Electronic Journal of Differential Equations, Vol. 2006(2006), No. 155, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# SOLVING $p$-LAPLACIAN EQUATIONS ON COMPLETE MANIFOLDS 

MOHAMMED BENALILI, YOUSSEF MALIKI


#### Abstract

Using a reduced version of the sub and super-solutions method, we prove that the equation $\Delta_{p} u+k u^{p-1}-K u^{p^{*}-1}=0$ has a positive solution on a complete Riemannian manifold for appropriate functions $k, K: M \rightarrow \mathbb{R}$.


## 1. Introduction

Let $(M, g)$ be an $n$-dimensional complete and connected Riemannian manifold $(n \geq 3)$ and let $p \in(1, n)$. We are interested in the existence of positive solutions $u \in H_{1, \text { loc }}^{p}(M)$ (the standard Sobolev space of order $p$ ) of the equation

$$
\begin{equation*}
\Delta_{p} u+k u^{p-1}-K u^{p^{*}-1}=0 \tag{1.1}
\end{equation*}
$$

with $p^{*}=\frac{p n}{n-p}$ and $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the $p$-Laplacian of $u$.
As usual $u \in H_{1, \text { loc }}^{p}(M)$ is defined to be a weak solution of (1.1) if

$$
\begin{equation*}
\int_{M}-|\nabla u|^{p-2} \nabla u \nabla v+\left(k u^{p-1}-K u^{p^{*}-1}\right) v=0 \tag{1.2}
\end{equation*}
$$

for each $v \in C_{0}^{\infty}(M)$. A supersolution (respectively a subsolution) $u \in H_{1, \text { loc }}^{p}(M)$ is defined in the same way by changing $=$ by $\leq$ (respect $\geq$ ) in equation(1.2) and requiring that the test function $v \in C_{0}^{\infty}(M)$ to be non negative. Throughout this paper, we will assume that $k$ and $K$ are smooth real valued functions on $M$. Following the terminology in [3], this equation is referred to as the generalized scalar curvature type equation, it's an extension of the equation of prescribed scalar curvature. In the case of a compact manifold, the problem was considered in [3]. One of the results obtained in this latter paper is the following theorem

Theorem 1.1. Let $(M, g)$ be a compact Riemannian manifold with $n \geq 2$ and let $p \in(1, n)$. Let $k$ and $K$ be smooth real functions on $M$. If we assume that $k$ and $K$ are both positive, then (1.1) possesses a positive solution $u \in C^{1, \alpha}(M)$.

In this paper, we look for positive solutions of (1.1) on complete Riemannian manifolds. To achieve this task, we use a recent result obtained by the authors in [2]. Before quoting this result we recall some definitions. A nonnegative and smooth function $K$ on a complete manifold is said essentially positive if there exists an

[^0]exhaustion by compact domains $\left\{\Omega_{i}\right\}_{i \geq 0}$ such that $M=\cup_{i \geq 0} \Omega_{i}$ and $\left.K\right|_{\partial \Omega_{j}}>0$ for any $j \geq 0$. Moreover, if there is a positive supersolution $u \in H_{1}^{p}\left(\Omega_{i}\right) \cap C^{0}\left(\Omega_{i}\right)$ on each $\Omega_{i}$ of (1.1) the essentially positive function $K$ is said to be permissible. With this terminology the following theorem has been established in [2]

Theorem 1.2. Let $(M, g)$ be a complete non compact Riemannian manifold of dimension $n \geq 3$ and $k, K$ be smooth real valued functions on $M$. Suppose that $K$ is permissible and $k \leq K$. If there exists a positive subsolution $u_{-} \in H_{1, \text { loc }}^{p}(M) \cap$ $L^{\infty}(M) \cap C^{0}(M)$ of (1.1) on $M$, then (1.1) has a positive and maximal weak solution $u \in H_{1}^{p}(M)$. Moreover $u \in C^{1, \alpha}\left(\Omega_{i}\right)$ on each compact $\Omega_{i}$ for some $\alpha \in(0,1)$.

The Riemannian manifold $M$ will be said of bounded geometry if the Ricci curvature of $M$ is bounded from below and the injectivity radius is strictly positive everywhere.

