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ANALYTIC SOLUTIONS FOR HAMILTON-JACOBI-BELLMAN
EQUATIONS

ARSEN PALESTINI

Communicated by Ludmila S. Pulkina

Abstract. Closed form solutions are found for a particular class of Hamilton-
Jacobi-Bellman equations emerging from a differential game among firms com-

peting over quantities in a simultaneous oligopoly framework. After the deriva-

tion of the solutions, a microeconomic example in a non-standard market is
presented where feedback equilibrium is calculated with the help of one of the

previous formulas.

1. Introduction

In differential games and optimal control theory, Hamilton-Jacobi-Bellman (HJB)
equations have played a major role in the previous decades. A wide range of models
have been introduced and analyzed whose solutions have been either determined or
approximated with the help of Dynamic Programming techniques, and especially
feedback strategies are considered a key solution concept.

Just to cite a few fundamental recent textbooks on the different aspects of this
issue: the main theoretical contribution is probably the volume by Seierstad and
Sydsaeter ([21], 1986), whereas the textbook by Dockner et al. [9] is a major contri-
bution including a wide range of applications to a lot of economic models. Jørgensen
and Zaccour [13] focus on marketing models especially, furthermore a very rich
treatment on HJB equations is provided in Bardi and Capuzzo Dolcetta [1].

In recent decades, a variegated stream of literature has found a relevant devel-
opment on several aspects of HJB equations: a theoretical investigation involving
results on viscosity solutions can be found in Lions and Souganidis [18], relevant
properties of the value function in infinite horizon optimal control problems are
found out in Baumeister et al. [2], an iterative dynamic programming method for
2-agent games is introduced by Zhang et al. [23], a study on differential games
with non-constant discounting is proposed by Marin-Solano and Shevkoplyas [19],
necessary and sufficient conditions for feedback equilibria in linear-quadratic games
are established in [10].
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As far as economic models are concerned, in the latest years the attention of
economic literature has been directed towards oligopoly models with several differ-
ent market effects: the survey carried out by Jørgensen and Zaccour [12] provides
an extensive outline of applications until 2007. Other relevant contributions are
due to Wirl [22], who discusses the properties of the optimal value function in a
scenario with polluting emissions, whereas Erickson [11] studies a dynamic adver-
tising framework. Prasad et al. [20] derive feedback equilibrium in an advertising
model where customers switch to competing brands, and HJB equations are solved
also by Colombo and Dawid [8] in a scenario where technological spillovers appear.
On the other hand, Lambertini and Mantovani [17] derive feedback strategies in a
dynamic renewable resource oligopoly under pre-emption and subject to voracity
effects. All these papers, and many others, feature solutions to the related HJB
equations in linear-quadratic structures and standard demand on the markets.

However, relatively little attention has been paid to industrial organization mod-
els where the inverse demand function of the market has a non-standard form such
as the hyperbolic one. A preliminary microfoundation and some results in such
a setting can be found in Lambertini [15] (dynamic framework) and Colombo [5]
(static framework), whereas in Lambertini and Palestini [16], the derivation and
solution of the HJB equations originating from this framework are presented and
discussed.

In this article, I would like to extend such treatment by focussing on a class
of HJB equations which are strictly connected to oligopoly differential games with
hyperbolic inverse demand functions. Differently from recent papers which analyze
several formulations of linear-quadratic differential games (i.e. [5, 6]), I take into
account games whose structure is based on polynomials having degree higher than
2.

To solve the HJB equation, the approach I adopt is the same as in most literature
on differential games and optimal control applied to economics (see, for example
[9]): a guess for V ∗(·) is chosen and then the explicit formulation of its coefficients
is established. Here is a brief outline of the main results:

• A class of HJB equations having a polynomial term in one of the two
arguments of the unknown function is taken into account and solved in
closed form.
• An oligopoly differential game is introduced with a hyperbolic inverse de-

mand function. By deriving the HJB equation for this model, the structure
we obtain is the one that can be solved.
• The application of the formula is exhibited and the Nash feedback strategy

is determined.

