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Some remarks on the Melnikov function ∗

Flaviano Battelli & Michal Fečkan

Abstract

We study the Melnikov function associated with a periodic pertur-
bation of a differential equation having a homoclinic orbit. Our main
interest is the characterization of perturbations that give rise to vanish-
ing or non-vanishing of the Melnikov function. For this purpose we show
that, in some cases, the Fourier coefficients of the Melkinov function can
be evaluated by means of the calculus of residues. We apply this result,
among other things, to the construction of a second-order equation whose
Melnikov function vanishes identically for any C1, 2π-periodic perturba-
tion. Then we study the second order Melnikov function of the perturbed
equation, and prove it is non-vanishing for a large class of perturbations.

1 Introduction

Melnikov’s method has shown to be an easy and effective method to detect
chaotic dynamics in differential equations. The starting point is an autonomous
system ẋ = f(x), where x belongs to an open subset Ω ⊂ Rn, having a hyper-
bolic fixed point x0 and a non-degenerate homoclinic orbit φ(t), that is a non
constant solution φ(t) such that lim

t→±∞
φ(t) = x0 and φ̇(t) spans the space of

bounded solutions of the variational system

ẋ = f ′(φ(t))x. (1.1)

Actually some extensions to the case where the variational system (1.1) has
a higher dimensional space of bounded solutions have also been given in the
literature, see for example [2, 3, 5], however we are not interested in such gen-
eralizations here. Then, associated to a given time periodic sufficiently smooth
perturbation εh(t, x, ε), with ε sufficiently small, there is the so called Melnikov
function:

M(α) :=
∫ +∞

−∞
ψ∗(t)h(t+ α, φ(t), 0)dt
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with ψ(t) being the unique (up to a multiplicative constant) bounded solution
of the variational system

ẋ = −f ′(φ(t))∗x.

Note that M(α) is a periodic function having the same period as h(t, x, ε).
The basic result states that M(α) gives a kind of O(ε)-measure of the distance
between the stable and unstable manifolds of the (unique) hyperbolic periodic
solution x0(t, ε) of the perturbed system

ẋ = f(x) + εh(t+ α, x, ε) (1.2)

which is at a O(ε)-distance from x0 (see [7]). Thus if M(α) has a simple zero
at some points, the implicit function theorem implies that these two manifolds
intersect transversally along a solution φ(t, ε) of (1.2) which is homoclinic to
x0(t, ε). This transversality implies, by the classical Smale horseshoe construc-
tion (see [10]), that a suitable iterate of the Poincaré map of the perturbed
system exhibits chaotic behavior (for a more analytical proof of this fact see
[8]).

In this paper, we will mainly consider the case where h(t, x, 0) = q(t) is a
T -periodic perturbation independent of x, although in the next Section some
results are derived for the more general case. We also assume that q(t) is C1.
Our first remark is that the Melnikov function is a bounded linear map from
the space of T -periodic functions into itself, as it can be easily checked using
the fact that |ψ(t)| ≤ Ce−σ|t|, for some positive real number σ. Moreover the
average of M(α) is:

M̄ =
∫ +∞

−∞
ψ∗(t)dt · q̄.

Now, in many interesting cases, for example when one deals with a second order
conservative equation on R, one has∫ +∞

−∞
ψ∗(t)dt = 0

so that M̄ = 0. In this case the Melnikov function can either be zero or there
are α1 and α2 such that M(α1) < 0 < M(α2). This means that the Brouwer
degree of M(α) in the interval whose end points are α1 and α2 is different from
zero. This, in turns, implies a kind of chaotic behavior of some iterate of the
Poincaré map (see [1]). This seems to be a good reason to study the kernel of
the Melnikov map:

q(t) 7→
∫ +∞

−∞
ψ∗(t)q(t+ α)dt.

This is the purpose of this paper whose content we now briefly explain. In
Section 2 we give a method to evaluate the Melnikov function when φ(t) = Φ(et)
for some rational function Φ(u), u ∈ C. The method states that the Melnikov
function can be evaluated by means of the calculus of residues. Even if the use
of the calculus of residues for the study of the splitting of separatrices seems to
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be a quite standard tool [4], our Theorem 2.1 does not seem to follow directly
from previous results. Section 3 is devoted to the study of M(α) for a second
order equation on R with a T -periodic perturbation εq(t). Finally, in Section
4 the results of Section 3 are used to construct some second order equations
whose Melnikov map has an infinite dimensional kernel, possibly vanishing on
the whole space of (C1) 2π-periodic perturbations. For this class of equation
we also study the second order Melnikov function M2(α), that is the coefficient
of ε2/2 in the Taylor expansion of the bifurcation function. We prove that
for a large class of perturbations, M2(α) is not identically zero and changes
sign provided a certain simmetry condition is satisfied. This fact is important
because when the first Melnikov function is identically zero, it is M2(α) that
determines the chaotic behaviour of the system.

2 Melnikov Function and Calculus of Residues

Given the system ẋ = f(x) + εh(t, x, ε), x ∈ Ω ⊂ Rn, |ε| < 2ε0, t ∈ R, such that
ẋ = f(x) has a non–degenerate homoclinic orbit φ(t) whose closure is contained
in Ω and h(t, x, ε) is a C1-function, bounded together with its derivatives on
R× Ω× [−ε0, ε0], the Melnikov function of the system is given by

M(α) =
∫ +∞

−∞
ψ∗(t)h(t+ α, φ(t), 0)dt

where ψ(t) is the unique, up to a multiplicative constant, bounded solution of the
variational system ẏ = −f ′(φ(t))∗y(t). When h(t, x, ε) = h(t + T, x, ε), T > 0,
the existence of a simple zero of M(α) implies the existence of a transversal
homoclinic orbit for the Poincaré (period T ) map of the system ẋ = f(x) +
εh(t, x, ε) with the induced chaotic behavior.

Here we assume that

(a) φ(t) = Φ(et), where Φ(u) is a rational function on C such that Φ(u) → 0,
and Φ(1/u)→ 0 as u→ 0;

(b) ψ(t) = etΨ(et), where Ψ(u)u → 0 as |u| → +∞, and Ψ(u) is a rational
function on C.

From h(t, x, ε) = h(t+ T, x, ε) we deduce that M(α) is T -periodic. Set ω = 2π
T

and M0(α) = M(α)χ[−T/2,T/2](α), h0(t, x) = h(t, x, 0)χ[−T/2,T/2] and, for any
n ∈ Z, consider:

M̂0(n) =
1
T

∫ T/2

−T/2
M0(α)e−inωαdα

=
1
T

∫ T/2

−T/2

∫ +∞

−∞
ψ∗(t)h(t+ α, φ(t), 0)e−inωαdtdα

=
∫ +∞

−∞
ψ∗(t)

1
T

∫ T/2

−T/2
h(t+ α, φ(t), 0)e−inωαdαdt
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=
∫ +∞

−∞
etΨ∗(et)ĥ(n,Φ(et))einωtdt

where

ĥ(n, x) :=
1
T

∫ +∞

−∞
h0(t, x)e−inωtdt =

1
T

∫ T/2

−T/2
h(t, x, 0)e−inωtdt (2.1)

is the n-th Fourier coefficient of h0(t, x). We assume that

(c) For any n ∈ Z the function ĥ(n,Φ(x)) extends to a meromorphic function
ĥ(n,Φ(u)) on C having the same poles as Φ(u).

