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LOWER ORDER FOR MEROMORPHIC SOLUTIONS TO

LINEAR DELAY-DIFFERENTIAL EQUATIONS

RACHID BELLAAMA, BENHARRAT BELAÏDI

Abstract. In this article, we study the order of growth for solutions of the

non-homogeneous linear delay-differential equation
n∑

i=0

m∑
j=0

Aijf
(j)(z + ci) = F (z),

where Aij(z) (i = 0, . . . , n; j = 0, . . . ,m), F (z) are entire or meromorphic

functions and ci (0, 1, . . . , n) are non-zero distinct complex numbers. Under
the condition that there exists one coefficient having the maximal lower order,

or having the maximal lower type, strictly greater than the order, or the type,
of the other coefficients, we obtain estimates of the lower bound of the order

of meromorphic solutions of the above equation.

1. Introduction and statement of main results

Throughout this article, a meromorphic function means a function that is mero-
morphic in the whole complex plane C. We use the basic notations such as m(r, f),
N(r, f), T (r, f) and fundamental results of Nevanlinna’s value distribution theory
[6, 10, 12, 23]. Further, we denote respectively by ρ(f), µ(f), τ(f), τ(f), the order,
the lower order, the type, and the lower type of a meromorphic function f . Also
when f is an entire function, we use τM (f), τM (f) respectively for the type and
lower type of f .

Recently, a lot of results have been obtained for complex difference and complex
difference equations [3, 5, 8, 9, 15]. The back-ground for these studies lies in the
recent difference counterparts of Nevanlinna theory. The key result here is the
difference analogue of the lemma on the logarithmic derivative obtained by Halburd-
Korhonen [8, 9] and Chiang-Feng [5], independently. Properties of meromorphic
solutions of complex linear difference equations of type

Anf(z + cn) +An−1f(z + cn−1) + · · ·+A1f(z + c1) +A0f(z) = An+1, (1.1)

where Aj(z) (j = 0, . . . , n+1) are entire or meromorphic functions and ci (1, . . . , n)
are non-zero distinct complex numbers, have been made where one of the coeffi-
cients is dominating in comparison with the other coefficients, see e.g. [5, 13]. The
following two theorems have been obtained in [1].
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Theorem 1.1 ([1]). Let Aj(z) (j = 0, . . . , n + 1) be entire functions, and let
k, l ∈ {0, 1, . . . , n+ 1}. If the following three assumptions hold simultaneously:

(1) max{µ(Ak), ρ(Aj), j 6= k, l} = ρ ≤ µ(Al) <∞, µ(Al) > 0;
(2) τM (Al) > τM (Ak), when µ(Al) = µ(Ak);
(3) max{τM (Aj) : ρ(Aj) = µ(Al), j 6= k, l} = τ1 < τM (Al), when µ(Al) =

max{ρ(Aj), j 6= k, l}.
Then every meromorphic solution f of (1.1) satisfies ρ(f) ≥ µ(Al) if An+1 6≡ 0.
Furthermore, if An+1(z) ≡ 0, then every meromorphic solution f 6≡ 0 of (1.1)
satisfies ρ(f) ≥ µ(Al) + 1.

Theorem 1.2 ([1]). Let Aj(z) (j = 0, . . . , n + 1) be meromorphic functions, and
let k, l ∈ {0, 1, . . . , n+ 1}. If the following five assumptions hold simultaneously.

(1) max{µ(Ak), ρ(Aj), j 6= k, l} = ρ ≤ µ(Al) <∞;
(2) τ(Al) > τ(Ak), when µ(Al) = µ(Ak);
(3)

τ1 =
∑

ρ(Aj)=µ(Al), j 6=l,k

τ(Aj) < τ(Al) < +∞

when µ(Al) = max{ρ(Aj), j 6= l, k};
(4) τ1 + τ(Ak) < τ(Al) < +∞ when µ(Al) = µ(Ak) = max{ρ(Aj), j 6= k, l};
(5) λ( 1

Al
) < µ(Al) <∞.

Then every meromorphic solution f of (1.1) satisfies ρ(f) ≥ µ(Al) if An+1 6≡ 0.
Furthermore, if An+1(z) ≡ 0, then every meromorphic solution f 6≡ 0 of (1.1)
satisfies ρ(f) ≥ µ(Al) + 1.

Historically, the study of complex delay-differential equations can be traced back
to Naftalevich’s research. By using operator theory and iteration method, Naf-
talevich [18] considered the meromorphic solutions on complex delay-differential
equations. Also there are few investigations on complex delay-differential equation
field using Nevanlinna theory. Recently Liu, Laine and Yang [15] presented de-
velopments and new results on complex delay-differential equations, an area with
important and interesting applications, which also gathers increasing attention (see,
[14, 17, 19, 20, 21]). Chen and Zheng [4] investigated the growth of solutions of the
homogeneous linear delay-differential equation

n∑
i=0

m∑
j=0

Aijf
(j)(z + ci) = 0 (1.2)

and have obtained the following results.

Theorem 1.3 ([4]). Let Aij(z) (i = 0, . . . , n; j = 0, . . . ,m) be entire functions, and
a, l ∈ {0, 1, . . . , n}, b ∈ {0, 1, . . . ,m} such that (a, b) 6= (l, 0). If the following three
assumptions hold simultaneously:

(1) max{µ(Aab), ρ(Aij), (i, j) 6= (a, b), (l, 0)} = ρ ≤ µ(Al0) <∞, µ(Al0) > 0;
(2) τM (Al0) > τM (Aab), when µ(Al0) = µ(Aab);
(3) τM (Al0) > max{τM (Aij) : ρ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}, when

µ(Al0) = max{ρ(Aij) : (i, j) 6= (a, b), (l, 0)}.
Then any non zero meromorphic solution f of (1.2) satisfies ρ(f) ≥ µ(Al0) + 1.
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Theorem 1.4 ([4]). Let Aij(z) (i = 0, . . . , n; j = 0, . . . ,m) be meromorphic func-
tions, and a, l ∈ {0, 1, . . . , n}, b ∈ {0, 1, . . . ,m} such that (a, b) 6= (l, 0). If the
following four assumptions hold simultaneously:

(1) δ(∞, Al0) = lim infr→+∞
m(r,Al0)
T (r,Al0) = δ > 0;

(2) max{µ(Aab), ρ(Aij), (i, j) 6= (a, b), (l, 0)} = ρ ≤ µ(Al0) <∞, µ(Al0) > 0;
(3) δτ(Al0) > τ(Aab), when µ(Al0) = µ(Aab);
(4) δτ(Al0) > max{τ(Aij) : ρ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)} when µ(Al0) =

max{ρ(Aij) : (i, j) 6= (a, b), (l, 0)}.
Then any non zero meromorphic solution f of (1.2) satisfies ρ(f) ≥ µ(Al0) + 1.

In this article, by combining complex differential and difference equations, we
extend the results of Theorems 1.3 and 1.4 for the complex non-homogeneous linear
delay-differential equation

n∑
i=0

m∑
j=0

Aijf
(j)(z + ci) = F. (1.3)

Let us define

S := {F,Aij : (i, j) 6= (l, 0), (k, p)}, ρ(S) := max{ρ(g) : g ∈ S}.

