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Partial exact controllability for the linear thermo-viscoelastic model

Wei-Jiu Liu & Graham H. Williams

Abstract

The problem of partial exact controllability for linear thermo-viscoelasticity is con-

sidered. Using classical multiplier techniques, a boundary observability inequality is es-

tablished under smallness restrictions on coupling parameters and relaxation functions.

Then, via the Hilbert Uniqueness method, the result of partial exact controllability is

obtained with Dirichlet boundary controls acting on a part of the boundary of a domain.

§1. Introduction

The aim of this paper is to study the problem of partial exact controllability
with Dirichlet boundary controls for the linear thermo-viscoelasticity model

u′′ − µ∆u− (λ+ µ)∇div u+ α∇θ

−ε

∫ t
0

g(t− s)[µ∆u(x, s) + (λ+ µ)∇divu(x, s)] ds = 0 in Q,

θ′ −∆θ + αdiv u′ = 0 in Q, (1.1)

u = φ, θ = 0 on Σ,

u(x, 0) = 0, u′(x, 0) = 0, θ(x, 0) = 0 in Ω.

System (1.1) is a model for a linear viscoelastic body Ω of Boltzmann type with
thermal damping. The body Ω is a bounded domain in Rn with smooth boundary
Γ = ∂Ω and is assumed to be linear, homogeneous, and isotropic. Q = Ω × (0, T ),
Σ = Γ × (0, T ) where T > 0. u(x, t) = (u1(x, t), . . . , un(x, t)), θ(x, t) represent
displacement and temperature deviation, respectively, from the natural state of the
reference configuration at position x and time t. ε > 0 is a constant, λ, µ > 0 the
Lamé’s constants and α the thermal strain parameter. g(t) denotes the relaxation
function and φ the control acting on a part of Σ. By ′ we denote the derivative
with respect to the time variable. ∆, ∇, div denote the Laplace, gradient, and
divergence operator, respectively. We refer to [15] for the derivation of the model
(1.1).

When g ≡ 0, (1.1) becomes the thermoelastic system. In this case, there
have been extensive studies. The earliest results appear to be in the paper [14]
of Narukawa, who proved the partial exact boundary controllability for the ther-
moelastic system. Later, Narukawa’s result was improved by Lions [11, p.32-60] by
introducing the Hilbert Uniqueness method. In [12], we proved the partial exact
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controllability for the higher-dimensional linear thermo-elasticity without the small-
ness restrictions on the coupling parameters. In these results, only the displacement
is controlled, disregarding the values of temperature, which is the so-called par-
tial exact controllability. This drawback was avoided by Hansen [5], who showed
that, for at least the one-dimensional thermoelastic system, exact controllability
of both the displacement and temperature is possible by only controlling the ther-
mal or mechanical component on the boundary in the case where u and θ satisfy
the Dirichlet-Neumann or Neumann-Dirichlet boundary conditions and the coupling
parameters are small enough. Hansen’s results were proved by making use of the
method of moment problems and analysis of non-harmonic Fourier series. More re-
cently, Zuazua [17] discussed the problem of distributed controllability and proved
that if T is large enough then this system is exact-approximately controllable with a
control supported in a neighborhood of the boundary of Ω. The method of Zuazua is
based on multiplier techniques, compactness arguments and Holmgren’s Uniqueness
Theorem. In addition, Lebeau and Zuazua [9] considered another kind of system
of thermo-elasticity and proved that the system is null controllable with a volume
force located in a subset satisfying a geometric control condition. Their method of
proof was based on a spectral decomposition of the system and its adjoint on the
basis generated by the eigenfunctions of the Laplacian. The spectrum is split into a
parabolic and a hyperbolic part, and then the system is decomposed into two weakly
coupled systems, the first one behaving as a heat equation and the second one as
a wave equation. Also, there has been some deep work by Lagnese [7] about the
partial exact controllability for thermoelastic plates.

When α = 0, system (1.1) is decoupled into the viscoelastic equation

u′′ − µ∆u− (λ+ µ)∇div u

−ε

∫ t
0

g(t − s)[µ∆u(x, s) + (λ+ µ)∇div u(x, s)] ds = 0 in Q,

u = φ on Σ, (1.2)

u(x, 0) = 0, u′(x, 0) = 0 in Ω,

and the heat equation. The problem of exact controllability for such equations with
memory has been considered by various people (see [6, 8, 16]). Under a smallness
restriction on the relaxation function, the exact controllability has been proved.
However, to our knowledge, little is known about the exact controllability for thermo-
viscoelasticity.