Thus
F (n, u) := Ψ∗(u)ĥ(n,Φ(u))

is meromorphic in C, for any fixed n ∈ Z, and its poles are either those of Ψ(u)
or those of Φ(u). Let us make some comments about the function F (n, u). As
Ψ(u) and Φ(u) take real values when u ∈ R+, Schwartz reflection principle gives:

Ψ(ū) = Ψ(u), and Φ(ū) = Φ(u). (2.2)

Second, we notice that, being ĥ(n, x) = ĥ(−n, x) for any x ∈ Ω ⊂ Rn we obtain

ĥ(n,Φ(ū)) = ĥ(−n,Φ(u))

because of the uniqueness of the analytical extension and hence

F (n, ū) = F (−n, u). (2.3)

From (2.2) it follows that Ψ(u) and Φ(u) have complex conjugate poles and
hence the same holds for F (n, u). Let wj = uj± ivj , j = 1, . . . , r be the poles of
F (n, u) (independent of n ∈ Z). Note that the wj do not belong to an angular
sector around the positive real half–line, otherwise Ψ(et) will have singularities
on the real line. Thus the poles of F (n, ez) are z = Logwj := log |wj |+ iArgwj
where Arg(w) ∈ (β, 2π−β) for some β > 0 and Logwj is the logarithm principal
value. We remark that Arg(w̄j) = 2π − Arg(wj). Finally, for any u ∈ C \ {0}
such that 0 ≤ Arg(u) < 2π, we set

uiωn := einωLogu.

Then we integrate the meromorphic function ezF (n, ez)einωz on the boundary
of the rectangle {−ρ ≤ <z ≤ ρ, 0 ≤ =z ≤ 2π}. For ρ sufficiently large Cauchy
theorem implies:

2πi
∑
j

Res(ezF (n, ez)einωz,Logwj) =
∫ ρ

−ρ
etF (n, et)einωtdt

−
∫ ρ

−ρ
etF (n, et)einωte−2πnωdt+

∫ 2π

0

eρeiyF (n, eρeiy)einωρe−nωyidy

−
∫ 2π

0

e−ρeiyF (n, e−ρeiy)e−inωρe−nωyidy.
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Now, the last two integrals in the right tend to zero as ρ→ +∞ uniformly with
respect to n. Hence, for any n 6= 0 we get∫ +∞

−∞
etF (n, et)einωtdt =

2πi
1− e−2πnω

∑
j

Res
(
ezF (n, ez)einωz,Logwj

)
= 2πi

∑
j

Res
(
F (n, u)uinω

1− e−2πnω
, wj

)
.

Thus we have proved the following.

Theorem 2.1 Under the conditions (1)-(3) the Fourier coefficients of the Mel-
nikov function M(α) are given by:

M̂0(n) = 2πi
∑
j

Res
(
F (n, u)uinω

1− e−2πnω
, wj

)
(2.4)

for n 6= 0, while

M̂0(0) =
1
T

∫ T/2

−T/2
M0(α)dα =

∫ +∞

−∞
ψ∗(t)ĥ0(0, φ(t))dt

where ĥ0(n, x) has been defined in (2.1).

Using (2.3) we obtain:

M̂0(n) =
∫ +∞

−∞
etF (n, et)einωtdt =

∫ +∞

−∞
etF (n, et)e−inωtdt

=
∫ +∞

−∞
etF (−n, et)e−inωtdt = M̂0(−n).

Finally note that, since h(t, x) is T -periodic in t and C1 we have

M̂0(n) = 0 for any n ∈ Z if and only if M0(α) ≡ 0.

We conclude this Section giving a first example of application of the above
result. Consider the Duffing-like equation:

ẍ+ x
(x
k
− 1
)

= ε[q1(t)x+ q2(t)ẋ] (2.5)

where k > 0 and q1(t), q2(t) are 2π-periodic, C1 functions. Setting x1 = x and
x2 = ẋ we obtain the equivalent system

ẋ1 = x2

ẋ1 = x1

(
1− x

k

)
+ ε[q1(t)x1 + q2(t)x2].
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Let Φ0(x) =
6kx

(x+ 1)2
. Then the homoclinic solution of the unperturbed system

is given by φ(t) = Φ(et) where

Φ(x) =
(

Φ0(x)
xΦ′0(x)

)
Moreover:

Ψ(x1, x2) =
(
−x1Φ′′0(x1)− Φ0(x1)

Φ′0(x1)

)
and

h(t, x1, x2, ε) =
(

0
q1(t)x1 + q2(t)x2

)
Thus:

F (n, u) = q1
nΦ0(u)Φ′0(u) + q2

nuΦ′0(u)2

where q1
n and q2

n are the Fourier coefficients of q1(t) and q2(t) respectively. From
Theorem 2.1 we obtain then:

M̂0(n) = δ1
nq

1
n + δ2

nq
2
n

where
δ1
n =

2πi
1− e−2πn

Res Φ(u)Φ′(u)uin,−1)

and
δ2
n =

2πi
1− e−2πn

Res(Φ′(u))2uin+1,−1)

(note that −1 is the unique pole of Φ0(u)). Hence, using the fact that Arg(z) ∈
(0, 2π), we obtain the following expressions of δ1

n, δ2
n for n 6= 0:

δ1
n = −3in2k2(n2 + 1)

π

sinhnπ

and
δ2
n = −6

5
nk2(n2 + 1)(n2 − 1)

π

sinhnπ
.

Thus M̂0(0) = q2
0

+∞∫
−∞

ṗ(t)2dt and M̂0(n) = 0, for n 6= 0, is equivalent to

q1
n

q2
n

= −δ
2
n

δ1
n

= αn :=
2i(n2 − 1)

5n
. (2.6)

Note that, obviously, α−n = ᾱn and then taking, for any integer n 6= 0, q1
n =

αnq
2
n, q2

0 ∈ R, we get the following

Corollary 2.2 Given any 2π-periodic function q2(t) ∈ H3(R) with zero mean
value, there exists a unique 2π-periodic function with zero mean value, q1(t) ∈
H2(R) ⊂ C1(R) such that the Melnikov function of the equation (2.5) vanishes



EJDE–2002/13 Flaviano Battelli & Michal Fečkan 7

identically on R. Actually, for n 6= 0, the Fourier coefficients of q1(t) and q2(t)
satisfy the relation (2.6). The map q2(t) 7→ q1(t) is linear, bounded and its
kernel is the space span{cos t, sin t}. That is, if q2(t) ∈ span{1, cos t, sin t}, the
Melnikov map of equation (2.5) does not vanish identically for any non constant
perturbation εq1(t)x.

