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SOLVING p-LAPLACIAN EQUATIONS ON COMPLETE
MANIFOLDS

MOHAMMED BENALILI, YOUSSEF MALIKI

ABSTRACT. Using a reduced version of the sub and super-solutions method,
we prove that the equation Apu+ kuP~! —KuP -1 =0Ohasa positive solution
on a complete Riemannian manifold for appropriate functions k, K : M — R.

1. INTRODUCTION

Let (M, g) be an n-dimensional complete and connected Riemannian manifold
(n > 3) and let p € (1,n). We are interested in the existence of positive solutions
we HY | (M) (the standard Sobolev space of order p) of the equation

1,loc
Apu + kuP™t — KuP ~1 =0 (1.1)
with p* = np—_”p and Apu = div(|Vu|P~2Vu) is the p-Laplacian of u .
As usual u € HY, (M) is defined to be a weak solution of (1.1) if

/ —|Vu|P~2VuVo + (kuP™t — KuP” "o =0 (1.2)
M

for each v € C§°(M). A supersolution (respectively a subsolution) u € HY,, (M)
is defined in the same way by changing = by < (respect >) in equation(1.2) and
requiring that the test function v € C§°(M) to be non negative. Throughout
this paper, we will assume that k and K are smooth real valued functions on
M. Following the terminology in [3], this equation is referred to as the generalized
scalar curvature type equation, it’s an extension of the equation of prescribed scalar
curvature. In the case of a compact manifold, the problem was considered in [3].

One of the results obtained in this latter paper is the following theorem

Theorem 1.1. Let (M,g) be a compact Riemannian manifold with n > 2 and let
p € (1,n). Let k and K be smooth real functions on M. If we assume that k and
K are both positive, then (1.1) possesses a positive solution u € C*(M).

In this paper, we look for positive solutions of (1.1) on complete Riemannian
manifolds. To achieve this task, we use a recent result obtained by the authors in [2].
Before quoting this result we recall some definitions. A nonnegative and smooth
function K on a complete manifold is said essentially positive if there exists an
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exhaustion by compact domains {€2;};>¢ such that M = U;>09; and K|apq, > 0 for
any j > 0. Moreover, if there is a positive supersolution u € HY(€;) N C°(©;) on
each ; of (1.1) the essentially positive function K is said to be permissible. With
this terminology the following theorem has been established in [2]

Theorem 1.2. Let (M,g) be a complete non compact Riemannian manifold of
dimension n > 3 and k, K be smooth real valued functions on M. Suppose that K
is permissible and k < K. If there exists a positive subsolution u_ € Hf’IOC(M) N
L (M)NCO(M) of (1.1) on M, then (1.1) has a positive and mazimal weak solution
uw € HY(M). Moreover u € C1*(Q;) on each compact ; for some a € (0,1).

The Riemannian manifold M will be said of bounded geometry if the Ricci
curvature of M is bounded from below and the injectivity radius is strictly positive
everywhere.

We formulate our main result as follows:

Theorem 1.3. Let (M,g) be a complete non compact Riemannian manifold of
dimension n > 3 and k, K be smooth real valued functions on M. Suppose that
(a) the function K is permissible and K > ¢, > 0 where ¢, is a real constant,
k is bounded and satisfies k < K, and fQ k =0, on each compact domain
Q; of the exhaustion of M.
(b) M is of bounded geometry.

Then (1.1) has a weak positive mazimal solution u € H{(M). Moreover u €
CLY(M) for some a € (0,1).

loc

Our paper is organized as follows: In the first section we construct a supersolution
of (1.1) on each compact subset of M. In the second section, we show the existence
of a positive eigenfunction of the nonlinear operator L,u = —A,u — ku?~! on M
which we will use next to construct a global subsolution of our equation.

First, we establish the following result.

Lemma 1.4. Let Q be a compact domain of M and f be a C* function on Q. The

equation
—A,p = in Q — 00N
b6 =f s
¢=0 ondf
admits a solution ¢ € C1(Q).

