x, t)v = uχω2 , (x, t) ∈ QT , (1.21)

subject to the conditions (1.3)–(1.6) with α1 = α2 = α, where 0 < α < 2, c1, c2 ∈
L∞(QT ), ξ ∈ L2(QT ), and ω1 and ω2 are nonempty open subsets of (0, 1). It was



EJDE-2019/123 NULL CONTROLLABILITY 3

shown that the system is null controllable if ω1∩ω2 6= ∅. In [17], the authors proved
the null controllability of the weakly degenerate system

ut − (a1(x)ux)x + F1(x, t, u) = h(x, t)χω, (x, t) ∈ QT ,
vt − (a2(x)vx)x + F2(x, t, u, v) = 0, (x, t) ∈ QT ,

u(0, t) = v(0, t) = 0, u(1, t) = v(1, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, 1),

where a1, a2 ∈ C1((0, 1]) ∩ C([0, 1]) satisfying a1(0) = a2(0) = 0 and

a1(x) > 0, a2(x) > 0, xa′1(x) ≤ κa1(x), xa′2(x) ≤ κa2(x), x ∈ (0, 1]

with some constant κ ∈ (0, 1). Note that in this paper, 0 < α1, α2 < 1 if

a1(x) = xα1 , a2(x) = xα2 , x ∈ [0, 1].

In [18], the authors studied the null controllability of the linear system

ut − (xα1ux)x + c1(x, t)u+ c2(x, t)v = h(x, t)χω, (x, t) ∈ QT , (1.22)

vt − (xα2vx)x + c3(x, t)u+ c4(x, t)v = 0, (x, t) ∈ QT , (1.23)

subject to the conditions (1.3)–(1.6) with 0 < α1, α2 < 1 and cj ∈ L∞(QT ) (1 ≤
j ≤ 4). They proved that the system (1.22), (1.23), (1.3)–(1.6) is null controllable.
It is noted that 0 < α1, α2 < 1. That is to say, equations (1.22) and (1.23) are
weakly degenerate. Recently, Du and Wang [9] proved the null controllability of
the system

ut − (xαux)x = a1(x, t)u+ b1(x, t)v + h(x, t)χω, (x, t) ∈ QT ,
vt − (xαvx)x = a2(x, t)u+ b(x, t)v, (x, t) ∈ QT

subject to the conditions (1.3)–(1.6), where 0 < α < 2, a1, a2, b1, b ∈ L∞(QT ) and
b satisfies (1.9).

In this paper, we first study the null controllability of the linear control system

ut − (xα1ux)x + c1(x, t)u = h(x, t)χω, (x, t) ∈ QT , (1.24)

vt − (xα2vx)x + c2(x, t)v = b(x, t)u, (x, t) ∈ QT (1.25)

with (1.3)–(1.6), where 0 < α1, α2 < 2 and c1, c2, b ∈ L∞(QT ). This null controlla-
bility is based on the Carleman estimate for solutions to its conjugate problem

−yt − (xα1yx)x + c1(x, t)y = b(x, t)z, (x, t) ∈ QT , (1.26)

−zt − (xα2zx)x + c2(x, t)z = 0, (x, t) ∈ QT , (1.27)

y(0, t) = 0 if 0 < α1 < 1, (xα1yx)(0, t) = 0 if 1 ≤ α1 < 2, t ∈ (0, T ), (1.28)

z(0, t) = 0 if 0 < α2 < 1, (xα2zx)(0, t) = 0 if 1 ≤ α2 < 2, t ∈ (0, T ), (1.29)

y(1, t) = z(1, t) = 0, t ∈ (0, T ), (1.30)

y(x, T ) = yT (x), z(x, T ) = zT (x), x ∈ (0, 1). (1.31)

Then we can prove the observability inequality and the null controllability of the
system (1.1)–(1.6). Using a fixed point argument and many compact estimates, we
can show that the nonlinear system (1.1)–(1.6) is null controllable.

This article is organized as follows. In §2, we recall the well-posedness and the
Carleman estimates for the problem of the single degenerate parabolic equation.
Then, we establish the Carleman estimate for solutions to the problem (1.26)–
(1.31) in §3. In §4, we prove the observability inequality and the null controllability
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of the linear system (1.24), (1.25), (1.3)–(1.6). Subsequently, the null controllability
of the nonlinear system (1.1)–(1.6) is shown in §5.

2. Recall of results on a single degenerate parabolic equation

In this section, we recall the well-posedness and the Carleman estimates for the
problem of the single degenerate parabolic equation. For 0 < α < 2, consider the
equation

wt − (xαwx)x + k(x, t)w = f(x, t), (x, t) ∈ QT , (2.1)

subject to the conditions (1.13)–(1.15), where k ∈ L∞(QT ), f ∈ L2(QT ). In order
to define solutions to the problem, the following Hilbert space is introduced (see
[1, 7, 20])

Hα(0, 1) =



{
w ∈ L2(0, 1) : w is absolutely continuous in [0, 1],

xα/2wx ∈ L2(0, 1) and w(0) = w(1) = 0
}
, if 0 < α < 1,{

w ∈ L2(0, 1) : w is locally absolutely continuous

in (0, 1], xα/2wx ∈ L2(0, 1) and w(1) = 0
}
, if 1 ≤ α < 2.

