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BOUNDARY PARTIAL HÖLDER REGULARITY FOR ELLIPTIC
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Abstract. We investigate regular points on the boundaries of elliptic systems

with non-standard growth, in particular, so-called Orlicz growth. A regular
point on the boundary in this paper is a point for which a weak solution to

a system is Hölder continuous in a neighborhood. Here, we assume that the

boundary of a domain and the boundary data are C1, and that a system has
VMO (vanishing mean oscillation) type coefficients.

1. Introduction

In this article, we study partial regularity on the boundaries of nonlinear elliptic
systems with nonstandard Orlicz growth and the Dirichlet boundary condition.
Precisely, we find a suitable condition of the boundary points to obtain Hölder
continuity of the corresponding weak solution in its neighborhood for any Hölder
exponent α ∈ (0, 1). Here we assume that the coefficients of the systems are VMO,
and that the boundaries and boundary data are C1.

Partial regularity for general elliptic systems with ‘standard’ p-growth was first
systematically investigated by Campanato [13, 14]; see [27, 45] for pioneering works
in this direction. The main objective in this field is to obtain relations between the
regularity of coefficients of systems and partial regularity of relevant weak solutions,
which are naturally expected from scalar problems. For instance, if the coefficients
are Hölder continuous, then the gradient of the weak solution is partially Hölder
continuous, i.e., Hölder continuous except for a measure zero set. In addition, if
the coefficients are merely continuous, then the weak solution is partially Hölder
continuous for all Hölder exponents α ∈ (0, 1). This result for general dimension
n ≥ 2 was first proved by Foss & Mingione [24], and then Beck [7] characterized
the boundary points to obtain partial Hölder regularity. We remark that the actual
existence of regular boundary points for systems with Hölder continuous coefficients
was proved in [22, 35]. For further regularity results, concerning both systems and
integral functionals, we refer to [5, 7, 8, 9, 10, 11, 12, 23, 25, 28, 29, 32, 33, 34, 36].
An extensive overview can be found in [44].
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For the last few decades, there have been a lot of research activities regarding
the partial differential equations(PDEs) and functionals with non-standard growth,
which was first studied by Marcellini [40, 41, 42, 43]. The most basic non-standard
growth type is the so-called Orlicz growth condition, which implies that PDEs
or functionals are controlled by Orlicz functions. The definition and properties
of Orlicz functions and related properties will be introduced in the next section.
PDEs and functionals with Orlicz growth were first investigated by Lieberman
[37, 38, 39]; see also [1, 2, 15, 19] for further regularity results. In addition, partial
regularity for systems or functionals with Orlicz growth have also been studied in
[19, 21, 48]. In particular, in [48] the authors obtained partial Hölder regularity for
elliptic systems with VMO coefficients. Finally, we would like to mention that non-
autonomous problems, for instance, problems with p(x)-growth and double phase
problems, are closely related to the Orlicz case, and we refer to recent results in
[3, 4, 16, 17, 18, 47] for double phase problems and [30, 46, 48, 50, 51] for partial
regularity for systems with non-autonomous growth conditions.

Here, we consider boundary partial Hölder regularity for elliptic systems with
Orlicz growth, which is a natural generalization of [7] in the Orlicz setting. Let us
introduce the system we mainly consider in this paper. Let G : [0,∞) → [0,∞)
with G(0) = 0 be C2 and satisfy

1 < g1 − 1 ≤ inf
t>0

tG′′(t)
G′(t)

≤ sup
t>0

tG′′(t)
G′(t)

≤ g2 − 1 (1.1)

for some 2 < g1 ≤ g2 < ∞. Note that under these assumptions, G is convex and
strictly increasing. We then consider the system

div a(x, u,Du) = 0 in Ω,
u = h on ∂Ω.

(1.2)

Here, a : Ω× RN × RNn → RNn, N ≥ 1, satisfies

|a(x, ζ, ξ)|+ |∂a(x, ζ, ξ)|(1 + |ξ|) ≤ LG1(1 + |ξ|),
∂a(x, ζ, ξ)η · η ≥ νG2(1 + |ξ|)|η|2

(1.3)

for all x ∈ Ω, ζ ∈ RN and ξ, η ∈ RnN and for some 0 < ν ≤ L, where ∂a(x, ζ, ξ) :=
Dξa(x, ζ, ξ),

G1(t) := t−1G(t) and G2(t) := t−2G(t). (1.4)
We note from the second inequality in (1.3) that

(a(x, ζ, ξ1)− a(x, ζ, ξ2)) : (ξ1 − ξ2) ≥ ν̃ G2(1 + |ξ1|+ |ξ2|)|ξ1 − ξ2|2

≥ ν̃

2
{G2(1 + |ξ1|)|ξ1 − ξ2|2 +G(|ξ1 − ξ2|)}.

(1.5)
Then, for h ∈ W 1,G(Ω,RN ), we say u ∈ W 1,G(Ω,RN ) with u − h ∈ W 1,G

0 (Ω,RN )
is a weak solution to (1.2) if∫

Ω

a(x, u,Du) : Dϕdx = 0 ∀ϕ ∈W 1,G
0 (Ω,RN ). (1.6)

Here, W 1,G andW 1,G
0 are Sobolev-Orlicz spaces, which we shall introduce in Section

2, and the existence and uniqueness of weak solutions to (1.2) are a consequence of
nonlinear functional analysis, see for instance [49, Chapter II.2], and the properties
of the Sobolev-Orlicz spaces.
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We further impose regularity assumptions on nonlinearity a as follows. For the
first variable x ,we suppose that

lim
ρ→0
V(ρ) = 0, where V(ρ) := sup

0<r≤ρ
sup
y∈Rn

−
∫
Br(y)∩Ω

V (x,Br(y) ∩ Ω) dx, (1.7)

V (x, U) := sup
ζ∈RN

sup
ξ∈RnN

|a(x, ζ, ξ)− (a(·, ζ, ξ))U |
G1(1 + |ξ|)

≤ 2L . (1.8)

Here we note that condition (1.7) implies that the coefficient factor of a is VMO
uniformly for both ζ and ξ. For the other variables, we assume that there exists a
nondecreasing and concave function µ : [0,∞)→ [0, 1] with µ(0) = 0 such that

|a(x, ζ1, ξ)− a(x, ζ2, ξ)| ≤ Lµ(|ζ1 − ζ2|2)G1(1 + |ξ|), (1.9)

|∂a(x, ζ, ξ1)− ∂a(x, ζ, ξ2)| ≤ Lµ
( |ξ1 − ξ2|

1 + |ξ1|+ |ξ2|
)
G2(1 + |ξ|) (1.10)

for all x ∈ Ω, ζ, ζ1, ζ2 ∈ RN and ξ, ξ1, ξ2 ∈ RnN . In this setting, we show the
following result.

Theorem 1.1. Suppose Ω ∈ C1, h ∈ C1(Ω), G : [0,∞) → [0,∞) is C2 and
satisfies (1.1), a : Ω×RN ×RnN → RN satisfies (1.3), (1.7), (1.9) and (1.10). Let
u ∈ W 1,G

h (Ω,RN ) be a weak solution to (1.2). Then a set of regular points on the
boundary ∂Ω given by

∂Ωu := ∩α∈(0,1)

{
x0 ∈ ∂Ω : u ∈ Cα(Ux0 ∩ Ω,RN ) for some Ux0 ⊂ B1

}
,

where Ux0 is an open neighborhood of x0, satisfies

∂Ω \ ∂Ωu ⊂
{
x0 ∈ ∂Ω : lim inf

r↓0
−
∫
Br(x0)∩Ω

|Du− (Dνx0
u)Br(x0)∩Ω ⊗ νx0 | dx > 0

}
∪
{
x0 ∈ ∂Ω : lim sup

r↓0
−
∫
Br(x0)∩Ω

G(|Dνx0
u|) dx =∞

}
,

where νx0 is the inward unit normal vector at x0 ⊂ ∂Ω.

Note that Ω ∈ C1 means that for each y ∈ ∂Ω, there exist r > 0 and C1 function
γy : Rn−1 → R such that, in the coordinate system with the origin at y and νy = en,
Br ∩Ω = {x = (x′, xn) ∈ Br : xn > γy(x′)}. Note that by the continuity of ∂Ω, we
can consider r > 0 independent of y in the definition.

Now, we introduce the approach used in the proof. We consider a system on a
half ball with a zero boundary condition on the flat part and characterize regular
points on the flat boundary, see Theorem 4.1. This implies our main result via a
flattening argument. To obtain the result in Theorem 4.1, we linearize the system
with a ‘re-normalized’ weak solution, and then compare it with an A-harmonic map.
Here we will use a flat boundary version of the A-harmonic approximation lemma,
see Lemma 2.7. We note that this technique was developed in [24] (resp. [6]) for
interior (resp. boundary) partial regularity for systems with p-growth. Hence, we
make use of the method presented there and modify it for the setting of the Orlicz
class. In this procedure, various technical difficulties are arising. To overcome these,
we take advantage of an almost convex property, see Lemma 2.2, and an additional
assumption, see (3.11).

