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STABLE MANIFOLDS FOR IMPULSIVE DELAY EQUATIONS
AND PARAMETER DEPENDENCE

DHIRENDRA BAHUGUNA, LOKESH SINGH

ABSTRACT. In this article, we establish the existence of Lipschitz stable in-
variant manifolds for the semiflows generated by the delay differential equa-
tion &’ = L(t)x¢+ f (¢, z¢, A) with impulses at times {7}$°,, assuming that the
perturbation f(t,z¢, A) as well as the impulses are small and the corresponding
linear delay differential equation admits a nonuniform exponential dichotomy.
We also show that the obtained manifolds are Lipschitz in the parameter A.

1. INTRODUCTION

In the modern theory of dynamical systems, the invariant manifold theory plays
an essential role in the study of qualitative behavior of the dynamics. According
to the classical formulation, the existence of a uniform exponential dichotomy, in-
troduced by Perron [I1], for linear differential equations is sufficient to ensure the
existence of invariant manifolds for semiflows generated by the linear differential
equations. In 1976, Pesin [I2] obtained a smooth invariant manifold for uniformly
hyperbolic trajectories. It is important to note that the existence of uniform expo-
nential dichotomy neglects the possibility of the dependence of norm of the solution
on the initial time. While this dependency is quite natural as almost all trajectories
with nonzero Lyapunov exponents of a smooth dynamical system preserving a fi-
nite invariant measure have a linear variational equation for which such dependency
occurs. Therefore Oseledets [10], Pesin [13] as well as other experts in this field,
were considering the more general type of hyperbolic behavior. Luis Barreira and
Claudia Valls introduced the notion of nonuniform exponential dichotomy in [3] and
they obtained a smooth invariant manifold for a nonautonomous equation. Their
further work can be seen in their book on stability of nonautonomous differential
equation [4].

Differential equations involving impulsive effects are seen as a natural descrip-
tion of observed evolution phenomenon of several real world problems. In recent
times, impulsive dynamical systems have also described many applications to the
real world as elaborated in [8]. Similarly, delay differential equations have also been
used to interpret many physical models. Continuing the work started by Luis Bar-
reira and Claudia Valls in [ [7], we are considering an impulsive delay differential
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equation,
=Ltz + ft, 2, \) t#7, zs=0¢, Azx(ry)=IL(v,N), (1.1)

with impulses at times s < 7; < 7341 < t for i € N. We will construct a Lipschitz
stable invariant manifold for the semiflows generated by the differential equation
(1.1), assuming the existence of a nonuniform exponential dichotomy for the corre-
sponding linear differential equation. We also establish that the stable manifold is
Lipschitz in the parameter.

According to the theory of nonuniform hyperbolic dynamics for a dynamical
system, if the Lyapunov exponents are nonzero then the system follows nonuniform
exponential behavior (showed by Y. Pesin) [2]. Therefore our work applies to
all such impulsive systems and can also be considered as a contribution to the
nonuniform hyperbolic dynamics. Our result helps in the further development of
the geometric theory of impulsive dynamical systems. Primarily this article is
inspired by [II, [7, 6] in which author obtained Lipschitz stable manifolds for the
differential equation «’ = L(t)x; + f(t,z¢, A) with the assumption of a nonuniform
exponential dichotomy. Due to the existence of infinite impulses, our main task is
to control the bounds of the solutions disturbed by the impulses. We are going to
do so by assuming sufficiently fast decay of the impulses in time.

This article is divided into three sections. In the first section, some preliminary
results are given. In the second section, we are proving the stability result for
the solution of the impulsive system with delay by assuming contraction on the
solution operator and in the final section, we establish invariant manifolds under
the assumption of a nonuniform exponential dichotomy.

2. PRELIMINARIES

Given r > 0, let B = C([—r,0],R™) be the Banach space of continuous functions,
¢ : [-r,0] - R™ with the norm

oIl = S |#(6)

e[—r,0]

, (2.1)

where |-| is the norm in R™. Now let us consider a set B of all functions, ¢ : [—r,0] —
R™, such that for each s € (—r,0) the limits limy_ .- ¢(f) and limy_, ,+ ¢(0) exist
and limg_, .+ ¢(0) = ¢(s). One can easily show that B is a Banach space with the

norm || - || given in (2.1)).

For s > 0 and ¢ € B, consider the initial value problem
o' = L(t)we, @5 =9, (2.2)

where z,(0) = z(t+6) for 0 € [—r,0],t > s, and L(t) : B — R™ are linear operators
for each ¢ > 0. We assume that the map (¢,2) — L(t)z is continuous and there
exists k > 0 such that

t+r
/t IL()lldr < k(1 +2),

for all t > 0.
Given a > s, a continuous function x : [s — r,a] — R™ is said to be a weak
solution of (2.2)) if zs = ¢ and the integral

2(t) = $(0) + / L(7)z.dr, (2.3)
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holds for ¢ € [s,a). With above assumptions on the operators L(t), for each (s, ¢) €
RT x B, there exists a unique global solution [s — r,+00) > ¢ — z4(, s,¢) of the
initial value problem [9] Now let T'(t,s) : B — B be the evolution operator
associated with equation defined by

T(t,5)6 = (- 5,6), £> 5. (2.4)
To extend T'(t, s) to the space B, we write L(t) in the form
0
L(t)p= [ do[n(t,0)]¢(0), (2.5)

for some n x n matrices n(#) that are measurable in (¢,0) € Rt x [—r,0] and
continuous from the left in 6. Setting m,(t) = Var 7(t), where Var denotes the
total variation in [—r,0] and we have ||L(t)|| = m,(t). Each linear operator L(t)
can be extended to B using the integral in 7 provided that the Reimann-Stieltjes
sums take the value [n(t,b) — n(t,a)]¢(b™) for each sub-interval [a,b] C [—r,0]. (so
that the points at which both ¢ and n(t, -) have discontinuities cause no problems)

Moreover, for each (s, ¢) € RT x B, there is a unique solution ¢ — 2¢(+,8,0) C B
of the integral equation with z; = ¢ [9]. The corresponding evolution operator
T(t,s) : B — B is defined by