The rest of this paper is organized as follows. We present the main result of this
paper in Section 2. Using classical multiplier techniques, we establish the boundary
observability inequality in Section 3. Then the main result is proved by means of
the Hilbert Uniqueness method in Section 4.

§2. Main Result

In what follows, Hs(Ω) denotes the usual Sobolev space and ‖ · ‖s denotes its
norm for any s ∈ R (see [1]). For s ≥ 0, Hs0(Ω) denotes the completion of C

∞
0 (Ω) in

Hs(Ω), where C∞0 (Ω) denotes the space of all infinitely differentiable functions on Ω
with compact support in Ω. Let X be a Banach space. We denote by Ck([0, T ],X)
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the space of all k times continuously differentiable functions defined on [0, T ] with
values in X, and write C([0, T ],X) for C0([0, T ],X).

Let x0 ∈ Rn and ν = (ν1, . . . , νn) denote the unit normal on Γ directed towards
the exterior of Ω. Set

m(x) = x− x0 = (xk − x
0
k),

Γ(x0) = {x ∈ Γ : m(x) · ν(x) = mk(x)νk(x) > 0},

Γ∗(x
0) = Γ− Γ(x0) = {x ∈ Γ : m(x) · ν(x) ≤ 0},

Σ(x0) = Γ(x0)× (0, T ),

Σ∗(x
0) = Γ∗(x

0)× (0, T ),

R(x0) = max
x∈Ω̄
|m(x)| = max

x∈Ω̄

∣∣∣∣∣
n∑
k=1

(xk − x
0
k)
2

∣∣∣∣∣
1/2

.

The partial exact controllability problem can be formulated as follows: Given
T large enough, for every state (u0, u1) in a suitable function space, is it possible to
find corresponding controls φ such that the solution of (1.1) satisfies

u(x, T ) = u0, u′(x, T ) = u1 in Ω, (2.1)

disregarding the values of temperature?

As stated in [11, p.34-35], this is equivalent to steering every initial state (u0, u1)
of the displacement in the function space to rest, disregarding the values of temper-
ature.

The main result of this paper is the following.

Theorem 2.1. Let the boundary Γ of Ω be of class C2. Suppose that g(t) ∈
H2(0, T ) and T > 2R(x0)/

√
µ. Then there exist ε0, α0 > 0 such that if ε ≤ ε0 and

α ≤ α0, then for every state (u0, u1) ∈ (L2(Ω))n × (H−1(Ω))n there exists a control
φ ∈ (L2(Σ(x0)))n steering the displacement of the system (1.1) to the state (u0, u1).

Remark 2.2. It can be seen from the proof of Theorem 2.1 in section 4 that the
solution (u, θ) of (1.1) satisfies

u ∈ C([0, T ]; (L2(Ω))n) ∩ C1([0, T ]; (H−1(Ω))n),

θ ∈ C([0, T ];L2(Ω)).

Remark 2.3. We may wish to prove the exact-approximate controllability for
problem (1.1) as Zuazua [17] did for the thermo-elasticity. However, when we do so,
we need a boundary uniqueness theorem, that is, if u, θ satisfy the equation

u′′ − µ∆u− (λ+ µ)∇div u+ α∇θ

−ε

∫ t
0

g(t − s)[µ∆u(x, s) + (λ+ µ)∇div u(x, s)] ds = 0 in Q,

θ′ −∆θ + αdiv u′ = 0 in Q, (2.2)

u = 0, θ = 0 on Σ,

∂u

∂ν
+ ε

∫ t
0

g(t− s)
∂u(s)

∂ν
ds = 0 on Σ(x0) ,
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then u = 0 and θ = 0 in Q.

Such a uniqueness problem seems to be open, even in the case of thermo-
elasticity, as stated in [17]. In fact, for thermoelastic plates, Lagnese [7] has claimed
that it is not possible to exactly control θ by means of the boundary displacement
control alone, and it is physically unrealistic to use θ as an additional control variable.

Remark 2.4. Theorem 2.1 shows that the thermal effects do not affect the exact
controllability of the displacement provided the thermal strains and relaxation func-
tions are small enough. Whether a similar result is valid when the thermal strains
and relaxation functions are large is an open problem. For thermoelastic plates,
Lagnese [7] has claimed that it seems unlikely.