We formulate our main result as follows:
Theorem 1.3. Let $(M, g)$ be a complete non compact Riemannian manifold of dimension $n \geq 3$ and $k, K$ be smooth real valued functions on $M$. Suppose that
(a) the function $K$ is permissible and $K \geq c_{o}>0$ where $c_{o}$ is a real constant, $k$ is bounded and satisfies $k \leq K$, and $\int_{\Omega_{i}} k=0$, on each compact domain $\Omega_{i}$ of the exhaustion of $M$.
(b) $M$ is of bounded geometry.

Then (1.1) has a weak positive maximal solution $u \in H_{1}^{p}(M)$. Moreover $u \in$ $C_{\text {loc }}^{1, \alpha}(M)$ for some $\alpha \in(0,1)$.

Our paper is organized as follows: In the first section we construct a supersolution of (1.1) on each compact subset of $M$. In the second section, we show the existence of a positive eigenfunction of the nonlinear operator $L_{p} u=-\Delta_{p} u-k u^{p-1}$ on $M$ which we will use next to construct a global subsolution of our equation.

First, we establish the following result.
Lemma 1.4. Let $\Omega$ be a compact domain of $M$ and $f$ be a $C^{\infty}$ function on $\Omega$. The equation

$$
\begin{align*}
-\Delta_{p} \phi & =f \\
\phi=0 & \text { in } \Omega-\partial \Omega  \tag{1.3}\\
\phi & \text { on } \partial \Omega
\end{align*}
$$

admits a solution $\phi \in C^{1, \alpha}(\Omega)$.
Proof. Letting $A=\left\{\phi \in H_{1,0}^{p}(\Omega): \int_{\Omega} f \phi=1\right\}$, we put

$$
\mu=\inf _{\phi \in K} \int_{\Omega}|\nabla \phi|^{p}
$$

The set $A$ is non empty since it contains the function $\phi=\frac{\operatorname{sgn}(f)|f|^{p-1}}{\int_{\Omega}|f|^{p}}$.
Let $\left(\phi_{i}\right)_{i \in \mathbb{N}}$ be a minimizing sequence in $A$, that is,

$$
\lim _{i \rightarrow \infty} \int_{\Omega}\left|\nabla \phi_{i}\right|^{p}=\mu
$$

Then, if $\lambda_{1, p}$ denotes the first nonvanishing eigenvalue of the $p$-Laplacian operator, we have

$$
\lambda_{1, p} \leq \frac{\int_{\Omega}\left|\nabla \phi_{i}\right|^{p}}{\int_{\Omega}\left|\phi_{i}\right|^{p}}
$$

so

$$
\int_{\Omega}\left|\phi_{i}\right|^{p} \leq \lambda_{1, p}^{-1} \int_{\Omega}\left|\nabla \phi_{i}\right|^{p}<\frac{\mu}{\lambda_{1, p}}+1 .
$$

The sequence $\left(\phi_{i}\right)_{i \in \mathbb{N}}$ is bounded in $H_{1}^{p}(\Omega)$, hence by the reflexivity of the space $H_{1}^{p}(\Omega)$ and the Rellich-Kondrakov theorem, there exists a subsequence of $\left(\phi_{i}\right)_{i \in \mathbb{N}}$ still denoted $\left(\phi_{i}\right)$ such that
(a) $\left(\phi_{i}\right)_{i \in \mathbb{N}}$ converges weakly to $\phi \in H_{1}^{p}(\Omega)$
(b) $\left(\phi_{i}\right)_{i \in \mathbb{N}}$ converges strongly to $\phi \in L^{p}(\Omega)$.

From (b) we deduce that $\phi_{i} \longrightarrow \phi$ in $L^{1}(\Omega)$ then $\phi \in A$ and from (a) we get

$$
\|\phi\|_{H_{1}^{p}(\Omega)} \leq \lim _{i \rightarrow+\infty} \inf \left\|\phi_{i}\right\|_{H_{1}^{p}(\Omega)} .
$$

Taking into account of (b) again, we obtain

$$
\int_{\Omega}|\nabla \phi|^{p} \leq \liminf _{i \rightarrow+\infty} \int_{\Omega}\left|\nabla \phi_{i}\right|^{p}=\mu .
$$

Since $\phi \in A$, we get

$$
\int_{\Omega}|\nabla \phi|^{p}=\mu=\inf _{\psi \in K} \int_{\Omega}|\nabla \psi|^{p}
$$

The Lagrange multiplier theorem allows us to say that $\phi$ is a weak solution of (1.3).