The main results of this paper reads as follows.

Theorem 1.5. Consider a delay-differential equation (1.3) with entire coefficients.
Suppose that one of the coefficients, say Al0 with µ(Al0) > 0, is dominante in the
sense that:

(1) ρ := max{µ(Akp), ρ(S)} ≤ µ(Al0) <∞;
(2) τM (Al0) > τM (Akp), whenever µ(Al0) = µ(Akp);
(3) τ1 := max{τM (g) : ρ(g) = µ(Al0), g ∈ S} < τM (Al0), whenever µ(Al0) =

ρ(S).

Then every meromorphic solution f of (1.3) satisfies ρ(f) ≥ µ(Al0) if F (z) 6≡ 0.
Further, if F (z) ≡ 0, then every meromorphic solution f 6≡ 0 of (1.2) satisfies
ρ(f) ≥ µ(Al0) + 1.

Theorem 1.6. Consider a delay-differential equation of type (1.3) with meromor-
phic coefficients. Suppose that one of the coefficients, say Al0, is dominate in the
sense that

(1) ρ := max{µ(Akp), ρ(S)} ≤ µ(Al0) <∞;
(2) τ(Al0) > τ(Akp), whenever µ(Al0) = µ(Akp);
(3)

τ1 =
∑

ρ(Aij)=µ(Al0),
(i,j)6=(l,0),(k,p)

τ(Aij) + τ(F ) < τ(Al0) < +∞

whenever µ(Al0) = ρ(S);
(4) τ1 + τ(Akp) < τ(Al0) < +∞ whenever µ(Al0) = µ(Akp) = ρ(S);
(5) λ( 1

Al0
) < µ(Al0) <∞.

Then every meromorphic solution f of (1.3) satisfies ρ(f) ≥ µ(Al0) if F (z) 6≡ 0.
Further, if F (z) ≡ 0, then every meromorphic solution f 6≡ 0 of (1.2) satisfies
ρ(f) ≥ µ(Al0) + 1.
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2. Some preliminary lemmas

Lemma 2.1 ([7]). Let f be a transcendental meromorphic function of finite order
ρ(f), and let k and j be integers satisfying k > j ≥ 0. Then for every ε(> 0), there
exists a subset E1 ⊂ (1,+∞) which has finite logarithmic measure such that for all
z satisfying |z| = r /∈ [0, 1] ∪ E1, we have∣∣f (k)(z)

f (j)(z)

∣∣ ≤ |z|(k−j)(ρ(f)−1+ε).

Lemma 2.2 ([5]). Let f be a meromorphic function of finite order ρ, and let
c1, c2(c1 6= c2) be two arbitrary complex numbers. Let ε > 0 be given, then there
exists a subset E2 ⊂ (1,+∞) with finite logarithmic measure such that for all z
satisfying |z| = r /∈ [0, 1] ∪ E2, we have

exp{−rρ−1+ε} ≤
∣∣f(z + c1)

f(z + c2)

∣∣ ≤ exp{rρ−1+ε}.

Lemma 2.3 ([6]). Let f be a meromorphic function, c be a non-zero complex
constant. Then we have that as r → +∞

(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z)).

Consequently

ρ(f(z + c)) = ρ(f), µ(f(z + c)) = µ(f).

Lemma 2.4 ([2]). Let f be a meromorphic function of finite order ρ. Then for
any given ε > 0, there exists a set E3 ⊂ (1,+∞) having finite linear measure and
finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3 and
sufficiently large r, we have

exp{−rρ+ε} ≤
∣∣f(z)| ≤ exp{rρ+ε}.

Lemma 2.5 ([11]). Let f be an entire function with µ(f) <∞. Then for any given
ε(> 0), there exists a subset E4 ⊂ (1,+∞) with infinite logarithmic measure such
that for all r ∈ E4, we have

µ(f) = lim
r→+∞, r∈E4

log logM(r, f)

log r
,

M(r, f) < exp{rµ(f)+ε}.

Lemma 2.6 ([22]). Let f be an entire function with 0 < µ(f) <∞. Then for any
given ε(> 0), there exists a subset E5 ⊂ (1,+∞) with infinite logarithmic measure
such that for all r ∈ E5, we have

τM (f) = lim
r→+∞, r∈E5

logM(r, f)

log r
,

M(r, f) < exp{(τM (f) + ε)rµ(f)}.

Lemma 2.7 ([5]). Let f be a meromorphic function of finite order ρ(f) <∞, and
let c1, c2 be two distinct complex numbers. Then for each ε > 0, we have

m
(
r,
f(z + c1)

f(z + c2)

)
= O(rρ(f)−1+ε).
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Lemma 2.8 ([24]). Let f be a meromorphic function with µ(f) <∞. Then for any
given ε(> 0), there exists a subset E6 ⊂ (1,+∞) with infinite logarithmic measure
such that for all r ∈ E6, we have

T (r, f) < rµ(f)+ε.

Lemma 2.9 ([16]). Let f be a meromorphic function with 0 < µ(f) < ∞. Then
for any given ε(> 0), there exists a subset E7 ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ E7, we have

T (r, f) < (τ(f) + ε)rµ(f).

3. Proof of main results

Proof of Theorem 1.5. If f has infinite order, then the result holds. Now, we sup-
pose that ρ(f) <∞. We divide (1.3) by f(z + cl) to obtain

−Al0(z)

=

n∑
i=0,i6=l,k

m∑
j=0

Aij
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z + cl)
+

m∑
j=0,j 6=p

Akj
f (j)(z + ck)

f(z + ck)

f(z + ck)

f(z + cl)

+Akp
f (p)(z + ck)

f(z + ck)

f(z + ck)

f(z + cl)
+

m∑
j=1

Alj
f (j)(z + cl)

f(z + cl)
− F (z)

f(z + cl)
.

(3.1)

Therefore

|Al0(z)| ≤
n∑

i=0,i6=l,k

m∑
j=0

|Aij |
∣∣f (j)(z + ci)

f(z + ci)

∣∣ ∣∣f(z + ci)

f(z + cl)

∣∣
+

m∑
j=0,j 6=p

|Akj |
∣∣f (j)(z + ck)

f(z + ck)

∣∣ ∣∣f(z + ck)

f(z + cl)

∣∣
+ |Akp|

∣∣f (p)(z + ck)

f(z + ck)

∣∣ ∣∣f(z + ck)

f(z + cl)

∣∣
+

m∑
j=1

|Alj |
∣∣f (j)(z + cl)

f(z + cl)

∣∣+
∣∣ F (z)

f(z + cl)

∣∣.