Definition 2.1. A function w is called to be a solution to the problem (2.1), (1.13)–
(1.15), if w ∈ C([0, T ];L2(0, 1))∩L2(0, T ;Hα(0, 1)) satisfies (2.1) in the distribution
sense and satisfies (1.15) in the common sense.

The well-posedness of problem (2.1), (1.13)–(1.15) was established in [1, 7, 20],
by the semigroup method.

Lemma 2.2. For any f ∈ L2(QT ) and w0 ∈ L2(0, 1), problem (2.1), (1.13)–(1.15)
admits a unique solution w. Furthermore, w satisfies

‖w‖L∞(0,T ;L2(0,1)) + ‖xα/2wx‖L2(QT ) ≤ C(‖w0‖L2(0,1) + ‖f‖L2(QT )),

and for any 0 < τ < T ,

‖wt‖L2((0,1)×(τ,T )) + ‖xα/2wx‖L∞(τ,T ;L2(0,1)) ≤ Cτ (‖w0‖L2(0,1) + ‖f‖L2(QT )),

where C and Cτ are positive constants depending only on α, ‖k‖L∞(QT ) and T ,

while Cτ also on τ . Moreover, if w0 ∈ Hα(0, 1) additionally, then xα/2wx ∈
L∞(0, T ;L2(0, 1)) and wt ∈ L2(QT ).

Next, we recall the Carleman estimate for problem (1.16)–(1.19). For ω̃ =
(x0, x1) with ω̃ ⊂⊂ ω, let ξ ∈ C2(R) satisfy 0 ≤ ξ ≤ 1 in R and

ξ(x) =

{
1, if x ∈ (0, (2x0 + x1)/3),

0, if x ∈ ((x0 + 2x1)/3, 1).

Define

ψ(x) =

{
κx2−α − λ, 0 ≤ α < 2, α 6= 1,

κex − λ, α = 1,
x ∈ [0, 1],

Ψ(x) = erζ(x) − e2rζ(0) with ζ(x) =
1− xα/2

1− α/2
, x ∈ [0, 1],

θ(t) =
1

(t(T − t))4
, t ∈ (0, T ),
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where κ, λ are positive constants such that ψ < 0 on [0, 1] and r is a suitably large
constant. Set

φ(x, t) = ψ(x)θ(t), Φ(x, t) = Ψ(x)θ(t), x ∈ [0, 1], t ∈ (0, T ),

ϕ(x, t) = ξ(x)φ(x, t) + (1− ξ(x))Φ(x, t), x ∈ [0, 1], t ∈ (0, T ).

One has the following Carleman estimate.

Lemma 2.3. There exist two positive constants M0 and R0 depending only on
α, T , ‖k‖L∞(QT ) and ω̃, such that for any F ∈ L2(QT ) and WT ∈ L2(0, 1), the
solution W to problem (1.16)–(1.19) satisfies that for each R ≥ R0,∫∫

QT

(RθxαW 2
x +R3θ3x2−αW 2)e2Rϕ dx dt

≤M0

(∫∫
QT

F 2e2Rϕ dx dt+

∫∫
ω̃T

R3θ3W 2e2Rϕ dx dt
)
,

where ω̃T = ω̃ × (0, T ).

Lemma 2.3 was proved in [8] by combining a Carleman estimate for a degen-
erate parabolic equation (see also [1, 20]) and a classical Carleman estimate for a
nondegenerate parabolic equation.

3. Carleman estimate

In this section, we establish the Carleman estimate for solutions to problem
(1.26)–(1.31).

Definition 3.1. A pair of functions (y, z) is called to be a solution to (1.26)–
(1.31), if y ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;Hα1

(0, 1)) and z ∈ C([0, T ];L2(0, 1)) ∩
L2(0, T ;Hα2

(0, 1)) satisfy (1.26) and (1.27) in the distribution sense, and satisfy
(1.31) in the common sense.

Similarly to Lemma 2.2, one can prove the following result.