The rest of this article is organized as follows. In the next section, we present
notation and auxiliary results. In Section 3, we obtain Cacciopoli type estimates,



4 J. OK EJDE-2018/84

and after linearization, compare the re-normalized function of the weak solution
with an A-harmonic function using an A-harmonic approximation lemma. In the
final section, Section 4, we construct a condition for regular boundary points for
systems on a half ball with the zero boundary condition on a flat boundary. Using
this, we prove Theorem 1.1.

2. Preliminaries

2.1. Notation. Define Rn+ := {x = (x1, . . . , xn) ∈ Rn : xn > 0} and Br(x0) by a
standard ball with center x0 ∈ Rn and radius r > 0, B+

r (x0) := Br(x0) ∩ Rn+, and
Tr(x0) := {x = (x1, . . . , xn) ∈ Br(x0) : xn = 0}. For a locally integrable (vector
valued) function f in Rn and a bounded open set U ⊂ Rn, (f)U is denoted by the
integral average of f in U such that

(f)U = −
∫
U

f dx =
1
|U |

∫
U

f dx.

Moreover, we abbreviate (f)x0,r = (f)Br(x0) and (f)+
x0,r = (f)B+

r (x0) if there is no
confusion. Let A = (aij), B = (bij) ∈ RnN , 1 ≤ i ≤ n and 1 ≤ j ≤ N , be matrices,
and define the inner product of them by A : B =

∑
i,j aijbij . P : Rn → RN is

always an affine function, that is, P (x) = Ax + b for some matrix A ∈ RnN and
b ∈ RN . For a given u ∈ L2(B+

r (x0),RN ) with x0 ∈ Rn−1×{0}, we define an affine
function P+

x0,r by the minimizer of the functional

P 7→ −
∫
B+
r (x0)

|u− P |2 dx.

Then one can see that

P+
x0,r(x) = Q+

x0,rxn, where Q+
x0,ρ :=

n+ 2
r2
−
∫
B+
r (x0)

u(x)xn dx.

We note that if the center point of a ball is clear or not important, we shall omit it
in the notation, for example, Br = Br(x0), B+

r = B+
r (x0), (f)r = (f)x0,r, and so

on.

2.2. Orlicz function and space. We say that G : [0,∞) → [0,∞) is an N -
function if G is differentiable and G′ is a non-decreasing right continuous function
satisfying G′(0) = 0 and G′(t) > 0 for all t > 0. Note that an N -function is convex.
From now on, we suppose G is an N -function that satisfies

1 < g1 ≤ inf
t>0

tG′(t)
G(t)

≤ sup
t>0

tG′(t)
G(t)

≤ g2 <∞ (2.1)

for some 1 < g1 ≤ g2 < ∞. For instance, G(t) = tp, 1 < p < ∞, is an N -function
and satisfies (2.1) with g1 = g2 = p. We notice that if G is C2 and satisfies (1.1),
then it is an N -function and satisfies (2.1).

We next define the complement function of G by G∗ : [0,∞)→ [0,∞) such that

G∗(τ) := sup
t≥0

(τt−G(t)).

Then we have that G∗ is an N -function satisfying (2.1) with g1 and g2 replaced by
g2/(g2 − 1) and g1/(g1 − 1), respectively. Note that (2.1) is equivalent to G and
G∗ satisfying the so-called ∆2-condition, i.e., G(2t) ≤ cG(t) and G∗(2t) ≤ cG∗(t)
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for some c ≥ 1. We briefly state some basic properties of the Orlicz functions. We
refer to [48, Proposition 2.1].

Proposition 2.1. Suppose G : [0,∞) → [0,∞) is convex and satisfies (2.1) 1 <
g1 ≤ g2 <∞. Let t, τ > 0, 0 < a < 1 < b <∞.

(1) G(t)t−g1 is increasing and G(t)t−g2 is decreasing. Hence we have

G(at) ≤ ag1G(t), G(bt) ≤ bg2G(t). (2.2)

Moreover,

G∗(at) ≤ a
g2
g2−1G∗(t), and G∗(bt) ≤ b

g1
g1−1G∗(t). (2.3)

(2) G(t+ τ) ≤ 2−1(G(2t) +G(2τ)) ≤ 2g2−1(G(t) +G(τ)).
(3) (Young’s inequality) For any κ ∈ (0, 1], we have

tτ ≤ G(κ
1
g1 t) +G∗(κ−

1
g1 τ) ≤ κG(t) + κ−

1
g1−1G∗(τ), (2.4)

tτ ≤ G(κ−
g2−1
g2 t) +G∗(κ

g2−1
g2 τ) ≤ κ−g2+1G(t) + κG∗(τ). (2.5)

(4) There exists c = c(g1, g2) ≥ 1 such that

c−1G(t) ≤ G∗
(
G(t)t−1

)
≤ cG(t). (2.6)

We also introduce a condition for functions that are similar to concave functions.
We refer to [48, Lemma 2.2].

Lemma 2.2. Suppose that Ψ : [0,∞)→ [0,∞) is non-decreasing such that the map
t 7→ Ψ(t)/t is non-increasing. Then there exists a concave function Ψ̃ : [0,∞) →
[0,∞) such that

1
2

Ψ̃(t) ≤ Ψ(t) ≤ Ψ̃(t) for all t ≥ 0.

For a given N -function G satisfying (2.1), we denote the Orlicz space LG(Ω) by
the set of all functions f satisfying

‖f‖Lp(Ω) := inf
{
λ > 0 :

∫
Ω

G
( |f |
λ

)
dx ≤ 1

}
<∞.

In fact, the above inequality is equivalent to∫
Ω

G(|f |) dx <∞.

Furthermore, the Orlicz-Sobolev space W 1,G(Ω) (resp. W 1,G
0 (Ω)) is the set of

f ∈W 1,1(Ω) (resp. f ∈W 1,1
0 (Ω)) with f, |Df | ∈ LG(Ω).

2.3. Basic inequalities. For f ∈ LG(Br(x0),RN ) and A ∈ RN , from Jensen’s
inequality and the property of the N -function (2.1), it is well known that

−
∫
Br(x0)

G(|f − (f)x0,r|) dx ≤ 2g2 −
∫
Br(x0)

G(|f −A|) dx.

Furthermore, in a similar way, one can also see that for f ∈W 1,G(Br(x0),RN ) and
A ∈ RN ,

−
∫
Br(x0)

G(|Df − (Dnf)x0,r ⊗ en|) dx ≤ c−
∫
Br(x0)

G(|Df −A⊗ en|) dx. (2.7)
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We next introduce a Poincaré type inequality for functions vanishing on the flat
boundary in W 1,G(B+

r ), which can be easily obtained by modifying the interior
counterpart in [19, Theorem 7].

Lemma 2.3. Suppose that G : [0,∞)→ [0,∞) is an N -function and satisfies (2.1)
for some 1 < g1 ≤ g2 <∞, and that f ∈W 1,1(B+

r (x0),RN ) with u = 0 on Tr(x0).
Then there exist 0 < d1 < 1 < d2 depending only on n,N, g1, g2 such that(

−
∫
B+
r (x0)

[
G
( |f |
r

)]d2
dx
)1/d2

≤ c
(
−
∫
B+
r (x0)

[G(|Df |)]d1 dx
)1/d1

(2.8)

for some c = c(n,N, g1, g2) > 0.

The next lemma implies that the gradient on the right-hand side can be replaced
by the directional derivative Dnf .

Lemma 2.4. Let G be an N -function satisfying (2.1) and x0 ∈ Rn−1 × {0}. For
f ∈W 1,G(B+

r (x0)) with f = 0 on Tr(x0), we have∫
B+
r (x0)

G
( |f |
r

)
dx ≤ 1

g1

∫
B+
r (x0)

G(|Dnf |) dx. (2.9)

Proof. The proof when G(t) = tp can be found in [5, Lemma 3.4]. We follow the
argument presented there. Since f = 0 on Tr(x0), we have

f(x) = f(x′, xn) =
∫ xn

0

Dnf(x′, t) dt,

where x′ = (x1, . . . , xn−1). Using this inequality along with Jensen’s inequality and
Fubini’s theorem, we have∫
B+
r (x0)

G
( |f(x)|

r

)
dx

=
∫ r

−r

∫ √r2−x2
1

−
√
r2−x2

1

· · ·
∫ √r2−|x′|2

0

G
( |f(x)|

r

)
dxn . . . dx2 dx1

≤
∫ r

−r

∫ √r2−x2
1

−
√
r2−x2

1

· · ·
∫ √r2−|x′|2

0

G
(xn
r
−
∫ xn

0

|Dnf(x′, t)| dt
)
dxn . . . dx2dx1

≤
∫ r

−r

∫ √r2−x2
1

−
√
r2−x2

1

· · ·
∫ √r2−|x′|2

0

(xn
r

)g1 −
∫ xn

0

G(|Dnf(x′, t)|) dtdxn . . . dx2dx1

=
∫ r

−r

∫ √r2−x2
1

−
√
r2−x2

1

· · ·
∫ √r2−|x′|2

0

∫ r

√
r2−|x′|2

xg1−1
n

rg1
G(|Dnf(x′, t)|) dxn dt . . . dx2 dx1

≤
∫ r

0

xg1−1
n

rg1
dxn

∫ r

−r

∫ √r2−x2
1

−
√
r2−x2

1

· · ·
∫ √r2−|x′|2

0

G(|Dnf(x′, t)|) dt . . . dx2 dx1

=
1
g1

∫
B+
r (x0)

G(|Dnf(x)|) dx.