(3.2)

From Lemmas 2.1 and 2.3, for any given ε(> 0), there exists a subset E1 ⊂ (1,+∞)
which has finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪
E1, we have∣∣f (j)(z + ci)

f(z + ci)

∣∣ ≤ |z|j(ρ(f+ci)−1+ε) = |z|j(ρ(f)−1+ε), (i, j) 6= (l, 0). (3.3)

It follows by Lemma 2.2 that for any ε(> 0), there exists a subset E2 ⊂ (1,+∞)
with finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2,
we have ∣∣f(z + ci)

f(z + cl)

∣∣ ≤ exp{rρ(f)−1+ε}, i 6= l. (3.4)

From Lemma 2.3, we obtain

ρ(f(z + cl)) = ρ
( 1

f(z + cl)

)
= ρ(f).
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So, by Lemma 2.4, for any given ε > 0, there exists a subset E3 ⊂ (1,+∞) having
finite linear measure and finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E3 sufficiently large, we have∣∣ 1

f(z + cl)

∣∣ ≤ exp{rρ(f)+ε}. (3.5)

We divide the rest of the proof into four cases. Case 1: ρ < µ(Al0). For g ∈ S, by

the definition of ρ(S), for any given ε > 0 and sufficiently large r, we have

|g(z)| ≤ exp{rρ(S)+ε} ≤ exp{rρ+ε}. (3.6)

From the definition of µ(Al0), for sufficiently small ε > 0 and sufficiently large r,
we have

|Al0(z)| ≥ exp{rµ(Al0)−ε}. (3.7)

It also follows by the definition of µ(Akp) and Lemma 2.5, that for any ε(> 0),
there exists a subset E4 ⊂ (1,+∞) with infinite logarithmic measure such that for
all r ∈ E4, we have

|Akp(z)| ≤ exp{rµ(Akp)+ε}. (3.8)

By substituting (3.3)–(3.8) into (3.2), for all z satisfying |z| = r ∈ E4 \ ([0, 1]∪E1∪
E2 ∪ E3), we obtain

exp{rµ(Al0)−ε}

≤
n∑

i=0,i6=l,k

m∑
j=0

exp{rρ+ε}|z|j(ρ(f)−1+ε) exp{rρ(f)−1+ε}

+

m∑
j=0,j 6=p

exp{rρ+ε}|z|j(ρ(f)−1+ε) exp{rρ(f)−1+ε}

+ |z|p(ρ(f)−1+ε) exp{rµ(Akp)+ε} exp{rρ(f)−1+ε}

+

m∑
j=1

exp{rρ+ε}|z|j(ρ(f)−1+ε) + exp{rρ+ε} exp{rρ(f)+ε}

≤ ((n− 1)(m+ 1) + 2m)rm(ρ(f)−1+ε) exp{rρ+ε} exp{rρ(f)−1+ε}

+ rp(ρ(f)−1+ε) exp{rµ(Akp)+ε} exp{rρ(f)−1+ε}

+ exp{rρ+ε} exp{rρ(f)+ε}.

(3.9)

Now, we choose ε sufficiently small to satisfy 0 < 3ε < µ(Al0)−ρ. We deduce from
(3.9) that for |z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2 ∪ E3), r → +∞,

exp{rµ(Al0)−2ε} ≤ exp{rρ(f)+ε}.
Therefore, µ(Al0) ≤ ρ(f) + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0).

Further, if F ≡ 0, then by substituting (3.3), (3.4) and (3.6)–(3.8) into (3.2), for
all z satisfying |z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2), we obtain

exp{rµ(Al0)−ε} ≤ (nm+ n+m− 1)rm(ρ(f)−1+ε) exp{rρ+ε} exp{rρ(f)−1+ε}

+ rp(ρ(f)−1+ε) exp{rµ(Akp)+ε} exp{rρ(f)−1+ε}.
(3.10)

By choosing sufficiently small ε satisfying 0 < 3ε < µ(Al0) − ρ, we deduce from
(3.10) that for |z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2), r → +∞,

exp{rµ(Al0)−2ε} ≤ exp{rρ(f)−1+ε},
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that is, µ(Al0) ≤ ρ(f)− 1 + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0) + 1.

Case 2: β = ρ(S) < µ(Al0) = µ(Akp) and τM (Al0) > τM (Akp). For g ∈ S, by the
definition of ρ(S), for any given ε(> 0), and sufficiently large r, we have

|g(z)| ≤ exp{rρ(S)+ε} ≤ exp{rβ+ε}. (3.11)

From the definition of τM (Al0), for sufficiently small ε > 0 and sufficiently large r,
we have

|Al0(z)| ≥ exp{(τM (Al0)− ε)rµ(Al0)}. (3.12)

Also, from the definition of τM (Akp) and Lemma 2.6, for any given ε(> 0), there
exists a subset E5 ⊂ (1,+∞) with infinite logarithmic measure such that for all
r ∈ E5, we have

|Akp(z)| ≤ exp{(τM (Akp) + ε)rµ(Akp)} = exp{(τM (Akp) + ε)rµ(Al0)}. (3.13)

By substituting (3.3)–(3.5) and (3.11)–(3.13) into (3.2), for all z satisfying |z| =
r ∈ E5 \ ([0, 1] ∪ E1 ∪ E2 ∪ E3), we obtain

exp{(τM (Al0)− ε)rµ(Al0)}

≤ (nm+ n+m− 1)rm(ρ(f)−1+ε) exp{rβ+ε} exp{rρ(f)−1+ε}

+ rp(ρ(f)−1+ε) exp{(τM (Akp) + ε)rµ(Al0)} exp{rρ(f)−1+ε}

+ exp{rβ+ε} exp{rρ(f)+ε}.

(3.14)

Therefore, we may choose ε sufficiently small, 0 < 2ε < min{µ(Al0)−β, τM (Al0)−
τM (Akp)}, then from (3.14) for r ∈ E5 \ ([0, 1]∪E1 ∪E2 ∪E3) sufficiently large, we
obtain

exp{(τM (Al0)− τM (Akp)− 2ε)rµ(Al0)−ε} ≤ exp{rρ(f)+ε}.

Then, µ(Al0) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, so ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, then by substituting (3.3), (3.4) and (3.11)–(3.13) into (3.2),

for all z satisfying |z| = r ∈ E5 \ ([0, 1] ∪ E1 ∪ E2), we have

exp{(τM (Al0)− ε)rµ(Al0)}

≤ (nm+ n+m− 1)rm(ρ(f)−1+ε) exp{rβ+ε} exp{rρ(f)−1+ε}

+ rp(ρ(f)−1+ε) exp{(τM (Akp) + ε)rµ(Al0)} exp{rρ(f)−1+ε}.

(3.15)

Now, we choose ε sufficiently small, 0 < 2ε < min{µ(Al0)−β, τM (Al0)−τM (Akp)}.
Then from (3.15) for r ∈ E5 \ ([0, 1] ∪ E1 ∪ E2) sufficiently large, we obtain

exp{(τM (Al0)− τM (Akp)− 2ε)rµ(Al0)−ε} ≤ exp{rρ(f)−1+ε},

that is, µ(Al0) ≤ ρ(f)− 1 + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0) + 1.