Lemma 3.2. For any yT , zT ∈ L2(0, 1), problem (1.26)–(1.31) admits a unique
solution (y, z). Furthermore, the solution satisfies

‖y‖L∞(0,T ;L2(0,1)) + ‖xα1/2yx‖L2(QT ) + ‖z‖L∞(0,T ;L2(0,1)) + ‖xα2/2zx‖L2(QT )

≤ C(‖yT ‖L2(0,1) + ‖zT ‖L2(0,1)),

and for any 0 < τ < T ,

‖yt‖L2((0,1)×(0,T−τ)) + ‖xα1/2yx‖L∞(0,T−τ ;L2(0,1)) + ‖zt‖L2((0,1)×(0,T−τ))

+ ‖xα2/2zx‖L∞(0,T−τ ;L2(0,1))

≤ Cτ (‖yT ‖L2(0,1) + ‖zT ‖L2(0,1)),

where C and Cτ are positive constants depending only on α1, α2, T , ‖c1‖L∞(QT ),
‖c2‖L∞(QT ) and ‖b‖L∞(QT ), while Cτ also on τ . Moreover, if yT ∈ Hα1(0, 1) and

zT ∈ Hα2
(0, 1) additionally, then xα1/2yx, x

α2/2zx ∈ L∞(0, T ;L2(0, 1)) and yt, zt ∈
L2(QT ).

For j = 1, 2, we define

ψj(x) =

{
κjx

2−αj − λj , 0 < αj < 2, αj 6= 1,

κje
x − λj , αj = 1,

x ∈ [0, 1],
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Ψj(x) = erjζj(x) − e2rjζj(0) with ζj(x) =
1− xαj/2

1− αj/2
, x ∈ [0, 1],

φj(x, t) = ψj(x)θ(t), Φj(x, t) = Ψj(x)θ(t), (x, t) ∈ [0, 1]× (0, T ),

ϕj(x, t) = ξ(x)φj(x, t) + (1− ξ(x))Φj(x, t), (x, t) ∈ [0, 1]× (0, T ),

where κ1, λ1, κ2, λ2 are positive constants such that

ψ1(x) < ψ2(x) < 0, x ∈ [0, 1], (3.1)

and r1, r2 are suitably large constants and satisfy

Ψ1(x) < Ψ2(x) < 0, x ∈ [0, 1]. (3.2)

Lemma 3.3. There exist two positive constants M1 and R1, depending only on
α1, α2, T , ω̃, ‖c1‖L∞(QT ), ‖c2‖L∞(QT ) and ‖b‖L∞(QT ), such that for any yT , zT ∈
L2(0, 1), the solution (y, z) to (1.26)–(1.31) satisfies that for each R ≥ R1,∫∫

QT

(Rθxα1y2
x +R3θ3x2−α1y2)e2Rϕ1 dx dt

+

∫∫
QT

(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt

≤M1

∫∫
ω̃T

(R3θ3y2e2Rϕ1 +R3θ3z2e2Rϕ2) dx dt.

(3.3)

Proof. It follows from Lemma 2.3 that there exist two positive constants R0 and
M0 depending on α1, α2, T , ω̃, ‖c1‖L∞(QT ), ‖c2‖L∞(QT ) and ‖b‖L∞(QT ), such that
for any R > R0,∫∫

QT

(Rθxα1y2
x +R3θ3x2−α1y2)e2Rϕ1 dx dt

≤M0

(∫∫
QT

z2e2Rϕ1 dx dt+

∫∫
ω̃T

R3θ3y2e2Rϕ1 dx dt
)
,

and ∫∫
QT

(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt ≤M0

∫∫
ω̃T

R3θ3z2e2Rϕ1 dx dt.

It follows from (3.1) and (3.2) that∫∫
QT

(Rθxα1y2
x +R3θ3x2−α1y2)e2Rϕ1 dx dt

+

∫∫
QT

(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt

≤M0

(∫∫
QT

z2e2Rϕ2 dx dt+

∫∫
ω̃T

R3θ3(y2e2Rϕ1 + z2e2Rϕ2) dx dt
)
.

(3.4)

Set

p(x, t) = z(x, t)eRϕ2(x,t), (x, t) ∈ QT .
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Since p(1, t) = 0 and 0 ≤ α2 < 2, we have∫∫
QT

p2(x, t) dx dt =

∫∫
QT

(∫ 1

s

px(x, t)dx
)2

dsdt

≤
∫∫

QT

(∫ 1

s

x3/2p2
x(x, t)dx

)(∫ 1

s

x−3/2dx
)
dsdt

≤ 2

∫∫
QT

(∫ 1

s

x3/2p2
x(x, t)dx

)
s−1/2dsdt

= 2

∫∫
QT

x3/2p2
x(x, t)

(∫ x

0

s−1/2ds
)
dx dt

≤ 4

∫∫
QT

x2p2
x(x, t) dx dt

≤ 4

∫∫
QT

xα2p2
x(x, t) dx dt.