§3. Observability Inequalities

We consider the adjoint system of (1.1)

ϕ′′ − µ∆ϕ− (λ+ µ)∇divϕ+ α∇ψ′

−ε

∫ T
t

g(s− t)[µ∆ϕ(x, s) + (λ+ µ)∇divϕ(x, s)] ds = 0 in Q,

−ψ′ −∆ψ − αdivϕ = 0 in Q, (3.1)

ϕ = 0, ψ = 0 on Σ,

ϕ(x, T ) = ϕ0(x), ϕ′(x, T ) = ϕ1(x), ψ(x, T ) = ψ0(x) in Ω.

By changing t into T − t, (3.1) can be transformed into

ϕ′′ − µ∆ϕ− (λ+ µ)∇divϕ− α∇ψ′

−ε

∫ t
0

g(t− s)[µ∆ϕ(x, s) + (λ+ µ)∇divϕ(x, s)] ds = 0 in Q,

ψ′ −∆ψ − αdivϕ = 0 in Q, (3.2)

ϕ = 0, ψ = 0 on Σ,

ϕ(x, 0) = ϕ0(x), ϕ′(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x) in Ω.

For the solution (ϕ,ψ) of (3.2), we set

E(ϕ, t) =
1

2

∫
Ω

[
|ϕ′|2 + µ|∇ϕ|2 + (λ+ µ)|divϕ|2

]
dx , (3.3)

F (ψ, t) =
1

2

∫
Ω

|ψ′|2 dx , (3.4)

G(ψ, t) =
1

2

∫
Ω

|ψ|2 dx . (3.5)

Lemma 3.1. Suppose that g(t) ∈ H1(0, T ) and

(ϕ0, ϕ1, ψ0) ∈ (H10 (Ω))
n × (L2(Ω))n × (H2(Ω) ∩H10 (Ω)) .

Then for the solution (ϕ,ψ) of (3.2) we have

E(ϕ, t) + 2F (ψ, t) + 2

∫ t
0

∫
Ω

|∇ψ′|2 dx dt ≤ C[E(ϕ, 0) + F (ψ, 0)] , (3.6)

G(ψ, t) +

∫ t
0

∫
Ω

|∇ψ|2 dx dt ≤ C[E(ϕ, 0) + F (ψ, 0) +G(ψ, 0)] , (3.7)

4
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where C = C(ε, g, T ) is a constant dependent on ε, g, T only.

Proof. Multiplying the first equation of (3.2) by ϕ′ and integrating over Ω× (0, t),
we obtain

E(ϕ, t) −E(ϕ, 0) − α

∫ t
0

∫
Ω

ϕ′∇ψ′ dx dt

= −εµ

∫ t
0

∫ τ
0

∫
Ω

g(τ − s)∇ϕ(x, s)∇ϕ′(x, τ) dx ds dτ

− (λ+ µ)ε

∫ t
0

∫ τ
0

∫
Ω

g(τ − s)divϕ(x, s)div ϕ′(x, τ)] dx ds dτ.

(3.8)

Differentiating the second equation of (3.2) with respect to t, we obtain

ψ′′ −∆ψ′ − α divϕ′ = 0 in Q. (3.9)

Multiplying (3.9) by ψ′ and integrating over Ω× (0, t), we obtain

F (ψ, t) − F (ψ, 0) +

∫ t
0

∫
Ω

|∇ψ′|2 dx dt− α

∫ t
0

∫
Ω

ψ′divϕ′ = 0. (3.10)

Since ∫ t
0

∫
Ω

ϕ′∇ψ′ dx dt = −

∫ t
0

∫
Ω

ψ′divϕ′ , (3.11)

it follows from (3.8) and (3.10) that

E(ϕ, t) + F (ψ, t) +

∫ t
0

∫
Ω

|∇ψ′|2 dx dt

= E(ϕ, 0) + F (ψ, 0)

− εµ

∫ t
0

∫ τ
0

∫
Ω

g(τ − s)∇ϕ(x, s)∇ϕ′(x, τ) dx ds dτ

− (λ+ µ)ε

∫ t
0

∫ τ
0

∫
Ω

g(τ − s)divϕ(x, s)divϕ′(x, τ)] dx ds dτ

= E(ϕ, 0) + F (ψ, 0)