Case 3:µ(Al0) = ρ(S) > µ(Akp) and max{τM (g) : ρ(g) = µ(Al0), g ∈ S} = τ1 <
τM (Al0). For g ∈ S, by the definitions of ρ(S) and τM (g), for any given ε > 0 and
sufficiently large r, we have

|g(z)| ≤

{
exp{rρ(S)+ε} ≤ exp{rµ(Al0)−ε}, if ρ(S) < µ(Al0),

exp{(τ1 + ε)rµ(Al0)}, if ρ(S) = µ(Al0).
(3.16)
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Then, by substituting (3.3)–(3.5), (3.8), (3.12) and (3.16) into (3.2), for all z satis-
fying |z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2 ∪ E3) sufficiently large, we obtain

exp{(τM (Al0)− ε)rµ(Al0)}

≤ O
(
rm(ρ(f)−1+ε) exp{(τ1 + ε)rµ(Al0)} exp{rρ(f)−1+ε}

)
+O

(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε} exp{rρ(f)−1+ε}

)
+ rp(ρ(f)−1+ε) exp{rµ(Akp)+ε} exp{rρ(f)−1+ε}

+O
(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε}

)
+O

(
rm(ρ(f)−1+ε) exp

{
(τ1 + ε)rµ(Al0)

})
+ exp{(τ1 + ε)rµ(Al0)} exp{rρ(f)+ε}.

(3.17)

Now, we choose ε sufficiently small satisfying

0 < 2ε < min{µ(Al0)− µ(Akp), τM (Al0)− τ1},

then from (3.17) for sufficiently large r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2 ∪ E3), we obtain

exp{(τM (Al0)− τ1 − 2ε)rµ(Al0)−ε} ≤ exp{rρ(f)+ε}.

That means, µ(Al0) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, then by substituting (3.3), (3.4), (3.8), (3.12) and (3.16) into

(3.2), for all z satisfying |z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2) sufficiently large, we have

exp{(τM (Al0)− ε)rµ(Al0)}

≤ O
(
rm(ρ(f)−1+ε) exp{(τ1 + ε)rµ(Al0)} exp{rρ(f)−1+ε}

)
+O

(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε} exp{rρ(f)−1+ε}

)
+ rp(ρ(f)−1+ε) exp{rµ(Akp)+ε} exp{rρ(f)−1+ε}

+O(rm(ρ(f)−1+ε) exp{rµ(Al0)−ε})

+O(rm(ρ(f)−1+ε) exp{(τ1 + ε)rµ(Al0)}).

(3.18)

Now, we choose ε sufficiently small satisfying

0 < 2ε < min{µ(Al0)− µ(Akp), τM (Al0)− τ1}.

Then from (3.18) for sufficiently large r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2), we obtain

exp{(τM (Al0)− τ1 − 2ε)rµ(Al0)−ε} ≤ exp{rρ(f)−1+ε}.

That means, µ(Al0) ≤ ρ(f)−1+2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0)+1.

Case 4: ρ(S) = µ(Akp) = µ(Al0) and max{τM (Akp), τM (g) : ρ(g) = µ(Al0), g ∈
S} = τ2 < τM (Al0). It follows by substituting (3.3)–(3.5), (3.12), (3.13) and (3.16)
into (3.2), for all z satisfying |z| = r ∈ E5 \ ([0, 1]∪E1 ∪E2 ∪E3) sufficiently large,
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we have

exp{(τM (Al0)− ε)rµ(Al0)}

≤ O
(
rm(ρ(f)−1+ε) exp{(τ2 + ε)rµ(Al0)} exp{rρ(f)−1+ε}

)
+O

(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε} exp

{
rρ(f)−1+ε

})
+ rp(ρ(f)−1+ε) exp{(τM (Akp) + ε)rµ(Al0)} exp

{
rρ(f)−1+ε

}
+O

(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε}

)
+O

(
rm(ρ(f)−1+ε) exp

{
(τ2 + ε)rµ(Al0)

})
+ exp{(τ2 + ε)rµ(Al0)} exp

{
rρ(f)+ε

}
.

(3.19)

Now, we choose ε sufficiently small satisfying

0 < 2ε < τM (Al0)− τ2,

from (3.19) for sufficiently large r ∈ E5 \ ([0, 1] ∪ E1 ∪ E2 ∪ E3), we obtain

exp{(τM (Al0)− τ2 − 2ε)rµ(Al0)−ε} ≤ exp
{
rρ(f)+ε

}
,

this means, µ(Al0) ≤ ρ(f)+2ε, since ε > 0 is arbitrary, it follows that ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, by substituting (3.3), (3.4), (3.12), (3.13) and (3.16) into (3.2),

for all z satisfying |z| = r ∈ E5 \ ([0, 1] ∪ E1 ∪ E2) sufficiently large, we have

exp{(τM (Al0)− ε)rµ(Al0)}

≤ O
(
rm(ρ(f)−1+ε) exp{(τ2 + ε)rµ(Al0)} exp

{
rρ(f)−1+ε

})
+O

(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε} exp

{
rρ(f)−1+ε

})
+ rp(ρ(f)−1+ε) exp{(τM (Akp) + ε)rµ(Al0)} exp

{
rρ(f)−1+ε

}
+O

(
rm(ρ(f)−1+ε) exp{rµ(Al0)−ε}

)
+O

(
rm(ρ(f)−1+ε) exp

{
(τ2 + ε)rµ(Al0)

})
.

(3.20)

Now, we choose ε sufficiently small satisfying

0 < 2ε < τM (Al0)− τ2,

from (3.20) for sufficiently large r ∈ E5 \ ([0, 1] ∪ E1 ∪ E2), we obtain

exp{(τM (Al0)− τ2 − 2ε)rµ(Al0)−ε} ≤ exp
{
rρ(f)−1+ε

}
.

That means, µ(Al0) ≤ ρ(f)−1+2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0)+1.
The proof of Theorem 1.5 is complete. �

Proof of the Theorem 1.6. If f has infinite order, then the result holds. Now, we
suppose that ρ(f) <∞. By (3.1), we have

T (r,Al0(z))

= m(r,Al0(z)) +N(r,Al0(z))

≤
n∑

i=0,i6=l,k

m∑
j=0

m(r,Aij(z)) +m(r,Akp(z))
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+

m∑
j=0,j 6=p

m(r,Akj(z)) +

m∑
j=1

m(r,Alj(z)) +

n∑
i=0,i6=l,k

m∑
j=0

m
(
r,
f (j)(z + ci)

f(z + ci)

)
+

n∑
i=0,i6=l,k

m
(
r,
f(z + ci)

f(z + cl)

)
+

m∑
j=1

m
(
r,
f (j)(z + ck)

f(z + ck)

)
+ 2m

(
r,
f(z + ck)

f(z + cl)

)
+

m∑
j=1

m
(
r,
f (j)(z + cl)

f(z + cl)

)
+m(r, F (z)) +m

(
r,

1

f(z + cl)

)
+N(r,Al0(z)) +O(1)

≤
n∑

i=0,i6=l,k

m∑
j=0

T (r,Aij(z)) + T (r,Akp(z)) +

m∑
j=0,j 6=p

T (r,Akj(z))

+
m∑
j=1

T (r,Alj(z)) +

n∑
i=0,i6=l,k

m∑
j=1

m
(
r,
f (j)(z + ci)

f(z + ci)

)
+

n∑
i=0,i6=l,k

m(r,
f(z + ci)

f(z + cl)
) +

m∑
j=1

m(r,
f (j)(z + ck)

f(z + ck)
) + 2m(r,

f(z + ck)

f(z + cl)
)

+

m∑
j=1

m
(
r,
f (j)(z + cl)

f(z + cl)

)
+ T (r, F (z)) + T (r,

1

f(z + cl)
)

+N(r,Al0(z)) +O(1).