(3.5)

It follows from the definition of ϕ2 and ξ that∫∫
QT

xα2p2
x dx dt =

∫∫
QT

xα2(z2
x +R2(ϕ2)2

xz
2)e2Rϕ2 dx dt

≤
∫ T

0

∫ (2x0+x1)/3

0

(xα2z2
x + κ2

2R
2x2−α2θ2z2)e2Rϕ2 dx dt

+ C

∫ T

0

∫ 1

(2x0+x1)/3

(z2
x +R2θ2z2)e2Rϕ2 dx dt,

(3.6)

where C > 0 is a constant depending only on x0 and x1. Thus, it follows from (3.5)
and (3.6) that

M0

∫∫
QT

z2e2Rϕ2 dx dt ≤ 1

2

∫∫
QT

(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt (3.7)

for suitably large R. Thanks to (3.4) and (3.7), one can get (3.3). The proof is
complete. �

Theorem 3.4. There exist two positive constants M2 and R2, depending only on
α1, α2, b0, T , ω̃, ω̌, ‖c1‖L∞(QT ), ‖c2‖L∞(QT ) and ‖b‖L∞(QT ), such that for any

yT , zT ∈ L2(0, 1), the solution (y, z) to the problem (1.26)–(1.31) satisfies that for
each R ≥ R2, ∫∫

QT

(Rθxα1y2
x +R3θ3x2−α1y2)e2Rϕ1 dx dt

+

∫∫
QT

(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt

≤M2

∫∫
ωT

y2 dx dt,

where ωT = ω × (0, T ).

Proof. Without loss of generality, we assume that b satisfies inf ω̌×(0,T ) b ≥ b0 > 0.
The case inf ω̌×(0,T )(−b) ≥ b0 > 0 is similar.
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By Lemma 3.3, it suffices to prove the inequality∫∫
ω̃T

R3θ3z2e2Rϕ2 dx dt ≤ C
∫∫

ωT

y2 dx dt. (3.8)

Here and below, we use C and C(ε) to denote generic positive constants depending
only on α1, α2, T , ω̃, ω̌, ‖c1‖L∞(QT ), ‖c2‖L∞(QT ) and ‖b‖L∞(QT ), while C(ε) also
on ε. By Lemma 3.2 and a standard compactness argument, we can assume addi-
tionally that yT ∈ Hα1(0, 1) and zT ∈ Hα2(0, 1) without loss of generality. Then,
xα1/2yx, x

α2/2zx ∈ L∞(0, T ;L2(0, 1)) and yt, zt ∈ L2(QT ).
Define a function ρ ∈ C∞(0, 1) satisfying

ρ(x) = 1, x ∈ ω̃ and ρ(x) = 0, x ∈ (0, 1) \ ω̌.
Multiplying (1.26) by R3θ3ze2Rϕ2ρ yields∫∫

QT

bR3θ3z2e2Rϕ2ρ dx dt

=

∫∫
QT

(−ytR3θ3ze2Rϕ2ρ) dx dt+

∫∫
QT

(−(xα1yx)xR
3θ3ze2Rϕ2ρ) dx dt

+

∫∫
QT

c1yR
3θ3ze2Rϕ2ρ dx dt =: I1 + I2 + I3.

(3.9)

Integrating by parts, we obtain that for any ε > 0,

I1 =

∫∫
QT

yztR
3θ3e2Rϕ2ρ dx dt+

∫∫
QT

yzR3(θ3e2Rϕ2)tρ dx dt

≤ ε
∫∫

QT

(R−1θ−1|zt|2e2Rϕ2 +R3θ3x2−α2z2e2Rϕ2) dx dt

+ C(ε)

∫∫
ωT

R7θ7y2e2Rϕ2 dx dt,

(3.10)

I2 =

∫∫
QT

xα1yxzxR
3θ3e2Rϕ2ρ dx dt+

∫∫
QT

xα1yxzR
3θ3(e2Rϕ2ρ)x dx dt

= −
∫∫

QT

xα1−α2y(xα2zx)xR
3θ3e2Rϕ2ρ dx dt

−
∫∫

QT

xα2yzxR
3θ3(xα1−α2e2Rϕ2ρ)x dx dt

−
∫∫

QT

xα1yzxR
3θ3(e2Rϕ2ρ)x dx dt

−
∫∫

QT

yzR3θ3(xα1(e2Rϕ2ρ)x)x dx dt

≤ ε
∫∫

QT

(R−1θ−1|(xα2zx)x|2e2Rϕ2

+Rθxα2z2
xe2Rϕ2 +R3θ3x2−α2z2e2Rϕ2) dx dt

+ C(ε)

∫∫
ωT

R7θ7y2e2Rϕ2 dx dt,

(3.11)

and

I3 ≤ ε
∫∫

QT

R3θ3x2−α2z2e2Rϕ2 dx dt+ C(ε)

∫∫
ωT

R3θ3y2e2Rϕ2 dx dt. (3.12)
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By Lemma 2.3, there exists a constant C1 depending on α1, α2, T , ω̃, ‖c1‖L∞(QT ),
‖c2‖L∞(QT ) and ‖b‖L∞(QT ), such that for a suitably large R,∫∫