�

By the same argument as in Lemma [48, Lemma 2.3], we have the following
result.
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Lemma 2.5. Let G : [0,∞) → [0,∞) be convex and satisfy (2.1) for some 2 <
g1 < g2 <∞, and let u ∈W 1,G(B+

r (x0),RN ) with x0 ∈ Rn−1×{0}. Then we have

G(|Q+
x0,r −Q

+
x0,θr
|) ≤ c−

∫
B+
θr(x0)

G
( |u− P+

x0,r|
θr

)
dx, (2.10)

and for any ξ ∈ RN ,

G(|Q+
x0,r − ξ|) ≤ c−

∫
B+
r (x0)

G(|Dnu− ξ|) dx (2.11)

for some c = c(n, g2) > 0.

Proof. By [7, Lemma 2.4], we have

|Q+
x0,r −Q

+
x0,θr
|2 ≤ c(n)−

∫
B+
θr(x0)

|u− P+
x0,r|

2

(θr)2
dx,

|Q+
x0,r − ξ|

2 ≤ c(n)−
∫
B+
r (x0)

|Dnu− ξ|2 dx.

Using these and Jensen’s inequality for the convex map t 7→ G(
√
t), we obtain

G(|DPx0,r −DPx0,θr|) ≤ (c(n) + 1)g2/2G
(√
−
∫
B+
θr(x0)

|u− P+
x0,r|2

(θr)2
dx
)

≤ (c(n) + 1)g2/2 −
∫
B+
θr(x0)

G
( |u− P+

x0,r|
θr

)
dx.

This shows (2.10). The same argument implies inequality (2.11). �

We complete this subsection stating an iteration lemma, see [26, Lemma 7.3]
and [24, Lemma 2.3].

Lemma 2.6. Let φ : (0, ρ]→ R be a positive and nondecreasing function satisfying

φ(θk+1ρ) ≤ θλφ(θkρ) + c̃(θkρ)n for every k = 0, 1, 2, . . . ,

where θ ∈ (0, 1), λ ∈ (0, n) and c̃ > 0. Then there exists c = c(n, θ, λ) > 0 such
that

φ(t) ≤ c̃big{
( t
ρ

)λ
φ(ρ) + c̃tλ

}
for every t ∈ (0, ρ].

2.4. A-harmonic approximation on half balls. We introduce a flat boundary
version of the A-harmonic approximation lemma. We refer to [29, Lemma 2.3].
Suppose A is a bilinear form with respect to RnN such that there exists 0 < ν ≤ L
satisfying

ν|ξ|2|η|2 ≤ A(ξ ⊗ η) : ξ ⊗ η ≤ L|ξ|2|η|2 (2.12)

for every ξ ∈ Rn, η ∈ RN . If h ∈W 1,2(Ω,RN ) satisfies∫
Ω

ADh : Dϕ = 0

for every ϕ ∈ C1
0 (Ω,RN ), we say that h is A-harmonic
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Lemma 2.7. For ε > 0, there exists small δ = δ(n,N,L, ν, ε) > 0 such that the
following holds: if w ∈W 1,2(B+

r (x0),RN ) with w = 0 on Tr(x0) such that

−
∫
B+
r (x0)

|Dw|2 dx ≤ 1,

∣∣−∫
B+
r (x0)

ADw : Dϕdx
∣∣ ≤ δ‖Dϕ‖L∞(B+

r (x0)) for all ϕ ∈ C1
0 (B+

r (x0),RN ),

then there exists an A-harmonic map h ∈W 1,2(B+
r (x0),RN ) with h = 0 on Tr(x0)

such that

−
∫
B+
r (x0)

|Dh|2 dx ≤ 1, and r−2 −
∫
B+
r (x0)

|w − h|2 dx ≤ ε.

2.5. Some estimates for weak solutions. We introduce energy estimates and
a self-improving property for systems on a half ball. In this subsection, we shall
consider the system

div a(x, u,Du) = 0 in B+
2r(x0),

u = 0 on T2r(x0),
(2.13)

where x0 ∈ Rn−1 × {0} and a satisfies

|a(x, ζ, ξ)| ≤ LG1(s+ |ξ|) and a(x, ζ, ξ) : ξ ≥ ν G(|ξ|)− ν0G(s) (2.14)

for all x ∈ Ω, ζ ∈ RN and ξ ∈ RnN , and for some 0 < ν ≤ L < ∞, ν0 > 0 and
s ∈ [0, 1]. Here G : [0,∞)→ [0,∞) is an N -function satisfying (2.1).

We start with the energy estimates.

Lemma 2.8. Let u ∈ W 1,G(B+
2r(x0)) with u = 0 on T2r(x0) be a weak solution to

(2.13). Then ∫
B+
r (x0)

G(s+ |Du|) dx ≤ c
∫
B+

2r(x0)

G(s+ |Dnu|) dx (2.15)

for some c = (n,N,L, ν, ν0, g1, g2) > 0.

Proof. By taking ηg2u ∈ W 1,G
0 (B2r(x0)) as a testing function in the weak formu-

lation of (2.13), where η ∈ C∞0 (B2r(x0)) is a cut-off function so that 0 ≤ η ≤ 1,
η ≡ 1 in Br(x0) and |Dη| ≤ c(n)/r, we have∫

B+
2r(x0)

ηg2G(|Du|) dx ≤ c
∫
B+

2r(x0)

ηg2a(x, u,Du) : Dudx+ cG(s)

≤ c−
∫
B+

2r

ηg2−1G1(s+ |Du|) |u|
r
dx+ cG(s).

Using (2.5) with (2.6) and (2.3),

−
∫
B2r

ψg2G(s+ |Du|) dx ≤ 1
2
−
∫
B2r

ψg2G(s+ |Du|) dx+ c−
∫
B2r

G
( |u|
r

)
dx+ cG(s).

Finally, applying (2.9) we obtain (2.15). �

We next state self-improving properties, which can be obtained from the previous
result along with Proposition 2.8 and the interior self-improving property in [48,
Theorem 3.4]. Hence, we shall omit its proof.
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Lemma 2.9. Let u ∈ W 1,G(B+
2r(x0)) with u = 0 on T2r(x0) be a weak solution

to (2.13). Then there exists σ1 = σ1(n,N,L, ν, ν0, g1, g2) > 0 such that G(|Du|) ∈
L1+σ1
loc (Ω) with the estimate that for any σ ∈ [0, σ1] and B2r(x0) b Ω,(

−
∫
B+
r (x0)

[G(s+ |Du|)]1+σ dx
) 1

1+σ ≤ c−
∫
B+

2r(x0)

G(s+ |Du|) dx (2.16)

for some c = c(n,N,L, ν, ν0, g1, g2) > 0.

3. Linearization and excess decay estimates

From now on, we shall consider problems on upper half balls such that

div a(x, u,Du) = 0 in B+
r ,

u = 0 on Tr.
(3.1)

Here, a is assumed to satisfy (1.3). The next lemma is a boundary version of a
Caccioppoli type inequality.

Lemma 3.1. Let G(t) satisfy (1.1), and u ∈W 1,G(B+
r ) be a weak solution to (3.1).

Then for any B2ρ(x0) with x0 ∈ Tr and 2ρ < r − |x0| and any ξ ∈ RN , we have

−
∫
B+
ρ (x0)

[ |Du− ξ ⊗ en|2
(1 + |ξ|)2

+
G(|Du− ξ ⊗ en|)

G(1 + |ξ|)

]
dx

≤ c−
∫
B+

2ρ(x0)

[ |u− xnξ|2

(2ρ)2(1 + |ξ|)2
+
G(|u− xnξ|/(2ρ))

G(1 + |ξ|)

]
dx

+ cµ
(
−
∫
B+

2ρ(x0)

|u|2 dx
)

+ cV(2ρ)

(3.2)

for some c = c(n,N,L, ν, g1, g2) > 0, where x = (x1, . . . , xn) and V is denoted in
(1.7).