The remainder of this article is as follows. Section 2 features the main findings
on the solution of a class of HJB equations with two different choices of parameters.
Section 3 introduces an application to a 3-firm differential game where the inverse
demand function of the market is hyperbolic. The value function and the Nash
feedback strategy are explicitly calculated. Section 4 concludes and outlines some
possible future improvements.
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2. Analytic solutions

Consider m ∈ Z+ such that m ≥ 1. Let us introduce a family of HJB equations,
having V (x, t) ∈ C1((0,+∞)× [0, T ]) as their unknowns:

∂V (x, t)
∂t

− ρV (x, t) =
m∑
l=0

βlx
l + αxγ

∂V (x, t)
∂x

, (2.1)

where γ ∈ {0, 1}. Functions V are defined on (x, t) ∈ (0,+∞) × [0, T ], such that
the boundary condition V (x, T ) = 0 holds for all x > 0.

To solve (2.1), we choose a suitable guess, turning out to be a polynomial in x
having the same degree of the polynomial which appears at the right-hand side of
(2.1). The two cases will be separated based on the value of γ. The arguments of V
will often be omitted for simplicity during the derivation of the solutions to (2.1).

2.1. Solution for γ = 0. When γ = 0, α is the only coefficient of the first-order
partial derivative of V (·) with respect to x, i.e.

∂V

∂t
− ρV =

m∑
l=0

βlx
l + α

∂V

∂x
. (2.2)

To establish the solution to (2.2), a preliminary Lemma is helpful, to provide the
solution formula for the linear dynamic system whose unknowns are going to be
the coefficients of the value function.

Lemma 2.1. The solution to the dynamic system
ẏ0(t)
ẏ1(t)
. . .

ẏm−1(t)
ẏm(t)

 =


ρ α 0 · · · · · · 0
0 ρ 2α 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 ρ mα
0 0 · · · 0 0 ρ




y0(t)
y1(t)
. . .

ym−1(t)
ym(t)

+


β0

β1

. . .
βm−1

βm

 , (2.3)

endowed with final conditions yj(T ) = 0, for all j = 0, 1, . . . ,m, and for all
α, β0, β1, . . . , βm ∈ R, is given by

y∗j (t) =
m∑
k=0

γj,k(t− T )keρ(t−T ) + Cj , (2.4)

where:
• if j ∈ {0, 1, . . . ,m− 2}, then

Cj = −γj0 = −1
ρ

(
βj +

m−j∑
k=1

(−1)k
(α
ρ

)k(Πj+k
l=j+1l

)
βj−k

)
,

and the following recurrence relation among coefficients holds:

γj,k =
(j + 1)αγj+1,k+1

k
for k = 1, . . . ,m− j,

γj,k = 0 for k = m− j, . . . ,m;

• if j = m− 1, then

Cm−1 = −γm−1,0 = −1
ρ

(
βm−1 −

mα

ρ
βm

)
,
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γm−1,1 =
mαβm
ρ

, γm−1,k = 0for k = 2, . . . ,m;

• if j = m, then Cm = −βm/ρ, γm,0 = βm/ρ, γm,k = 0 for k = 1, . . . ,m.

Proof. Since the matrix in (2.3) has λ = ρ as its unique eigenvalue, having algebraic
multiplicity m + 1 and geometric multiplicity 1, all the solutions to the dynamic
system can be expressed in the form

y∗j (t) =
m∑
k=0

γj,k(t− T )keρ(t−T ) + Cj ,

where, by imposing the final condition y∗j (T ) = 0, we obtain that Cj = −γj0 for all
j = 0, 1, . . . ,m. The system can be solved by starting from the last equation, which
is solvable by separation of variables, and then proceeding upwards by successive
substitutions. It is easy to work out the initial two solutions:

y∗m(t) =
βm
ρ

(
eρ(t−T ) − 1

)
,

y∗m−1(t) =
1
ρ

(
βm−1 −

mαβm
ρ

)(
eρ(t−T ) − 1

)
+
mαβm
ρ

(t− T )eρ(t−T ).

