
Electronic Journal of Differential Equations, Vol. 2006(2006), No. 155, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

SOLVING p-LAPLACIAN EQUATIONS ON COMPLETE
MANIFOLDS

MOHAMMED BENALILI, YOUSSEF MALIKI

Abstract. Using a reduced version of the sub and super-solutions method,

we prove that the equation ∆pu+kup−1−Kup∗−1 = 0 has a positive solution

on a complete Riemannian manifold for appropriate functions k, K : M → R.

1. Introduction

Let (M, g) be an n-dimensional complete and connected Riemannian manifold
(n ≥ 3) and let p ∈ (1, n). We are interested in the existence of positive solutions
u ∈ Hp

1,loc(M) (the standard Sobolev space of order p) of the equation

∆pu+ kup−1 −Kup
∗−1 = 0 (1.1)

with p∗ = pn
n−p and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian of u .

As usual u ∈ Hp
1,loc(M) is defined to be a weak solution of (1.1) if∫
M

−|∇u|p−2∇u∇v + (kup−1 −Kup
∗−1)v = 0 (1.2)

for each v ∈ C∞0 (M). A supersolution (respectively a subsolution) u ∈ Hp
1,loc(M)

is defined in the same way by changing = by ≤ (respect ≥) in equation(1.2) and
requiring that the test function v ∈ C∞0 (M) to be non negative. Throughout
this paper, we will assume that k and K are smooth real valued functions on
M . Following the terminology in [3], this equation is referred to as the generalized
scalar curvature type equation, it’s an extension of the equation of prescribed scalar
curvature. In the case of a compact manifold, the problem was considered in [3].
One of the results obtained in this latter paper is the following theorem

Theorem 1.1. Let (M, g) be a compact Riemannian manifold with n ≥ 2 and let
p ∈ (1, n). Let k and K be smooth real functions on M . If we assume that k and
K are both positive, then (1.1) possesses a positive solution u ∈ C1,α(M).

In this paper, we look for positive solutions of (1.1) on complete Riemannian
manifolds. To achieve this task, we use a recent result obtained by the authors in [2].
Before quoting this result we recall some definitions. A nonnegative and smooth
function K on a complete manifold is said essentially positive if there exists an
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exhaustion by compact domains {Ωi}i≥0 such that M = ∪i≥0Ωi and K|∂Ωj > 0 for
any j ≥ 0. Moreover, if there is a positive supersolution u ∈ Hp

1 (Ωi) ∩ C0(Ωi) on
each Ωi of (1.1) the essentially positive function K is said to be permissible. With
this terminology the following theorem has been established in [2]

Theorem 1.2. Let (M, g) be a complete non compact Riemannian manifold of
dimension n ≥ 3 and k,K be smooth real valued functions on M . Suppose that K
is permissible and k ≤ K. If there exists a positive subsolution u− ∈ Hp

1,loc(M) ∩
L∞(M)∩C0(M) of (1.1) on M , then (1.1) has a positive and maximal weak solution
u ∈ Hp

1 (M). Moreover u ∈ C1,α(Ωi) on each compact Ωi for some α ∈ (0, 1).

The Riemannian manifold M will be said of bounded geometry if the Ricci
curvature of M is bounded from below and the injectivity radius is strictly positive
everywhere.

We formulate our main result as follows:

Theorem 1.3. Let (M, g) be a complete non compact Riemannian manifold of
dimension n ≥ 3 and k,K be smooth real valued functions on M . Suppose that

(a) the function K is permissible and K ≥ co > 0 where co is a real constant,
k is bounded and satisfies k ≤ K, and

∫
Ωi
k = 0, on each compact domain

Ωi of the exhaustion of M .
(b) M is of bounded geometry.

Then (1.1) has a weak positive maximal solution u ∈ Hp
1 (M). Moreover u ∈

C1,α
loc (M) for some α ∈ (0, 1).

Our paper is organized as follows: In the first section we construct a supersolution
of (1.1) on each compact subset of M . In the second section, we show the existence
of a positive eigenfunction of the nonlinear operator Lpu = −∆pu − kup−1 on M
which we will use next to construct a global subsolution of our equation.