QT

(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt

≤ C1

∫∫
ω̃T

R3θ3z2e2Rϕ dx dt

≤ 3C1ε

b0

∫∫
QT

(R−1θ−1((xα2zx)x)2 +R−1θ−1z2
t +Rθxα2z2

x

+R3θ3x2−α2z2)e2Rϕ2 dx dt+ C(ε)

∫∫
ωT

R7θ7y2e2Rϕ2 dx dt

because of (1.9) and (3.9)–(3.12). Choosing ε = b0
6C1

yields∫∫
QT

(R−1θ−1(Rθxα2z2
x +R3θ3x2−α2z2)e2Rϕ2 dx dt ≤ C

∫∫
ωT

R7θ7y2e2Rϕ2 dx dt,

which implies (3.8). �

4. Observability inequality and null controllability of linear
system

In this section, we investigate the observability inequality for the problem (1.26)–
(1.31) and deduce the null controllability of the linear system (1.24), (1.25), (1.3)–
(1.6).

Theorem 4.1. There exists a constant M > 0 depending only on α1, α2, b0, T ,
ω̃, ω̌, ‖c1‖L∞(QT ), ‖c2‖L∞(QT ) and ‖b‖L∞(QT ), such that for any yT , zT ∈ L2(0, 1),
the solution (y, z) to (1.26)–(1.31) satisfies

‖y(·, 0)‖2L2(0,1) + ‖z(·, 0)‖2L2(0,1) ≤M
∫∫

ωT

y2 dx dt.

Proof. By Lemma 3.2 and a standard compactness argument, we can assume ad-
ditionally that yT ∈ Hα1(0, 1) and zT ∈ Hα2(0, 1) without loss of generality. Then,
xα1/2yx, x

α2/2zx ∈ L∞(0, T ;L2(0, 1)) and yt, zt ∈ L2(QT ). Multiplying (1.26) and
(1.27) by y and z, respectively, and then integrating over (0, 1) with respect to x,
one gets that

−1

2

d

dt

∫ 1

0

y2dx+

∫ 1

0

xα1y2
xdx+

∫ 1

0

c1y
2dx =

∫ 1

0

byz dx, t ∈ (0, T ),

−1

2

d

dt

∫ 1

0

z2dx+

∫ 1

0

xα2z2
xdx+

∫ 1

0

c2z
2dx = 0, t ∈ (0, T ).

Hence

− d

dt

∫ 1

0

(y2 + z2)dx ≤ 2

∫ 1

0

(c1y
2 + c2z

2 + byz)dx ≤ 2Λ

∫ 1

0

(y2 + z2)dx,

for t ∈ (0, T ), where Λ = ‖c1‖L∞(QT ) + ‖c2‖L∞(QT ) + ‖b‖L∞(QT ). Hence

d

dt

(
e2Λt

∫ 1

0

(y2 + z2)dx
)
≥ 0, t ∈ (0, T ),
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which yields∫ 1

0

(y2(x, 0) + z2(x, 0))dx ≤ e2Λt

∫ 1

0

(y2(x, t) + z2(x, t))dx, t ∈ (0, T ). (4.1)

Integrating (4.1) over (T/4, 3T/4) leads to

T

2

∫ 1

0

(y2(x, 0) + z2(x, 0))dx ≤
∫ 3T/4

T/4

∫ 1

0

e2Λt(y2 + z2) dx dt. (4.2)

As in the proof of (3.5), we obtain∫ 3T/4

T/4

∫ 1

0

(y2 + z2) dx dt ≤ C0

∫ 3T/4

T/4

∫ 1

0

(xα1y2
x + xα2z2

x) dx dt (4.3)

with some constant C0 > 0 depending only on α1 and α2. Then, from (4.2), (4.3)
and Theorem 3.4 it follows that∫ 1

0

(y2(x, 0) + z2(x, 0))dx

≤ 2C0

T
e3ΛT/2 sup

(T/4,3T/4)

e−2R1ϕ1

θ

∫ 3T/4

T/4

∫ 1

0

(xα1θy2
xe2R1ϕ1 + xα2θz2

xe2R1ϕ2) dx dt

≤ 2C0M1

TR1
e3ΛT/2 sup

(T/4,3T/4)

e−2R1ϕ1

θ

∫∫
ωT

y2 dx dt,

which completes the proof. �

Solutions to problem (1.24), (1.25), (1.3)–(1.6) can be defined similarly to Defi-
nition 3.1. Furthermore, one can show its well-posedness for u0, v0 ∈ L2(0, 1) and
h ∈ L2(QT ).

Theorem 4.2. For any u0, v0 ∈ L2(0, 1), there exists h ∈ L2(QT ) such that the
solution (u, v) to the problem (1.24), (1.25), (1.3)–(1.6) satisfies u(·, T ) = v(·, T ) =
0 on (0, 1).