− ε

∫ t
0

∫
Ω

g(t− s)[µ∇ϕ(x, s)∇ϕ(x, t) + (λ+ µ)divϕ(x, s)divϕ(x, t)] dx ds

+ εg(0)

∫ t
0

∫
Ω

[µ|∇ϕ(x, s)|2 + (λ+ µ)|divϕ(x, s)|2] dx ds

+ εµ

∫ t
0

∫ τ
0

∫
Ω

g′(τ − s)∇ϕ(x, s)∇ϕ(x, τ) dx ds dτ

+ (λ+ µ)ε

∫ t
0

∫ τ
0

∫
Ω

g′(τ − s)divϕ(x, s)divϕ(x, τ)] dx ds dτ

≤ E(ϕ, 0) + F (ψ, 0) +
1

4
[µ‖∇ϕ(t)‖2 + (λ+ µ)‖divϕ(t)‖20]

+ C(ε, g, T )

∫ t
0

[µ‖∇ϕ(s)‖20 + (λ+ µ)‖divϕ(s)‖
2
0] ds,

(3.12)

5
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since

ε

∫ t
0

∫
Ω

g(t− s)[µ∇ϕ(x, s)∇ϕ(x, t) + (λ+ µ)divϕ(x, s)divϕ(x, t)] dx ds

≤
1

4
[µ‖∇ϕ(t)‖2 + (λ+ µ)‖divϕ(t)‖20]

+ ε2
∫ t
0

|g(s)|2ds

∫ t
0

[µ‖∇ϕ(s)‖20 + (λ+ µ)‖divϕ(s)‖
2
0] ds ,

and

ε

∫ t
0

∫ τ
0

∫
Ω

g′(τ − s)[µ∇ϕ(x, s)∇ϕ(x, τ) + (λ+ µ)divϕ(x, s)divϕ(x, τ)] dx ds dτ

≤ ε
√
t
(∫ t
0

|g′(s)|2ds
)1/2 ∫ t

0

[µ‖∇ϕ(s)‖20 + (λ+ µ)‖divϕ(s)‖
2
0] ds .

By Gronwall’s inequality (see [4], p.35), (3.6) follows from (3.12)

Similarly, by multiplying the second equation of (3.2) by ψ and integrating over
Ω× (0, t), we can deduce (3.7). ♦

In order to establish observability inequalities for the system (3.2), we transform
(3.2) into a thermoelastic system. For this, we set

Φ = ϕ+ ε

∫ t
0

g(t− s)ϕ(x, s) ds , (3.13)

f = ε
(∫ t
0

g(t− s)ϕ(x, s)ds
)′′
,

h = −αεdiv
(∫ t
0

g(t− s)ϕ(x, s) ds
)
.

Then (3.2) becomes

Φ′′ − µ∆Φ− (λ+ µ)∇divΦ− α∇ψ′ = f in Q,

ψ′ −∆ψ − αdiv Φ = h in Q,

Φ = 0, ψ = 0 on Σ , (3.14)

Φ(x, 0) = Φ0(x), Φ′(x, 0) = Φ1(x), ψ(x, 0) = ψ0(x) in Ω ,

where
Φ0(x) = ϕ0(x), Φ1(x) = ϕ1(x) + εg(0)ϕ0(x) .

For the thermoelastic system (3.14), the following a priori boundary estimates
are well known (see [11, Chap.1]). These estimates were established in [11, Chap.1]
in the case where there is no term (λ+µ)∇divΦ, but there is no added difficulty in
the present case.

Lemma 3.2. Let the boundary Γ of Ω be of class C2. Suppose that (Φ0,Φ1, ψ0) ∈
(H10 (Ω))

n × (L2(Ω))n × (H2(Ω) ∩H10 (Ω)), f ∈ L
1(0, T ;L2(Ω)), and

6
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h ∈W 1,1(0, T ;L2(Ω)). Then there exists a constant C > 0 such that for all solutions
of (3.14) ∫

Σ

(
µ
∣∣∣∂Φ
∂ν

∣∣∣2 + (λ+ µ)|div Φ|2) dΣ
≤C
[
‖Φ0‖21 + ‖Φ

1‖20 + ‖ψ
0‖22

+ ‖h(0)‖20 + ‖f‖
2
L1(0,T ;L2(Ω)) + ‖h

′‖2L1(0,T ;L2(Ω))

]
.