First, we establish the following result.

Lemma 1.4. Let Ω be a compact domain of M and f be a C∞ function on Ω. The
equation

−∆pφ = f in Ω− ∂Ω
φ = 0 on ∂Ω

(1.3)

admits a solution φ ∈ C1,α(Ω).

Proof. Letting A = {φ ∈ Hp
1,0(Ω) :

∫
Ω
fφ = 1}, we put

µ = inf
φ∈K

∫
Ω

|∇φ|p.

The set A is non empty since it contains the function φ = sgn(f)|f |p−1R
Ω |f |p

.
Let (φi)i∈N be a minimizing sequence in A, that is,

lim
i→∞

∫
Ω

|∇φi|p = µ.

Then, if λ1,p denotes the first nonvanishing eigenvalue of the p-Laplacian operator,
we have

λ1,p ≤
∫
Ω
|∇φi|p∫

Ω
|φi|p
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so ∫
Ω

|φi|p ≤ λ−1
1,p

∫
Ω

|∇φi|p <
µ

λ1,p
+ 1.

The sequence (φi)i∈N is bounded in Hp
1 (Ω), hence by the reflexivity of the space

Hp
1 (Ω) and the Rellich-Kondrakov theorem, there exists a subsequence of (φi)i∈N

still denoted (φi) such that
(a) (φi)i∈N converges weakly to φ ∈ Hp

1 (Ω)
(b) (φi)i∈N converges strongly to φ ∈ Lp(Ω).

From (b) we deduce that φi −→ φ in L1(Ω) then φ ∈ A and from (a) we get

‖φ‖Hp
1 (Ω) ≤ lim

i→+∞
inf ‖φi‖Hp

1 (Ω).

Taking into account of (b) again, we obtain∫
Ω

|∇φ|p ≤ lim inf
i→+∞

∫
Ω

|∇φi|p = µ .

Since φ ∈ A, we get ∫
Ω

|∇φ|p = µ = inf
ψ∈K

∫
Ω

|∇ψ|p.

The Lagrange multiplier theorem allows us to say that φ is a weak solution of
(1.3). �

The regularity of φ follows from the next proposition, with the following notation

W 1,p(Ω) =

{
Hp

1 (Ω) if ∂Ω = φ

Hp
1,0(Ω) if ∂Ω 6= φ .

Proposition 1. Let h ∈ Co(Ω×R) be such that, for any (x, r) ∈ Ω×R, |h(x, r)| ≤
C|r|p∗−1 +D.

If u ∈W 1,p(Ω) is a solution of −∆pu+ h(x, u) = 0, then u ∈ C1,α(Ω).

The above proposition was proved in ([3]), in the context of compact Riemannian
manifolds without boundary. The proof is in its essence based on the Sobolev
inequality and since this latter is also valid in H̊p

1 (Ω) as in Hp
1 (Ω), it follows that

proposition (1) remains true in the case of compact Riemannian manifolds with
boundary.

2. Existence of a supersolution

In this section we construct a positive supersolution of (1.1) on each compact
domain of M .

Theorem 2.1. Let Ω be a compact domain of M . If K is a smooth function such
that K ≥ c0 > 0 and k is a smooth function with k ≤ K , then there exists a
positive supersolution of (1.1) in Ω.

Proof. Letting u = ev where v ∈ Hp
1 (Ω) is a function which will be precise later

and q = p∗ − 1, then we get for every φ ∈ Hp
1 (Ω) with φ ≥ 0∫

Ω

∆puφ =
∫

Ω

e(p−1)v(∆pv + (p− 1)|∇v|p)φ

and∫
Ω

(∆pu+ kup−1 −Kuq)φ =
∫

Ω

e(p−1)v(∆pv + (p− 1)|∇v|p + k −Ke(q−p+1)v)φ.
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So it suffices to show the existence of v such that∫
Ω

e(p−1)v(∆pv + (p− 1)|∇v|p + k −Ke(q−p+1)v).φ ≤ 0 (2.1)

Let b > 0 be a constant and consider the solution of ∆ph = −b1−pk which is
guaranteed by Lemma 1.4.