Proof. To prove the null controllability of system (1.24), (1.25), (1.3)–(1.6), we first
show the approximate controllability. For any ε > 0, define the functional

Jε((yT , zT )) =
1

2

∫∫
ωT

y2 dx dt+ ε
(∫ 1

0

(y2
T (x) + z2

T (x))dx
)1/2

−
∫ 1

0

(
y(x, 0)u0(x) + z(x, 0)v0(x)

)
dx,

for (yT , zT ) ∈ L2(0, 1)×L2(0, 1), where (y, z) is the solution of (1.26)–(1.31). As the
proof of approximate controllability in [23], one can prove that there exists a unique
point (ŷT , ẑT ) ∈ L2(0, 1) × L2(0, 1) such that Jε achieves its minimum. Denote
(ŷε, ẑε) to be the solution to the problem (1.26)–(1.31) with (yT , zT ) = (ŷT , ẑT ).
Then take the control hε = χω ŷε to get the solution (uε, vε) to the problem (1.24),
(1.25), (1.3)–(1.6) satisfying

‖uε(·, T )‖L2(0,1) ≤ ε, ‖vε(·, T )‖L2(0,1) ≤ ε. (4.4)

From Jε(ŷT , ẑT ) ≤ 0, Hölder inequality and Theorem 4.1, we have

1

2

∫∫
ωT

ŷ2
ε dx dt+ ε

(∫ 1

0

(ŷ2
T (x) + ẑ2

T (x))dx
)1/2
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≤
∫ 1

0

ŷε(x, 0)u0(x)dx+

∫ 1

0

ẑε(x, 0)v0(x)dx

≤
(∫ 1

0

ŷ2
ε(x, 0)dx

)1/2(∫ 1

0

u2
0(x)dx

)1/2

+
(∫ 1

0

ẑ2
ε(x, 0)dx

)1/2(∫ 1

0

v2
0(x)dx

)1/2

≤ C
(∫∫

ωT

ŷ2
ε dx dt

)1/2(∫ 1

0

u2
0(x)dx

)1/2

+ C
(∫∫

ωT

ŷ2
ε dx dt

)1/2(∫ 1

0

v2
0(x)dx

)1/2

≤ 1

4

∫∫
ωT

ŷ2
ε dx dt+ C

(∫ 1

0

u2
0(x)dx+

∫ 1

0

v2
0(x)dx

)
,

where C > 0 is a constant depending only on α1, α2, b0, T , ω̃, ω̌, ‖c1‖L∞(QT ),
‖c2‖L∞(QT ) and ‖b‖L∞(QT ). Hence∫∫

ωT

h2
ε dx dt+ ε

(∫ 1

0

(ŷ2
T + ẑ2

T )dx
)1/2

≤ C
(∫ 1

0

u2
0(x)dx+

∫ 1

0

v2
0(x)dx

)
. (4.5)

From (4.5) and Lemma 2.2, there exist a strictly decreasing sequence {εn} with
limn→∞ εn = 0, and h ∈ L2(ωT ) such that

hεn ⇀ h in L2(ωT ), uεn ⇀ u in L2(QT ), vεn ⇀ v in L2(QT ),

uεn(·, T ) ⇀ u(·, T ) in L2(0, 1), vεn(·, T ) ⇀ v(·, T ) in L2(0, 1),

where (u, v) is the solution to (1.24), (1.25), (1.3)–(1.6). Then from (4.4) and (4.5)
we obtain

u(x, T ) = v(x, T ) = 0, x ∈ (0, 1),∫∫
ωT

h2 dx dt ≤ C
(∫ 1

0

u2
0(x)dx+

∫ 1

0

v2
0(x)dx

)
.

The proof is complete. �

5. Null controllability for the nonlinear system (1.1)–(1.6)

Definition 5.1. A pair of functions (u, v) is called a solution to problem (1.1)–
(1.6), if u ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;Hα1(0, 1)) and v ∈ C([0, T ];L2(0, 1)) ∩
L2(0, T ;Hα2(0, 1)) satisfy (1.1) and (1.2) in the distribution sense, and satisfy (1.6)
in the common sense.

Using Lemma 2.2 and a fixed point argument, one can prove the following result.