Proof. Letting A= {¢ € H{ ((Q) : [, fo = 1}, we put

— inf [ |Vo|P.
% (;QK/QI o]

. -1
The set A is non empty since it contains the function ¢ = sen(HIFP

Jo If17
Let (¢;)ieny be a minimizing sequence in A, that is,

lim | Vol = .
11— 00 Q

Then, if A1, denotes the first nonvanishing eigenvalue of the p-Laplacian operator,

we have
fQ [Vil?
fQ |¢Z|p

)‘1,17 <
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SO

/\¢i|f’gx;;,/|v¢i|f’<i+1.
Q Ja Alp

The sequence (¢;);en is bounded in HY (), hence by the reflexivity of the space
H?(Q) and the Rellich-Kondrakov theorem, there exists a subsequence of (¢;);en
still denoted (¢;) such that

(a) (¢;)ien converges weakly to ¢ € Hf(Q)
(b) (¢4)ien converges strongly to ¢ € LP(12).
From (b) we deduce that ¢; — ¢ in L'(Q) then ¢ € A and from (a) we get

91l 7 () < Z.Eeroo inf {| @il (o) -

Taking into account of (b) again, we obtain

[ 1vep <timint [ 9o = .
Q i—+too Jo

Vo|lP = = inf Vap|P.
/QMb\ 0 wng/Qll/f\

The Lagrange multiplier theorem allows us to say that ¢ is a weak solution of
(1.3). O

Since ¢ € A, we get

The regularity of ¢ follows from the next proposition, with the following notation

HP(Q if 9O =
HY () if 0Q# ¢.
Proposition 1. Let h € C°(Q x R) be such that, for any (z,r) € QX R, |h(z,7)| <
Clr|P"~' 4+ D.
If u e WYP(Q) is a solution of —Ayu+ h(x,u) =0, then u € CH*(Q).
The above proposition was proved in ([3]), in the context of compact Riemannian
manifolds without boundary. The proof is in its essence based on the Sobolev
inequality and since this latter is also valid in HY(Q) as in HY (), it follows that

proposition (1) remains true in the case of compact Riemannian manifolds with
boundary.

2. EXISTENCE OF A SUPERSOLUTION

In this section we construct a positive supersolution of (1.1) on each compact
domain of M.

Theorem 2.1. Let Q be a compact domain of M. If K is a smooth function such
that K > c¢g > 0 and k is a smooth function with k < K , then there exists a
positive supersolution of (1.1) in Q.

Proof. Letting u = e where v € HY(Q) is a function which will be precise later
and ¢ = p* — 1, then we get for every ¢ € HY () with ¢ > 0

/ Ayud = / P (A + (p— 1)[Vo])o
Q Q
and

/Q(Apu + kuP~! — Ku?)p = /Qe(p_l)”(Apv +(p-D|VuP+k— Ke(q_p+1)”)¢.
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So it suffices to show the existence of v such that
/Q ePDU(A v £ (p— 1)|Vol? + k — Ke@ D) 6 < 0 (2.1)

Let b > 0 be a constant and consider the solution of A,h = —b'=Pk  which is
guaranteed by Lemma 1.4.

Now putting v = bh + ¢t where t is a real constant to be chosen later. The
inequality (2.1) becomes

/ e(p—l)(bh+t)(bp—1Aph + (p— DWP|Vh|P + k — KelaPTD0rD) 4 <
Q
If we choose ¢ such that (@ PtDt = pp—1 e will find that
/ eV (1) — 1)p|Vh|P — KelaPHDPhY g
Q

< / =D (5 1)B| VP — Kmy,)p < 0
Q

where m, = mingcq el@=P+DbR(z) and since the function K > ¢, > 0, we choose b
small enough so that

Co,
Vhpg ollto
VA blp—1)

we get the desired result. (I

3. EXISTENCE OF A SUBSOLUTION

The operator L,u = —A,u — kuP~! under Dirichlet conditions has a first eigen-
value )\Sf’ » on each open and bounded domain 2 C M which is variationally defined
as

AL, = inf( | (V6P = kol (3.1)
where the infimum is extended to the set
A={oe HEy@: [ op=1).
Since |V¢| = |V|¢||, we can assume that ¢ > 0. The corresponding positive
eigenfunction is solution of the Dirichlet problem