By Lemma 2.3 and the first main theorem of Nevanlinna, when r sufficiently large,
we have

T
(
r,

1

f(z + cl)

)
= T (r, f(z + cl)) +O(1) ≤ (1 + o(1))T (r + |cl|, f) ≤ 2T (2r, f).

So, for r sufficiently large, we obtain

T (r,Al0(z))

≤
n∑

i=0,i6=l,k

m∑
j=0

T (r,Aij(z)) + T (r,Akp(z)) +

m∑
j=0,j 6=p

T (r,Akj(z))

+

m∑
j=1

T (r,Alj(z)) +

n∑
i=0,i6=l,k

m∑
j=1

m(r,
f (j)(z + ci)

f(z + ci)
)

+

n∑
i=0,i6=l,k

m
(
r,
f(z + ci)

f(z + cl)

)
+ T (r, F (z)) + 2T (2r, f)

+

m∑
j=1

m
(
r,
f (j)(z + cl)

f(z + cl)

)
+

m∑
j=1

m(r,
f (j)(z + ck)

f(z + ck)
)

+ 2m
(
r,
f(z + ck)

f(z + cl)

)
+N(r,Al0(z)) +O(1).

(3.21)

By Lemma 2.7, for any positive ε, we have

m
(
r,

f(z)

f(z + cl)

)
= O(rρ(f)−1+ε), m

(
r,
f(z + cj)

f(z + cl)

)
= O(rρ(f)−1+ε), (3.22)
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for j 6= l. By the lemma of logarithmic derivative [10], there exists a subset E8 ⊂
[0,+∞[ of a finite linear measure such that for all r /∈ E8 sufficiently large, we have

m
(
r,
f (j)(z + ci)

f(z + ci)

)
= O(log r) (i = 0, . . . , n; j = 1, . . . ,m). (3.23)

From the definition of λ( 1
Al0

), for any ε > 0 and sufficiently large r, we have

N(r,Al0) ≤ rλ( 1
Al0

)+ε
. (3.24)

We divide the rest of the proof into four cases.

Case 1: ρ < µ(Al0). For g ∈ S, from the definition of ρ(S) and ρ(f) for any given
ε > 0 and sufficiently large r, we have

T (r, g) ≤ rρ(S)+ε ≤ rρ+ε, (3.25)

T (r, f) ≤ rρ(f)+ε. (3.26)

It follows from the definition of µ(Al0), for sufficiently small ε > 0 and sufficiently
large r, we have

T (r,Al0) ≥ rµ(Al0)−ε. (3.27)

It follows from the definition of µ(Akp) and Lemma 2.8, for any ε(> 0), there exists
a subset E6 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈ E6,
we have

T (r,Akp) ≤ rµ(Akp)+ε. (3.28)

By substituting (3.22)–(3.28) into (3.21) for sufficiently large r ∈ E6\E8, we obtain

rµ(Al0)−ε ≤ ((n− 1)(m+ 1) + 2m)rρ+ε + rµ(Akp)+ε +O(rρ(f)−1+ε)

+ 2(2r)ρ(f)+ε + rρ+ε + r
λ( 1
Al0

)+ε
+O(log r).

(3.29)

We may choose ε sufficiently small satisfying

0 < 3ε < min
{
µ(Al0)− ρ, µ(Al0)− λ

( 1

Al0

)}
,

it follows from (3.29) that for r ∈ E6 \ E8, r → +∞,

rµ(Al0)−2ε ≤ rρ(f)+ε,

this means, µ(Al0) ≤ ρ(f) + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, then by substituting (3.22)–(3.25), (3.27) and (3.28) into

(3.21) for sufficiently large r ∈ E6 \ E8, we obtain

rµ(Al0)−ε ≤ ((n− 1)(m+ 1) + 2m)rρ+ε + rµ(Akp)+ε +O(rρ(f)−1+ε)

+ r
λ( 1
Al0

)+ε
+O(log r).

(3.30)

We choose ε sufficiently small satisfying

0 < 3ε < min
{
µ(Al0)− ρ, µ(Al0)− λ(

1

Al0
)
}
,

from (3.30) that for r ∈ E6 \ E8, r → +∞,

rµ(Al0)−2ε ≤ rρ(f)−1+ε,

this means, µ(Al0) ≤ ρ(f)−1 + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0) + 1.
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Case 2: β = ρ(S) < µ(Al0) = µ(Akp), and τ(Al0) > τ(Akp). For g ∈ S, by the
definition of ρ(S), for any given ε(> 0) and sufficiently large r, we obtain

T (r, g) ≤ rρ(S)+ε ≤ rβ+ε. (3.31)

From the definition of τ(Al0), for sufficiently small ε > 0 and sufficiently large r,
we have

T (r,Al0) ≥ (τ(Al0)− ε)rµ(Al0). (3.32)

It follows from the definition of τ(Akp) and Lemma 2.9, that for any positive ε,
there exists a subset E7 ⊂ (1,+∞) with infinite logarithmic measure such that for
all r ∈ E7, we have

T (r,Akp) ≤ (τ(Akp) + ε)rµ(Akp) ≤ (τ(Akp) + ε)rµ(Al0). (3.33)

By substituting (3.22)–(3.24), (3.26) and (3.31)–(3.33) into (3.21), for sufficiently
large r ∈ E7 \ E8, we obtain

(τ(Al0)− ε)rµ(Al0)

≤ ((n− 1)(m+ 1) + 2m)rβ+ε + (τ(Akp) + ε)rµ(Al0)

+O(rρ(f)−1+ε) + 2(2r)ρ(f)+ε + rβ+ε + r
λ( 1
Al0

)+ε
+O(log r).

(3.34)

Now, we choose ε sufficiently small satisfying

0 < 2ε < min
{
µ(Al0)− β, τ(Al0)− τ(Akp), µ(Al0)− λ

( 1

Al0

)}
,

so from (3.34) for sufficiently large r ∈ E7 \ E8, we have

(τ(Al0)− τ(Akp)− 2ε)rµ(Al0)−ε ≤ rρ(f)+ε,

this means, µ(Al0) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, then by substituting (3.22)–(3.24) and (3.31)–(3.33) into

(3.21), for sufficiently large r ∈ E7 \ E8, we obtain

(τ(Al0)− ε)rµ(Al0) ≤ ((n− 1)(m+ 1) + 2m)rβ+ε + (τ(Akp) + ε)rµ(Al0)

+O(rρ(f)−1+ε) + r
λ( 1
Al0

)+ε
+O(log r).