Now putting v = bh + t where t is a real constant to be chosen later. The
inequality (2.1) becomes∫

Ω

e(p−1)(bh+t)(bp−1∆ph+ (p− 1)bp|∇h|p + k −Ke(q−p+1)(bh+t))φ ≤ 0

If we choose t such that e(q−p+1)t = bp−1, we will find that∫
Ω

e(p−1)(bh+t)((p− 1)b|∇h|p −Ke(q−p+1)bh)φ

≤
∫

Ω

e(p−1)(bh+t)((p− 1)b|∇h|p −Kmo)φ ≤ 0

where mo = minx∈Ω e
(q−p+1)bh(x) and since the function K ≥ co > 0, we choose b

small enough so that

|∇h|p ≤ como

b(p− 1)

we get the desired result. �

3. Existence of a subsolution

The operator Lpu = −∆pu− kup−1 under Dirichlet conditions has a first eigen-
value λΩ

1,p on each open and bounded domain Ω ⊂M which is variationally defined
as

λΩ
1,p = inf(

∫
Ω

|∇φ|p − k|φ|p) (3.1)

where the infimum is extended to the set

A = {φ ∈ Hp
1,0(Ω) :

∫
Ω

|φ|p = 1}.

Since |∇φ| = |∇|φ||, we can assume that φ ≥ 0. The corresponding positive
eigenfunction is solution of the Dirichlet problem

∆pφ+ kφp−1 = −λΩ
1,pφ

p−1 in Ω
φ > 0 in Ω
φ = 0 on ∂Ω

(3.2)

Let {Ωi}i≥0 be an exhaustion of M by compact domains with smooth boundary
such that Ωi ⊂ Ω̊i+1

Lemma 3.1. If k is bounded function, then the sequence λΩi
1,p defined by (3.1)

converges.
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Proof. By definition, λΩi
1,p is a decreasing sequence. Let λ1,p its limit, since the

function k is bounded, there exists a constant c > 0 such that −k + c ≥ 1, then∫
Ω

|∇φ|p + (c− k)φp ≥
∫

Ω

|∇φ|p + φp

≥ 21−p((
∫

Ω

|∇φ|p)1/p + (
∫

Ω

φp)1/p)p

= 21−p‖φ‖p
Hp

1 (Ω)

so the operator Lpu = −∆pu + (c − k)up−1 is coercive and we have, for φi any
eigenfunction corresponding to λΩi

1,p,

λΩi
1,p =

∫
Ωi

|∇φi|p − kφpi

≥ −c+ 21−p‖φi‖pHp
1 (Ω)

≥ −c+ 21−p ≥ −c+ 21−n .

Then λ1,p > −∞. �

Lemma 3.2. If k is bounded, then the eigenfunction problem

∆pφ+ kφp−1 = −λ1,pφ
p−1 in M

φ > 0 in M
(3.3)

has a positive solution φ ∈ C1,α
loc (M).

Proof. Letting (Ωi)i≥1 be an exhaustive covering of the complete manifold M by
compact subsets and (φi) be the sequence of the first nonvanishing eigenfonctions
(positive) of the operator Lpu = −∆pu − kup−1 on each Ωi. Multiplying (3.3) by
φi and integrating over Ωi, we get∫

Ωi

|∇φi|p − kφpi = λΩi
1,p

∫
Ωi

φpi = λΩi
1,p ≤ λΩ1

1,p

so that ∫
Ωi

|∇φi|p ≤ max
x∈M

|k|+ λΩ1
1,p <∞.

On the other hand,(( ∫
Ωi

|∇φi|p
)1/p

+
( ∫

Ωi

φpi

)1/p)p
≤ 2p−1(

∫
Ωi

|∇φi|p + φpi )

≤ 2p−1
(
1 + max

x∈M
|k|+ λΩ1

1,p

)
<∞

(3.4)

and by the reflexivity of the space Hp
1 (M), we deduce that

φi → φ weakly in Hp
1 (M)

and
‖φ‖p

Hp
1 (M)

≤ lim inf ‖φi‖pHp
1 (M)

. (3.5)

Now since
∫
M
φpi = 1, for every ε > 0 there exists a compact domain Ki ⊂M such

that
∫
M\Ki

φpi <
ε
2i , let K = ∩∞i=1Ki and∫
M\K

φpi =
∫
∪∞i=1(M\Ki)

φpi ≤
∞∑
i=1

∫
M\Ki

φpi < ε.
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From (3.4) we obtain by Rellich-Kondrakov theorem that

φi → φ strongly in Lp(K).