T(t,s)p = x4(-,5,0), t>s.
We note that T(t,s)|6 = T(t,s) and T'(t, 5)|B C B for any t > s+ r. The

extension T'(£, s) of the evolution operator T'(t, s) to the space B is needed to write
the variation of parameters formula in the space B.
We consider the impulsive functional differential equation with state dependent
delay,
a’ :L(t)xt+f<t7xt’)‘>; Ts :(b;

2.6
Ax(ry) = Li(xr,A), <7 < < T < Tig1.e-s (26)

for some perturbation f : Rt x B x Y — R™, where Y = (Y, ] -|) is an open subset
of R (the parameter space), ¢ € B. I, : BXxY — R", for i € N are appropriate
functions and the symbol A&(t) represents the jump of the function £ at ¢, which is
defined by A¢ = £(t1) — (). Impulses are introduced at times {7;}5°; satisfying
§ <1 < Tqq and lim;, 4 oo 7; — 400, with
card{i e N: s < 7; < t}
p = sup <

t>s>0 t—s

0. (2.7)

Further we assume that
(i) f(t,0,A\)=0fort>0and A €Y;
(ii) there exist constants ¢,q > 0 such that for ¢,¢ € B and \,u €Y,

[f (0, 0) = £t 0, M| < cllg =l (ll* + [[¥]l7), (2.8)

|f(t’ (b’ )‘) - f(tv ¢7M)| < CIA - M| ||¢H(1+1
Similarly,
(iii) L;(0,A\)=0for AeYandi=1,2,....
(iv) Given € > 0 there exists a positive constant § such that for each t > 0,7 € N,
&,6€Band A\, puey,

11; (&1, A) — Li(&2, A)| <

< e PTG — &, (2.10)
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11i(€A) = Li(€, p)| < de™>T

A — ul (€]l (2.11)

3. STABILITY WITH NONUNIFORM CONTRACTIONS

In this section we study the persistence of the stability when there is a nonuni-
form contraction. We say that equation (2.2) admits a nonuniform exponential
contraction if there are constants a < 0,¢ > 0 and K > 1 such that

1Tt s)]| < Kertmo0tes, (3.1)

for every t > s > 0. Moreover, equation (2.2)) is said to admit a uniform exponential
contraction if it admits a nonuniform exponential contraction with e = 0.
The following is a result for contractions. Let 3 = e(1+ %) and for a given v > 0,

we set

r, = sup Z e v(Ti=s),

s>0 ri>s

Theorem 3.1. Let K' > K be fized. Let equation (2.2) admits a nonuniform
exponential contraction with aq+ ¢ < 0 and r. < oo. Also we suppose that the
constants ¢ and ¢ in (2.8) and (2.10) are sufficiently small. Then, for each (s,$) €
R* x B with ||¢|| < e=P¢, the solution x}' of differential equation (2.6)) with impulse
satisfies,

l? = 2} || < K'e™ 2 x — puf [|¢]], (3.2)
fort>sand \,pe Y.

Proof. For t € [s,t1), the solution of the equation (2.6) is given by [9]

ay=T(t, )¢+ /t T(t,7)Xof (7,27, \)dT, (3.3)

where

0, —-r<6<0,
Xo(6) = {Id 9=0

For each A € Y, the solution given above can also be written as

(1) = T(t, 5) 6(0) + / Tt 1) (Xof (1,20, \) (0)dr, ¢ € [5,71).

Therefore,

o) = T, 5)60) + [ " P 7) (Xof (a0 V) (0)dr

Using the condition z(r{") = x(7;) + I1(z,,, \), for t € [11,72), we have

x(t) = T(t,m)x(r]) + / T(t,7) (Xof(T,2.,))) (0)dr

1
t

Tt ) () + L (s, \)] + / Tt 7) (Xof (1,20, ) (0)dr

T1

= T(t,m) [T(r1,5)6(0) + / " By (Ko f (r e N) (O)dr + Ty (1, )

+/ T(t,7) (Xof(r, 27, \)) (0)dr

T1
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= 7(0.90(0) + 107 [ 1) (Kof (70,3 (0)07]
+ T(t, 7)1 (20, N) + / T(t,7) (Xof(T,2,,))) (0)dr

= T(t7 S)¢(O) + / T(t7 T) (XOf(T7 Tr, >‘)) (0) dr + T(ta 7—1)—[1 (-Tn ’ >‘)

By repeating this process we obtain

T(t, s)¢+/ T, 7)Xof (T, 2., N)dT + Z T(t, 1) i(zr,,\), t>s. (3.4)

s<T;<t

Let Q be the set of all functions z : [s — 7, +00) — R™ such that z, = ¢, z; € B
for every t > s, and ||z||. < e™?*, where

1 el
||$|*_2I(8up{ea(ts)+est28 . (35)

One can easily verify that ) is a complete metric space with the norm given by
(3.5). Now for each A € Y, define an operator S* on € by

S a(t +0) = [T(t, 5)6)(6) + / P(t,7) (Xof (.22, N) (0)dr
+ Z (t, ) Li(zr,, ) (0).

s<T;<t

Note that for each ¢ € Q we have (5 z), = ¢ and (S*z); € B for every t > s.

Using ([2.8)),(2.10) and (3.1)) in the last equation, we have
5% (t + 6)]|

< 7t 5)6] + / 17 A (e e+ S B 7)1 (r,, M)

s<T; <t
< Kea(t78)+€s||¢|| +CK/ ea(t77)+er||x7_||q+1d7_
S

Z Kea(t*Ti)Jrﬂ'i 5673671

s<T; <t

< Kea(tfs)+es||¢” +2K25||LEH* Z ea(t75)+55672en

s<T; <t

T, ||

t
+ 2q+1CKq+2 ||£C||Z+1 / ea(tf‘r)+e‘rea(q+1)(rfs) ee(qul)sdT

SKea(tfs)jtes”qb”+{2Kea(tfs)+es}5KHx”* Z e 26T

s<T; <t

t
+ 2q+1ch+2Hx||Z+1ea(t—s)+ese(—a+e)sq / e(e—',—aq)TdT7

S

(Pl < 2K { L) 4+ LoearVeapott L 5xcall. 3 e,

s<T; <t
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where v = ¢(2K)9! /|ag + €|. Hence,