Proof. Let us fix x0 ∈ Tr and ρ > 0 with 2ρ < r − |x0|. Then we simply write
Bt = Bt(x0) and B+

t = B+
t (x0), where t = ρ, 2ρ. Let P (x) := xnξ and η ∈

C∞0 (B2ρ) satisfy 0 ≤ η ≤ 1, η ≡ 1 on Bρ and |Dη| ≤ c(n)/ρ. Then taking
ϕ = ηg2(u − P ) ∈ W 1,G

0 (B+
2ρ) as a test function in the weak formulation of (3.1),

we have

−
∫
B+

2ρ

ηg2 a(x, u,Du) : D(u− P ) dx = −g2 −
∫
B+

2ρ

ηg2−1 a(x, u,Du) : Dη ⊗ (u− P ) dx.

Setting a(ζ, ξ) := (a(·, ζ, ξ))B+
2ρ

, it follows that

I1 := −
∫
B+

2ρ

ηg2(a(x, u,Du)− a(x, u,DP )) : (Du−DP ) dx

= −−
∫
B+

2ρ

a(x, u,DP ) : Dϕdx

− g2 −
∫
B+

2ρ

ηg2−1(a(x, u,Du)− a(x, u,DP )) : Dη ⊗ (u− P ) dx

= −−
∫
B+

2ρ

(a(x, u,DP )− a(x, 0, DP )) : Dϕdx
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−−
∫
B+

2ρ

(a(x, 0, DP )− a(0, DP )) : Dϕdx

− g2 −
∫
B+

2ρ

ηg2−1(a(x, u,Du)− a(x, u,DP )) : Dη ⊗ (u− P ) dx

=: −I2 − I3 − I4. (3.3)

Here, a(0, DP ) := (a(·, 0, DP ))B2ρ and we have used the fact that

−
∫
B+

2ρ

a(0, DP ) : Dϕdx = 0.

For I1 and I2, we have from (1.5) that

−
∫
B+

2ρ

ηg2

[
G(1 + |DP |) |Du−DP |

2

(1 + |DP |)2
+G(|Du−DP |)

]
dx ≤ cI1, (3.4)

and from (1.9) and (2.4) that

|I2| ≤ c−
∫
B+

2ρ

µ
(
|u|2
)
G1(1 + |DP |)

(
ηg2 |Du−DP |+ |u− P |

ρ

)
dx

≤ 1
4
−
∫
B+

2ρ

[
ηg2 G(|Du−DP |) +G

( |u− P |
ρ

)]
dx

+ cG(1 + |DP |)−
∫
B+

2ρ

µ(|u|2) dx.

(3.5)

We next estimate I3. By (1.8), (1.7) and (2.4) with (2.3) and (2.6), we have

|I3| ≤ c−
∫
B+

2ρ

V (x,B+
2ρ)G1(1 + |DP |)

(
ηg2 |Du−DP |+ |u− P |

ρ

)
dx

≤ 1
4
−
∫
B+

2ρ

ηg2G(|Du−DP |) dx

+ c−
∫
B+

2ρ

[
G∗
(
V (x,B+

2ρ)G1(1 + |DP |)
)

+G
( |u− P |

ρ

)]
dx

≤ 1
4
−
∫
B+

2ρ

ηg2G(|Du−DP |) dx

+ c(2L+ 1)
1

g1−1G(1 + |DP |)V(2ρ) + c−
∫
B2ρ

G
( |u− P |

ρ

)
dx.

(3.6)

We estimate I4. By the first inequality in (1.3), and Young’s inequalities with
(2.5) and (2.3), we have

|I4| ≤ c−
∫
B+

2ρ

ηg2−1
(∫ 1

0

|∂a(x, u, tDu+ (1− t)DP )| dt
)
|Du−DP | |u− P |

ρ
dx

≤ c−
∫
B2ρ

ηg2−1G(1 + |DP |+ |Du−DP |)
(1 + |DP |+ |Du−DP |)2

|Du−DP | |u− P |
ρ

dx

≤ c−
∫
B+

2ρ

G(1 + |DP |)
(1 + |DP |)2

ηg2−1|Du−DP | |u− P |
ρ

dx
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+ c−
∫
B+

2ρ

ηg2−1G(|Du−DP |)
|Du−DP |

|u− P |
ρ

dx

≤ 1
4
−
∫
B+

2ρ

[
ηg2

G(1 + |DP |)
(1 + |DP |)2

|Du−DP |2 + ηg2G(|Du−DP |)
]
dx

+ c
(G(1 + |DP |)

(1 + |DP |)2
−
∫
B+

2ρ

|u− P |2

ρ2
dx+−

∫
B+

2ρ

G
( |u− P |

ρ

)
dx
)
. (3.7)

Consequently, applying Jensen’s inequality to µ in (3.5), inserting (3.4)-(3.7) into
(3.3), and recalling P (x) = ξxn and DP = ξ ⊗ en, we get estimate (3.2). �

From now on, we fix x0 ∈ Tr, 0 < ρ < r − |x0|. For ξ ∈ RN , we define

C(x0, ρ, ξ) := −
∫
B+
ρ (x0)

[ |Du− ξ ⊗ en|2
(1 + |ξ|)2

+
G(|Du− ξ ⊗ en|)

G(1 + |ξ|)

]
dx, (3.8)

E+(x0, ρ, ξ) := C(x0, ρ, ξ) +
[
µ
(
−
∫
B+
ρ (x0)

|u|2 dx
)]1/2

+ [V(ρ)]
1

2g2−1 (3.9)

A :=
∂a(x0, 0, ξ ⊗ en)
G2(1 + |ξ|)

, w :=
u− ξxn

(1 + |ξ|)
√
E+(x0, ρ, ξ)

. (3.10)

Note that we easily check from (1.3) that A satisfies the Legendre-Hadamard con-
dition (2.12). In the next lemma, we show that one can apply the harmonic ap-
proximation lemma to A and w if E+(x0, ρ, ξ).

Lemma 3.2. Under the assumption of Lemma 3.2 together with

C(x0, ρ, ξ) ≤ 1, (3.11)

we have that for every ϕ ∈ C∞0 (B+
ρ (x0)),∣∣−∫

B+
ρ (x0)

ADw : Dϕdx
∣∣ ≤ c[µ(

√
E+(x0, ρ, ξ))+E+(x0, ρ, ξ)

]1/2
sup

B+
ρ (x0)

|Dϕ| (3.12)

for some c = c(n,N,L, ν, g1, g2) > 0.

The proof of this lemma is exactly same as the one of [48, Lemma 4.2] by replac-
ing Bρ(x0), C(x0, ρ, P ) and E+(x0, ρ, P ) by B+

ρ (x0), C(x0, ρ, ξ) and E+(x0, ρ, ξ),
respectively. Now, we choose

ξ = (Dnu)x0,ρ := (Dnu)B+
ρ (x0)

and set
C(x0, ρ) := C(x0, ρ, (Dnu)x0,ρ)

= −
∫
B+
ρ (x0)

[ |Du− (Dnu)x0,ρ ⊗ en|2

(1 + |(Dnu)x0,ρ|)2

+
G(|Du− (Dnu)x0,ρ ⊗ en|)

G(1 + |(Dnu)x0,ρ|)

]
dx,

(3.13)

Ẽ+(x0, ρ) := E+(x0, ρ, (Dnu)x0,ρ)

= C(x0, ρ) +
[
µ
(
−
∫
B+
ρ (x0)

|u|2 dx
)]1/2

+ [V(ρ)]
1

2g2−1 ,
(3.14)

E+(x0, ρ) := C(x0, ρ) +
[
µ
(
M(x0, ρ)

)]1/2 + [V(ρ)]
1

2g2−1 , (3.15)
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where
M(x0, ρ) := ρ−

∫
B+
ρ (x0)

|Dnu|2 dx. (3.16)

Then, by Poincaré’s inequality (2.9) along with the fact that ρ < 1, we see that

Ẽ+(x0, ρ) ≤ cE+(x0, ρ) (3.17)

for some c = c(n,N) ≥ 1.

Lemma 3.3. For θ ∈ (0, 1/8), there exists small

ε1 = ε1(n,N,L, ν, g1, g2, µ(·), θ) ∈ (0, 1)

such that if
ρ ≤ θn and E+(x0, ρ) ≤ ε1, (3.18)

then
C(x0, θρ) ≤ c1θ2E+(x0, ρ) (3.19)

for some c1 = c1(n,N,L, ν, g1, g2) ≥ 1.