Subsequently, solving upwards and employing substitutions, we can determine the
iteration for all the solutions. The general Cauchy problem

ẏj(t) = ρyj(t) + (j + 1)y∗j+1(t) + βj

yj(T ) = 0

has the unique solution

y∗j (t) =
βj
ρ

(
eρ(t−T ) − 1

)
+ (j + 1)α

(∫ t

T

y∗j+1(s)e−ρsds
)
eρt (2.5)

for j = 0, . . . ,m − 1. To determine the recurrence relations between coefficients,
consider the general formulation (2.4) of the j-th solution. By integrating, we have

y∗j (t)

=
βj
ρ

(
eρ(t−T ) − 1

)
+ (j + 1)αeρt

∫ t

T

( m∑
k=0

γj+1,k(s− T )ke−ρT + Cj+1e
−ρs
)
ds

=
βj
ρ

(
eρ(t−T ) − 1

)
+ (j + 1)α

[ m∑
k=0

γj+1,k
(t− T )k+1

k + 1
eρ(t−T ) +

Cj+1

ρ

(
1− eρ(t−T )

)]
= −1

ρ
(βj − (j + 1)αCj+1)(1− eρ(t−T )) + (j + 1)α

m∑
k=0

γj+1,k
(t− T )k+1

k + 1
eρ(t−T ),

which gives the recurrence relations among coefficients:

Cj = −1
ρ

(βj − (j + 1)αCj+1), γj,0 = −Cj , γj,k =
(j + 1)αγj+1,k+1

k
.

�

Theorem 2.2. The function V ∗(x, t) =
∑m
l=0A

∗
l (t)x

l with

A∗0(t) =
m∑
k=0

γ0,k(t− T )keρ(t−T ) + C0
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A∗1(t) =
m∑
k=0

γ1,k(t− T )keρ(t−T ) + C1

. . .

A∗m−1(t) =
mαβm
ρ

(t− T )eρ(t−T ) +
1
ρ

[mαβm
ρ

− βm−1

] (
1− eρ(t−T )

)
A∗m(t) =

βm(eρ(t−T ) − 1)
ρ

is a solution of (2.2).

Proof. Consider the guess V (x, t) =
∑m
l=0Ai(t)x

l and substitute it into (2.2) to
obtain

m∑
l=0

Ȧl(t)xl − ρ
m∑
l=0

Al(t)xl =
m∑
l=0

βlx
l + α

( m∑
l=1

lxl−1Al(t)
)
,

after eliminating the first term of the sum on the right-hand side. Collecting terms
with all the powers of x in both sides leads to the dynamic system

Ȧ0(t) = ρA0(t) + αA1(t) + β0

Ȧ1(t) = ρA1(t) + 2αA2(t) + β1

Ȧ2(t) = ρA2(t) + 3αA3(t) + β2

. . .

Ȧm−1(t) = ρAm−1(t) +mαAm(t) + βm−1

Ȧm(t) = ρAm(t) + βm ,

(2.6)

which should be endowed with the following set of final conditions satisfying the
boundary condition: Aj(T ) = 0, for j = 0, 1, . . . ,m. By Lemma 2.1, the solution
of (2.6) amounts to

A∗0(t) =
m∑
k=0

γ0,k(t− T )keρ(t−T ) + C0

. . .

A∗m−1(t) =
mαβm
ρ

(t− T )eρ(t−T ) +
1
ρ

[mαβm
ρ

− βm−1

] (
1− eρ(t−T )

)
A∗m(t) =

βm(eρ(t−T ) − 1)
ρ

,

(2.7)

where coefficients Cj and γj,k are defined as in Lemma 2.1. �

2.2. Solution for γ = 1. In this case, (2.1) takes the form

∂V

∂t
− ρV =

m∑
l=0

βlx
l + αx

∂V

∂x
, (2.8)

The next theorem intends to exhibit the solution strategy.