For example if q2(t) = cos 2t then q1(t) = − 3
5 sin 2t

3 The case of the second order equation

In this Section we consider the Melnikov function for the second order equation

ẍ = f(x) + εq(t)

where x belongs to an open interval I ⊂ R, f ∈ C1(I,R), q(t) is a C1, T -periodic
function, and ẍ = f(x) is assumed to have the hyperbolic fixed point x = 0 ∈ I
and an associated homoclinic orbit p(t) ∈ I. In this case we have

φ∗(t) = (p(t) ṗ(t)), ψ∗(t) = (−p̈(t) ṗ(t)), h∗(t, x) = (0 q(t))

and hence ψ∗(t)h(t, x) = ṗ(t)q(t). As in the previous section we assume p(t) =
Φ0(et). Then ṗ(t) = etΦ′0(et), and

Φ(u) =
(

Φ0(u)
uΦ′0(u)

)
Ψ(u) =

(
−uΦ′′0(u)− Φ′0(u)

Φ′0(u)

)
.

Note that we have F (n, u) = R∗(u)ĥ(n,Φ(u)) = Φ′0(u)q̂n where q̂n is the n-th
Fourier coefficient of the periodic function q(t). Thus in order that the analysis
of the previous Section is valid we see that we only need that assumption (2)
is satisfied, that is Φ′0(u) is rational (we do not need that Φ0(u) satisfies this
condition), and limu→∞Φ′0(u)u = 0. Anyway, for simplicity, we also assume
that Φ0(u) is rational with the same poles as Φ′0(u). Next:

M̂0(0) =
∫ +∞

−∞
ṗ(t)dt · q̂0 = 0

because p(t) is homoclinic, and, from (2.4) we obtain for n ∈ Z, n 6= 0:

M̂0(n) = 2πi
∑
wj

Res
(

Φ′0(u)q̂nuinω

1− e−2πnω
, wj

)
= δnq̂n

where q̂n is the n-th Fourier coefficient of the periodic function q(t), wj are the
poles of Φ0(u) and

δn =
2πi

1− e−2πnω

∑
wj

Res(Φ′0(u)uinω, wj). (3.1)
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Now, let γj be a circle around wj such that no other pole wi, i 6= j, is inside γj .
We have, integrating by parts:

2πiRes(Φ′0(u)uinω, wj) =
∫
γj

Φ′0(u)uinωdu = −inω
∫
γj

Φ0(u)uinω−1du (3.2)

and then
δn =

2πnω
1− e−2πnω

∑
wj

Res(Φ0(u)uinω−1, wj). (3.3)

Next, assume that wj is a pole of Φ0(u) of multiplicity k. We have:

Res(Φ0(u)uinω−1, wj) =
1

(k − 1)!
dk−1

duk−1

[
(u− wj)kΦ0(u)uinω−1

]
u=wj

=
1

(k − 1)!

k−1∑
m=0

(
k − 1
m

){ dk−m−1

duk−m−1

[
(u− wj)kΦ0(u)

]
·

(inω − 1) . . . (inω −m)uinω−m−1
}
u=wj

=
k−1∑
m=0

1
m!

Res ((u− wj)mΦ0(u), wj) im
(nω + i) . . . (nω +mi)

wm+1
j

einω Logwj .

(3.4)
Now, Res ((u− wj)mΦ0(u), wj) = 0 for m ≥ k because (u − wj)mΦ0(u) is
holomorphic in a neighborhood of wj when m ≥ k. Thus, denoting by r the
maximum of the multiplicities of the poles wj , we can extend the above sum up
to r − 1 obtaining:

δn(1− e−2πnω)
2πnω

=
N∑
j=1

r−1∑
m=0

1
m!

Res((u− wj)mΦ0(u), wj)im

(nω + i)(nω + 2i) . . . (nω +mi)
e−nωArgwj

wm+1
j

einω log |wj |

(3.5)
w1, . . . , wN being the poles of Φ0(u). Let β0 = min{Arg(wj) : j = 1 . . . N} ∈
(0, π] and r0 be the greatest multiplicity of the poles of Φ0(u) that belong to
the half line Arg(u) = β0. Multiplying both sides of equation (3.5) by enωβ0 we
see that 1

2πnω e
nωβ0δn(1− e−2πnω) is asymptotic, as n→ +∞, to∑

Arg(wj)=β0

Res(Φ0(u)uinω−1, wj)enωβ0 .

Now, again from equation (3.4) we see that for any pole wj such that Arg(wj) =
β0, and multiplicity less than r0 the quantity n1−r0 Res Φ0(u)uinω−1, wj)enωβ0

tends to zero as n→∞. Thus the leading term in
∑
wj

Res(Φ0(u)uinω−1, wj) is:

∑
Arg(wj)=β0
mult(wj)=r0

Res(Φ0(u)uinω−1, wj)
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mult(wj) being the multiplicity of wj . As a consequence, using also δ−n = δn,
we obtain the following:

Proposition 3.1 Let β0 = min{Arg(wj) : j = 1 . . . N} ∈ (0, π] and r0 =
max{mult(wj) : Arg(wj) = β0}. Then, if

lim inf
n→∞

enωβ0

nr0−1

∣∣∣ ∑
Arg(wj)=β0
mult(wj)=r0

Res(Φ0(u)uinω−1, wj)
∣∣∣ 6= 0, (3.6)

there exists n̄ such that for any n ∈ Z such that |n| ≥ n̄ we have δn 6= 0.
As a consequence the space of periodic functions q(t) such that the associated
Melnikov function is identically zero is finite-dimensional.

Condition (3.6) can be simplified a bit looking at equation (3.4). In fact
setting r0 in the place of k in that equation and multiplying by eβ0nn1−r0 we
see that only the term with m = r0 − 1 survives. Thus we obtain the following

Proposition 3.2 Let β0, r0 be as in Proposition 3.1 Then, if

lim inf
n→∞

∣∣∣ ∑
Arg(wj)=β0
mult(wj)=r0

1
wr0j

Res((u− wj)r0−1Φ0(u), wj)einω log |wj |
∣∣∣ 6= 0, (3.7)

there exists n̄ such that for any n ∈ Z such that |n| ≥ n̄ we have δn 6= 0.
As a consequence the space of periodic functions q(t) such that the associated
Melnikov function is identically zero is finite-dimensional.

Proof. As we have already observed, for any pole wj such that Arg(wj) = β
and mult(wj) = r the quantity:(

enωβ

nr−1

)
Res(Φ0(u)uinω−1, wj)−

ir−1

(r − 1)!

r−1∏
k=1

(
ω +

ki

n

)
× 1
wrj

Res((u− wj)r−1Φ0(u), wj)einω log |wj |

tends to zero as n tends to infinity, and then the result follows from:

ωr−1 ≤
∣∣∣∣(ω +

i

n

)
· . . . ·

(
ω +

(r − 1)i
n

)∣∣∣∣ ≤ (ω +
r − 1
n

)r−1

.

The proof is finished.