Proof. We omit x0 in our notation for simplicity.
Step 1. We first estimate the integrals

−
∫
B+

2θρ

|u(x)− P+
2θρ|2

(2θρ)2
dx and −

∫
B+

2θρ

G
( |u− P+

2θρ|
2θρ

)
dx, (3.20)

where the affine function P+
2θρ = P+

x0,2θρ
is given in Section 2.2. Recall A and w

from (3.10) with ξ = (Dnu)ρ. Then we see that

w :=
u− (Dnu)ρxn

(1 + |(Dnu)ρ|)
√
Ẽ+(x0, ρ)

and −
∫
B+
ρ

|Dw|2 dx ≤ 1.

Let us take ε ∈ (0, 1) such that ε = θn+4, for which we consider δ = δ(n,N,L, ν, ε) >
0 as determined in Lemma 2.7. Then by Lemma 3.2 together with (3.18), we have∣∣−∫

B+
ρ

ADw : Dϕdx
∣∣ ≤ δ sup

B+
ρ

|Dϕ|

by taking sufficiently small ε1 = ε1(n,N,L, ν, g1, g2, µ(·), θ) ∈ (0, 1). Therefore, in
view of Lemma 2.7, there exists an A-harmonic map h such that

−
∫
B+
ρ

|Dh|2 dx ≤ 1 and −
∫
B+
ρ

|w − h|2 dx ≤ θn+4ρ2. (3.21)

We notice by a basic regularity theory for A-harmonic maps, see for instance [28,
Theorem 2.3], that

ρ−2 sup
B+
ρ/2

|Dh|2 + sup
B+
ρ/2

|D2h| ≤ cρ−2 −
∫
B+
ρ

|Dh|2 dx ≤ cρ−2.

Moreover, the Taylor expansion of h and the fact that h = 0 on Tρ(x0) imply that
for θ ∈ (0, 1/4),

sup
x∈B+

2θρ

|h(x)−Dnh(x0)xn|2 = sup
x∈B+

2θρ

|h(x)− h(x0)−Dh(x0)(x− x0)|2

≤ c(2θρ)4 sup
B+

2θρ

|D2h|2
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≤ cθ4ρ2.

This and the second inequality in (3.21) imply that

−
∫
B2θρ

|w −Dnh(x0)xn|2

(2θρ)2
dx ≤ cθ2,

hence, by the definitions of the affine function P+
2θρ := P+

x0,2θρ
and w and (3.17),

we obtain

−
∫
B2θρ

|u− P2θρ|2

(2θρ)2
dx ≤ (1 + |(Dnu)ρ|)2Ẽ+(x0, ρ)−

∫
B2θρ

|w −Dnh(x0)x|2

(2θρ)2
dx

≤ cθ2(1 + |(Dnu)ρ|)2E+(x0, ρ).
(3.22)

Next we estimate the second integral in (3.20). Let t ∈ (0, 1) be a number
satisfying

1
g2

= (1− t) +
t

g2d2
,

where d2 > 1 is given in Lemma 2.3. Then by applying Hölder’s inequality, Jensen’s
inequality to the concave map Ψ̃ with 1

2 Ψ̃(t) ≤ Ψ(t) := [G(t1/2)]1/g2 ≤ Ψ̃(t) (see
Lemma 2.2), (3.22), (2.8) and (2.2), we have

−
∫
B+

2θρ

G
( |u− P+

2θρ|
2θρ

)
dx

≤
(
−
∫
B+

2θρ

Ψ̃
( |u− P+

2θρ|2

(2θρ)2

)
dx
)(1−t)g2

(
−
∫
B+

2θρ

[
G
( |u− P+

2θρ|
2θρ

)]d2

dx
)t/d2

≤ c
[
Ψ̃
(
θ2(1 + |(Dnu)ρ|)2E+(x0, ρ)

)](1−t)g2
(
−
∫
B2θρ

G(|Du−DP+
2θρ|) dx

)t
≤ c
[
G
(
θ(1 + |(Dnu)ρ|)

√
E+(x0, ρ)

)]1−t(
−
∫
B2θρ

G(|Du−DP+
2θρ|) dx

)t
≤ c[θ

√
E+(x0, ρ)]g1(1−t)[G(1 + |(Dnu)ρ|)]1−t

(
−
∫
B2θρ

G(|Du−DP+
2θρ|) dx

)t
.

In addition, keeping in mind that P+
x0,r = Q+

x0,rxn, from (2.10), (2.2), (2.8), (2.11)
and the definition of E we have

−
∫
B+

2θρ

G(|Du−DP+
2θρ|) dx

≤ c−
∫
B+

2θρ

G(|Du− (Dnu)ρ ⊗ en|) dx+ cG(|(Dnu)ρ ⊗ en −DP+
2θρ|)

≤ cθ−n −
∫
B+
ρ

G(|Du− (Dnu)ρ ⊗ en|) dx+ cG(|Q+
2θρ − (Dnu)ρ|)

≤ cθ−n −
∫
B+
ρ

G(|Du− (Dnu)ρ ⊗ en|) dx+ c−
∫
B+

2θρ

G(|Dnu− (Dnu)ρ|) dx

≤ cθ−n −
∫
B+
ρ

G(|Du− (Dnu)ρ ⊗ en|) dx

≤ cθ−nG(1 + |(Dnu)ρ|)E+(x0, ρ).
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Combining the two above estimates, we obtain

−
∫
B2θρ

G
( |u− P2θρ|

2θρ

)
dx

≤ cθg1−(n+g1)tG(1 + |(Dnu)ρ|)[E+(x0, ρ)](
g1
2 −1)(1−t)+1.

Therefore, taking ε1 > 0 sufficiently small so that

E+(x0, ρ)(
g1
2 −1)(1−t) ≤ ε(

g1
2 −1)(1−t)

1 ≤ θ−g1+(n+g1)t+2,

we obtain

−
∫
B+

2θρ

G
( |u− P+

2θρ|
2θρ

)
dx ≤ cθ2G(1 + |(Dnu)ρ|)E+(x0, ρ). (3.23)

Moreover, by a further assuming that√
E+(x0, ρ) ≤

√
ε1 ≤

θn

8
,

we have

1 + |(Dnu)ρ| ≤ 2(1 + |(Dnu)θρ|), 1 + |(Dnu)2θρ| ≤ 2(1 + |(Dnu)θρ|). (3.24)

Indeed,

1 + |(Dnu)ρ| ≤ 1 + |(Dnu)θρ|+ |(Dnu)θρ − (Dnu)ρ|

≤ 1 + |(Dnu)θρ|+ θ−n
√
E+(x0, ρ)(1 + |(Dnu)ρ|)

≤ 1 + |(Dnu)θρ|+
1
8

(1 + |(Dnu)ρ|),

which implies the first inequality in (3.24). Similarly, using the first inequality in
(3.24) with θ replaced by 2θ, the second inequality in (3.24) can be obtained such
that

1 + |(Dnu)2θρ| ≤ 1 + |(Dnu)θρ|+ |(Dnu)θρ − (Dnu)ρ|+ |(Dnu)2θρ − (Dnu)ρ|

≤ 1 + |(Dnu)θρ|+ (θ−n + (2θ)−n)
√
E+(x0, ρ)(1 + |(Dnu)ρ|)

≤ 1 + |(Dnu)θρ|+
1
2

(1 + |(Dnu)2θρ|).

Therefore, inserting the first inequality in (3.24) into (3.22) and (3.23), we obtain

−
∫
B+

2θρ

|u− P+
2θρ|2

(2θρ)2
dx ≤ cθ2(1 + |(Dnu)θρ|)2E+(x0, ρ), (3.25)

−
∫
B+

2θρ

G
( |u− P+

2θρ|
2θρ

)
dx ≤ cθ2G(1 + |(Dnu)θρ|)E+(x0, ρ). (3.26)

Step 2. Now we prove (3.19). Suppose that

E+(x0, ρ) ≤ ε1 ≤ θn. (3.27)

Then, in view of Lemma 3.1 with ρ replaced by θρ and ξ = Q+
2θρ, we have

−
∫
Bθρ

G2(1 + |Q+
2θρ|)|Du−Q

+
2θρ ⊗ en|

2 dx+−
∫
Bθρ

G(|Du−Q+
2θρ ⊗ en|) dx
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≤ cG2(1 + |Q+
2θρ|)−

∫
B2θρ

|u− P+
2θρ|2

(2θρ)2
dx+ c−

∫
B2θρ

G
( |u− P+

2θρ|
2θρ

)
dx

+ cG(1 + |Q+
2θρ|)

{
µ
(
−
∫
B+

2θρ

|u|2 dx
)

+ V(2θρ)
}
.