The regularity of $\phi$ follows from the next proposition, with the following notation

$$
W^{1, p}(\Omega)= \begin{cases}H_{1}^{p}(\Omega) & \text { if } \partial \Omega=\phi \\ H_{1,0}^{p}(\Omega) & \text { if } \partial \Omega \neq \phi\end{cases}
$$

Proposition 1. Let $h \in C^{o}(\Omega \times R)$ be such that, for any $(x, r) \in \Omega \times R,|h(x, r)| \leq$ $C|r|^{p^{*}-1}+D$.

If $u \in W^{1, p}(\Omega)$ is a solution of $-\Delta_{p} u+h(x, u)=0$, then $u \in C^{1, \alpha}(\Omega)$.
The above proposition was proved in ([3]), in the context of compact Riemannian manifolds without boundary. The proof is in its essence based on the Sobolev inequality and since this latter is also valid in $\grave{H}_{1}^{p}(\Omega)$ as in $H_{1}^{p}(\Omega)$, it follows that proposition (1) remains true in the case of compact Riemannian manifolds with boundary.

## 2. Existence of a supersolution

In this section we construct a positive supersolution of (1.1) on each compact domain of $M$.

Theorem 2.1. Let $\Omega$ be a compact domain of $M$. If $K$ is a smooth function such that $K \geq c_{0}>0$ and $k$ is a smooth function with $k \leq K$, then there exists $a$ positive supersolution of (1.1) in $\Omega$.

Proof. Letting $u=e^{v}$ where $v \in H_{1}^{p}(\Omega)$ is a function which will be precise later and $q=p^{*}-1$, then we get for every $\phi \in H_{1}^{p}(\Omega)$ with $\phi \geq 0$

$$
\int_{\Omega} \Delta_{p} u \phi=\int_{\Omega} e^{(p-1) v}\left(\Delta_{p} v+(p-1)|\nabla v|^{p}\right) \phi
$$

and

$$
\int_{\Omega}\left(\Delta_{p} u+k u^{p-1}-K u^{q}\right) \phi=\int_{\Omega} e^{(p-1) v}\left(\Delta_{p} v+(p-1)|\nabla v|^{p}+k-K e^{(q-p+1) v}\right) \phi .
$$

So it suffices to show the existence of $v$ such that

$$
\begin{equation*}
\int_{\Omega} e^{(p-1) v}\left(\Delta_{p} v+(p-1)|\nabla v|^{p}+k-K e^{(q-p+1) v}\right) \cdot \phi \leq 0 \tag{2.1}
\end{equation*}
$$

Let $b>0$ be a constant and consider the solution of $\Delta_{p} h=-b^{1-p} k$ which is guaranteed by Lemma 1.4.

Now putting $v=b h+t$ where $t$ is a real constant to be chosen later. The inequality (2.1) becomes

$$
\int_{\Omega} e^{(p-1)(b h+t)}\left(b^{p-1} \Delta_{p} h+(p-1) b^{p}|\nabla h|^{p}+k-K e^{(q-p+1)(b h+t)}\right) \phi \leq 0
$$

If we choose $t$ such that $e^{(q-p+1) t}=b^{p-1}$, we will find that

$$
\begin{aligned}
& \int_{\Omega} e^{(p-1)(b h+t)}\left((p-1) b|\nabla h|^{p}-K e^{(q-p+1) b h}\right) \phi \\
& \leq \int_{\Omega} e^{(p-1)(b h+t)}\left((p-1) b|\nabla h|^{p}-K m_{o}\right) \phi \leq 0
\end{aligned}
$$

where $m_{o}=\min _{x \in \Omega} e^{(q-p+1) b h(x)}$ and since the function $K \geq c_{o}>0$, we choose $b$ small enough so that

$$
|\nabla h|^{p} \leq \frac{c_{o} m_{o}}{b(p-1)}
$$

we get the desired result.