Remark. If Φ0(u) has only one pole on the line Arg(u) = β0 with maximum
multiplicity r0, condition (3.7) of Proposition 3.2 is certainly satisfied. In fact
in this case the left hand side of (3.7) reads:

1
wr0j

lim
u→wj

(u− wj)r0Φ0(u)
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and cannot be zero because wj is a pole of multiplicity r0 of Φ0(u).
Equation (3.5) has an interesting consequence when Φ(u) has only the simple

poles w and w̄ (we do not exclude that w = w̄). In fact in this case we have the
following result:

Theorem 3.3 Assume that Φ0(u) satisfies the assumption of the previous sec-
tion and, moreover, that it has only the simple poles w and w̄ (including the
case that Φ0(u) has only one simple pole w = w̄). Then δn 6= 0 for any n ∈ Z,
n 6= 0. Thus, for any 2π-periodic, nonconstant function, the associated Melnikov
function is not identically zero.

Proof. Let us consider, first the case where Φ0(u) has only the simple pole
w = w̄ < 0. We have

1− e−2πnω

2πnω
δn =

1
w

Res(Φ0(u), w)e−nπωeinω log |w|

= e−nπωeinω log |w| lim
z→1

(z − 1)Φ0(zw) 6= 0

because w is a simple pole of Φ0(u). Now consider the case where w 6= w̄ and
assume, without loss of generality, that 0 < Arg(w) < π. We have:

1
w

Res(Φ0(u), w) =
1
w

lim
u→w

Φ0(u)(u− w) = lim
z→1

Φ0(zw)(z − 1)

and
1
w̄

Res(Φ0(u), w̄) =
1
w̄

lim
u→w̄

Φ0(u)(u− w̄) = lim
z→1

Φ0(zw̄)(z − 1).

Since the above two limits exist we can evaluate them changing z with x ∈ R.
We get:

1
w̄

Res(Φ0(u), w̄) = lim
x→1

Φ0(xw)(x−1) = lim
x→1

Φ0(xw)(x− 1) =
1
w

Res(Φ0(u), w).

Setting λ = w−1 Res(Φ0(u), w) we obtain, from the above equation, and (3.5):

1− e−2πnω

2πnω
δn = λwinω + λ̄w̄inω.

Thus, when n 6= 0, δn = 0 if and only if

λ

λ̄
= −

( w̄
w

)inω
. (3.8)

Now ( w̄
w

)inω
= e−n(Arg w̄−Argw)ω = e−2n(π−Argw)ω = α2

n > 0.

Thus λ = −α2
nλ̄ and then λ̄ = −α2

nλ. So λ = α4
nλ and hence α2

n = 1, because
λ 6= 0. But this means that w is real and negative and this contradicts w 6= w̄.
The proof is finished.
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We now give a closer look at the case where Φ0(u) has two poles of multi-
plicity r0 on the half-line Arg(u) = β0. Since

1
wr0j

Res((u− wj)r0−1Φ0(u), wj) = lim
z→1

(z − 1)r0Φ0(wjz),

we see that we have to study the equation:

λ1|w1|inω + λ2|w2|inω = 0 (3.9)

where λj = limz→1(z − 1)r0Φ0(wjz). Now, equation (3.9) has a solution n ∈ N
if and only if ∣∣∣∣w1

w2

∣∣∣∣inω = −λ2

λ1
.

Thus we have the following cases:

(i) |λ2| 6= |λ1|. In this case lim infn→∞
∣∣λ1|w1|inω + λ2|w2|inω

∣∣ 6= 0;

(ii) |λ2| = |λ1| and log(|w1
w2
|) is a rational multiple of T = 2π

ω . In this case
equation (3.9) either has a (least) solution n0 ∈ N, and hence it has
infinite solutions of the type: n = n0 + kq, k ∈ Z, and q ∈ Z such that
q
T log(|w1

w2
|) ∈ Z, or lim infn→∞

∣∣λ1|w1|inω + λ2|w2|inω
∣∣ 6= 0;

(iii) |λ2| = |λ1| and log(|w1
w2
|) is not a rational multiple of T . In this case

lim infn→∞
∣∣λ1|w1|inω + λ2|w2|inω

∣∣ = 0.

As a consequence, Proposition 3.2 applies if either |λ2| 6= |λ1|, or log(|w1
w2
|) is a

rational multiple of T and −λ2
λ1

is not one of the (finite) values of
∣∣w1
w2

∣∣inω.

Remarks. (i) In this section we have assumed that Φ0(u) and Φ′0(u) are both
rational functions on C with the same poles. However it may well happen that
the poles of Φ′0(u) correspond to essential singularities of Φ0(u). Nonetheless,
the argument of this Section hold even in this case, we simply do not have
to integrate by parts as in (3.2) and use (3.1) instead of (3.3). For example
equation (3.5) reads:

δn(1− e−2πnω)
2πi

=
N∑
j=1

r−1∑
m=0

1
m!
Res((u− wj)mΦ′0(u), wj)imeinω log |wj |

nω(nω + i)(nω + 2i) . . . (nω + (m− 1)i)
e−nωArgwj

wmj

with r being the multiplicity of the pole wj of Φ′0(u). Thus Proposition 3.1 and
3.2 hold with the following changes:
r0 is the maximum of the multiplicities of the poles of Φ′0(u) and in equations
(3.6), (3.7), Φ0(u) and uinω−1 have to be changed with Φ′0(u), and uinω re-
spectively. Moreover, Theorem 3.3 holds as is (with Φ′0(u) instead of Φ0(u) of
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course). The proof goes almost in the same way, apart that equation (3.8) has
to be written as:

λw

λw
= −

( w̄
w

)inω
= −α2

n ≤ 0.

The rest of the proof is the same with λw instead of λ.
Note that the function Φ0(u) = tan−1

(
3u

2(u2+1)

)
is an example of such a sit-

uation. In fact 2itan−1(u) = log
(

1+iu
1−iu

)
has, at the points u = ±i, essential

singularities and is defined, for example, outside the set {z = iy | |y| ≥ 1}. In
the next Section we will give a method to construct a second order differential
equation satisfied by p(t) := Φ0(et). Following this method we see that p(t)
satisfies:

p̈ =
1
9

9− 41tan2p

(tan2p+ 1)2
tanp.

(ii) From the previous Section we know that δn is also given by:

δn =
∫ +∞

−∞
ṗ(t)einωtdt.

Now, the function:

δ(ξ) =
∫ +∞

−∞
ṗ(t)e−iωξtdt

tends to zero as |ξ| → ∞ and the same holds for iξδ(ξ) and (iξ)2δ(ξ) because
p(t), ṗ(t) tend to zero exponentially fast as |t| → ∞ (and hence belong to
L2(R)), and p(t) satisfies the equation p̈ = f(p). In fact we have, for example,
integrating by parts:

iωξδ(ξ) =
∫ +∞

−∞
p̈(t)e−iωξtdt =

∫ +∞

−∞
f(p(t))e−iωξtdt

and

(iωξ)2δ(ξ) =
∫ +∞

−∞
f ′(p(t))ṗ(t)e−iωξtdt.