1
8211, < 5 (1]l + veler 0%zl + 25 Krac]a].)
2 (3.6)
< 3 (1+v+420Kry)e P,

provided that ¢ and § are sufficiently small, therefore v + 26 Kro. < 1. Hence we
conclude that S*(2) C . Furthermore, for each x,y € 2, we have

1(S*2)e — (S™y)ell

t
S/ T DI (e, A) = f(rye Mldr + > 1T 7)[Hi(@r, A) = Liyr, V)|

s<T; <t

t
<ol [ eI =y + e

=+ Z Kea(t—n)—i—snée—3en Hwﬂ —yr

s<T; <t

t
< C(QK)(J—H/ ea(t—7)+weaq(7—3)e(eq—ﬁtI)s||mT — yr|ld7

+ E Kea(t—ﬂ,)+€7'i 66—357',3 Hxﬂ — s,
s<T; <t

t
< c(g}()ﬁ?ea(tﬂ)e(eJrquﬁqfaq)s||~,1C _ y||*/ pletaa)T g0

+ 25K2 Z ea(tf'ri)Jren ea(Tifs)jLesefBe'ri T — y”*
s<T; <t
< 2KU6a(t—s)+ese(e+eq—5q)SHx —ylls + 25K2€a(t_s)+€$”:)j —yll. Z e 2T
s<t; <t
< 2K e 9% Lo 4 6K o) || — s
This gives
125 — Syl < {o + K|z — .. (3.7)

Since v+ §Kry. < 1, S* is a contraction map in €. Therefore for each A € Y, there
exists a unique function z = 2* € Q such that S*z = z. Moreover, using (3.6) we
have

1 v _
lzlls < Sliol + 56(6‘”6 P02l + S K rac| .

1 v+ 20K1o.
<= — e e ,
< gloll + ( I

2

Since v + 20 Kry. < 1, we obtain

z}]| < 2Ke*t =9 g, ¢ > s, (3.8)
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Now we establish (3.2), using (2.8),(2.9) and (3.8). First we obtain
[f (2, A) = f(7 2k, )
< |f(mad, A) = f(r a2, w) + [ (720, ) — f(r, a8, )|
<A —pl a2 + clla — 2| (lz2]]9 + |24]]7)

< ¢(2K)1HedlatDT=s) glale=B)Fes |\ _ ) ¢ (3:9)
+ QC(QK)qeaq(T*S)eq(efﬁ)s||xi\ —zH
< c(2K)q+1ea(q+1)(T—S)e[q(e—ﬁ)+€]s {|)\ — | |||l + Qka _ qu*} )
Similarly,
|Ii(x'>r\iﬂ )‘) - Ii(xfrbiﬂ 1“’)'
< |Ii(x¢iv>‘) - Ii(xiivﬂ)l + |Ii(x¢iv/‘) - Ii(x')r\inu'”
e N N (3.10)

< 07T = | + e~ a2,

< 2K e 5T TS (A [+

z — at[,) .
Using the inequalities given above, we have
||If — i
/ 1P )1 (7o X) = £t )l d 7
+ > T ) Ty, A) = L@k, )
s<T; <t
< cE)HIN = pl [lgl] + 2[ja* — 2|}

t
o / K ealt—m)+er jalat1)(r—s) la(e—B)+es g

+ 20K (A= prllla? o+l = al) D Kertmmimeetnmates
s<T; <t

v
% =2l < 21— pl 8] + vlla® = 2]l + 6K rac (17 = w2+l = 2.
v
< (5 +6Kra0) A — ul 9] + 12 = 1| (0 + 6Kz0),
2+ 6Kr
A b < u N —

where K’ = 2K {%} . By making the constants ¢ and § sufficiently small,

K’ can be made arbitrarily possible and hence we obtain the desired result (3.2)). O

4. EXISTENCE OF STABLE MANIFOLDS

In this section we establish the existence of stable invariant manifolds under
sufficiently small nonlinear perturbations in equation . We say that equation
(2.2) admits a nonuniform exponential dichotomy if there are projections P(t) :
B — B for t > 0 and constants a < 0 < b,e > 0 and K > 1, such that for every
t>s>0:

(i) P(O)T(¢,s) =T(t,5)P(s);
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(ii) Let I be the identity operator on B. Setting Q(t) = I — P(t), the map
To(t,s) :==T(t,s)|Q(s)B : Q(s)B — Q(t)B is invertible;
(i)
IT(t,5)P(s)]| < KeUm9% [ T(t,s) Q)| < Ke 797, (4.1)
Now, we define the stable and unstable subspaces by
E(t) = P(t)(B) and F(t) = Q(t)(B),

for each t > 0. Moreover, we say that admits a uniform exponential dichotomy
if it admits a nonuniform exponential dichotomy with e = 0.

For each s > 0, let B; (5) ( ) be the open ball of radius § centered at zero.
Givenn >0 and 0 =¢(1 + ) =, we consider the set of initial conditions

)}

and we set Zg = Zg(1). We denote by x the space of all continuous functions

_[35

Zs(n) = {(s,6) : s > 0,6 € By(*

® : Z3 — B having at most discontinuities of the first kind in the first variable such
that for each s > 0:

(1) ®(s,0) =0 and (s, B,(e77%)) C F(s);
(2) || ®(s,0) — B(s,9)| < ||¢ — 2| for every ¢, € By(e™P%).

One can easily verify that y is a Banach space with the norm

{|¢||¢>|| O 5> 0 and ¢ € Bu(e)\ {0}).