Lemma 5.2. For any u0, v0 ∈ L2(0, 1) and h ∈ L2(QT ), problem (1.1)–(1.6) admits
a unique solution (u, v). Furthermore, the solution satisfies

‖u‖L∞(0,T ;L2(0,1)) + ‖xα1/2ux‖L2(QT ) + ‖v‖L∞(0,T ;L2(0,1)) + ‖xα2/2vx‖L2(QT )

≤ C(‖u0‖L2(0,1) + ‖v0‖L2(0,1) + ‖h‖L2(QT )),

and for any 0 < τ < T ,

‖ut‖L2((0,1)×(τ,T )) + ‖xα1/2ux‖L∞(τ,T ;L2(0,1)) + ‖vt‖L2((0,1)×(τ,T ))

+ ‖xα2/2vx‖L∞(τ,T ;L2(0,1))
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≤ Cτ (‖u0‖L2(0,1) + ‖v0‖L2(0,1) + ‖h‖L2(QT )),

where C and Cτ are positive constants depending only on α1, α2, T , K, ‖c1‖L∞(QT ),
‖c2‖L∞(QT ) and ‖b‖L∞(QT ), while Cτ also on τ . Moreover, if u0 ∈ Hα1

(0, 1) and

v0 ∈ Hα2(0, 1), then xα1/2ux, x
α2/2vx ∈ L∞(0, T ;L2(0, 1)) and yt, zt ∈ L2(QT ).

The system (1.1)–(1.6) is null controllable.

Theorem 5.3. For each u0, v0 ∈ L2(0, 1), there exists h ∈ L2(QT ) such that the
solution (u, v) to (1.1)–(1.6) satisfies u(·, T ) = v(·, T ) = 0 in (0, 1).

Proof. Give ε > 0. For any (ϕ,ψ) ∈ L1(QT )× L1(QT ), we define

c1,ϕ(x, t) =

{
g1(x,t,ϕ(x,t))

ϕ(x,t) , ϕ(x, t) 6= 0,

0, ϕ(x, t) = 0,
(x, t) ∈ QT ,

c2,ψ(x, t) =

{
g2(x,t,ψ(x,t))

ψ(x,t) , ψ(x, t) 6= 0,

0, ψ(x, t) = 0,
(x, t) ∈ QT .

It follows from (1.7) and (1.8) that c1,ϕ, c2,ψ ∈ L∞(QT ), and

‖c1,ϕ‖L∞(QT ) ≤ K, ‖c2,ψ‖L∞(QT ) ≤ K. (5.1)

Let (ŷ, ẑ) to be the solution to (1.26)–(1.31) with c1 = c1,ϕ, c2 = c2,ψ, (yT , zT ) =
(ŷT , ẑT ), where (ŷT , ẑT ) is the unique minimum point of Jε in the proof of Theorem
4.2.

We define the operator L : L1(QT )× L1(QT )→ L1(QT )× L1(QT ), by

L : (ϕ,ψ) 7→ (u, v),

where (u, v) is the solution to the problem (1.24), (1.25), (1.3)–(1.6) with c1 = c1,ϕ,
c2 = c2,ψ and h = χω ŷ. Then, for any (ϕ,ψ) ∈ L1(QT ) × L1(QT ), it follows from
(4.4) that

‖u(·, T )‖L2(0,1) ≤ ε, ‖v(·, T )‖L2(0,1) ≤ ε.
First, we show that L is continuous. Assume that (ϕn, ψn)→ (ϕ,ψ) in L1(QT )×

L1(QT ) as n→∞. Set (un, vn) = L((ϕn, ψn)) and (u, v) = L((ϕ,ψ)). Let (ŷnT , ẑ
n
T )

and (ŷT , ẑT ) be the minimum points of Jε with c1 = c1,ϕn
, c2 = c2,ψn

and c1 = c1,ϕ,
c2 = c2,ψ, respectively. And denote (ŷn, ẑn), (ŷ, ẑ) to be the solutions to the problem
(1.26)–(1.31) with c1 = c1,ϕn

, c2 = c2,ψn
, (yT , zT ) = (ŷnT , ẑ

n
T ), and c1 = c1,ϕ,

c2 = c2,ψ, (yT , zT ) = (ŷT , ẑT ), respectively. It follows from (1.7), (1.8) and (4.5)
that ∫ 1

0

((ŷnT (x))2 + (ẑnT (x))2)dx ≤ C

ε

(∫ 1

0

u2
0(x)dx+

∫ 1

0

v2
0(x)dx

)
,

where C is a constant depending only on α1, α2, b0, T , K, ω̃, ω̌ and ‖b‖L∞(QT ).
Then there exist four subsequences of {ŷnT }, {ẑnT }, {c1,ϕn

}, {c2,ψn
}, denoted by

themselves for convenience, and y0
T , z

0
T ∈ L2(0, 1), such that

ŷnT ⇀ y0
T , ẑnT ⇀ z0

T in L2(0, 1),

c1,ϕn ⇀ c1,ϕ, c2,ψn ⇀ c2,ψ weakly ∗ in L∞(QT ).