## 3. Existence of a subsolution

The operator $L_{p} u=-\Delta_{p} u-k u^{p-1}$ under Dirichlet conditions has a first eigenvalue $\lambda_{1, p}^{\Omega}$ on each open and bounded domain $\Omega \subset M$ which is variationally defined as

$$
\begin{equation*}
\lambda_{1, p}^{\Omega}=\inf \left(\int_{\Omega}|\nabla \phi|^{p}-k|\phi|^{p}\right) \tag{3.1}
\end{equation*}
$$

where the infimum is extended to the set

$$
A=\left\{\phi \in H_{1,0}^{p}(\Omega): \int_{\Omega}|\phi|^{p}=1\right\}
$$

Since $|\nabla \phi|=|\nabla| \phi| |$, we can assume that $\phi \geq 0$. The corresponding positive eigenfunction is solution of the Dirichlet problem

$$
\begin{gather*}
\Delta_{p} \phi+k \phi^{p-1}=-\lambda_{1, p}^{\Omega} \phi^{p-1} \quad \text { in } \Omega \\
\phi>0 \quad \text { in } \Omega  \tag{3.2}\\
\phi=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Let $\left\{\Omega_{i}\right\}_{i \geq 0}$ be an exhaustion of $M$ by compact domains with smooth boundary such that $\Omega_{i} \subset \Omega_{i+1}$
Lemma 3.1. If $k$ is bounded function, then the sequence $\lambda_{1, p}^{\Omega_{i}}$ defined by (3.1) converges.

Proof. By definition, $\lambda_{1, p}^{\Omega_{i}}$ is a decreasing sequence. Let $\lambda_{1, p}$ its limit, since the function $k$ is bounded, there exists a constant $c>0$ such that $-k+c \geq 1$, then

$$
\begin{aligned}
\int_{\Omega}|\nabla \phi|^{p}+(c-k) \phi^{p} & \geq \int_{\Omega}|\nabla \phi|^{p}+\phi^{p} \\
& \geq 2^{1-p}\left(\left(\int_{\Omega}|\nabla \phi|^{p}\right)^{1 / p}+\left(\int_{\Omega} \phi^{p}\right)^{1 / p}\right)^{p} \\
& =2^{1-p}\|\phi\|_{H_{1}^{p}(\Omega)}^{p}
\end{aligned}
$$

so the operator $L_{p} u=-\Delta_{p} u+(c-k) u^{p-1}$ is coercive and we have, for $\phi_{i}$ any eigenfunction corresponding to $\lambda_{1, p}^{\Omega_{i}}$,

$$
\begin{aligned}
\lambda_{1, p}^{\Omega_{i}} & =\int_{\Omega_{i}}\left|\nabla \phi_{i}\right|^{p}-k \phi_{i}^{p} \\
& \geq-c+2^{1-p}\left\|\phi_{i}\right\|_{H_{1}^{p}(\Omega)}^{p} \\
& \geq-c+2^{1-p} \geq-c+2^{1-n}
\end{aligned}
$$

Then $\lambda_{1, p}>-\infty$.
Lemma 3.2. If $k$ is bounded, then the eigenfunction problem

$$
\begin{gather*}
\Delta_{p} \phi+k \phi^{p-1}=-\lambda_{1, p} \phi^{p-1} \quad \text { in } M  \tag{3.3}\\
\phi>0 \quad \text { in } M
\end{gather*}
$$

has a positive solution $\phi \in C_{l o c}^{1, \alpha}(M)$.
Proof. Letting $\left(\Omega_{i}\right)_{i \geq 1}$ be an exhaustive covering of the complete manifold $M$ by compact subsets and $\left(\phi_{i}\right)$ be the sequence of the first nonvanishing eigenfonctions (positive) of the operator $L_{p} u=-\Delta_{p} u-k u^{p-1}$ on each $\Omega_{i}$. Multiplying (3.3) by $\phi_{i}$ and integrating over $\Omega_{i}$, we get

$$
\int_{\Omega_{i}}\left|\nabla \phi_{i}\right|^{p}-k \phi_{i}^{p}=\lambda_{1, p}^{\Omega_{i}} \int_{\Omega_{i}} \phi_{i}^{p}=\lambda_{1, p}^{\Omega_{i}} \leq \lambda_{1, p}^{\Omega_{1}}
$$

so that

$$
\int_{\Omega_{i}}\left|\nabla \phi_{i}\right|^{p} \leq \max _{x \in M}|k|+\lambda_{1, p}^{\Omega_{1}}<\infty
$$