Given ® € y and A €Y, we consider the graph
Wi = {(5, 6, 9(5,0)) : (s,6) € Zg}. (12)
Furthermore, for each A €Y, let \I/é be the semiflow defined by the autonomous
system
t'=1, 2'=L{t)x;+ f(t,ze, N).
Given k =t — s > 0 and (s,us,vs) € RT x E(s) x F(s), we have
\Ilﬁ(s, Us, Us) = (S + Ky Ustr, Ushr),

where u; and v; are solutions of equation (2.6)) on stable and unstable spaces given
by

t S)us + / P(t t (t, 7)) Xof (T, ur, v, N)dT

(4.3)
+ Z 7Ti Ii(unavna)‘)v
s<T; <t
t $)vs + / Q(t) t (t, 7) Xof (T, tur,vr, N)dT
(4.4)

+ Z (t, 7V (U, Uy A)-

s<T; <t

The following is our main result. It establishes the existence of a stable invariant
manifold for differential equation (2.6)).
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Theorem 4.1. Let equation admit a nonuniform exponential dichotomy with
a+ 06 <0 and r. < oo. Also provided that the constants ¢ and § in and
are sufficiently small, then for each A €Y, there exists a unique function
O = > € \* such that the set Wy is forward invariant under the semiflow U2, in
the sense that

T (5,0, ®(s,¢)) € Wy, for every (s,¢) € Zs1c(2K) and r > 0. (4.5)

Furthermore, for every k =t —s > 0; ¢, € B(e” 89 /(2K)) and \, u €Y, there
exists D > 0 such that

[ (s, 6, D(s,0)) — Un(s, 1, D(s,9))[| < De*=IT<|jp —y|, (4.6)

195 (5,6, @2 (5, 0)) — Wh(s, 6, D (s, 9))I| < D™\ —p o] (4.7)

Proof. The proof is obtained in several steps. Let x* be the space of all functions
@ : R{ x B — B such that (I)’ZB € x and

O(s,0) = D (s, ¢/||9]]) for every (s,9) ¢ Zs.

We note that the functions in x* have at most discontinuities of the first kind as the
functions in y and also there is a one-to-one correspondence between functions in y
and functions in x*. Clearly, x* is a Banach space with the norm x* 3 & — | @\Zﬁ ",
It is not difficult to show that for each ® € x*, we have

1 (s, ¢) — (s, )|l < 2[l¢ — ], (4.8)
for every s > 0 and ¢,¢ € E(s) [5]. For the rest of the paper we assume that
re < 00. O

Since we want our stable manifold as a graph of some Lipschitz function ®
which is invariant under the semiflows. Therefore the form of the solution in the
manifold must be z(t) = (u(t), ®(¢,u(t))) € E(t) x F(t) with the initial condition
(us,vs) € E(s) x F(s) and hence the expression of the solution in the manifold is
given by

uy = T(t, s)us + /t P)T(t, 7)Xof (T, ur, ®(T,ur), \)dr

s (4.9)
+ > POT(t 7))L (tr,, @7, 1), M),
s<T;<t
O(t,up) = T(t, 5)®(s,¢) + /t T(t, T)Q(T)Xo f (7, ur, ®(7,ur), \)dr
s 4.10
+ Z T, 7)QT) i (tr,, B (73, sy, N)). #10)
s<T; <t

We first proof the existence of stable solution given by (4.9) and establish bounds
for it.

Lemma 4.2. Given the constants ¢,0 > 0 sufficiently small, and (s, ¢, \, @) €
Z3 XY x x*, there exists a unique function u : [s —r,00) — R™ with us = ¢ such
that uy € E(t) and (4.9) holds for every t > s. Furthermore:
(1) w is continuous in t with at most discontinuities of the first kind at the
points T;;
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2) for each t > s, with (s,®) € Zg and A\, u €Y we have
B
]| < 2Ke* =0t g, (4.11)
lug = wff|| < 2L g|[[A — pl, (4.12)
for some constant L'.

Proof. Let £ be the space of all continuous functions u : [s — r,00) — R™ with at
most discontinuities of the first kind at the points {7;} such that us = ¢, us € E(t)
for every t > s with (s, ¢) € Zg, and ||u|, < =7, where |- ||, is given by (3.5). €
is a complete metric space with the norm | - ||.. Given (s, ¢) € Zg and ® € x*, for
each A €Y we define an operator L* in Q' by

(L u), = Tt 5)6 + / (b, 7) P (1) Xo f (7. ur, & (7, ur), N)dr

+ Z (t,7:)P )I (Ur; D(75, Ur, ), A)-

s<T;<t
We note that (L u), = ¢ and (L*u); € E(t) for every t > s. By using ([2.8)), (.1)),
and (4.8]),

£ (7, ur, (7, ur), N)| < e (u, ®(7, ur)) |7

1

< c(|lurl + (| @ (7, ur) )
< c((lur]| + 2fu- )T = 39T a7

Similarly, by using equations (2.9)), (4.1)), and (4.8)),

|Ii(u7'ia (I)(Tiv uTi)? >‘)| S 66736‘” (u‘rivq)(’ria u‘ri) |
<66 ([lur || + |9 (7, ur))
S 3567367'7;

Ur, |-

Now using the relations given above and (4.1,
t
[(LAw)el| < Tt 5)9l +/ 1T 7)P(T)| [ (7, ur, @(7,ur), A)|dT

+ Z ”T t Tl )|||I (UTU(I)(TiauTi)v)‘”

s<T; <t

t
SKea(tfs)Jrest)”_’_/ Kea(tfr)+e-z—3q+1c||u‘rHquldT

Ur, ||

+ Z Kea(t*Ti)JrﬁTi 3667367]

s<T;<t
Denoting v/ = 3971y, we have
H(L)\ ) ” < Ke® a(t—s +es||¢|| —|—KUI a(t—s)+es s(q+1)s||qu+1

+66K26a(t—s +£S||u||* Z e—2€Ti

s<7’1<t

< 2 =04 (L) 4 L e 08 a1 4 8Kl
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Provided that the constants ¢ and ¢ are sufficiently small so that (v/ +6Kdra.) < 1,
we obtain L*(Q') C €. Furthermore, for each, u,v € ',

(L u); = (L )|
/ T, )P f (7t D(7,ur), A) = f (7,0, ®(7, 07), ) |dr
+ D> T ) PEO i, @ (73, 1r,), X) = Ti(vr,, (73, 07,), V)|
s<t;<t

t
< B / eI | (| + o 19)
S

+35K Z ea(t—n)+erie—3€n

s<T; <t
< 2K et Fespleata)s=5as|y ||, 4 66K 2rye® 5T |y — v,

Ury — UT@H

| LM — L[, < (0 + 3K 8rac) |Ju — ]«

The choices of ¢ and § are such that, (v + 3Kdry.) < 1, therefore map L* is a
contraction in €. Hence there exists a unique function u = u* € €' such that
LA u = u. Similar to ll we obtain

1 v
Julle < (500l + %l + 380racull.) < Lol + (4 +3K5r26)||u||*.