By Lemma 3.2, there exist two subsequences of {ŷn} and {ẑn}, denoted by them-
selves for convenience, such that

ŷn ⇀ y0, ẑn ⇀ z0 in L2(QT ), (5.2)

ŷn → y0, ẑn → z0 in L2(ωT ), (5.3)
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ŷn(·, 0)→ y0(·, 0), ẑn(·, 0)→ z0(·, 0) in L2(0, 1), (5.4)

where (y0, z0) is the solution to the problem (1.26)–(1.31) with (yT , zT ) = (y0
T , z

0
T ).

Then one can deduce from Lemma 3.2 that there exist two subsequences of {un}
and {vn}, denoted by themselves for convenience, such that

un ⇀ u0, vn ⇀ v0 in L2(QT ),

where (u0, v0) is the solution to (1.24), (1.25), (1.3)–(1.6) with h = χωz
0. To

prove (u0, v0) = (u, v), it suffices to prove that (y0
T , z

0
T ) = (ŷT , ẑT ). For (yT , zT ) ∈

L2(0, 1)×L2(0, 1), denote (yn, zn) the solution to (1.26)–(1.31) with c1 = c1,ϕn
and

c2 = c2,ψn
. By Lemma 3.2, there exist two subsequences of {yn} and {zn}, denoted

by themselves for convenience, such that

yn ⇀ y, zn ⇀ z in L2(QT ), (5.5)

yn → y, zn → z in L2(ωT ), (5.6)

yn(·, 0)→ y(·, 0), zn(·, 0)→ z(·, 0) in L2(0, 1), (5.7)

where (y, z) is the solution to (1.26)–(1.31) with c1 = c1,ϕ, c2 = c2,ψ. Since (ŷnT , ẑ
n
T )

is the minimum point of Jε with c1 = c1,ϕn
and c2 = c2,ψn

, it follows that

1

2

∫∫
ωT

ŷ2
n dx dt+ ε

(∫ 1

0

((ŷnT (x))2 + (ẑnT (x))2)dx
)1/2

−
∫ 1

0

(
ŷn(x, 0)u0(x) + ẑn(x, 0)v0(x)

)
dx

≤ 1

2

∫∫
ωT

y2
n dx dt+ ε

(∫ 1

0

(yT (x)2 + z2
T (x))dx

)1/2

−
∫ 1

0

(
yn(x, 0)u0(x) + zn(x, 0)v0(x)

)
dx.

Letting n→∞, from (5.2)–(5.7) and the weak lower semi-continuity of L2 norm it
follows that

1

2

∫∫
ωT

(y0)2 dx dt+ ε
(∫ 1

0

((y0
T (x))2 + (z0

T (x))2)dx
)1/2

−
∫ 1

0

(
y0(x, 0)u0(x) + z0(x, 0)v0(x)

)
dx

≤ 1

2

∫∫
ωT

y2 dx dt+ ε
(∫ 1

0

(y2
T (x) + z2

T (x))dx
)1/2

−
∫ 1

0

(
y(x, 0)u0(x) + z(x, 0)v0(x)

)
dx.

This means Jε(y
0
T , z

0
T ) ≤ Jε(yT , zT ) with c1 = c1,ϕ and c2 = c2,ψ for each (yT , zT ) ∈

L2(0, 1)× L2(0, 1). Hence (y0
T , z

0
T ) = (ŷT , ẑT ).

Next, we show that L is compact. Given ϕn, ψn ∈ L1(QT ). By (5.1), there
exist two subsequences of {ϕn} and {ψn}, denoted by themselves for convenience,
such that c1,ϕn , c2,ψn converge weakly ∗ in L∞(QT ). By Lemma 3.2 there exists a
subsequence of L(ϕn, ψn), denoted by itself for convenience, converges strongly in
L1(QT ) × L1(QT ). Hence L is compact. It follows from the Schauder fixed point
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theorem that L admits a fixed point. That is to say, there exists hε ∈ L2(QT ) such
that the solution (uε, vε) to problem (1.1)–(1.6) satisfies

‖uε(·, T )‖L2(0,1) ≤ ε, ‖vε(·, T )‖L2(0,1) ≤ ε.

Furthermore, from the proof of Theorem 4.2 we obtain∫∫
ωT

h2
ε dx dt ≤ C̃

(∫ 1

0

u2
0(x)dx+

∫ 1

0

v2
0(x)dx

)
, (5.8)

where C̃ > 0 is a constant depending only on α1, α2, b0, T , K, ω̃, ω̌ and ‖b‖L∞(QT ).
It follows from Lemma 5.2 and (5.8) that

‖uε‖L∞(0,T ;L2(0,1)) + ‖xα1/2(uε)x‖L2(QT )

+ ‖vε‖L∞(0,T ;L2(0,1)) + ‖xα2/2(vε)x‖L2(QT )

≤ Ĉ(‖u0‖L2(0,1) + ‖v0‖L2(0,1) + ‖hε‖L2(QT )),

(5.9)

where Ĉ > 0 is a constant depending only on α1, α2, b0, T , K, ω̃, ω̌ and ‖b‖L∞(QT ).
As in the proof of Theorem 4.2, from (5.8)–(5.9), system (1.1)–(1.6) is null control-
lable. �
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