Apd+ kg™t ==\ 6" in Q
$>0 inQ (3.2)
¢=0 on )

Let {Q;}i>0 be an exhaustion of M by compact domains with smooth boundary
such that Q; C Q;41

Lemma 3.1. If k is bounded function, then the sequence A?; defined by (3.1)
converges.
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Proof. By definition, /\% is a decreasing sequence. Let Aq, its limit, since the
function k is bounded, there exists a constant ¢ > 0 such that —k + ¢ > 1, then

/|V¢|p+(c—k)¢Pz/ VP + ¢

Q Q
21—;0 \V/ p\1/p p\1/p\p
> <</Q| o) +</Q¢> )

_9l-p p
= 2|l

so the operator L,u = —Apu + (c — k)uP~! is coercive and we have, for ¢; any
eigenfunction corresponding to )\1 s

A, = / IV oulP — kg?
—Cc+ 21 pH(szHp(Q

—c+217P > ¢4 217,
Then A\, > —oo0. O

Y

v

Lemma 3.2. If k is bounded, then the eigenfunction problem
Apdp+ kPt ==X 0?7 in M

o>0 M (3:3)

has a positive solution ¢ € C*(M).

loc
Proof. Letting (£););>1 be an exhaustive covering of the complete manifold M by
compact subsets and (¢;) be the sequence of the first nonvanishing eigenfonctions
(positive) of the operator Lyu = —A,u — kuP~! on each ;. Multiplying (3.3) by
¢; and integrating over €);, we get

| vor—kor =2, [ or =, <2y

Q
/Q, [Voul? < max K| + X2, < oo

so that

On the other hand,

(/Q |V¢i|p)1/p+ (/Q ¢§))1/10)10 < 2p—1(/ﬂ |V¢i\p+¢f)

(3.4)
< 2p—1(1 + max || + A?;) < 0
xeM >
and by the reflexivity of the space H} (M), we deduce that
¢; — ¢ weakly in HY (M)
and
||¢HHP(M < liminf ”(bi”ll}f(M)‘ (3.5)

Now since [,, ¢! = 1, for every € > 0 there exists a compact domain K; C M such
that fM\K,-, o < 5, let K =N K; and

[ o= <> [ <
M\K Uz, (M\K;) = Sk,
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From (3.4) we obtain by Rellich-Kondrakov theorem that
¢; — ¢ strongly in LP(K).

/ PP = 1; (3.6)

since, if it is not the case we have by (3.5)
1-— / P >0,

1= lim ¢p<5+hm ¢p:€+/¢p
K

71— 00 71— 00

We claim that

consequently

and hence e > 1 — f PP A contradlctlon with the fact that € is arbitrary fixed.
Now from (3.5) and (3.6) we get

/ |Vol? §liminf/ |V ilP
M M
hence
/ |[Vo|P — k¢P < liminf(/ IV |P — ke?)
M M

which by lemma3.1 goes to Ay p, and since fM ¢P = 1, we obtain

[ 19 = ko =,
M
So ¢ is a weak solution of the equation

App+kgPt ==Xy Pt
From proposition 1, we deduce that ¢ € ch F(M).

loc
It remains to show that ¢ is positive, which is deduced from the next proposition.

Proposition 2 (Druet [3]). Let (€2, g) be a compact Riemannian n-manifold n > 2,
1 <p<n. Letu € CHQ) be such that —Apu + h(x,u) > 0 on Q, h fulfilling the
conditions

h(z,r) < h(z,s), z€Q,0<r<s
|h(z,u)| < C(K +|r|P~H)|r|, (x,7)€ M xR, C >0.
If u>0 on Q and u does not vanish identically, then u > 0 on Q.

If X is an eigenvalue of the operator
Lyu=—Ap¢ — k|g[" %,
80 is A + ¢ for the operator
Lou=—Ap¢— (k—c)|¢[P~>¢

where c is a constant and since k is bounded function we choose ¢ such that c—k > 0,
and then we get

_AP¢ + h(.’IJ, ¢) >0
where

Wz, 6) = (c — k(@))g" "
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Obviously the function h satisfies the assumptions of proposition 2 and we have
¢ > 0.
Now we establish the following lemma which will be used later.