Since 1/(1 — (% +3K6re)) < 2, ([@11) holds. Similarly, using ) and (3.10), we

have
y Wry

ot — | </ It )P 1 (ryy, @(ry ), A) — f(r,ult, (7, ult), )| dr

+ Z ||T t TZ Tl)” |I( CI)(Ta U.,)_\z),)\> - Ii(u¢5a¢(77 ul‘I{/L)’/’l/)|

s<T; <t
< 312K TTHIN — pl [|gl] + 2flu — u]].}

t
o / Kealt—m)+er jalat1)(r—s) la(e—B)+d]s

+GORAIN — pal[[u* [« + [lu —u[l.}
Z Kea(t*Ti)+€Ti 67367'7; ea(nfs)Jres

s<T; <t
< 3T 2E) TN — pf (o] + 2wt — k)

t
o K oalt—5)+es gale—B—a)s / or(e+aa) g

_’_6K25ea(t75)+es {|)\_M|”u}\”* + ”u)\ _uu”*} Z 67267];

s<7; <t

,U/
[ =l < S A= pllloll + o Ju® =l + 80K rae (A = pl 8] + [lu® = u|l.)

/U/
= (5 +30Krac) A= ul 6] + [l =l (v +36Kra0):
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v /24 30Kra,
A— .
1— (1}/ + 35K’I“26) | :u| ||¢H
This gives the desired result (4.12)). O

o — ]l <

In the next two lemmas, we establish some auxiliary properties of the stable
solution obtained in Lemma 2]

Lemma 4.3. Provided that c,d are sufficiently small, there exists K1 > 0 such that
[ = vel| < K1e9F g — (4.13)

for every A € Y; @ € x*; (s,9),(s,¢) € Zz and t > s, where u and v are the
functions given by Lemma respectively for (s, ¢, A\, @) and (s, ¢, A, D).

Proof. Using equations (2.8),(4.1) and (4.8) in the form of stable solution (4.9), we

have
[ — v

< |2t )6 — )
/ VP | (s B(ry0r), ) — £ (09, B(r, 0,), N dr
+ Y

||P )H |I (uTm (I)(T, un)a)‘) - Ii(rUTq,’@(Tv Un)7)\)|

s<T; <t
t
< Ket=o)Fes||g _ || 4 37+ K / Ty — | (e |7 + [|or]|9)dr
S

+35K Z ea(tfri)Jre‘riefBeTi

s<Ti<t
< Kea(t—s)+es||¢ — || + 2Kv/ea(t—s)+es||u — v,
+ 6679 K 29T |y — o,
< Ke®t9Fes || — || + (v + 30K 7o) 2K e Fes ||y — o,

We can also write it as,

Ur, — Vr,

1
lu = ol < 516 = Pl + (' +36K7s) u = 0]
This establishes the desired result for K3 = K/{1 — (v + 30K7r2)}. O

Lemma 4.4. Let the constants ¢, 6 be sufficiently small, there exists Ko > 0 such
that

lue = vel| < Kz e |@ — W, (4.14)
forevery A€ Y, &, ¥ € x*, (s,¢0) € Zg, andt > s, where u and v are the functions
given by Lemmafor (s,0,\, @) and (s, o, \, V) respectively.
Proof. We note that

(7, ur) = U (7,07)[| < [lurl[|® =PI + 2[ur —vr].

Using the above estimates,

[[ur — v |

/ ||T t, )P f(Tyur, ®(T,ur), A) — f(7, 07, ¥(1,07), A)|dT
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+ Z HT t Tl TZ)H II (Tlvu‘nvq)(Ti’uﬂ)’)‘) - Ii(Tivaiv\IJ(Tivvn)a)\”

s<T;<t

t
< 3ch/ =4l — ||+ |19 ur) — B(r00)]) (|9 + o 9) dr

+30K S TR eI (| @ () — (T 0, )

s<T; <t
t
<2 6K / £t @+ IT (== (3w, — v, | + [fur || | @ — ) dr

+30K Y et 2T (3, — vy | 4 flun || [@ — 9))

s<T; <t

< 469K (3|lu— vl + [l | — ¥)
t
X/ ea(t—T)e(aq+e)7—eq(e—a—ﬁ)sea(T—s)+esdT
+ 60K (Bllu— vl + (@] [® - ¥[) D erTTIem 2 Talrim)tes
s<T; <t

t
< (2 61K T (3|lu — |4 + ||| |® — W|') etlcma=R)s / elaatar

S

+ 30K (3u—vll. + lgll[@ — W) Y e )2renltmres

s<T; <t
2-69cKIT
<q6*qﬁ+f>8+35me 3u—vl. + o] |@ — P|
R EALC e sc} Bl — ol + 0] B - ¥I)
2-69cKIt
< +3(5K7“26 3lu—vl. + 0] |@ —¥).
e } @l ol + 6] ® - /)
By adjusting the constant we obtain the desired result. O

Next we give the existence of a function ® € x* such that the graph of ® will be
our stable manifold.

Lemma 4.5. Given A €Y and ® € x* and denoting by u, the unique function
obtained by Lemma[].3, the following properties holds:

i) If
D(t, u) :T(t,s)tb(s,gb)—l—/ T, 7)Q(T) Xof (T, ur, ®(T,ur), \)dr

(4.15)
+ Z +)I (u'r a(I)(TivuTia)\))a
s<T; <t
fort>s, (s,¢) € Zg and A €Y, then
(I)(Sv ¢) = /OO TQ(Ta 8)_1Q(T)X0f(7', Ur, (I’(T, u'r)7 /\)dT
s (4.16)

- Z TQ(Tz‘—*—v S)_lQ(Tj—)Ii(uTN (73, ur,), A),

s<T;

for everyt > s, (s,¢) € Zg and A €Y;
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(i) If identity (4.16) holds for every (s,¢) € Za, then (U.15) holds for all
(s,0) € Zp(2K).