We claim that ∫
M

φp = 1; (3.6)

since, if it is not the case we have by (3.5)

1−
∫
M

φp > 0,

consequently

1 = lim
i→∞

∫
M

φpi ≤ ε+ lim
i→∞

∫
K

φpi = ε+
∫
K

φp

and hence ε ≥ 1−
∫
M
φp. A contradiction with the fact that ε is arbitrary fixed.

Now from (3.5) and (3.6) we get∫
M

|∇φ|p ≤ lim inf
∫
M

|∇φi|p

hence ∫
M

|∇φ|p − kφp ≤ lim inf(
∫
M

|∇φi|p − kφpi )

which by lemma3.1 goes to λ1,p, and since
∫
M
φp = 1, we obtain∫

M

|∇φ|p − kφp = λ1,p.

So φ is a weak solution of the equation

∆pφ+ kφp−1 = −λ1,pφ
p−1

From proposition 1, we deduce that φ ∈ C1,α
loc (M).

It remains to show that φ is positive, which is deduced from the next proposition.

Proposition 2 (Druet [3]). Let (Ω, g) be a compact Riemannian n-manifold n ≥ 2,
1 < p < n. Let u ∈ C1(Ω) be such that −∆pu + h(x, u) ≥ 0 on Ω, h fulfilling the
conditions

h(x, r) < h(x, s), x ∈ Ω, 0 ≤ r < s

|h(x, u)| ≤ C(K + |r|p−2)|r|, (x, r) ∈M ×R, C > 0.

If u ≥ 0 on Ω and u does not vanish identically, then u > 0 on Ω.

�

If λ is an eigenvalue of the operator

Lpu = −∆pφ− k|φ|p−2φ,

so is λ+ c for the operator

Lcu = −∆pφ− (k − c)|φ|p−2φ

where c is a constant and since k is bounded function we choose c such that c−k > 0,
and then we get

−∆pφ+ h(x, φ) ≥ 0
where

h(x, φ) = (c− k(x))φp−1.
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Obviously the function h satisfies the assumptions of proposition 2 and we have
φ > 0.

Now we establish the following lemma which will be used later.

Lemma 3.3. Let M be a Riemannian manifold of bounded geometry. Suppose that
a(x) is a bounded smooth function on M and u ∈ Hp

1 (M) be a weak solution of the
equation

∆pu+ a(x)up−1 = 0 (3.7)
then u ∈ L∞(M).

Proof. We are going to use Moser’s iteration scheme. Let k ≥ 1 be any real and
t = k + p− 1. Multiplying (3.7) by uk (k > 1) and integrating over M , we get

−k
∫
M

|∇u|puk−1 +
∫
M

a(x)up+k−1 = 0. (3.8)

Using Sobolev’s inequality, we get for any fixed ε > 0

‖u
t
p ‖pp∗ = ‖u‖t

t p∗
p

≤ (K(n, p)p + ε)‖∇u
t
p ‖pp +B‖u‖tt

= (K(n, p)p + ε)(
t

p
)p‖u

t
p−1∇u‖pp +B‖u‖tt

(3.9)

where K(n, p) is the best constant in the Sobolev’s embedding Hp
1 (Rn) ⊂ Lp∗(Rn)

(see Aubin [1] or Talenti [4]) and B a positive constant depending on ε; since

‖u
t
p−1∇u‖pp =

∫
ut−p|∇u|p

and taking account of (3.8) we get∫
uk∆pu = −k

∫
uk−1|∇u|p ≤ ‖a‖∞‖u‖tt .