Here, we note that G̃(t) := G(t1/2) is also an N -function and satisfies (2.1) with g1

and g2 replaced by g1
2 and g2

2 , which are larger than 1. Therefore, in view of (3)
and (4) of Proposition 2.1 with G(t) = G̃(t), we have G2(t)τ2 ≤ c(G(t) + G(τ)).
From this, (2.7) and Lemma 2.5 with (ρ, θ) replaced by (θρ, 1/2), we have

G2(1 + |(Dnu)θρ|)−
∫
Bθρ

|Du− (Dnu)θρ ⊗ en|2 dx

≤ cG2(1 + |Q+
2θρ|)−

∫
Bθρ

|Du− (Dnu)θρ ⊗ en|2 dx

+ cG2(|(Dnu)θρ −Q+
θρ|)−

∫
Bθρ

|Du− (Dnu)θρ ⊗ en|2 dx

+ cG2(|Q+
θρ −Q

+
2θρ|)−

∫
Bθρ

|Du− (Dnu)θρ ⊗ en|2 dx

≤ cG2(1 + |Q+
2θρ|)−

∫
Bθρ

|Du−Q+
2θρ ⊗ en|

2 dx+ c−
∫
Bθρ

G(|Du− (Dnu)θρ ⊗ en|) dx

+ cG(|(Dnu)θρ −Q+
θρ|) + cG(|Q+

θρ −Q
+
2θρ|)

≤ cG2(1 + |Q+
2θρ|)−

∫
Bθρ

|Du−Q+
2θρ ⊗ en|

2 dx+ c−
∫
Bθρ

G(|Du− (Dnu)θρ ⊗ en|) dx

+ c−
∫
B2θρ

G
( |u− P+

2θρ|
2θρ

)
dx.

Using the above two estimates along with (2.7), we obtain

G(1 + |(Dnu)θρ|)C(x0, θρ)

= G2(1 + |(Dnu)θρ|)−
∫
Bθρ

|Du− (Dnu)θρ ⊗ en|2 dx

+−
∫
Bθρ

G(|Du− (Dnu)θρ ⊗ en|) dx

≤ cG2(1 + |(Dnu)2θρ|) mintB2θρ

|u− P+
2θρ|2

(2θρ)2
dx+ c−

∫
B2θρ

G
( |u− P+

2θρ|
2θρ

)
dx

+ cG(1 + |Q+
2θρ|)

{
µ
(
−
∫
B+

2θρ

|u|2 dx
)

+ V(2θρ)
}
.

(3.28)
We further estimate the right-hand side of the above inequality. Applying (2.11),
(3.27) and (3.24), we see that

G(|Q+
2θρ|) ≤ cG(|Q+

2θρ − (Dnu)2θρ|) + cG(|(Dnu)2θρ|)

≤ cθ−n −
∫
B+
ρ

G(|Dnu− (Dnu)ρ|) dx+ cG(|(Dnu)2θρ|)



16 J. OK EJDE-2018/84

= cθ−n −
∫
B+
ρ

G(|Du− (Dnu)ρ ⊗ en|) dx+ cG(|(Dnu)2θρ|)

≤ c(θ−nE+(x0, ρ) + 1)G(1 + |(Dnu)θρ|)
≤ cG(1 + |(Dnu)θρ|).

Moreover, using Poincaré’s inequality and the fact that ρ ≤ θn, we have

−
∫
B+

2θρ

|u|2 dx ≤ cθ−n −
∫
B+
ρ

|u|2 dx ≤ cρ−
∫
B+
ρ

|Dnu|2 dx.

Therefore, inserting the previous two inequalities, (3.25) and (3.26) into (3.28), we
obtain

C(x0, θρ) ≤ cθ2E+(x0, ρ) + c[E+(x0, ρ)]2.
Finally, assuming E+(x0, ρ) ≤ ε1 ≤ θ2, we prove (3.19). �

4. Proof of Theorem 1.1

We first consider elliptic systems in the unit half ball with the zero boundary
datum.

Theorem 4.1. Suppose G : [0,∞) → [0,∞) is C2 and satisfies (1.1), 0 < r < 1,
and a : Br × RN × RnN → RN satisfies (1.3), (1.7), (1.9) and (1.10). Let u ∈
W 1,G(Br,RN ) be a weak solution to

div a(x, u,Du) = 0 in B+
r ,

u = 0 on T := Tr.
(4.1)

Then the set of regular points on T denoted by

Tu := ∩α∈(0,1)

{
x0 ∈ T : u ∈ Cα(Ux0 ∩B+

r ,RN ) for some Ux0 ⊂ Br
}
,

where Ux0 is an open neighborhood of x0, satisfies

T \ Tu ⊂
{
x0 ∈ T : lim inf

ρ↓0
−
∫
B+
ρ (x0)

|Du− (Dnu)x0,ρ ⊗ en| dx > 0
}

∪
{
x0 ∈ T : lim sup

ρ↓0
−
∫
B+
ρ (x0)

G(|Dnu|) dx =∞
}
.

Proof. Step 1: Determination of parameters. Fix any α ∈ (0, 1), and denote

λ := n− 2(1− α) ∈ (n− 2, n). (4.2)

We then determine parameters θ and ε2 such that

θ = θ(n,N,L, ν, g1, g2, α) := min
{1

8
,

1√
2c1

,
1

31/(n−λ)

}
, (4.3)

ε2 = ε2(n,N,L, ν, g1, g2, µ(·), α) := min
{θn

16
,
ε1
2

}
, (4.4)

where c1 and ε1 are determined in Lemma 3.3. Furthermore, by the definitions of
µ(·) and V(·), one can find δ1 = δ1(n,N,L, ν, g1, g2, µ(·),V(·), α) > 0 such that

[µ(r)]1/2 + [V(r)]
1

2g2−1 ≤ ε2 for every r ∈ (0, δ1]. (4.5)

We denote
ρ1 := min {θn, δ1} < 1. (4.6)
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Step 2: Decay estimates on the boundary. Let x0 ∈ T and ρ ≤ min{ρ1, r −
|x0|}. Without loss of generality, we shall write for t > 0, B+

t = B+
t (x0) and

(Dnu)t = (Dnu)B+
t (x0). We then suppose that

C(x0, ρ) ≤ ε2 and M(x0, ρ) ≤ δ1, (4.7)

see (3.13) and (3.16) for the definitions of C(x0, ρ) and M(x0, ρ). Under this con-
dition, we will show that for any k = 0, 1, 2, . . . ,

C(x0, θ
kρ) ≤ ε2 and M(x0, θ

kρ) ≤ δ1. (4.8)

For convenience, we write (4.8)k,1 (resp. (4.8)k,2) for the first (resp. second) in-
equality in (4.8).

We prove (4.8) by induction. Suppose that the inequalities in (4.8) hold for k,
we then prove (4.8) with k replacing by k + 1. We first observe from (4.8)k,1 and
Hölder’s inequality that

−
∫
B+
θkρ

|Du− (Dnu)θkρ ⊗ en|2 dx ≤ (1 + |(Dnu)θkρ|)2C(x0, θ
kρ)

≤ 2ε2
(

1 +−
∫
B+
θkρ

|Dnu|2 dx
)
,

(4.9)

and so by (4.8)k,2,

θkρ−
∫
B+
θkρ

|Du− (Dnu)θkρ ⊗ en|2 dx ≤ 2ε2θkρ+ 2ε2δ1.

This together with (4.3), (4.4) and (4.6) imply

M(x0, θ
k+1ρ) ≤ 2θk+1ρ−

∫
B+
θk+1ρ

|Du− (Dnu)θkρ ⊗ en|2 dx+ 2θk+1ρ|(Dnu)θkρ|2

≤ 2θ1−nθkρ−
∫
B
θkρ

|Du− (Dnu)θkρ ⊗ en|2 dx+ 2θM(x0, θ
kρ)

≤ 4θk+1−nε2ρ+ 4θ1−nε2δ1 + 2θδ1
≤ 4θ−nε2ρ+ 4θ−nε2δ1 + 2θδ1
≤ δ1,

which shows (4.8)k+1,2. It remains to prove (4.8)k+1,1. We notice from (3.15),
(4.8)k,1, (4.8)k,2, the fact that θkρ ≤ ρ1 ≤ δ1 by (4.6), and (4.5) that

E+(x0, θ
kρ) ≤ ε2 + [µ(δ1)]1/2 + [V(δ1)]

1
2g2−1 ≤ 2ε2.

Therefore, applying Lemma 3.3 and (4.3), we have

C(x0, θ
k+1ρ) ≤ 2c1θ2ε2 ≤ ε2.

This shows (4.8)k+1,1. Then, by induction, we prove that (4.8) holds for all k =
0, 1, 2, . . . .

From the previous result, we also see that (4.9) holds for all k = 0, 1, 2, . . . , which
together with (4.4) and (4.9) implies

−
∫
B+
θk+1ρ

|Du|2 dx ≤ 2−
∫
B
θk+1ρ

|Du− (Dnu)θkρ ⊗ en|2 dx+ 2|(Dnu)θkρ|2



18 J. OK EJDE-2018/84

≤ 2θ−n −
∫
B+
θkρ

|Du− (Dnu)θkρ|2 dx+ 2−
∫
B+
θkρ

|Dnu|2 dx

≤ 4θ−nε2 + (4θ−nε2 + 2)−
∫
B+
θkρ

|Dnu|2 dx

≤ 4θ−nε2 + 3−
∫
B+
θkρ

|Du|2 dx,

and so by (4.3),∫
B+
θk+1ρ

|Du|2 dx ≤ θλ
∫
B+
θkρ

|Du|2 dx+ 2|B1|(θkρ)n.