Proof. First we show that the integral in (4.15)) is well defined.
| Wa(r.s) Q7 s () N
S
t
< [ R s 0(r) 7 e
ot
S/ Ke br=s)tercgatlyy, |jatlqr
S
¢
< 6q+1ch+2/ efb('rfs)+67’6{a(775)+es}(q+1)||¢||q+1d7_

< (GK)qHCKe[b—(q+1)(a—e+5)]s /Oo el=btetala+)]T 70

S

1
o KK (e grns-ols
T |=b+e+alg+1)
_ (6K)1+1cK
“J=b+e+alg+1)

e*(l#»ﬁ)s < o0,

Since
—b+etalg+l)=(-b+a)+ag+e<a+p<0.
Similarly,
Z ||TQ(TZ+’ 3)_1Q(Tz’+)” |Il(u7'z ) (D(Th U-,—i), A)‘
s<T;
< D Ke M IRnige ST (ur @ ()|
s<T;
S K Z efb(‘rifs)JreTiefSe'ri
s<T;
< 60 K2 Z es(b—a+e)e(—b—2e+a)n ||¢||
s<T;
= 60K e O | g]| 3 T2t < oo,
s<T;

since (—b — 2¢ + a) < 0. Therefore (4.15) is well-defined.
If (4.15) holds for every (s, ¢) € Zz and t > s, then

(o

<I>(s,<b):TQ(t,s)_lfb(t,ut)—/ To(r, 5)" Q(r) Xo f (ry ur, (7, 1r), Ndr

- Z TQ(TZ'JF7 5)_162(7—1*)]1'(”‘&’(I)(Tivu‘ri)7 )‘)'

SST71<t
Now it follows from (4.1)), (4.8) and (4.11)) that
||TQ(t,s)_1<I>(t,ut)|| < 4K2e—b(t—s)+etea(t—s)+ese—,85
_ 4K2e(a7b+e)te(fa+b+ef,6’)s'

(4.17)

Since a + € < a+ [ < 0, letting ¢t — oo in (4.17)), we obtain the identity (4.16)).
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Now we assume that equation (4.16]) holds for every (s,¢) € Zgs, then for each
(57 QS) € Zﬂ—i—e(QK)a

|| < 2K6a(t*5)+65”¢” < e Ptelath)t=s) < =Bt < =05
This implies that (t,u;) € Zg for every t > s. Now we apply T t,s) to equation
B
(4.16)) to get
T(t,5)8(5.0) =~ [ Tt 7)QT)Xof (7 17, (1,0, N

- T(t7Ti)Q(Ti+)Ii(uTia(I)(Ti7u7'1:)7>\)

s<T;

= 7/ T, 7)Q(T) Xof (7, ur, ®(1,us), \)dr
- Z T(taTi)Q(Ti—i_)Ii(uTm(I)(Tiaun)a)‘)

s<T; <t

— /Oo T(t, 7)Q(T) X0 f (T, tr, B(7T, ur), \)dT

t
— T(t,Ti)Q(T;F)Ii(un,@(Ti,uﬂ.),)\);

T(t,s)q)(s,qS) = —/ T(T, QT Xo f (1, ur, ®(1,ur), \)dT

— Z T(75, ) " Q)i (wry, @ (73, s, ), A) + B(E, ug).

s<T; <t

This completes the proof of lemma. O

Now we establish the existence of a unique function ® = ®* satisfying equation

(4.16]) for each A € Y.

Lemma 4.6. Provided that the constants c,§ are sufficiently small, for each A € Y
there exists a unique function ® = ®* € x* such that [4.16)) holds for every (s, ¢) €
Zg3.

Proof. Given \ €Y, for each ® € x* we define an operator J* by
oo
(PD)(s, ) = —/ To(r, )" Q(r) Xo f (7, 11y, (r, ur ), \)dr

S
— N Tt )T QN ) (s, (i us, ), ),

s<T;

for each (s, ¢) € Zg, where u is a unique function given by Lemmal4.2|for (s, ¢, A, D).
We note that (J*®)(s,0) = 0 for every s > 0. Moreover, for each (s, ¢), (s,9) € Zg,
using the properties of u and v proved in Lemma [4.3| and by the equations (4.1)),
(4.11)), we have

1P ®) (s, 6) — (PB)(s, 8]
< / o (r, ) QU 1F (s e ®(71r), A) — (07, @ (7, 07), N dr

+ Z HTQ(TZ*’S)_lQ(Ti—F)” |Ii(u7'ri7q)(7—iaun)’ /\) - Ii(v‘rwq)(Ti’UTi)7/\)|

s<T;
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< / Ke 9430 e, — o, | (Jug | + Jor]19) dr

+ Z Ke—b(n—s)—&-eng(se—lk'ri”un — vy, H
s<T;

< (6K)™ ek, / T e brs) e gala () hela+1)s=Bas | |y

+ 35KK1 Z e*b(‘rifs)Jre‘riefSen ea(‘rifs)+es||¢ . 1/}”

s<T;
< (6K ey elelatD=Ba-al@D4b)}s g _ | /°° lalg+D)—bte}r g
s
+ 36KKle(b—a+e)s Z e(a—b—Ze)n H¢ _ ,(/}H

SSTi

1
| (6K )(“ CK)l o~ Bl ele D —Ba—ala D +0)}s s{—brala+1) e}
“|-b+alg+1)+e€

+ 30K K1 e~y || —
- (6Kt el e (1+e)s
T =b+alg+1)+¢€
Since the constants ¢, d are sufficiently small, we obtain
1(TA@) (s, 0) = (J*@) (s, )| < [l — |-
Therefore, extending J*® to Rt x B by
(J’\<I>)(s7 ¢) = (J/\(I))(S7 e_ﬁs¢/||¢H)7

for every (s, ¢) ¢ Zs, we have J*(x*) C x*.
Now we show that .J* is a contraction map. Given (s, $) € Zg, for each ®,¥ € x*
and using the notation u and v as in Lemma it follows from equations (4.1)),

S, (1D ond (@13)
I(70)(5.6) — (PW)(s.0)]
< [ Wo(rs) QN A ur, (7). X) = £(r.vr, Wiry), ) dr

+ Z ||TQ(T¢+7S)_1Q(T¢+)H |Ii(u’ri7 (7, ur, ), A) = Li(vr,, U(73,v7,), )‘)‘

SST'L'

= / Ke 9% 396 (3|, — v, || + [lur | |@ — ') ((fur |7 + [Jo- | 7) dr

+ 30K K1)y g — .