(3.15)

Lemma 3.3 (The observability inequality). Suppose the boundary Γ of Ω is
of class C2. Suppose that T > 2R(x0)/

√
µ. Then there exists α0 > 0 such that

if α ≤ α0, then there exists a constant C = C(α, T ) > 0 such that for every weak
solution of (3.14) with (Φ0,Φ1) ∈ (H10 (Ω))

n × (L2(Ω))n and f = h ≡ 0, ψ0 = 0 we
have ∫

Σ(x0)

(
µ
∣∣∣∂Φ
∂ν

∣∣∣2 + (λ+ µ)|div Φ|2) dΣ ≥ CE(Φ, 0) . (3.16)

By Lemma 3.2, we obtain the following boundary regularity for the solution of
(3.2).

Lemma 3.4. Let the boundary Γ of Ω be of class C2. Suppose that (ϕ0, ϕ1, ψ0) ∈
(H10 (Ω))

n × (L2(Ω))n × (H2(Ω) ∩H10 (Ω)).
Then there exists a constant C = C(α, ε, g, T ) > 0 such that for all solutions of (3.2)∫

Σ

(
µ
∣∣∣∂Φ
∂ν

∣∣∣2 + (λ+ µ)|divΦ|2) dΣ ≤ C[‖ϕ0‖21 + ‖ϕ1‖20 + ‖ψ0‖22
]
, (3.17)

where Φ is given by (3.13)

Proof. We first deduce that

‖
(∫ t
0

g(t− s)ϕ(x, s)ds
)′′
‖0

≤ |g(0)|‖ϕ′(t)‖0 + |g
′(0)|‖ϕ(t)‖0 +

(∫
Ω

|

∫ t
0

g′′(t− s)ϕ(x, s)ds|2dx
)1/2

≤ |g(0)|‖ϕ′(t)‖0 + |g
′(0)|‖ϕ(t)‖0

+
(∫ t
0

|g′′(s)|2ds
)1/2(∫ t

0

∫
Ω

|ϕ(x, s)|2 dx ds
)1/2

≤ C(g, T )[E(ϕ, 0) + F (ψ, 0)]1/2 ,

(3.18)

and

‖div
(∫ t
0

g(t− s)ϕ(x, s)ds
)′
‖0

≤ |g(0)|‖divϕ(t)‖0 +
(∫ t
0

|g′(s)|2ds
)1/2(∫ t

0

∫
Ω

|divϕ(x, s)|2 dx ds
)1/2

≤ C(g, T )[E(ϕ, 0) + F (ψ, 0)]1/2 .

(3.19)

Consequently, (3.17) follows from (3.15), (3.18) and (3.19). ♦

By Lemma 3.3, we have the following observability inequality for (3.2).

7
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Lemma 3.5 (The observability inequality). Let the boundary Γ of Ω be of class
C2. Suppose that g(t) ∈ H2(0, T ) and T > 2R(x0)/

√
µ. Then there exist ε0, α0 > 0

such that if ε ≤ ε0 and α ≤ α0, then there exists a constant C = C(α, ε, g, T ) > 0
such that for every weak solution of (3.2) with (ϕ0, ϕ1) ∈ (H10 (Ω))

n × (L2(Ω))n and
ψ0 = 0 we have

∫
Σ(x0)

(
µ
∣∣∣∂Φ
∂ν

∣∣∣2 + (λ+ µ)|divΦ|2) dΣ ≥ C[‖ϕ0‖21 + ‖ϕ1‖20
]
. (3.20)

Proof. The solution (Φ, ψ) of (3.14) can be written as

(Φ, ψ) = (v,w) + (y, z) ,

where (v,w) is the solution of

v′′ − µ∆v − (λ+ µ)∇div v − α∇w′ = 0 in Q,

w′ −∆w − αdiv v = 0 in Q,

v = 0, w = 0 on Σ , (3.21)

v(x, 0) = Φ0(x), v′(x, 0) = Φ1(x), w(x, 0) = 0 in Ω,

and (y, z) is the solutions of

y′′ − µ∆y − (λ+ µ)∇div y − α∇z′ = f in Q,

z′ −∆z − αdiv y = h in Q,

y = 0, z = 0 on Σ , (3.22)

y(x, 0) = 0, y′(x, 0) = 0, z(x, 0) = 0 in Ω.