(3.35)

Now, we choose ε sufficiently small satisfying

0 < 2ε < min
{
µ(Al0)− β, τ(Al0)− τ(Akp), µ(Al0)− λ

( 1

Al0

)}
.

From (3.35) for sufficiently large r ∈ E7 \ E8, we obtain

(τ(Al0)− τ(Akp)− 2ε)rµ(Al0)−ε ≤ rρ(f)−1+ε,

this means, µ(Al0) ≤ ρ(f)−1 + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0) + 1.

Case 3: µ(Al0) = ρ(S) > µ(Akp) and

τ1 =
∑

ρ(Aij)=µ(Al0),
(i,j) 6=(l,0),(k,p)

τ(Aij) + τ(F ) < τ(Al0).

Then there exists a subset J ⊆ {0, 1, . . . , n} × {0, 1, . . . ,m} \ {(l, 0), (k, p)} such
that for all (i, j) ∈ J , when ρ(Aij) = µ(Al0), we have

∑
(i,j)∈J

τ(Aij) < τ(Al0)−τ(F ),
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and for (i, j) ∈ Π = {0, 1, . . . , n} × {0, 1, . . . ,m} \ (J ∪ {(l, 0), (k, p)}) we have
ρ(Aij) < µ(Al0). Hence, for any ε > 0 and sufficiently large r, we obtain

T (r,Aij) ≤

{
(τ(Aij) + ε)rµ(Al0), if (i, j) ∈ J,
rρ(Aij)+ε ≤ rµ(Al0)−ε, if (i, j) ∈ Π

(3.36)

and

T (r, F ) ≤

{
(τ(F ) + ε)rµ(Al0), if ρ(F ) = µ(Al0),

rρ(F )+ε ≤ rµ(Al0)−ε, if ρ(F ) < µ(Al0).
(3.37)

Then, by substituting (3.22)–(3.24), (3.26), (3.28), (3.32), (3.36) and (3.37) into
(3.21), for all z satisfying |z| = r ∈ E6 \ E8 sufficiently large r, we obtain

(τ(Al0)− ε)rµ(Al0)

≤
∑

(i,j)∈J

(τ(Aij) + ε)rµ(Al0) +
∑

(i,j)∈Π

rµ(Al0)−ε + rµ(Akp)+ε

+ (τ(F ) + ε)rµ(Al0) + r
λ( 1
Al0

)+ε
+ 2(2r)ρ(f)+ε +O(rρ(f)−1+ε) +O(ln r)

≤ (τ1 + (nm+ n+m)ε)rµ(Al0) +O(rµ(Al0)−ε) + rµ(Akp)+ε

+ r
λ( 1
Al0

)+ε
+ 2(2r)ρ(f)+ε +O(rρ(f)−1+ε) +O(log r).

(3.38)

Now, we choose ε sufficiently small satisfying

0 < ε < min
{µ(Al0)− µ(Akp)

2
,

τ(Al0)− τ1
nm+ n+m+ 1

,
µ(Al0)− λ( 1

Al0
)

2

}
,

then from (3.38) for sufficiently large r ∈ E6 \ E8, we obtain

(τ(Al0)− τ1 − (nm+ n+m+ 1)ε)rµ(Al0)−ε ≤ rρ(f)+ε,

this means, µ(Al0) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, then by substituting (3.22)–(3.24), (3.28), (3.32) and (3.36)

into (3.21), for all z satisfying |z| = r ∈ E6 \ E8 sufficiently large r, we obtain

(τ(Al0)− ε)rµ(Al0) ≤ (τ1 + (nm+ n+m− 1)ε)rµ(Al0) +O
(
rµ(Al0)−ε)

+ rµ(Akp)+ε + r
λ( 1
Al0

)+ε
+O

(
rρ(f)−1+ε

)
+O(log r).

(3.39)

Now, we choose ε sufficiently small satisfying

0 < ε < min
{µ(Al0)− µ(Akp)

2
,
τ(Al0)− τ1
nm+ n+m

,
µ(Al0)− λ( 1

Al0
)

2

}
,

then from (3.39) for sufficiently large r ∈ E6 \ E8, we obtain

(τ(Al0)− τ1 − (nm+ n+m)ε)rµ(Al0)−ε ≤ rρ(f)−1+ε,

this means, µ(Al0) ≤ ρ(f)−1 + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0) + 1.

Case 4: ρ(S) = µ(Al0) = µ(Akp) with τ1 + τ(Akp) < τ(Al0). It follows by
substituting (3.22)–(3.24), (3.26), (3.32), (3.33), (3.36) and (3.37) into (3.21), for
all sufficiently large r ∈ E7 \ E8, we have

(τ(Al0)− ε)rµ(Al0) ≤ (τ1 + (nm+ n+m)ε)rµ(Al0) +O
(
rµ(Al0)−ε)

+ (τ(Akp) + ε)rµ(Al0) + r
λ( 1
Al0

)+ε
+ 2(2r)ρ(f)+ε

+O(rρ(f)−1+ε) +O(log r).

(3.40)



14 R. BELLAAMA, B. BELAÏDI EJDE-2021/92

Now, we choose ε sufficiently small satisfying

0 < ε < min
{τ(Al0)− τ1 − τ(Akp)

nm+ n+m+ 2
,
µ(Al0)− λ( 1

Al0
)

2

}
,

then from (3.40) for sufficiently large r ∈ E7 \ E8, we obtain

(τ(Al0)− τ1 − τ(Akp)− (nm+ n+m+ 2)ε)rµ(Al0)−ε ≤ rρ(f)+ε,

this means, µ(Al0) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0).
Further, if F ≡ 0, then by substituting (3.22)–(3.24), (3.32), (3.33) and (3.36)

into (3.21), for all sufficiently large r ∈ E7 \ E8, we have

(τ(Al0)− ε)rµ(Al0) ≤ (τ1 + (nm+ n+m− 1)ε)rµ(Al0) +O
(
rµ(Al0)−ε)

+ (τ(Akp) + ε)rµ(Al0) + r
λ( 1
Al0

)+ε

+O(rρ(f)−1+ε) +O(log r).

(3.41)

Now, we choose ε sufficiently small satisfying

0 < ε < min
{τ(Al0)− τ1 − τ(Akp)

nm+ n+m+ 1
,
µ(Al0)− λ( 1

Al0
)

2

}
,

then from (3.41) for sufficiently large r ∈ E7 \ E8, we obtain

(τ(Al0)− τ1 − τ(Akp)− (nm+ n+m+ 1)ε)rµ(Al0)−ε ≤ rρ(f)−1+ε,

so this means, µ(Al0) ≤ ρ(f)−1+2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al0)+1.
The proof of Theorem 1.6 is complete. �

4. Examples

Example 4.1. We consider the non-homogeneous linear delay-differential equation
with entire coefficients

A02(z)f ′′(z) +A11(z)f ′(z + 1) +A01(z)f ′(z) +A10(z)f(z + 1)

+A00(z)f(z) = F (z).
(4.1)

Case 1: ρ(S) < µ(Al0). In (4.1), for

A00(z) = π2 + 2π4z2, A10(z) = e−π
2z2−π2

, A01(z) = 2π2(z + 1)e2π2z+π2

,

A11(z) = −2π2z, A02(z) = −1

2
, F (z) = e2π2z,

we have

max{µ(A11), ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 1 < µ(A10) = 2.