+ 3 Ke M mm b5 3T By, — v || + [l ||| @ — ©)
s<T;

< (6K)12cK (3K, + 2K) 4] |& — w|

% /OO e—b(T—S)-‘rET (eaq(T—s)+qese—ﬂqs) 6a(T_S)+€SdT

S

+ K5(3K2 -+ 2K)H¢” |(I) _ \I/|/ Z e—b(n-—s)+€ne—35nea(n—s)+es

s<7;

< (6K)72¢K (3K, + 2K) ||| |® — \I;|/e{b+6(q+1)—a(q+1)—qﬁ}s
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“ / pl-btetalgtn)}r

+ K6(3Ky + 2K)| ¢ |® — [ elb—ate)s Z o(—b—2e+a)T;
s<T;
e{E(Q+1)*ﬁq+6}s
|—b+alg+1)+¢
+ K6<3K2 + 2K) H¢|| |(I) _ ‘Illle(b_a+€)sT2€
q —5
< { (6K)?2cKe
| —b+alg+1)+¢
<w|® -Vl

< (6K)2cK (3K, + 2K) 6] |& — W]

+ Koel" =T L 3Ky + 2K)|| 6| |@ — W[

By taking the constants ¢, sufficiently small we can make w < 1. Therefore, for
each \ €Y there exists a unique function ® = ®* € x* such that J*® = &, which
completes the proof. O

Here we are going to obtain the parameter dependent estimate for the stable
part of the solution obtained in Lemma

Lemma 4.7. Assume that the constants ¢, are sufficiently small, there exists
K3 > 0 such that
lus — uy] < KT — pl |||, (4.18)

for every A € Y, (s,¢) € Zg and t > s, where u and v’ are the functions given by
Lemma respectively for (s, ¢, \, ®*) and (s, é, 1, ®*).

Proof. First we obtain some estimates using equation (4.1f), (4.11) and (4.12)), we

have

||(I)/\(S7 ¢) - CI)M(& (b)H
S/H%ﬁ@*@ﬂth@%w&M—ﬂm@whwwmw

+ Z ”TQ(TiJraS)ilQ(TiJr)” |Ii(uTiv(I))\(TiauTi)a)‘) - Il(ufrlaq)lu(ﬂvu%)vﬂ”

s<T;

< [ gt fn g
+ 3% — |+ 19 (ror) = @ (o)) |+ 1) et

+ Z Kefb(nfs)JreTi(sef?)en (3‘)\ o ,u|||u7.7

s<T;

1[0 (73, ur,) = (1))

< / Ke_b(T_s)+€T{C‘)\ _ ,u| 3q+1||uTHq+1

+3%¢ (3flur — il + @Y = @#YJu[l) (Jur | + flur|9) }dT

+ Y Ke TmIFTige 3T (I — pf flur, || + 3llur, —uf || + [ — ¥ [lu, 1)

s<T;

o0
< / Keb(r—s)ter (QK)q+1ea(q+1)(T—S)+e(q+1)s ||¢||q3qc
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{310 = ul o1l + 2 (31191l - il + 2> — &[[16]) }ar
+ Y el DEmD5em 2Tt ek (6]3 — g | + [0 — @] |o])

SST,j

< 39K (2K)™ (91X — plllo] + 2 ¢]]|@* — &)

« o(bH(e—a)(@+D)—Ba)s / ¥ (—breralar)r g,

S

+ 2575 (6]A — pl [|8]] + 9]l @* — @#]) lPmatIs Y7 (To2etarm

s<T;

< Li(e, )X — ulllg]l + La(c, 8) [o][|@* — @],

for some Ly, Ly > 0. Therefore taking ¢, ¢ sufficiently small, for each (s, ¢) € Zg3
we have

[0 (s,0) — (s, 0)|| < A= |- (4.19)
Now observe that

(s ur, @7 ur), N) = f(rur, @ (7, 07), )
< el A = pal | (ur, @M u )T+ ell(ur, @A (7, ur)) = (i, @ (7, ur))|
X ([ (ur, @7, un)) | + || (u, @ (7, ) |)
< 3TN — gl e [ 77+ 3% (3]|ur — ]| + |93, uy) — BF (7, ul))
X (llur |+ [l 1)
< 3TN = paf [l |77 + 3% (Bllur — ]| + X = pl Juz ) (e[| + fluz 1)
< (GK)q+1Cea(q+1)(T—S)+6(q+1)se—ﬂqsH¢|||)\ —
+ 2(6K)9ced(Tm o) Feasmhas (3\|uT — || + 2K e TmFs gl A — pf )
< 2K (6K ) e (D=0 ela+)=Babs (516X — ] + 6l|u — |)
Similarly,
|Ii(uﬁ,<1>)‘(7'i, Up; )y A) — I,-(u’n,fl)“(n, u’ﬂ)7 )|
< 8¢ (Jfur, — ur ||+ |93 (i, ur,) — (13, 0l ) )
+ 0T TIN = pl (i, , @ (7 i) |
<0 (Blu, — || + 13 (i) — @ (7,
< Je 3T (3||un — u/T + A — Hu'n H) + 35 3¢
< 2K 0e TR (AN — | ]| + Bllu — o]l.).