As a consequence ξδ(ξ) → 0, ξ2δ(ξ) → 0 as |ξ| → ∞ and then δn ∈ L1(Z) ∩
L2(Z). Thus the series: ∑

n∈Z

δne
inωt

is totally convergent to a continuous, T -periodic function ∆(t) whose n-th
Fourier coefficient is precisely δn. Note that, being δ−n = δ̄n we have:

∆(t) = δ0 + 2
+∞∑
n=0

(Reδn) cosnt− (Imδn) sinnt.

Now, let φ1(t) and φ2(t) be two T -periodic functions on R. For t ∈ R, we set:

φ1 ∗ φ2(t) =
1
T

∫ T/2

−T/2
φ1(t− s)φ2(s)ds.
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Then φ1 ∗ φ2(t) is T -periodic and its n-th Fourier coefficient is:

1
T 2

∫ T/2

−T/2

∫ T/2

−T/2
φ1(t− s)φ2(s)dse−inωtdt

=
1
T 2

∫ T/2

−T/2

{∫ T/2

−T/2
φ1(τ)e−inωτdτ

}
φ2(s)e−inωsds = φ

(n)
1 φ

(n)
2

φ
(n)
j being the n-th Fourier coefficient of φj(t). As a consequence δnq̂n is the

Fourier coefficient of both M(α) and ∆ ∗ q(α) that is

M(α) = ∆ ∗ q(α) =
1
T

∫ T/2

−T/2
∆(α− s)q(s)ds =

1
T

∫ T/2

−T/2
∆(s)q(α− s)ds.

Finally, we note that the function ∆(α) can be expressed by means of ṗ(t) as
follows. We have:

M(α) =
∫ +∞

−∞
ṗ(t− α)q(t)dt =

∑
k∈Z

∫ (2k+1)T/2

(2k−1)T/2

ṗ(s− α)q(s)ds

=
∫ T/2

−T/2

∑
k∈Z

ṗ(s+ kT − α)q(s)ds.

Now, the function
∑
k∈Z ṗ(kT − t) is T -periodic and continuous (actually ana-

lytic, since so is ṗ(t)). Thus:

∆(t) = T
∑
k∈Z

ṗ(kT − t).

4 Some examples

In this Section we apply the result of the previous Section to construct a second
order equation in R whose Melnikov function vanishes identically on an infinite
number of (independent) 2π-periodic functions, or on any 2π-periodic function
q(t) (actually, we will give an example of case (ii) of the previous Section).
To do this we will first prove a result allowing us to construct second order
equations satisfied by prescribed homoclinic solutions. For completeness we will
also give an example showing that this procedure can also produce non rational
differential equations. To start with we make some remarks on the properties
of the function p(t) and the associated Φ0(x). Since p(t)→ 0 as |t| → ∞, there
exists t0 such that ṗ(t0) = 0. Without loss of generality we can assume that
t0 = 0. Thus p(t) = p(−t) because both satisfy the Cauchy problem:

ẍ = f(x)
x(0) = p(0) ẋ(0) = ṗ(0) .

Possibly changing f(x) with −f(−x), we can also assume that p0 := p(0) > 0.
Thus tṗ(t) < 0 for any t 6= 0. In fact if ṗ(τ) = 0 for some τ > 0 then p(t) would
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be 2τ -periodic contradicting the fact that p(t)→ 0 as |t| → ∞. Now, let Φ0(x)
be as in the previous section. Since we want that the equality Φ0(x) = p(log x)
holds for any x > 0, we see that we have to assume that:

Φ0(x) = Φ0(1/x) (4.1)

for any x > 0 and then Φ0(u) = Φ0(1/u) because of uniqueness of the analyt-
ical extension. Thus, besides the pole wj , Φ0(u) has also the pole w−1

j whose
argument is 2π − Arg(wj) (here we assume that 0 < Arg(wj) ≤ π). Then,
the function Φ0(x) is increasing in [0, 1] and decreasing in [1,∞), moreover
Φ0(1) = p0. Thus there exist two functions x±(p) defined on (0, p0] such that

(i) x+(p) is decreasing on (0, p0] and x+(p0) = 1,

(ii) x−(p) is increasing on [0, p0] and x−(p0) = 1, x−(0) = 0

and satisfy:
Φ0(x±(p)) = p. (4.2)

Note that, because of (4.1), we obtain:

x+(p) =
1

x−(p)

for any p ∈ (0, p0], moreover, being Φ′0(1) = 0 we get: lim
p→p0

x′±(p0) = ∓∞. Now,

p(t) satisfies the equation:
p̈(t) = F (et)

where F (x) = x2Φ′′0(x)+xΦ′0(x) is a rational function defined on a neighborhood
of x ≥ 0. Thus the point is to see whether F (et) = f(p(t)) for some C1-function
f(p). We note the following:

F (1/x) =
1
x2

Φ′′0(1/x) +
1
x

Φ′0(1/x)

and, using (4.1), we get:

− 1
x2

Φ′0(1/x) = Φ′0(x),
2
x3

Φ′0(1/x) +
1
x4

Φ′′0(1/x) = Φ′′0(x).

Thus it is easy to see that F (x) = F (1/x) and then F (x−(p)) = F (x+(p)). Note
that we also get x2F ′(x) = −F ′(1/x). This last equation implies F ′(1) = 0 (note
that a similar conclusion holds for Φ′0(1)). We set

f(p) := F (x−(p)) (= F (x+(p))), p ∈ [0, p0].

Note that we choose x−(p) so that f(p) is continuous up to p = 0; moreover
from (4.2) we see that either x−(p(t)) = et or x+(p(t)) = et, but then, in any
case f(p(t)) = F (et) = p̈(t). Thus we want to show that f(p) can be extended
in a C1 way in a neighborhood of [0, p0]. To this end we simply have to show
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that the limits: limp→p0
d
dpF (x−(p)) and limp→0

d
dpF (x−(p)) exist in R. We

have:

lim
p→p0

d

dp
F (x−(p)) = lim

p→p0

F ′(x−(p))
Φ′0(x−(p))

= lim
x→1

F ′(x)
Φ′0(x)

= lim
x→1

F ′′(x)
Φ′′0(x)

=
F ′′(1)
Φ′′0(1)

∈ R.

Note that we have to assume that Φ′′0(1) 6= 0 because otherwise f(p0) = 0
and then p(t) ≡ p0 will be another solution of the Cauchy problem p̈ = f(p),
p(0) = p0, ṗ(0) = 0. Hence f(p) cannot even be Lipschitz continuous in any
neighborhood of p0. Next we prove that the limit

lim
p→0

d

dp
F (x−(p)) = lim

x→0

F ′(x)
Φ′0(x)

exists in R. To this end we observe that, Φ0(x) being analytic, x = 0 has to be
a zero of finite multiplicity, say k ≥ 1, of Φ0(x), that is Φ0(x) = xkG(x), with
G(0) 6= 0. Then F (x) = k2Φ0(x) +O(xk+1) and

lim
x→0

F ′(x)
Φ′0(x)

= lim
x→0

k2Φ′0(x) +O(xk)
Φ′0(x)

= k2.