We see that the conditions of Theorem 1.5 are satisfied. The function f(z) = eπ
2z2

is a solution of (4.1) and satisfies ρ(f) = 2 ≥ µ(A10) = 2.

Case 2: ρ(S) < µ(Al0) = µ(Akp) with τM (Al0) > τM (Akp). In (4.1), for

A00(z) = 2π2, A10(z) = 2π2(z + 1)ez
2

+ e−π
2z2−π2

, A01(z) = 2π2z,

A11(z) = −ez
2

, A02(z) = −1, F (z) = e2π2z,

we obtain max{ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 1 < µ(A10) = µ(A11) = 2 and
τM (A10) = π2 > τM (A11) = 1. Hence, the conditions of Theorem 1.5 are satisfied.

The function f(z) = eπ
2z2 is a solution of (4.1) and satisfies ρ(f) = 2 ≥ µ(A10) = 2.
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Case 3: µ(Al0) = ρ(S) > µ(Akp) with τM (Al0) > τ1 = max{τM (g) : ρ(g) =
µ(Al0), g ∈ S}. In (4.1), for

A00(z) = π2 + 2π4z2, A10(z) = e−
4
5π

2z2−π2

, A01(z) = 2π2(z + 1)e2π2z+π2

,

A11(z) = −2π2z, A02(z) = −1

2
, F (z) = e

1
5π

2z2+2π2z,

we have µ(A10) = max{ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (0, 1)} = 2 > µ(A01) = 1

and τM (A10) = 4π2

5 > τ1 = τM (F ) = π2

5 . Obviously, the conditions of Theorem

1.5 are satisfied. The function f(z) = eπ
2z2 is a solution of (4.1) and satisfies

ρ(f) = 2 ≥ µ(A10) = 2.

Case 4: µ(Al0) = µ(Akp) = ρ(S) and τM (A10) > max{τ1, τM (Akp)}. In (4.1), for

A00(z) = 2π2, A10(z) = 2π2(z + 1)ez
2

+ e−
4
5π

2z2−π2

, A01(z) = 2π2z,

A11(z) = −ez
2

, A02(z) = −1, F (z) = e
1
5π

2z2+2π2z,

we obtain µ(A10) = µ(A11) = max{ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 2 and

τM (A10) = 4π2

5 > max{τ1, τM (A11)} = max{τM (F ), τM (A11)} = π2

5 . We see that

the conditions of Theorem 1.5 are satisfied. The function f(z) = eπ
2z2 is a solution

of equation (4.1) and satisfies ρ(f) = 2 ≥ µ(A10) = 2.

Example 4.2. We consider the homogeneous linear delay-differential equation with
entire coefficients

A11(z)g′(z − 1) +A20(z)g(z + 3) +A00(z)g(z) = 0. (4.2)

Case 1: max{µ(Akp), ρ(Aij) : (i, j) 6= (l, 0), (k, p)} < µ(Al0). In (4.2), for

A00(z) = 1, A20(z) = (4πi(1− z)− e4πiz)e−16πiz, A11(z) = 1,

we have

max{µ(A11), ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = 0 < µ(A20) = 1.

So, the conditions of Theorem 1.5 are satisfied. The function g(z) = e2πiz2 is a
solution of (4.2) and g satisfies ρ(g) = 2 ≥ µ(A20) + 1 = 2.

Case 2: max{ρ(Aij) : (i, j) 6= (l, 0), (k, p)} < µ(Al0) = µ(Akp) with τM (Al0) >
τM (Akp). In (4.2), for

A00(z) = 1, A20(z) = (4πi(1− z)− e2πiz)e−14πiz, A11(z) = e2πiz,

we obtain µ(A20) = µ(A11) = 1 > max{ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = 0 and
τM (A20) = 14π > τM (A11) = 2π. Obviously, the conditions of Theorem 1.5

are satisfied. The function g(z) = e2πiz2 is a solution of (4.2) and g satisfies
ρ(g) = 2 ≥ µ(A20) + 1 = 2.

Case 3: µ(Al0) = max{ρ(Aij) : (i, j) 6= (l, 0), (k, p)} > µ(Akp) with τM (Al0) >
τ1 = max{τM (Aij) : ρ(Aij) = µ(Al0), (i, j) 6= (l, 0), (k, p)}. In (4.2), for

A00(z) = e2πiz, A20(z) = (4πi(1− z)− e6πiz)e−16πiz, A11(z) = 1,

we obtain µ(A20) = max{ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = 1 > µ(A11) = 0 and
τM (A20) = 16π > τ1 = τM (A00) = 2π. Obviously, the conditions of Theorem

1.5 are satisfied. The function g(z) = e2πiz2 is a solution of (4.2) and g satisfies
ρ(g) = 2 ≥ µ(A20) + 1 = 2.
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Case 4. µ(Al0) = µ(Akp) = max{ρ(Aij) : (i, j) 6= (l, 0), (k, p)} with τM (Al0) >
τ2 = max{τM (Akp), τM (Aij) : ρ(Aij) = µ(Al0), (i, j) 6= (l, 0), (k, p)}. In (4.2), for

A00(z) = e−2πiz, A20(z) = (4πi(1− z)− 1)e−14πiz, A11(z) = e2πiz,

we have µ(A20) = µ(A11) = max{ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = 1 and τM (A20) =
14π > max{τM (A00), τM (A11)} = 2π. It is clear that the conditions of Theorem

1.5 are satisfied. The function g(z) = e2πiz2 is a solution of (4.2) and g satisfies
ρ(g) = 2 ≥ µ(A20) + 1 = 2.

Example 4.3. We consider the non-homogeneous linear delay-differential equation
with meromorphic coefficients

A11(z)f ′(z − 1) +A01(z)f ′(z) +A20(z)f(z + 1) +A10(z)f(z − 1) = F (z). (4.3)

Case 1: max{µ(Akp), ρ(S)} < µ(Al0). In (4.3), for

A10(z) = e−π
3z3+3π3z2−3π3z+π3

, A20(z) = 3π3(2z − 1)e−3π3z2−3π3z−π3

,

A01(z) = −1, A11(z) = e3π3z2−3π3z+π3

, F (z) = tan(πz),

we have

max{µ(A11), ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 2 < µ(A10) = 3,

λ(
1

A10
) = 0 < µ(A10) = 3.

It is easy to see that the conditions of Theorem 1.6 are satisfied. The meromorphic
function

f(z) = eπ
3z3 tan(πz)

is a solution of (4.3) and satisfies ρ(f) = 3 ≥ µ(A10) = 3.