On the other hand,

$$
\begin{align*}
\left(\left(\int_{\Omega_{i}}\left|\nabla \phi_{i}\right|^{p}\right)^{1 / p}+\left(\int_{\Omega_{i}} \phi_{i}^{p}\right)^{1 / p}\right)^{p} & \leq 2^{p-1}\left(\int_{\Omega_{i}}\left|\nabla \phi_{i}\right|^{p}+\phi_{i}^{p}\right)  \tag{3.4}\\
& \leq 2^{p-1}\left(1+\max _{x \in M}|k|+\lambda_{1, p}^{\Omega_{1}}\right)<\infty
\end{align*}
$$

and by the reflexivity of the space $H_{1}^{p}(M)$, we deduce that

$$
\phi_{i} \rightarrow \phi \text { weakly in } H_{1}^{p}(M)
$$

and

$$
\begin{equation*}
\|\phi\|_{H_{1}^{p}(M)}^{p} \leq \liminf \left\|\phi_{i}\right\|_{H_{1}^{p}(M)}^{p} \tag{3.5}
\end{equation*}
$$

Now since $\int_{M} \phi_{i}^{p}=1$, for every $\varepsilon>0$ there exists a compact domain $K_{i} \subset M$ such that $\int_{M \backslash K_{i}} \phi_{i}^{p}<\frac{\varepsilon}{2^{i}}$, let $K=\cap_{i=1}^{\infty} K_{i}$ and

$$
\int_{M \backslash K} \phi_{i}^{p}=\int_{\cup_{i=1}^{\infty}\left(M \backslash K_{i}\right)} \phi_{i}^{p} \leq \sum_{i=1}^{\infty} \int_{M \backslash K_{i}} \phi_{i}^{p}<\epsilon .
$$

From (3.4) we obtain by Rellich-Kondrakov theorem that

$$
\phi_{i} \rightarrow \phi \text { strongly in } L^{p}(K) .
$$

We claim that

$$
\begin{equation*}
\int_{M} \phi^{p}=1 \tag{3.6}
\end{equation*}
$$

since, if it is not the case we have by (3.5)

$$
1-\int_{M} \phi^{p}>0
$$

consequently

$$
1=\lim _{i \rightarrow \infty} \int_{M} \phi_{i}^{p} \leq \varepsilon+\lim _{i \rightarrow \infty} \int_{K} \phi_{i}^{p}=\varepsilon+\int_{K} \phi^{p}
$$

and hence $\varepsilon \geq 1-\int_{M} \phi^{p}$. A contradiction with the fact that $\varepsilon$ is arbitrary fixed.
Now from (3.5) and (3.6) we get

$$
\int_{M}|\nabla \phi|^{p} \leq \liminf \int_{M}\left|\nabla \phi_{i}\right|^{p}
$$

hence

$$
\int_{M}|\nabla \phi|^{p}-k \phi^{p} \leq \liminf \left(\int_{M}\left|\nabla \phi_{i}\right|^{p}-k \phi_{i}^{p}\right)
$$

which by lemma3.1 goes to $\lambda_{1, p}$, and since $\int_{M} \phi^{p}=1$, we obtain

$$
\int_{M}|\nabla \phi|^{p}-k \phi^{p}=\lambda_{1, p}
$$

So $\phi$ is a weak solution of the equation

$$
\Delta_{p} \phi+k \phi^{p-1}=-\lambda_{1, p} \phi^{p-1}
$$

From proposition 1, we deduce that $\phi \in C_{l o c}^{1, \alpha}(M)$.
It remains to show that $\phi$ is positive, which is deduced from the next proposition.
Proposition 2 (Druet [3]). Let $(\Omega, g)$ be a compact Riemannian n-manifold $n \geq 2$, $1<p<n$. Let $u \in C^{1}(\Omega)$ be such that $-\Delta_{p} u+h(x, u) \geq 0$ on $\Omega$, $h$ fulfilling the conditions

$$
\begin{gathered}
h(x, r)<h(x, s), \quad x \in \Omega, 0 \leq r<s \\
|h(x, u)| \leq C\left(K+|r|^{p-2}\right)|r|, \quad(x, r) \in M \times R, C>0 .
\end{gathered}
$$

If $u \geq 0$ on $\Omega$ and $u$ does not vanish identically, then $u>0$ on $\Omega$.