Then (3.9) becomes

‖u‖t
t p∗

p

≤ (K(n, p)p + ε)(
t

p
)p

1
k

(‖a‖∞ +B)‖u‖tt

so that

‖u‖
t p∗

p
≤

(
(K(n, p)p + ε)

( t
p

)p 1
k

(‖a‖∞ +B)
) 1

t ‖u‖t . (3.10)

Putting
t

p
= βi

where i is a positive integer and β = p∗

p = n
n−p , (3.10) becomes

‖u‖pβi+1 ≤ ((K(n, p)p + ε)βpi(‖a‖∞ +B))
1

pβi ‖u‖
pβi . (3.11)

Recurrently, we obtain

‖u‖pβi+1 ≤ (K(n, p)p + ε)
1
p (

Pi
j=0

1
βj )
β

Pi
j=0

j

βj (‖a‖∞ +B)
1
p (

Pi
j=0

1
βj )‖u‖p. (3.12)

Now, since
∞∑
j=0

1
βj

=
β

β − 1
=
n

p
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and
∞∑
j=0

j

βj
=

∞∑
j=1

j

(1 + π)j

≤
∞∑
j=1

j∑j
p=0 C

p
j π

p
=

∞∑
j=1

1

π
∑j−1
p=0 C

p
j π

p

=
1
π

∞∑
j=1

1
(1 + π)j−1

=
1
π

∞∑
j=0

1
(1 + π)j

=
n− p

p

∞∑
j=0

1
βj

=
n(n− p)

p2
,

it follows by letting j →∞ in (3.12) that u ∈ L∞(M). �

Theorem 3.4. Let (M, g) be a complete noncompact Riemannian manifold of di-
mension n ≥ 3 with bounded geometry. Suppose that k ∈ C∞(M) ∩ L∞(M); then
there exists a positive subsolution of the equation ∆pu + kup−1 − Kup

∗−1 = 0 on
M .

Proof. Since k ∈ L∞(M), there exists a positive constant c > 0 such that the oper-
ator Lcu = −∆pφ+ (c− k)φp−1 is coercive, so by lemma 3.2 its first non vanishing
eigenvalue λ1,p + c > 0. If φ denotes the corresponding positive eigenfunction to
λ1,p,by lemma 3.3 we may assume that φ < 1.

For r > 0 we consider
u− =

(
er

2
− φr

3) 1
r +1

and by a direct computations we obtain in the sense of distribution

∇u− = −r2(r + 1)(er
2
− φr

3)
1
r φr

3−1∇φ,

∆pu− =
[
r2(r + 1)(er

2
− φr

3)1/r

φr
3−1

]p−1

×
[
−∆pφ+ (p− 1)

(1− r3

φ
+

r2φr
3−1

er2 − φr3
)
|∇φ|p

]
.

Hence

∆pu− + kup−1
− −Kuq−

=
[
r2(r + 1)(er

2
− φr

3)
1
r φr

3]p−1

×
[
−∆pφ+ (p− 1)

(1− r3

φ
+

r2φr
3−1

er2 − φr3
)
|∇φ|p + k

( er
2 − φr

3

r2(r + 1)φr3
)p−1

φp−1

−K
( er

2 − φr
3

r2(r + 1)φr3
)p−1(er

2
− φr

3
)(q−p+1)(1+ 1

r )φp−1
]

=
[
r2(r + 1)(er

2
− φr

3)
1
r φr

3−1
]p−1

×
[
λ1,p + (p− 1)

1
φp

(
1− r3 +

r2φr
3

er2 − φr3
)
|∇φ|p + k

(( er
2 − φr

3

r2(r + 1)φr3
)p−1 + 1

)
−K

( er
2 − φr

3

r2(r + 1)φr3
)p−1(er

2
− φr

3
)(q−p+1)(1+ 1

r )
]
.
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Now since
lim
r→0

(er
2
− φr

3
)1+

1
r = 0

and

lim
r→0

r2

er2 − φr3
= 1 ,

we deduce that
u− = (er

2
− φr

3
)1+

1
r ∈ Hp

1,loc(M)
is a subsolution of (1.1) and clearly u− ∈ Co(M) ∩ L∞(M). The main theorem
(Theorem 1.3) is a consequence of theorem 2.1 and theorem 3.4. �
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