30— plu,
A= i,

)

Now using the above estimates, we obtain
t
llue — will < / Tt ) PO S (7 ur, @My ur), N) = f (70, (7, ) ), )| dr

+ Z ”T(thi)P(Ti)”'Ii(unv(I))\(Tiauﬁ)a)‘)_Ii(u;ia@u(’rivuzri)vﬂﬂ

s<T; <t
t
< / K e t=m+er g [ (6 )1 cea(a+1) (7=s) Aela+1)=Babs

< (BllgllIA = pl + 6llu — u[l.) dr
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+ Y Kettmmtenigegearimetes 3 (41n —p) || ]| + 3llu — o||.)

s<T; <t

t
< (2KOKYeI6IA -l + 6u = w].) oo [ lerenmar

+2K8 (42— i 6] + 3l — w'|l.) DT e 2 )2kt
s<Ti<t

2K (6K)%c

ag+el

+ 2K 8r5¢ (4N — il [ ]| + 3[|w — w'|].) -

Adjusting the coefficients we obtain the desired result,

g — up|| < Kse® 9% X — ) [|o]|.

Ju—||, < (BlllA = pl + 6[Ju —u'[|+)

(]

Proof of Theorem[4.1 In the view of the required forward invariance property
(4.5), to give the existence of a stable manifold, it is equivalent to find a func-

tion ® € x* satisfying the equations (4.9) and (4.15). It follows from Lemma
that for each (s,¢,\,®) € Z3 x Y x x* there exists a unique function u = ug

satisfying (4.9). Now using the function obtained from Lemma[4.2] we have the ex-
istence of ® € x* satisfying from Lemma and Lemma More precisely,
we showed that for each s > 0, A € Y and ¢ € Zg;(2K), there exists a unique
function ® = ®* satisfying (4.15). To verify forward invariance of stable manifold,
it is sufficient to note that , if (s,¢) € Zg4(2K) then

e < 2K eot=9)+s ]| < 2K6a(t—s)+es%€—(ﬂ+e)s _ palt—s)—Bs
< latD(t-5)=Bt < Bt
Therefore it shows that (s,u;) € Zg for every ¢ > s and hence by (4.2),
U (5,0, (s, 0)) = (t,u, D(t,ur)) € Wy, (4.20)

for all ¢ > 0. Identity (4.20) follows from equation (4.9) in Lemma [4.2] Lemma

and equation (4.15]) in Lemma which, up to the replacement of Zg by Zs(2K)
shows that (4.5)) holds.

Now for each (s,9), (s,v) € Zg+e(2K);\,p € Y and K = ¢t — s > 0, by Lemma
4.3 and Lemma [£7] we have

W2 (s, 0, P (s, 0)) — WA(s, 1, D (s, 9))|

<t up?, @M (¢, up?)) = (£ u ™ @At u )|
|
< 3K e g —

< 3””?705 _ ui\ﬂb

and
1WA (s, 6, (s, 0)) — Whi(s, &, D (s, 0))|
<t u?, DMt up?)) = (8 uf?, B (E uf ) |
< 3Jlu? = uf? | + | @At u ) — Bt w0 |
< De TN — il g
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This completes the proof. ([

Example 4.8 ([6]). Consider the differential equation
¥ = (—w+etcost)z, (4.21)
for constants w > € > 0. The solution is x(t) = T'(¢, s)x(s) where
T(t, s) = e~ (t=s)+e(tsint—ssinstcost—coss)
Note that for every t > s > 0,
T(t, s) < €2 e(—+e)(1=s)+2es.

this means that the solution satisfies a nonuniform exponential dichotomy.
Now we introduce impulses in the above equation. Consider the differential
equation (4.21)) with impulses at times {7;}$2; where {7;}52, is strictly increasing

1=
with lim; o, 7; — oo and the jumps satisfy (2.7). For this problem, let w >
€ + plog(1 + e~°¢). The solution to this problem is

:r(t) — T(t7 S)(]. + 6—5e)card{i6N:n<t}x(s).
We denote the solution operator T'(t,s) = T(t,s)(1+e~5¢)cardli€N-7i<t}  Now using
(2.7), we have
HT(t, S)H — HT(t,S)H(l + e—Se)card{ieN:n<t}
< 0625 e—w(t—s)+2€seplog(l-‘re*S()t
< Cle—(w—e—plog(1+6755))(t—s)e<2€+p10g(1+6755))s.
This shows that the differential equation (4.21)) with impulses also satisfies nonuni-

form exponential dichotomy. Next, we consider the delay in the nonhomogeneous
term.

Example 4.9. Consider the delay impulsive equation

t' = (—w +etcost)x + (A + 2sint)y*(t — 1),

y = (w— etsint)y + (\y + cost)z?(t — 1),

with impulses

Az(T)) = M 2,e 7T Ay(r) = doyne T,
where A = (A1, \2) € [<1,1] x [~1,1] and w > € > 0. For each ¢ = (¢1, $2) € B, let

F(t,6,0) = (O + 2sint) 63(t — 1), (Az + cost) 62t — 1)),
Ii(ur, \) = (A 27,67 5T Ap yy e €T,
The Evolution Operator T'(¢,s) associated with above problem is
T(t,s) = [U((t), ) V(?, s)] ;

where

U(t, S) _ efw(tfs)+e (t sin t—s sin s+cos t—cos s)7

V(t S) _ ew(t—s)—e(—tcost+scoss+sint—sins)
b - .

Now let P(t)(x,y) = (z,0). It is easy to verify that
IT(t, ) P()]| = U (L, 5)|| < e*eorolimtaes,
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IT(t, ) Q)| = IV (2, 8)7H| < eelmwm otz

for t > s > 0. This shows that the corresponding linear equation admits a nonuni-
form exponential dichotomy with ¢« = (—w+¢€) < 0, b = w + ¢ > 0. Now, when
we consider the impulses, the corresponding solution operator T'(t, s) also satisfies

nonuniform exponential dichotomy.

Moreover, the perturbation f(¢, ¢, \) satisfies the conditions , forg=1
and f(¢t,0,A\) = 0. Also the impulse function I;(z,,, ), satisfies the conditions
I;(0,\) = 0, and ([2.11). For this example we choose w > 4€ + 1 so that
the condition aqg + ¢ < 0 in Theorem is satisfied and also for Theorem
a+ B =—w+4e+1 <0 is satisfied.

It follows from Theorem that Example has a Lipschitz stable invariant
manifold.
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