If $\lambda$ is an eigenvalue of the operator

$$
L_{p} u=-\Delta_{p} \phi-k|\phi|^{p-2} \phi,
$$

so is $\lambda+c$ for the operator

$$
L_{c} u=-\Delta_{p} \phi-(k-c)|\phi|^{p-2} \phi
$$

where $c$ is a constant and since $k$ is bounded function we choose $c$ such that $c-k>0$, and then we get

$$
-\Delta_{p} \phi+h(x, \phi) \geq 0
$$

where

$$
h(x, \phi)=(c-k(x)) \phi^{p-1} .
$$

Obviously the function $h$ satisfies the assumptions of proposition 2 and we have $\phi>0$.

Now we establish the following lemma which will be used later.
Lemma 3.3. Let $M$ be a Riemannian manifold of bounded geometry. Suppose that $a(x)$ is a bounded smooth function on $M$ and $u \in H_{1}^{p}(M)$ be a weak solution of the equation

$$
\begin{equation*}
\Delta_{p} u+a(x) u^{p-1}=0 \tag{3.7}
\end{equation*}
$$

then $u \in L^{\infty}(M)$.
Proof. We are going to use Moser's iteration scheme. Let $k \geq 1$ be any real and $t=k+p-1$. Multiplying (3.7) by $u^{k}(k>1)$ and integrating over $M$, we get

$$
\begin{equation*}
-k \int_{M}|\nabla u|^{p} u^{k-1}+\int_{M} a(x) u^{p+k-1}=0 \tag{3.8}
\end{equation*}
$$

Using Sobolev's inequality, we get for any fixed $\varepsilon>0$

$$
\begin{align*}
\left\|u^{\frac{t}{p}}\right\|_{p^{*}}^{p} & =\|u\|_{t \frac{p^{*}}{p}}^{t} \\
& \leq\left(K(n, p)^{p}+\varepsilon\right)\left\|\nabla u^{\frac{t}{p}}\right\|_{p}^{p}+B\|u\|_{t}^{t}  \tag{3.9}\\
& =\left(K(n, p)^{p}+\varepsilon\right)\left(\frac{t}{p}\right)^{p}\left\|u^{\frac{t}{p}-1} \nabla u\right\|_{p}^{p}+B\|u\|_{t}^{t}
\end{align*}
$$

where $K(n, p)$ is the best constant in the Sobolev's embedding $H_{1}^{p}\left(R^{n}\right) \subset L^{p *}\left(R^{n}\right)$ (see Aubin [1] or Talenti [4]) and $B$ a positive constant depending on $\epsilon$; since

$$
\left\|u^{\frac{t}{p}-1} \nabla u\right\|_{p}^{p}=\int u^{t-p}|\nabla u|^{p}
$$

and taking account of (3.8) we get

$$
\int u^{k} \Delta_{p} u=-k \int u^{k-1}|\nabla u|^{p} \leq\|a\|_{\infty}\|u\|_{t}^{t}
$$

Then (3.9) becomes

$$
\|u\|_{t \frac{p^{*}}{p}}^{t} \leq\left(K(n, p)^{p}+\varepsilon\right)\left(\frac{t}{p}\right)^{p} \frac{1}{k}\left(\|a\|_{\infty}+B\right)\|u\|_{t}^{t}
$$

so that

$$
\begin{equation*}
\|u\|_{t \frac{p^{*}}{p}} \leq\left(\left(K(n, p)^{p}+\varepsilon\right)\left(\frac{t}{p}\right)^{p} \frac{1}{k}\left(\|a\|_{\infty}+B\right)\right)^{\frac{1}{t}}\|u\|_{t} . \tag{3.10}
\end{equation*}
$$