Applying Lemma 2.6 with φ(r) =
∫
B+
r (x0)

|Du|2 dx, we have for every r ∈ (0, ρ],∫
B+
r (x0)

|Du|2 dx ≤ c
{( r
ρ

)λ ∫
B+
ρ (x0)

|Du|2 dx+ rλ
}

≤ c

ρλ

(∫
B+
ρ (x0)

|Du|2 dx+ 1
)
rλ.

(4.10)

Step 3: Choice of regular points on the boundary. In the last step, we have
shown that if (4.7) holds then we have (4.10). Hence, in this step, we find boundary
points satisfying (4.7). Suppose that x0 ∈ T satisfies

lim inf
ρ↓0

−
∫
B+
ρ (x0)

|Du− (Dnu)B+
ρ (x0) ⊗ en| dx = 0,

mx0 := lim sup
ρ↓0

−
∫
B+
ρ (x0)

G(|Dnu|) dx <∞.
(4.11)

Then we show that x0 ∈ Tu. For simplicity, we omit writing x0, for instance,
B+
ρ = B+

ρ (x0) and (Dnu)ρ = (Dnu)B+
ρ (x0).

Fix α ∈ (0, 1), and set t ∈ (0, 1) such that

1
g2

= t+
(1− t)

g2(1 + σ1)
, (4.12)

where σ1 is determined in Lemma 2.9. We further define

s := min
{
G−1

([
G
(
(
ε2
2

)1/2
) (mx0 + 2)t−1

c2

] 1
t
)
, δ1

}
< 1, (4.13)

where c2 = c2(n,N,L, ν, g1, g2) > 0 will be determined later. Then, in view of
(4.11), one can find ρ̃ > 0 with

ρ̃0 ≤ min
{
ρ1,

1− |x0|
4

,
[4n(mx0 + 1)

G(1)
+ 1
]−1

δ1

}
(4.14)

such that

−
∫
B+
ρ̃

|Du− (Dnu)ρ̃ ⊗ en| dx < s and −
∫
B+

4ρ̃

G(|Dnu|) dx < mx0 + 1. (4.15)

We first observe from Hölder’s inequality with (4.12) that

−
∫
B+
ρ̃

G(|Du− (Dnu)ρ̃ ⊗ en|) dx ≤
(
−
∫
B+
ρ̃

[G(|Du− (Dnu)ρ̃ ⊗ en|)]
1
g2 dx

)tg2
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×
(
−
∫
B+
ρ̃

[G(|Du− (Dnu)ρ̃ ⊗ en|)]1+σ1 dx
) 1−t

1+σ1
.

Then by applying Jensen’s inequality to the concave function Ψ̃ with

1
2

Ψ̃(t) ≤ Ψ(t) := [G(t)]1/g2 ≤ Ψ̃(t)

(see Lemma 2.2) and (4.15), we have

−
∫
B+
ρ̃

[G(|Du− (Dnu)ρ̃ ⊗ en|)]
1
g2 dx ≤ Ψ̃

(
−
∫
B+
ρ̃

|Du− (Dnu)ρ̃ ⊗ en| dx
)

< 2[G(s)]
1
g2 .

On the other hand, applying Jensen’s inequality to the convex map t 7→ [G(t)]1+σ1 ,
(2.16), (4.15) and (2.15), we have

−
∫
B+
ρ̃

[G(|Du− (Dnu)ρ̃ ⊗ en|)]1+σ1 dx ≤ c−
∫
B+
ρ̃

[G(|Du|)]1+σ1 dx

≤ c
(
−
∫
B+

2ρ̃

[G(|Du|) + 1] dx
)1+σ1

≤ c
(
−
∫
B+

4ρ̃

[G(|Dnu|) + 1] dx
)1+σ1

≤ c(mx0 + 2)1+σ1 .

Therefore,

−
∫
B+
ρ̃

G(|Du− (Dnu)ρ̃ ⊗ en|) dx < c2[G(s)]t(mx0 + 2)1−t

for some c2 = c2(n,N,L, ν, g1, g2) > 0, and so by (4.13),

−
∫
B+
ρ̃

G(|Du− (Dnu)ρ̃ ⊗ en|) dx < G
((ε2

2

)1/2)
,

from which together with Jensen’s inequality for the convex map t 7→ G(
√
t), we

have

C(x0, ρ̃) ≤
[
G−1

(
−
∫
B+
ρ̃

G(|Du− (Du)ρ̃ ⊗ en|) dx
)]2

+ [G(1)]−1 −
∫
B+
ρ̃

G(|Du− (Du)ρ̃ ⊗ en|) dx

≤ ε2
2

+ [G(1)]−1G
(ε2

2

)1/2)
≤ ε2

2
+
(ε2

2

)g1/2

≤ ε2.

Moreover, by (4.14) and (4.15), we see that

M(x0, ρ̃) = ρ̃−
∫
B+
ρ̃

|Dnu|2 dx ≤ ρ̃
( 4n

G(1)
−
∫
B+

4ρ̃

G(|Dnu|) dx+ 1
)
< δ1.
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Therefore, in view of (4.8), we obtain

C(x0, θ
kρ̃) ≤ θnε2

32g2+n
, M(x0, θ

kρ̃) ≤ θnδ1
3n

for k = 0, 1, 2, . . . . (4.16)

Step 4: Morrey-Campanato estimates. We first consider any two sets

B+
ρ2

(x2) ⊂ B+
ρ1

(x1) with C(x1, ρ1) ≤ θn

2
and

ρ2

ρ1
∈ [θ, 1]. (4.17)

Then
1 + |(Dnu)B+

ρ1 (x1)|
1 + |(Dnu)B+

ρ2 (x2)|
≤ −
∫
B+
ρ2 (x2)

|Dnu− (Dnu)B+
ρ1 (x1)|

1 + |(Dnu)B+
ρ2 (x2)|

dx+ 1

≤
(ρ1

ρ2

)n
C(x1, ρ1)

1 + |(Dnu)B+
ρ2 (x2)|

1 + |(Dnu)B+
ρ2 (x2)|

+ 1

≤
1 + |(Dnu)B+

ρ2 (x2)|
2(1 + |(Dnu)B+

ρ2 (x2)|)
+ 1,

(4.18)

which yields
1 + |(Dnu)B+

ρ1 (x1)| ≤ 2(1 + |(Dnu)B+
ρ2 (x2)|). (4.19)

Then, for Bρ(x0) with ρ ∈ (0, ρ̃], since θk+1ρ̃ < ρ ≤ θkρ̃ for some k, we see that
(4.17) holds for x1 = x2 = x0, ρ1 = θkρ̃ and ρ2 = ρ. Hence using (4.19) and (4.16),
we have

C(x0, ρ)

≤ −
∫
B+
ρ

[ |Du− (Dnu)θkρ̃ ⊗ en|2

(1 + |(Dnu)ρ|)2
+
G(|Du− (Dnu)θkρ̃ ⊗ en|)

G(1 + |(Dnu)ρ|)

]
dx

≤ 2g2

θn
−
∫
B+
θkρ̃

[ |Du− (Dnu)θkρ̃ ⊗ en|2

(1 + |(Dnu)θkρ̃|)2
+
G(|Du− (Dnu)θkρ̃ ⊗ en|)

G(1 + |(Dnu)θkρ̃|)

]
dx

≤ 2g2

θn
C(x0, θ

kρ̃)

≤ 2−(g2+n)ε2.

(4.20)

In addition, we also have from (4.16) that

M(x0, ρ) = θ−nM(x0, θ
kρ̃) ≤ 3−nδ1. (4.21)

Now we derive Campanato-Morrey type estimates. without loss of generality, we
suppose that x0 = 0. Define ρ0 := ρ̃/6. We then consider balls B+

r (y) with y = (y)
which satisfy one of following:

(i) y ∈ T2ρ0 and 0 < r < 4ρ0.
(ii) y ∈ B+

2ρ0
and B+

r (y) ⊂ B+
2ρ0

.

Case (i): Since B+
r (y) ⊂ B+

4ρ0
(y) ⊂ B+

6r0
, (2r0)/(6ρ0) = 1/3 and C(0, 6ρ0) ≤

ε2 ≤ 3−(n+1), using the same argument as in (4.18), we see that

1 + |(Dnu)y,2ρ0 | ≤ 2 (1 + |(Dnu)0,6ρ0 |) ,

which by the same way as in (4.20) yields

C(y, 2ρ0) ≤ 3g2+nC(0, 6ρ0) ≤ ε2.
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Moreover, we have
M(y, 2ρ0) ≤ 2nM(0, 4ρ0) ≤ δ1.