Thus, by Lemma 3.2, we have

∫
Σ(x0)

(
µ
∣∣∣∂v
∂ν

∣∣∣2 + (λ+ µ)|div v|2) dΣ
≤ 2

∫
Σ(x0)

(
µ
∣∣∣∂Φ
∂ν

∣∣∣2 + (λ+ µ)|div Φ|2) dΣ
+ 2

∫
Σ(x0)

(
µ
∣∣∣∂y
∂ν

∣∣∣2 + (λ+ µ)|div y|2) dΣ
≤ 2

∫
Σ(x0)

(
µ
∣∣∣∂Φ
∂ν

∣∣∣2 + (λ+ µ)|div Φ|2) dΣ

+ 2ε2C(α, T )‖
(∫ t
0

g(t− s)ϕ(x, s) ds
)′′
‖2L1(0,T,L2(Ω))

+ 2ε2α2C(α, T )‖div
(∫ t
0

g(t− s)ϕ(x, s) ds
)′
‖2L1(0,T,L2(Ω)).

Hence, (3.20) follows from (3.16), (3.18) and (3.19). ♦

8
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§4. Proof of Main Result

Proof. We apply the Hilbert Uniqueness method. Given (ϕ0, ϕ1) ∈ (H10 (Ω))
n ×

(L2(Ω))n, we consider

ϕ′′ − µ∆ϕ− (λ+ µ)∇divϕ+ α∇ψ′

−ε

∫ T
t

g(s − t)[µ∆ϕ(x, s) + (λ+ µ)∇divϕ(x, s)] ds = 0 in Q,

−ψ′ −∆ψ − αdivϕ = 0 in Q, (4.1)

ϕ = 0, ψ = 0 on Σ,

ϕ(x, T ) = ϕ0(x), ϕ′(x, T ) = ϕ1(x), ψ(x, T ) = 0 in Ω,

Using the solution ϕ of (4.1), we then consider

u′′ − µ∆u− (λ+ µ)∇div u+ α∇θ

−ε

∫ t
0

g(t− s)[µ∆u(x, s) + (λ+ µ)∇divu(x, s)] ds = 0 in Q,

θ′ −∆θ + αdiv u′ = 0 in Q,

θ = 0 on Σ, (4.2)

u =

{
∂ϕ
∂ν
+ ε
∫ T
t
g(s − t) ∂

∂ν
ϕ(x, s) ds on Σ(x0)

0 on Σ∗(x
0)

u(x, 0) = 0, u′(x, 0) = 0, θ(x, 0) = 0 in Ω.

By transposition methods (see [11]), one can show that (4.2) has a unique solution
(u, θ) with

u ∈ C([0, T ]; (L2(Ω))n) ∩ C1([0, T ]; (H−1(Ω))n),

θ ∈ C([0, T ];L2(Ω)).

Define the operator Λ by

Λ(ϕ0, ϕ1) = (−u′(T ), u(T )) .

Set

Φ = ϕ+ ε

∫ T
t

g(s− t)ϕ(x, s) ds .

Multiplying the second equation of (4.1) by θ and integrating over Q, we obtain

α

∫
Q

ψ′div u dx dt− α

∫
Q

θdivϕdxdt = 0 .

Multiplying the first equation of (4.1) by u and integrating over Q, we obtain

〈Λ(ϕ0, ϕ1), (ϕ0, ϕ1)〉 =µ

∫
Σ

u
∂Φ

∂ν
dΣ+ (λ+ µ)

∫
Σ

u · νdivΦ dΣ

+ α

∫
Q

ψ′divu dx dt− α

∫
Q

θdivϕdxdt

=µ

∫
Σ

u
∂Φ

∂ν
dΣ+ (λ+ µ)

∫
Σ

u · νdivΦ dΣ.

9
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Since Φ = 0 on Σ, we have

∂Φi
∂ν

νi =
∂Φi
∂xi

, on Σ .

Noting that u =
∂Φ

∂ν
on Σ, we deduce that

〈Λ(ϕ0, ϕ1), (ϕ0, ϕ1)〉 = µ

∫
Σ

|
∂Φ

∂ν
|2 dΣ+ (λ+ µ)

∫
Σ

|divΦ|2 dΣ .

Therefore, it follows from Lemmas 3.4 and 3.5 that Λ is an isomorphism from
(H10 (Ω))

n × (L2(Ω))n onto (H−1(Ω))n × (L2(Ω))n. This completes the proof of
Theorem 2.1.
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