Let us briefly recall what we have seen so far. Let Φ0(x) be a non negative
rational function on [0,+∞) such that Φ0(x) = Φ0(1/x) and Φ0(x) is strictly
increasing from 0 to Φ0(1) on [0, 1] (and of course strictly decreasing from Φ0(1)
to 0 on [1,∞)) and Φ′′0(1) 6= 0. Then p(t) := Φ0(et) is a homoclinic solution
of a C1-equation p̈ = f(p). We now want to show that this equation can have
further smoothness properties, for example that can be C2. To do this we show

that the limits lim
p→p0

d2

dp2
F (x−(p)) and lim

p→0

d2

dp2
F (x−(p)) exist in R. As for the

first we will see that the result holds without any further assumption on Φ0(x),
but the same does not hold in general for the second. We have:

d2

dp2
F (x−(p)) =

F ′′(x−(p))Φ′0(x−(p))− F ′(x−(p))Φ′′0(x−(p))
Φ′0(x−(p))3

and hence we are led to evaluate the two limits:

lim
x→1

F ′′(x)Φ′0(x)− F ′(x)Φ′′0(x)
Φ′0(x)3

(4.3)

and

lim
x→0

F ′′(x)Φ′0(x)− F ′(x)Φ′′0(x)
Φ′0(x)3

. (4.4)

Let us consider, first, the limit in (4.3). Since F ′(1) = Φ′0(1) = 0 we apply
L’Hopital rule and get:

lim
x→1

F ′′(x)Φ′0(x)− F ′(x)Φ′′0(x)
Φ′0(x)3

=
1

3Φ′′0(1)
lim
x→1

F ′′′(x)Φ′0(x)− F ′(x)Φ′′′0 (x)
Φ′0(x)2

=
1

6Φ′′0(1)2
lim
x→1

F (iv)(x)Φ′0(x) + F ′′′(x)Φ′′0(x)− F ′′(x)Φ′′′0 (x)− F ′(x)Φ(iv)
0 (x)

Φ′0(x)
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provided the last limit exists. Now, from Φ0(1/x) = Φ0(x) we get:

−Φ′′′0 (1/x) = x6Φ′′′0 (x) + 6x5Φ′′0(x) + 6x4Φ′0(x)

and then Φ′′′0 (1) = −3Φ′′0(1). Similarly F ′′′(1) = −3F ′′(1). Thus we can apply
again L’Hopital rule and obtain:

lim
x→1

F ′′(x)Φ′0(x)− F ′(x)Φ′′0(x)
Φ′0(x)3

=
F (iv)(1)Φ′′0(1)− F ′′(1)Φ(iv)

0 (1)
3Φ′′0(1)3

∈ R.

Now we consider limp→0 f
′′(p) that is the limit in (4.4). Recall that we set

Φ0(x) = xkG(x), with G(0) 6= 0 and note that also F (x) has x = 0 as a zero of
multiplicity k. Thus the numerator of (4.4) has x = 0 as a zero of multiplicity
(at least) 2k − 3 while the denominator has x = 0 as a zero of multiplicity
3(k − 1). Now a simple computation shows that x = 0 is actually a zero of the
numerator of multiplicity at least 2(k − 1), but in general this is the maximum
we can expect. In fact one has:

F ′′(x)Φ′0(x)−F ′(x)Φ′′0(x) = k(k+1)(2k+1)x2(k−1)G(x)G′(x)+O(x2k−1). (4.5)

Of course this is not enough to prove that f(p) is C2 up to p = 0, unless k = 1.
So we assume that k ∈ N, k > 1, and the following holds:

Φ0(x) = xkG0(xk)

where G0(0) 6= 0. In this case in fact the left hand side of equation (4.5) vanishes
at x = 0 (since G′(0) = 0) and we actually have:

F ′′(x)Φ′0(x)− F ′(x)Φ′′0(x) = 6k5G0(xk)G′0(xk)x3(k−1) +O(x4k−3)

and then

lim
x→1

F ′′(x)Φ′0(x)− F ′(x)Φ′′0(x)
Φ′0(x)3

=
6k2G′0(0)
G0(0)2

∈ R.

Let us rewrite what we have done as a theorem:

Theorem 4.1 Let Φ0(u) = ukG(u), k ≥ 1, be a rational function such that
G(0) 6= 0 and the following hold:

(i) Φ0(u) = Φ0(1/u) (that is G(1/u) = u2kG(u)),

(ii) Φ0(x) > 0 when x is real and x > 0,

(iii) Φ′0(x) = 0 on x > 0 is equivalent to x = 1,

(iv) Φ′′0(1) 6= 0.

Then limu→∞ uΦ′0(u) = 0 and there exists a C1–function f(p) in a neighborhood
of [0,Φ0(1)] such that p(t) = Φ0(et) is the solution of the equation p̈ = f(p).
Moreover, if G(u) = G0(uk) for some rational function G0(u), G0(0) 6= 0, the
function f(p) is C2 in a neighborhood of [0,Φ0(1)].
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Proof . We only have to prove that limu→∞ uΦ′0(u) = 0. To this end we note
that G(1/u) = u2kG(u) implies G′(1/u) = −2ku2k+1G(u) − u2k+2G′(u) and
then

lim
u→∞

uΦ′0(u) = lim
u→0

Φ′0(1/u)
u

= lim
u→0

kG(1/u)
uk

+
G′(1/u)
uk+1

= lim
u→0
−uk{uG′(u) + kG(u)} = 0.

Finally note that condition Φ′′0(1) 6= 0 can be also stated in terms of G(u) since
condition (i) implies G′(1) = −kG(1) and then Φ′′0(1) = G′′(1)− k(k + 1)G(1).
The proof is finished.

One might wonder what kind of system one obtains starting with functions
Φ0(x) as in Theorem 4.1. Actually, since Φ0(x) is a rational function one might
expect that the function F (x−(p)) is a rational function of p. However this is
not generally true because x±(p) are in general far from being rational. To show
this we start with the function

Φ0(x) :=
x(x2 + 1)

x4 + 4x2 + 1
.

There is no particular reason for the coefficient 4. It only has to be different
from 2, otherwise the expression of Φ0(x) can be simplified. It is easy to see
that all the conditions of Theorem 3.3 are satisfied. In particular we have

Φ0(x) = Φ0

(
1
x

)
; Φ0(1) =

1
3

; Φ′0(1) = 0; Φ′0(0) = 1; Φ′′0(1) = −1
9
.

Moreover we obtain the following expression for F (x) = x2Φ′′0(x) + xΦ′0(x):

F (x) =
x(x2 + 1)(x8 − 16x6 + 18x4 − 16x2 + 1)

(x4 + 4x2 + 1)3

= Φ0(x)
(x8 − 16x6 + 18x4 − 16x2 + 1)

(x4 + 4x2 + 1)2
.