Putting

$$
\frac{t}{p}=\beta^{i}
$$

where $i$ is a positive integer and $\beta=\frac{p^{*}}{p}=\frac{n}{n-p},(3.10)$ becomes

$$
\begin{equation*}
\|u\|_{p \beta^{i+1}} \leq\left(\left(K(n, p)^{p}+\varepsilon\right) \beta^{p i}\left(\|a\|_{\infty}+B\right)\right)^{\frac{1}{p \beta^{i}}}\|u\|_{p \beta^{i}} . \tag{3.11}
\end{equation*}
$$

Recurrently, we obtain

$$
\begin{equation*}
\|u\|_{p \beta^{i+1}} \leq\left(K(n, p)^{p}+\varepsilon\right)^{\frac{1}{p}\left(\sum_{j=0}^{i} \frac{1}{\beta j}\right)} \beta^{\sum_{j=0}^{i} \frac{j}{\beta^{j}}}\left(\|a\|_{\infty}+B\right)^{\frac{1}{p}\left(\sum_{j=0}^{i} \frac{1}{\beta j}\right)}\|u\|_{p} . \tag{3.12}
\end{equation*}
$$

Now, since

$$
\sum_{j=0}^{\infty} \frac{1}{\beta^{j}}=\frac{\beta}{\beta-1}=\frac{n}{p}
$$

and

$$
\begin{aligned}
\sum_{j=0}^{\infty} \frac{j}{\beta^{j}} & =\sum_{j=1}^{\infty} \frac{j}{(1+\pi)^{j}} \\
& \leq \sum_{j=1}^{\infty} \frac{j}{\sum_{p=0}^{j} C_{j}^{p} \pi^{p}}=\sum_{j=1}^{\infty} \frac{1}{\pi \sum_{p=0}^{j-1} C_{j}^{p} \pi^{p}} \\
& =\frac{1}{\pi} \sum_{j=1}^{\infty} \frac{1}{(1+\pi)^{j-1}}=\frac{1}{\pi} \sum_{j=0}^{\infty} \frac{1}{(1+\pi)^{j}} \\
& =\frac{n-p}{p} \sum_{j=0}^{\infty} \frac{1}{\beta^{j}}=\frac{n(n-p)}{p^{2}},
\end{aligned}
$$

it follows by letting $j \rightarrow \infty$ in (3.12) that $u \in L^{\infty}(M)$.
Theorem 3.4. Let $(M, g)$ be a complete noncompact Riemannian manifold of dimension $n \geq 3$ with bounded geometry. Suppose that $k \in C^{\infty}(M) \cap L^{\infty}(M)$; then there exists a positive subsolution of the equation $\Delta_{p} u+k u^{p-1}-K u^{p^{*}-1}=0$ on $M$.

Proof. Since $k \in L^{\infty}(M)$, there exists a positive constant $c>0$ such that the operator $L_{c} u=-\Delta_{p} \phi+(c-k) \phi^{p-1}$ is coercive, so by lemma 3.2 its first non vanishing eigenvalue $\lambda_{1, p}+c>0$. If $\phi$ denotes the corresponding positive eigenfunction to $\lambda_{1, p}$, by lemma 3.3 we may assume that $\phi<1$.