Lemma 3.3. Let M be a Riemannian manifold of bounded geometry. Suppose that
a(z) is a bounded smooth function on M and u € HY (M) be a weak solution of the
equation

Apu+a(z)uP™t =0 (3.7)
then u € L™ (M).

Proof. We are going to use Moser’s iteration scheme. Let k£ > 1 be any real and
t = k +p— 1. Multiplying (3.7) by u* (k > 1) and integrating over M, we get

—k:/ |VaulPub~! +/ a(z)uPtr=1 = 0. (3.8)
M M

Using Sobolev’s inequality, we get for any fixed € > 0

o=l e
< (K (n,p)? + &)||Vur |2 + Bllul! (3.9)
= (K (n,p)? +s><p> us " ul[? + Bllull

where K (n,p) is the best constant in the Sobolev’s embedding H{ (R™) C LP*(R")
(see Aubin [1] or Talenti [4]) and B a positive constant depending on €; since

Jus =Vl = [t |vup
and taking account of (3.8) we get

[t su =t [ w290 < ol
Then (3.9) becomes

t., 1
||u\|t - < (K(n, )p+€)(2;) Z(llallo + B)llull;
so that )
tipl T
Il < (B pp +) ()7 1 (lalloo + B)) lrule (3.10)

Putting

t .

=g

p
where i is a positive integer and 3 = % = p, (3.10) becomes

lullppis < (K (n,p)? + )8 (lalle + B))#5*

ull . (3.11)
Recurrently, we obtain
[ullpsis < (K (n, p)? + )7 =0 37 gZi=0 37 (||a| o, + B)F Z5=0 37 Ju|l,.  (3.12)

Now, since

Z@ B—1 p

j=0
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and
25 T &y

S D
j=1 Z;:O C;)Wp =17 Z;:O C;”p
1 & 1 1 & 1
)Y

T (1+m)J s (1+m)J
_nopsS 1 _ninop)

p =0 7

it follows by letting j — oo in (3.12) that w € L>®(M).

EJDE-2006/155

O

Theorem 3.4. Let (M,g) be a complete noncompact Riemannian manifold of di-
mension n > 3 with bounded geometry. Suppose that k € C°(M) N L>(M); then
there exists a positive subsolution of the equation Apu + kuP~' — Ku?"~1 =0 on

M.

Proof. Since k € L™ (M), there exists a positive constant ¢ > 0 such that the oper-

ator Lou = —Apo+ (c— k)¢P~1 is coercive, so by lemma 3.2 its first non vanishing

eigenvalue A\, + ¢ > 0. If ¢ denotes the corresponding positive eigenfunction to

A1,p,by lemma 3.3 we may assume that ¢ < 1.
For r > 0 we consider

U—

(€T2 _ ¢r3>%+1

and by a direct computations we obtain in the sense of distribution

Vu_ = —r2(r+1)(e” —¢™)" 67" 1Vg,

Apu_

AR

1 _,,,3 7’2(157”371

< [ B0t (- D+ SV,
Hence
Apu_ + kuP~t — Ku?
= [P+ ) -
1— 7“3 r2¢r3—1 67-2 _ ¢r3
X [— Apg+ (p = 1)( s _¢r3)|v¢|p ‘*‘MW
B er2 _¢T3 p—1, .2 _ 3 (g— 1)(1 7;) _1
K)o

1 r
X [/\1717 +(p- Dﬁ(l —r3 4 =

€T2 _ ¢r3

_K(r

PrT 1)

[P2(r + 1) — g7 gr 17!

3 2 3

2¢r T _QST‘
_ ¢7"3

)p—l(erz B ¢r3)(q_p+1)(1+%)].

e

IVl +k((

TRy

)p_l(bp—l

)
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Now since ) . )
lim (" — ¢ ) *7 =0
r—0
and
2
M e = b
we deduce that , )

u_ = (e —¢" ) e HY, (M)

1,loc
is a subsolution of (1.1) and clearly u— € C°(M) N L*>°(M). The main theorem
(Theorem 1.3) is a consequence of theorem 2.1 and theorem 3.4. O
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