In order to apply the above described procedure we have to solve the equation:

x(x2 + 1) = (x4 + 4x2 + 1)p (4.6)

for x as a function of p. Since Φ0(x) = Φ0(1/x) we can solve (4.6) multiplying
it by x−2 and setting z = x+ x−1. We obtain:

pz2 − z + 2p = 0

which has the solution

z±(p) =
1±

√
1− 8p2

2p
. (4.7)

Now, x−(p) and x+(p) = x−(p)−1 are both solutions of the equation x+ x−1 =
z+(p), and not x + x−1 = z−(p), because, for p = p0 = Φ0(1) = 1/3 we have
z+(p0) = 2, z−(p0) = 1 and x+(p0) = x−(p0) = 1. Now, we want to construct
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f(p) = F (x−(p)) where x−(p) is the unique solution of Φ0(x) = p such that
0 ≤ x−(p) ≤ 1. We have Φ0(x−(p)) = p for any 0 ≤ p ≤ 1

3 , and x−(Φ0(x)) = x
for any 0 ≤ x ≤ 1. So:

f(p) = pf0(x−(p))

where

f0(x) =
x8 − 16x6 + 18x4 − 16x2 + 1

(x4 + 4x2 + 1)2
=
x4 − 16x2 + 18− 16x−2 + x−4

(x2 + 4 + x−2)2
.

Since x−(p) + x−(p)−1 = z+(p) we have

x2
−(p) + x−(p)−2 = z2

+(p)− 2,

and
x4
−(p) + x−(p)−4 = z4

+(p)− 4z2
+(p) + 2.

So

f0(x−(p)) =
z4

+(p)− 20z2
+(p) + 52

(z2
+(p) + 2)2

.

Plugging (4.7) in the above equation we obtain, after some algebra:

f0(x−(p)) = 7− 6
√

1− 8p2 − 48p2.

Thus we have seen that the second order equation

ẍ = x(7− 6
√

1− 8x2 − 48x2) (4.8)

has the homoclinic solution p(t) =
et(e2t + 1)

e4t + 4e2t + 1
. Note that the equation (4.8)

is defined on the interval (− 1
2
√

2
, 1

2
√

2
) that contains [0, 1

3 ].
We now give an example of equations whose associated Melnikov function

vanishes on an infinite dimensional space of C1, 2π-periodic functions. Take
a ∈ R, a2 6= 0, 1 and set:

Φ0(x) =
|a4 − 1|x2

(x2 + a2)(a2x2 + 1)
.

Note that Φ0(x) > 0, for x 6= 0, and changing a with a−1, we obtain the same
function, so we assume a2 > 1. Moreover Φ0(x) satisfies all the assumptions of
Theorem 4.1 including Φ0(u) = ukG0(uk) with k = 2. For example one has:

Φ′′0(1) =
8a2(1− a2)
(1 + a2)3

which is different from zero when a2 6= 0, 1. Now, the (simple) poles of Φ0(u)
are

w1 := ia, w̄1 = −ia, w2 := ia−1, w̄2 = −ia−1
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and we have
λ1 = limz→1(z − 1)Φ0(w1z) = −1/2
λ̄1 = limz→1(z − 1)Φ0(w̄1z) = −1/2
λ2 = limz→1(z − 1)Φ0(w2z) = 1/2
λ̄2 = limz→1(z − 1)Φ0(w̄2z) = 1/2.

Thus equation (3.5) gives, after some algebra:

δn =
πin

sinh(nπ2 )
sin(n log a)

and we obtain the following:

(a) taking a = emπ, m ∈ N, we can construct a family of second order equa-
tion whose Melnikov function is identically zero, no matter what the (2π-
periodic) perturbation is;

(b) taking a = emπ/2, m ∈ N, we can construct a family of second order
equation whose Melnikov function is identically zero on an infinite number
of independent 2π-periodic perturbations but not for all.

To obtain an analytical expression of such systems, we proceed as in the previous
example. The equation Φ0(x) = p reads:

pa2(x2 +
1
x2

)− a4 + p+ pa4 + 1 = 0

and again can be solved by setting z = x+ x−1. We obtain:

z2 = (a2 − 1)
a2 + 1− p(a2 − 1)

pa2

which has the solutions

z±(p) = ±
√
p[a4 − 1− p(a2 − 1)2]

ap

It is not necessary to solve the equations x+x−1 = z±. We only have to note that
both x−(p) and x+(p) = x−(p)−1 are solutions of the equation x+x−1 = z+(p),
and not x + x−1 = z−(p), because z+(p0) = 2, z−(p0) = −2 and x−(p0) =
x+(p0) = 1. Next we compute F (x) = x2Φ′′0(x) +xΦ′0(x). Since F (x) = F (1/x)
we expect that F (x) can be expressed in terms of z = x + x−1. An annoying
computation shows that, in fact, F (x) = G(x+ x−1), where:

G(z) = 4a2(a4 − 1)
a2z4 − (a4 + 4a2 + 1)z2 + 2(a2 − 1)2

(a2z2 + (a2 − 1)2)3
.

Thus f(p, a) = F (x−(p)) = G(z+(p)). After some algebra, we get:

f(p, a) = 4p
(

2p2 − 3
a4 + 1
a4 − 1

p+ 1
)

= 4p[2p2 − 3p coth(2 log a) + 1]. (4.9)
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Thus, in this case, p(t) = Φ0(et) is the solution of an analytic second order
equation ẍ = f(x, a) such that, when a = emπ (or a = emπ/2), m ∈ N, its
Melnikov function vanishes identically on any 2π-periodic functions (or it is
identically zero for infinitely many independent 2π-periodic functions but not
for all). The geometrical meaning of this is that, in spite of the fact that the
perturbation of the equation is of the order O(ε), the distance between the
stable and unstable manifolds of the perturbed equation, along a transverse
direction, is of the order (at least) O(ε2). This means that in order to study
the intersection of the stable and the unstable manifolds, we have to look at the
second order Melnikov function. For a C2-equation like ẍ + f(x) = εq(t) this
second order Melnikov function is given by:

M2(α) =
∫ +∞

−∞
ṗ(t)f ′′(p(t))v2

α(t)dt

where vα(t) is any fixed bounded solution of the equation

ẍ = f ′(p(t))x+ q(t+ α). (4.10)

This solution exists thanks to the fact that M(α) = 0. Note that any two
of these bounded solutions differ for a multiple of ṗ(t), and hence vα+2π(t) =
vα(t) + λṗ(t), for some λ ∈ R. On the other hand M2(α) does not depend on
the particular solution vα(t) we choose. This fact easily follows from the fact
that p̈(t) is a bounded solution of the non homogeneous system

ẍ = f ′(p(t))x+ f ′′(p(t))ṗ(t)2

and v̇α(t) is a bounded solution of

ẍ = f ′(p(t))x+ f ′′(p(t))ṗ(t)vα + q̇(t+ α).