For $r>0$ we consider

$$
u_{-}=\left(e^{r^{2}}-\phi^{r^{3}}\right)^{\frac{1}{r}+1}
$$

and by a direct computations we obtain in the sense of distribution

$$
\begin{aligned}
& \nabla u_{-}=-r^{2}(r+1)\left(e^{r^{2}}-\phi^{r^{3}}\right)^{\frac{1}{r}} \phi^{r^{3}-1} \nabla \phi, \\
\Delta_{p} u_{-}= & {\left[r^{2}(r+1)\left(e^{r^{2}}-\phi^{r^{3}}\right)^{1 / r} \phi^{r^{3}-1}\right]^{p-1} } \\
& \times\left[-\Delta_{p} \phi+(p-1)\left(\frac{1-r^{3}}{\phi}+\frac{r^{2} \phi^{r^{3}-1}}{e^{r^{2}}-\phi^{r^{3}}}\right)|\nabla \phi|^{p}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \Delta_{p} u_{-}+k u_{-}^{p-1}-K u_{-}^{q} \\
&= {\left[r^{2}(r+1)\left(e^{r^{2}}-\phi^{r^{3}}\right)^{\frac{1}{r}} \phi^{r^{3}}\right]^{p-1} } \\
& \times\left[-\Delta_{p} \phi+(p-1)\left(\frac{1-r^{3}}{\phi}+\frac{r^{2} \phi^{r^{3}-1}}{e^{r^{2}}-\phi^{r^{3}}}\right)|\nabla \phi|^{p}+k\left(\frac{e^{r^{2}}-\phi^{r^{3}}}{r^{2}(r+1) \phi^{r^{3}}}\right)^{p-1} \phi^{p-1}\right. \\
&\left.-K\left(\frac{e^{r^{2}}-\phi^{r^{3}}}{r^{2}(r+1) \phi^{r^{3}}}\right)^{p-1}\left(e^{r^{2}}-\phi^{r^{3}}\right)^{(q-p+1)\left(1+\frac{1}{r}\right)} \phi^{p-1}\right] \\
&= {\left[r^{2}(r+1)\left(e^{r^{2}}-\phi^{r^{3}}\right)^{\frac{1}{r}} \phi^{r^{3}-1}\right]^{p-1} } \\
& \times\left[\lambda_{1, p}+(p-1) \frac{1}{\phi^{p}}\left(1-r^{3}+\frac{r^{2} \phi^{r^{3}}}{e^{r^{2}}-\phi^{r^{3}}}\right)|\nabla \phi|^{p}+k\left(\left(\frac{e^{r^{2}}-\phi^{r^{3}}}{r^{2}(r+1) \phi^{r^{3}}}\right)^{p-1}+1\right)\right. \\
&\left.-K\left(\frac{e^{r^{2}}-\phi^{r^{3}}}{r^{2}(r+1) \phi^{r^{3}}}\right)^{p-1}\left(e^{r^{2}}-\phi^{r^{3}}\right)^{(q-p+1)\left(1+\frac{1}{r}\right)}\right] .
\end{aligned}
$$

Now since

$$
\lim _{r \rightarrow 0}\left(e^{r^{2}}-\phi^{r^{3}}\right)^{1+\frac{1}{r}}=0
$$

and

$$
\lim _{r \rightarrow 0} \frac{r^{2}}{e^{r^{2}}-\phi^{r^{3}}}=1
$$

we deduce that

$$
u_{-}=\left(e^{r^{2}}-\phi^{r^{3}}\right)^{1+\frac{1}{r}} \in H_{1, \mathrm{loc}}^{p}(M)
$$

is a subsolution of (1.1) and clearly $u_{-} \in C^{o}(M) \cap L^{\infty}(M)$. The main theorem (Theorem 1.3) is a consequence of theorem 2.1 and theorem 3.4.

## References

[1] Aubin.T, problèmes isopérimétriques et espaces de Sobolev. J. Diff. Géom 11 (1976), 573-598.
[2] M. Benalili, Y Maliki, Reduction method for proving the existence of solutions to elliptic equations involving the p-Laplacian. Electr.Journal of Differential Equations 106 (2003) 10pp.
[3] O. Druet, Generalized scalar curvature type equations on compact Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A130 (2000) No 4, 767-788.
[4] E. Hebey, Introduction à l'analyse non linéaire sur les variétés. Ed. Diderot (1997).
Mohammed Benalili, Université Abou -Bekr Belkaïd, Faculté des sciences,
Départ. Mthématiques, B.P. 119, Tlemcen, Algerie
E-mail address: m_benalili@mail.univ-tlemcen.dz
Youssef Maliki, Université Abou -Bekr Belkaïd, Faculté des sciences,
Départ. Mthématiques, B.P. 119, Tlemcen, Algerie
E-mail address: malyouc@yahoo.fr


[^0]:    2000 Mathematics Subject Classification. 31C45, 53C21.
    Key words and phrases. Differential geometry; nonlinear partial differential equations. © 2006 Texas State University - San Marcos.
    Submitted June 28, 2005. Published December 14, 2006.