Theorem 2.3. The function V ∗(x, t) =
∑m
l=0A

∗
l (t)x

l with

A∗0(t) =
β0

(
eρ(t−T ) − 1

)
ρ
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A∗1(t) =
β1

(
e(ρ+α)(t−T ) − 1

)
ρ+ α

A∗2(t) =
β2

(
e(ρ+2α)(t−T ) − 1

)
ρ+ 2α

. . .

A∗m(t) =
βm
(
e(ρ+mα)(t−T ) − 1

)
ρ+mα

,

is a solution of (2.8).

Proof. Call V (x, t) = A0(t) + A1(t)x + · · · + Am(t)xm, where Aj(t) ∈ C1([0, T ]),
for all j = 0, . . . ,m. By replacing it in (2.1), we have

m∑
l=0

Ȧl(t)xl − ρ
m∑
l=0

Al(t)xl =
m∑
l=0

βlx
l + α

( m∑
l=0

lxlAl(t)
)
.

Collecting terms with powers of x yields an m+ 1-equations dynamic system

Ȧ0(t) = ρA0(t) + β0

Ȧ1(t) = (ρ+ α)A1(t) + β1

Ȧ2(t) = (ρ+ 2α)A2(t) + β2

. . .

Ȧm(t) = (ρ+mα)Am(t) + βm

, (2.9)

subject to the set of final conditions satisfying the boundary data: Aj(T ) = 0, for
j = 0, 1, . . . ,m.

System (2.9) can be easily solved by separation of variables in each ODE. Plug-
ging the solutions into the expression of V (x, t), we achieve the solution to (2.8):

V ∗(x, t) =
β0

(
eρ(t−T ) − 1

)
ρ

+
m∑
l=1

βl
(
e(ρ+lα)(t−T ) − 1

)
xl

ρ+ lα
. (2.10)

�

3. A microeconomic application

Consider N firms engaging in a Cournot competition, producing homogeneous
goods and bearing a cost for developing R&D in their own sectors. This typical
setup describes an oligopolistic game evolving over time, where players aim to max-
imize their own payoff (For a rich overview of such models, see [9].). In a simplified
version of this scenario, each player chooses a strategy, denoted by a control vari-
able, to maximize an objective function which is the integral of the discounted flows
of her profits. The notation to be employed is standard for industrial organization
models. I am going to borrow it mainly from [15]. It is exposed in the following
list together with some hypotheses

• ui(t) ∈ Ui ⊆ R+ is the strategic variable for the i-th player, representing
output level, and u = (u1, . . . , uN ) is a vector of strategies. Each control set
Ui may be either bounded, such as [0, u], or unbounded, such as [0,+∞),
in compliance with the inverse demand structure of the market;
• p(u(t)) is the inverse demand function of the market, decreasing in the sum

of all outputs;
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• cui(t) is the linear production cost borne by the i-th player, where c > 0 is
the marginal cost parameter;
• πi(u(t), t) = (p(u(t))− c)ui(t) is the profit gained by the i-th firm at time
t;
• the horizon of the competition is finite, i.e. the game evolves over a compact

time interval [0, T ];
• the discount factor of profits is the same for all players: e−ρt, where ρ > 0

is the force of interest on the market, also considered as a measure of how
much players discount their future profits;
• ki(t) is player i’s state variable, describing physical capital or capacity,

which accumulates over time in compliance with a given dynamics G(ki(t))
to allow continuous production. Consider the most general case for the
state set, i.e. ki(t) ∈ Ki ⊆ R+, meaning that, depending on the cost
structure, the state set may be either bounded or unbounded. The initial
conditions of such accumulation process are ki, for i = 1, . . . , N , i.e. ki are
the capacity levels at instant t, where t ∈ [0, T ) is the initial instant of the
game;
• the i-th firm bears a further cost induced by accumulation of its own phys-

ical capital. The cost function Ci(ki) is a non-negative function of the i-th
physical capital. Generally, Ci(ki) is either a linear or a convex function;
• there is no scrap value or salvage value at time T (This requirement is

equivalent to considering a no prize game.);
• the game is played simultaneously;
• players are symmetric, meaning that their productive characteristics make

the oligopoly symmetric. In an oligopolistic competition, symmetry among
firms can be described in several ways: same initial capital endowment,
same number of workers earning the same wages, same output having the
same production costs, and so on. Consequently, they cannot be distin-
guished and for this reason we can search for a symmetric solution of the
game. Asymmetric scenarios are more complex, and such frameworks may
be investigated in future research.