Case 2: ρ(S) < µ(Al0) = µ(Akp) with τ(Al0) > τ(Akp). In (4.3), for

A10(z) = e−π
3z3+3π3z2−3π3z+π3

+
(

3π3(2z − 1)− 3z2π3 − π tan(πz) +
π

tan(πz)

)
e−z

3

,

A20(z) = 3π3z2 + π tan(πz) +
π

tan(πz)
, A01(z) = −e3π3z2+3π3z+π3

,

A11(z) = e−z
3

, F (z) = tan(πz),

we obtain

max{ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 2 < µ(A10) = µ(A11) = 3,

λ(
1

A10
) = 1 < µ(A10) = 3,

τ(A10) = π2 > τ(A11) =
1

π
.

Hence, the conditions of Theorem 1.6 are satisfied. The function f(z) = eπ
3z3 is a

solution of (4.3) and f satisfies ρ(f) = 3 ≥ µ(A10) = 3.

Case 3: µ(Al0) = ρ(S) > µ(Akp) with

τ(Al0) > τ1 =
∑

ρ(Aij)=µ(Al0),
(i,j)6=(l,0),(k,p)

τ(Aij) + τ(F ).
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In (4.3), for

A10(z) = e−2π3z3+3π3z2−3π3z+π3

, A20(z) = 3π3(2z − 1)e−3π3z2−3π3z−π3

,

A01(z) = −1, A11(z) = e3π3z2−3π3z+π3

, F (z) =
tan(πz)

eπ3z3
,

we have

µ(A10) = max{ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 3 > µ(A11) = 2,

λ
( 1

A10

)
= 0 < µ(A10) = 3

and τ(A10) = 2π2 > τ1 = τ(F ) = π2. We can see that the conditions of Theorem
1.6 are satisfied. The meromorphic function

f(z) = eπ
3z3 tan(πz)

is a solution of (4.3) and satisfies ρ(f) = 3 ≥ µ(A10) = 3.

Case 4: µ(Al0) = µ(Ak0) = ρ(S) and τ(A10) > τ1 + τ(Akp). In (4.3), for

A10(z) = e−2π3z3+3π3z2−3π3z+π3

, A20(z) = 3π3(2z − 1)e(π4 z)
3−3π3z2−3π3z−π3

,

A01(z) = −e(π4 z)
3

, A11(z) = e(π4 z)
3+3π3z2−3π3z+π3

, F (z) =
tan(πz)

eπ3z3
,

we obtain

µ(A10) = µ(A11) = max{ρ(F ), ρ(Aij) : (i, j) 6= (1, 0), (1, 1)} = 3,

λ(
1

A10
) = 0 < µ(A10) = 3,

τ1 + τ(A11) = τ(A01) + τ(A20) + τ(F ) + τ(A11)

= (
2

43
+ 1)π2 +

π2

43
=

67

64
π2 < τ(A10) = 2π2.

Obviously, the conditions of Theorem 1.6 are satisfied. The meromorphic function

f(z) = eπ
3z3 tan(πz)

is a solution of (4.3) and satisfies ρ(f) = 3 ≥ µ(A10) = 3.

Example 4.4. We consider the homogeneous linear delay-differential equation with
meromorphic coefficients

A11(z)h′(z + iπ) +A20(z)h(z + 2iπ) +A00(z)h(z) = 0. (4.4)

Case 1: max{µ(Akp), ρ(Aij) : (i, j) 6= (l, 0), (k, p)} < µ(Al0). In (4.4), for

A00(z) = −1, A20(z) = e12πz2+24π2iz−16π3

− e6πz2+18π2iz−14π3

,

A11(z) =
cos(2iz)

6i(z + iπ)2 cos(2iz) + 2i sin(2iz)
,

we have max{µ(A11), ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = 1 < µ(A20) = 2 and

λ
( 1

A20

)
= 0 < µ(A20) = 2.

Obviously, the conditions of Theorem 1.6 are satisfied. The meromorphic function

h(z) =
e2iz3

cos(2iz)
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is a solution of (4.4) and satisfies ρ(h) = 3 ≥ µ(A20) + 1 = 3.

Case 2: max{ρ(Aij) : (i, j) 6= (l, 0), (k, p)} < µ(Al0) = µ(Akp) with τ(Al0) >
τ(Akp). In (4.4), for

A00(z) = 1, A20(z) = −2e12πz2+24π2iz−16π3

,

A11(z) =
e6πz2+6π2iz−2π3

cos(2iz)

6i(z + iπ)2 cos(2iz) + 2i sin(2iz)
,

we obtain

µ(A20) = µ(A11) = 2 > max{ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = ρ(A00) = 0,

λ(
1

A20
) = 0 < µ(A20) = 2,

τ(A20) = 12 > τ(A11) = 6.

It is clear that the conditions of Theorem 1.6 are satisfied. The meromorphic
function

h(z) =
e2iz3

cos(2iz)

is a solution of equation (4.4) and satisfies ρ(h) = 3 ≥ µ(A20) + 1 = 3.

Case 3: µ(Al0) = max{ρ(Aij) : (i, j) 6= (l, 0), (k, p)} > µ(Akp) with τ(Al0) >∑
ρ(Aij)=µ(Al0), (i,j)6=(l,0),(k,p) τ(Aij). In (4.4), for

A00(z) = −eπz
2

, A20(z) = e13πz2+24π2iz−16π3

− e6πz2+18π2iz−14π3

,

A11(z) =
cos(2iz)

6i(z + iπ)2 cos(2iz) + 2i sin(2iz)
,

we obtain

µ(A20) = max{ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = ρ(A00) = 2 > µ(A11) = 1,

λ(
1

A20
) = 0 < µ(A20) = 2,

τ(A20) = 13 >
∑

ρ(Aij)=µ(Al0), (i,j)6=(l,0),(k,p)

τ(Aij) = τ(A00) = 1.

It is clear that the conditions of Theorem 1.6 are satisfied. The meromorphic
function

h(z) =
e2iz3

cos(2iz)

is a solution of (4.4) and satisfies ρ(h) = 3 ≥ µ(A20) + 1 = 3.

Case 4: µ(Al0) = µ(Akp) = max{ρ(Aij) : (i, j) 6= (l, 0), (k, p)} with τ(Al0) >∑
ρ(Aij)=µ(Al0), (i,j)6=(l,0),(k,p) τ(Aij) + τ(Akp). In (4.4), for

A00(z) = eπz
2

, A20(z) = −2e13πz2+24π2iz−16π3

,

A11(z) =
e7πz2+6π2iz−2π3

cos(2iz)

6i(z + iπ)2 cos(2iz) + 2i sin(2iz)
,

we have

µ(A20) = µ(A11) = max{ρ(Aij) : (i, j) 6= (2, 0), (1, 1)} = ρ(A00) = 2,
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λ(
1

A20
) = 0 < µ(A20) = 2,

τ(A20) = 13 > τ(A00) + τ(A11) = 1 + 7 = 8.

It is easy to see that the conditions of Theorem 1.6 are satisfied. The meromorphic
function

h(z) =
e2iz3

cos(2iz)

is a solution of equation (4.4) and satisfies ρ(h) = 3 ≥ µ(A20) + 1 = 3.
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