Therefore, in view of Step 2, we have∫
B+
r (y)

|Du|2 dx ≤ c

ρλ0

(∫
B+

2ρ0
(y)

|Du|2 dx+ 1
)
rλ

≤ c

ρλ0

(∫
B+

6r0

|Du|2 dx+ 1
)
rλ.

(4.22)

Moreover, by (4.8), (4.20) and (4.21), we also have for all ρ ∈ (0, 4ρ] that

C(y, ρ) ≤ 2g2θ−nC(y, θk(4ρ0)) ≤ 2g2θ−nε2, (4.23)

M(y, ρ) ≤ θ−nM(y, θk(4ρ0)) ≤ θ−nδ1, (4.24)

where k is a nonnegative integer satisfying θk+1(4ρ0) < ρ ≤ θk(4ρ0).
Case (ii): Observe that Br(y) ⊂ Byn(y) = B+

yn(y) ⊂ B+
2yn

(y′), where y =
(y1, . . . , yn−1, yn) and y′ = (y1, . . . , yn−1, 0). Then since C(y′, 2yn) ≤ 2g2θ−nε2, in
the same manner as in Case (i), we have

1 + |(Dnu)B+
2yn

(y′)| ≤ 2
(
1 + |(Dnu)Byn (y)|

)
≤ 2

(
1 + |(Du)Byn (y)|

)
.

Then we have from (4.23) and (4.24) that

Cint(y, yn)

:= −
∫
Byn (y)

[ |Du− (Du)y,yn |2

(1 + |(Du)y,yn |)2
+
G(|Du− (Du)y,yn |)
G(1 + |(Du)y,yn |)

]
dx

≤ 2n+g2 −
∫
Byn (y)

[ |Du− (Dnu)y′,2yn ⊗ en|2

(1 + |(Dnu)y′,2yn |)2
+
G(|Du− (Dnu)y′,2yn ⊗ en|)

G(1 + |(Dnu)y′,2yn |)

]
dx

≤ 2n+g2C(y′, 2yn) ≤ 2n+2g2θ−nε2,

Mint(y, yn)

:= yn −
∫
Byn (y)

|Du|2 dx

≤ 2yn
(
−
∫
Byn (y)

|Du− (Dnu)y′,2yn ⊗ en|2 dx+−
∫
B2yn (y′)

|Dnu|2 dx
)

≤ 2yn
(

2n+1C(y′, 2yn)
(

1 +−
∫
B2yn (y′)

|Dnu|2 dx
)

+−
∫
B2yn (y′)

|Dnu|2 dx
)

≤ 2n+1C(y′, 2yn) (1 +M(y′, 2yn)) +M(y′, 2yn)

≤ 2n+22g2θ−nε2 + θ−nδ1.

Therefore, by applying the results of interior partial regularity in [48], see [48,
p.752-753], we have∫

Br(y)

|Du|2 dx ≤ c

yλn

(∫
Byn (y)

|Du|2 dx+ 1
)
rλ ≤ c

yλn

(∫
B+

2yn
(y′)

|Du|2 dx+ 1
)
rλ.

Here, we choose sufficiently small ε2 and δ1, so that the argument in there still
holds even we replace the assumption in [48, Eq. (4.32)] with the above estimates
related to Cint and Mint.
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Moreover, since 2yn ≤ 4ρ0 and |y′| < 2ρ0, by applying (4.22) we obtain∫
Br(y)

|Du|2 dx ≤ c

yλn

( c

ρλ0

(∫
B+

6ρ0

|Du|2 dx+ 1
)

(2yn)λ + 1
)
rλ

≤ c

ρλ0

(∫
B+

6r0

|Du|2 dx+ 1
)
rλ.

(4.25)

Therefore by Morrey-Campanato type embedding, see for instance [29, Theorem2.3]
along with (4.22) and (4.25), we have proved the theorem �

Now we prove our main result.

Proof of Theorem 1.1. Fix x̃ ∈ ∂Ω. Since ∂Ω ∈ C1, there exists a C1 function
γ : Rn−1 → R such that, in the coordinate system with the origin at x̃ and νx̃ = en,
Br∩Ω = {x = (x′, xn) ∈ Br : xn > γ(x′)}. Here, r > 0 is sufficiently small and will
be determined later. We next define a map T : Rn → Rn by y = T (x′, xn − γ(x′))
and its inverse by T−1(y) = (y′, yn + γ(y′)). Note that by choosing sufficiently
small r > 0, we have ‖DT‖L∞ = ‖DT−1‖L∞ ≤

√
2, and for any ρ ≤

√
2r,

B+

ρ/
√

2
≤ T (Ω ∩Bρ) ≤ B+√

2ρ
.

Now we set

ũ(y) := u(T−1(y))− g(T−1(y)),

ã(y, ζ, ξ) := a(T−1(y), ζ + g(T−1(y)), D[T−1(y)]ξ +D[g(T−1(y))]).

Then we see that

|ã(y, ζ, ξ)|+ |∂ã(y, ζ, ξ)|(1 + |ξ|) ≤ L̃G1(1 + |ξ|),
∂ã(y, ζ, ξ)η · η ≥ ν̃G2(1 + |ξ|)|η|2,

and

|ã(y, ζ1, ξ)− ã(y, ζ2, ξ)| ≤ L̃µ(|ζ1 − ζ2|2)G1(1 + |ξ|),

|∂ã(y, ζ, ξ1)− ∂ã(y, ζ, ξ2)| ≤ L̃µ
( |ξ1 − ξ2|

1 + |ξ1|+ |ξ2|

)
G2(1 + |ξ|),

where L̃ and ν̃ depend on L, ν, g1, g2 and ‖Dg‖L∞ ,

lim
ρ̃→0
Ṽ(ρ̃) := lim

ρ̃→0

(
sup

0<r̃≤ρ̃
sup
ỹ∈Rn

−
∫
B+
r̃ (ỹ)

Ṽ (y,B+
r̃ (ỹ)) dy

)
≤ c
{

lim
ρ→0
V(ρ) + lim

ρ̃→0

(
µ(cρ̃2) + τ(cρ̃)

)}
= 0,

where

Ṽ (y, U) := sup
ζ∈RN

sup
ξ∈RnN

|ã(y, ζ, ξ)− (ã(·, ζ, ξ))U |
G1(1 + |ξ|)

≤ 2L̃,

and τ(·) is the both modulus of the continuities of Dg and DT−1. Moreover, ũ is
a weak solution to the system

div ã(y, ũ,Dũ) = 0 in B+
r ,

ũ = 0 on Tr.
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Finally,

−
∫
B+
r̃

|Dũ− (Dnũ)B+
r̃
⊗ en| dy ≤ c−

∫
B+
r̃

|Dũ− (Dnu)Br̃/√2∩Ω ⊗ en| dy

≥ −
∫
Br̃/
√

2∩Ω

|Du− (Dnu)Br̃/√2∩Ω ⊗ en| dx

−
∫
B+
r̃

G(|Dnu|) dy ≤ c−
∫
Br̃/
√

2∩Ω

G(|Dnu|) dx.

Therefore, if x̃ ∈ ∂Ω satisfies

lim inf
r→0

−
∫
Br∩Ω

|Du− (Dnu)Br∩Ω ⊗ en| dx = 0,

lim sup
r→0

−
∫
Br∩Ω

G(|Dnu|) dx <∞,

then by Theorem 4.1 we see that 0 ∈ Tũ, which implies x̃ ∈ ∂Ωu. �
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[48] J. Ok; Partial Hölder regularity for elliptic systems with non-standard growth, J. Funct.
Anal., 274 (3) (2018), 723-768.

[49] R. E. Showalter; Monotone operators in Banach space and nonlinear partial differential equa-

tions, Mathematical Surveys and Monographs, 49. American Mathematical Society, Provi-
dence, RI, 1997.

[50] C. van der Heide; Regularity results for nonlinear elliptic systems, PhD Thesis, School of

Mathematics and Physics, The University of Queensland. doi:10.14264/uql.2017.30 (2016).
[51] C. van der Heide; Partial continuity for nonlinear systems with nonstandard growth and

discontinuous coefficients, arXiv:1711.01389.

Jihoon Ok
Department of Applied Mathematics and Institute of Natural Science, Kyung Hee Uni-

versity, Yongin 17104, Korea

E-mail address: jihoonok@khu.ac.kr


	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Orlicz function and space
	2.3. Basic inequalities
	2.4.  A-harmonic approximation on half balls
	2.5. Some estimates for weak solutions

	3. Linearization and excess decay estimates
	4. Proof of Theorem ??
	Acknowledgments

	References