Firm i solves the following optimization program:

max
ui≥0

∫ T

0

e−δt[πi(u1(t), . . . , uN (t))− Ci(ki(t))]dt, (3.1)

subject to
k̇i(t) = G(ki(t))− ui(t),

ki(0) = ki0.
(3.2)

Usually, the search for the feedback (or Markov-perfect) equilibrium is pursued by
solving the related system of HJB equations, having the optimal value functions
Vi(ki, t) as its unknowns.

I am going to confine my attention to the explicit solution to the related HJB
equations, without taking into account the issue of sufficient conditions. Such a
topic is widely discussed in many important contributions such as the textbooks
by Bertsekas [3, 4], and the volumes treating dynamic programming with appli-
cations to economics and management science, i.e. Kamien and Schwartz ([14] is
the most recent edition) and Dockner et al. [9]. Basically, under simple regularity
assumptions which are verified in most solvable models, the existence of a solution
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to the HJB equations corresponds to the existence of a feedback solution to the
differential game.

Call ki the i-th level of capacity at time t, where t ∈ [0, T ) is the initial time
instant of the game. Hence, the 2 arguments of Vi are ki, i.e. the initial level of
capital, and t, i.e. the initial time. Hence, k = (k1, . . . , kN ) is the vector of initial
data, and the i-th player’s optimal value function is

Vi(ki, t) =
∫ T

t

e−δs [πi(u(s), s)− Ci(ki)] ds. (3.3)

The i-th HJB equation reads

∂Vi(k, t)
∂t

− ρVi(k, t) = max
ui≥0

{
πi(u(t), t)− Ci(ki) +

∂Vi(k, t)
∂ki

(G(ki)− ui)

+
∑
j 6=i

∂V (ki, t)
∂kj

(G(kj)− uj)
}
,

(3.4)

endowed with the transversality condition Vi(ki, T ) = 0, representing the vanishing
of (3.3) at the final instant of the game.

The concept of Nash feedback equilibrium of a game deserves to be briefly re-
called: an N -tuple (u∗1(k, t), . . . , u∗N (k, t)) is a feedback Nash equilibrium if for all
j = 1, . . . , N , u∗j (k, t) is a maximizer of Vj when all the remaining players play
strategy u∗l (k, t), for all l 6= j.

An approach which is commonly adopted in such problems involves the deter-
mination of symmetric solutions, i.e. such as u∗1 = u∗2 = · · · = u∗N , which requires
suitable symmetry assumptions and basically transforms a differential game into an
optimal control problem with a single agent. What follows is an Example showing
the derivation of a feedback equilibrium in a problem where the inverse demand
function of the market is hyperbolic.

Example 3.1. Sticking to the above notation, consider a market in which 3 firms
compete over quantity and where the inverse demand function is hyperbolic, i.e.

p(u1, u2, u3) =
A∑3
j=1 uj

, (3.5)

where A > 0 is the market reservation price. See [15] and [16] for a theoretical
explanation. The dynamic constraints are the kinematic equations:

k̇i(t) = αki(t)− ui(t),

where α > 0 indicates the growth rate of the physical capital. The cost induced
by the development of ki for the i-th firm is Ci(ki) = k2

i

5 + k4
i

10 , which is convex for
ki ≥ 0. Given such data, the PDE (3.4) becomes

∂Vi(k, t)
∂t

− ρVi(k, t)

= max
ui≥0

{( A∑3
j=1 uj

− c
)
ui −

k2
i

5
− k4

i

10
+
∂Vi(ki, t)
∂ki

(αki − ui)

+
∑
j 6=i

∂Vi(ki, t)
∂kj

(αkj − uj)
}
.
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As can be simply verified, the expression to be maximized on the right-hand side is
concave in variables ui, meaning that the existence of maximizers is ensured. Max-
imizing the expression on the right-hand side yields (whenever possible, arguments
are omitted to lighten the notation):

−c+A

∑
j 6=i uj

(u1 + u2 + u3)2
− ∂Vi
∂ki

= 0,

leading to the 3-equation system

−c+A
u2 + u3

(u1 + u2 + u3)2
− ∂V1

∂k1
= 0,

−c+A
u1 + u3

(u1 + u2 + u3)2
− ∂V2

∂k2
= 0,

−c+A
u1 + u2

(u1 + u2 + u3)2
− ∂V3

∂k3
= 0.

Summing the equations yields

u1 + u2 + u3 =
2A

3c+ ∂V1
∂k1

+ ∂V2
∂k2

+ ∂V3
∂k3

.

We impose symmetry in order to find out the symmetric solution, so we call u :=
u1 = u2 = u3, k := k1 = k2 = k3, and V := V1 = V2 = V3. Consequently, we
achieve a unique relation leading to the optimal output u∗:

u∗ =
2A

9(c+ ∂V
∂k )

.

Before proceeding, we should note that the search for a symmetric solution trans-
forms the differential game into an optimal control problem, having only V (k, t)
as its unknown. However, if we assumed symmetry a priori, the quantity to be
maximized would have become linear in the unique strategic variable u, and con-
sequently would have admitted no maximum points. When such a maximization
problem does not admit stationary points, we have to discuss the behaviour at the
boundary of the strategy space.

On the other hand, the cross derivatives ∂Vi
∂kj

are not meaningful any longer,
hence they should be removed from the unique HJB equation. By replacing u∗ into
the unique HJB we achieve the following:

∂V

∂t
− ρV =

A

3
− 2Ac

9
(
c+ ∂V

∂k

) − k2
i

5
− k4

i

10
+ αk

∂V

∂k
− 2A

9
(
c+ ∂V

∂k

) ∂V
∂k

⇐⇒ ∂V

∂t
− ρV =

A

3
− 2A

9
(
c+ ∂V

∂k

)(c+
∂V

∂k

)
− k2

i

5
− k4

i

10
+ αk

∂V

∂k

⇐⇒ ∂V (k, t)
∂t

− ρV (k, t) =
A

9
− k2

i

5
− k4

i

10
+ αk

∂V (k, t)
∂k

.

which is a PDE belonging to the class of (2.8), with parameters β0 = A
9 , β2 = − 1

5 ,
β4 = − 1

10 , βj = 0 for all j ∈ Z+ \ {0, 2, 4}. We can directly apply formula (2.10) to
achieve the optimal value function

V ∗(k, t) =
A
(
eρ(t−T ) − 1

)
9ρ

−
(
e(ρ+2α)(t−T ) − 1

)
k2

5(ρ+ 2α)
−
(
e(ρ+4α)(t−T ) − 1

)
k4

10(ρ+ 4α)
,
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and finally, by substitution, the optimal feedback strategy:

u∗(k, t) =
2A

9
(
c− 2(e(ρ+2α)(t−T )−1)k

5(ρ+2α) − 2(e(ρ+4α)(t−T )−1)k3

5(ρ+4α)

) .
Concluding Remarks. Analytic solutions have been worked out for a class of
HJB equations arising from a differential game of oligopoly among firms engaging
in competition over outputs in a market subject to a hyperbolic inverse demand
function.

Possible future developments of the present work are either the derivation of
the solutions to (2.1) if parameter γ is different from 0 and 1 or a discussion on
the same problem played over an infinite time horizon. Furthermore, hyperbolic
demand structures are an issue which deserves to be further developed in general,
also in settings which are far from differential games scenarios.
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