Hence: ∫ +∞

−∞
ṗ(t)f ′′(p(t))ṗ(t)2dt = 0

and ∫ +∞

−∞
ṗ(t)f ′′(p(t))ṗ(t)vα(t)dt = −

∫ +∞

−∞
ṗ(t)q̇(t+ α) = M ′(α) = 0.

Thus M2(α) is 2π-periodic. This fact, however, also follows from the more
general fact that the bifurcation function itself is 2π-periodic. We now prove
the following result.

Theorem 4.2 For any m ∈ N and c 6= 0, the second order Melnikov function
M2(α) associated to the equation

ẍ = 4x(2x2 − 3x coth(2mπ) + 1) + ε
( c

2
+ qodd(t)

)
(4.11)
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does not vanish identically on a dense subset S of the space C1
odd,2π of all C1-

smooth, 2π−periodic and odd functions qodd(t). Actually, S is the complement
of a codimension one closed linear subspace of C1

odd,2π. Moreover if a positive
integer k ∈ N exists such that qodd(t + π

k ) = −qodd(t), M2(α) changes sign in
the interval [0, πk ].

Proof. We emphasize the fact that many of the arguments of this proof can
be used even for more general equations than (4.11) having a homoclinic orbit.
For this reason we will write f(x) instead of 4x(2x2 − 3x coth(2mπ) + 1), q(t)
instead of c

2 + qodd(t) and p(t) for the orbit homoclinic to the hyperbolic fixed
point x = 0, in the first part of the proof. Note that the hyperbolicity of x = 0
implies that f ′(0) > 0.

As a first step we simplify the expression of M2(α) in the following way. Let
vα(t) be a bounded solution of the equation ẍ = f ′(p(t))x + q(t + α), whose
existence is guaranteed by the fact that M(α) = 0, and u(t) be the unique 2π-
periodic solution of the equation ẍ = f ′(0)x+q(t). Then rα(t) := vα(t)−u(t+α)
is a bounded solution of

ẍ = f ′(p(t))x+ [f ′(p(t))− f ′(0)]u(t+ α).

As a consequence rα(t) → 0 exponentially together with its first and second
derivative (uniformly with respect to α) and vα(t) = rα(t) + u(t+ α). Then

M2(α) =
∫ +∞

−∞

d

dt
[f ′(p(t)− f ′(0)]v2

α(t)dt

= −2
∫ +∞

−∞
[f ′(p(t))− f ′(0)]vα(t)v̇α(t)dt

= −2
∫ +∞

−∞

(
[v̈α(t)− q(t+ α)]v̇α(t)− f ′(0)vα(t)v̇α(t)

)
dt.

Now we observe that

2 lim
n→+∞

∫ nπ

−nπ
v̈α(t)v̇α(t)dt = lim

n→+∞

{
[ṙα(nπ) + u̇(nπ + α)]2

−[ṙα(−nπ) + u̇(−nπ + α)]2
}

= 0

because ṙα(t) → 0 as |t| → +∞ and u(t) is 2π-periodic. Similarly, using the
fact that rα(t)→ 0 as |t| → +∞, we get:

2 lim
n→+∞

∫ nπ

−nπ
vα(t)v̇α(t)dt = lim

n→+∞

{
[rα(nπ) + u(nπ + α)]2

−[rα(−nπ) + u(−nπ + α)]2
}

= 0.

As a consequence

M2(α) = 2 lim
n→+∞

∫ nπ

−nπ
v̇α(t)q(t+ α)dt (4.12)
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Note that lim
n→+∞

∫ nπ

−nπ
in equation (4.12) cannot be replaced by

∫ +∞

−∞
because

the convergence of this integral is not guaranteed. Now, in order to compute
vα(t), we first look for a fundamental matrix of the homogeneous equation
ẍ = f ′(p(t))x. We already know that ṗ(t) is a solution of the previous equation
that satisfies also ṗ(0) = 0, and p̈(0) 6= 0. So we look for a solution y(t) such
that y(0)p̈(0) = 1 and ẏ(0) = 0. If y(t) is such a solution, Liouville Theorem
implies that

X(t) =
(
y(t) ṗ(t)
ẏ(t) p̈(t)

)
satisfies detX(t) = 1 that is ṗ(t)ẏ(t)− p̈(t)y(t) = −1. Integrating this equation
we obtain:

y(t) = −ṗ(t)
∫ t 1

ṗ(s)2
ds.

Note that, no matter the constant we add to the integral, cṗ(t) vanishes for t = 0;
however the constant is uniquely determined by the condition ẏ(0) = 0 (from
which the equality y(0)p̈(0) = 1 follows). Let µ =

√
f ′(0). From p(t) = P (eµt),

we obtain:
y(t) = Y (eµt) (4.13)

where

Y (x) = − 1
µ2
xP ′(x)

∫ x dσ

σ3[P ′(σ)]2
. (4.14)

Specializing (4.14) to equation (4.11) where P (x) = (a4−1)x
(x+a2)(a2x+1) , with µ = 2,

we obtain Y (x) = Y0(x) + Ys(x) + Yb(x) where

Y0(x) =
3
2
a2(a8 + 3a4 + 1)

a4 − 1
x(x2 − 1) log x

(x+ a2)2(a2x+ 1)2

Ys(x) =
a2

8(a4 − 1)
(
x+ x−1

)
Yb(x) =

3
4
a4 + 1
a4 − 1

− a16 + 52a12 + 72a8 − 4a4 − 1
16a2(a4 − 1)2(x+ a2)

+
a12 + 29a8 + 29a4 + 1
16(a4 − 1)(x+ a2)2

− a16 + 4a12 − 72a8 − 52a4 − 1
16a4(a4 − 1)2(a2x+ 1)

+
a12 + 29a8 + 29a4 + 1
16a4(a4 − 1)(a2x+ 1)2

Note that Y0(x) + Yb(x) is bounded on [0,+∞) while Ys(x) is unbounded near
x = 0 and infinity. Now, the variation of constants formula gives, for any
solution of equation (4.10):

vα(t) = c1y(t) + c2ṗ(t) +
∫ t

0

[ṗ(t)y(s)− ṗ(s)y(t)]q(s+ α)ds

=
[
c1 −

∫ t

0

ṗ(s)q(s+ α)ds
]
y(t) + ṗ(t)

[
c2 +

∫ t

0

y(s)q(s+ α)ds
]
.
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Then, from the boundedness of q(t), the fact that y(t) is of the order eµ|t| at ±∞
and ṗ(t) is of the order e−µ|t| at ±∞, we see that the second term is bounded
on R. Hence vα(t) will be bounded on R if and only if a constant c1 exists such
that [

c1 −
∫ t

0

ṗ(s)q(s+ α)ds
]
y(t)

is bounded on R, and this can happen (if and) only if

c1 =
∫ +∞

0

ṗ(s)q(s+ α)ds =
∫ 0

−∞
ṗ(s)q(s+ α)ds.

This choice of c1 is made possible by the fact that M(α) = 0 and gives:

vα(t) = y(t)
∫ ∞
t

ṗ(s)q(s+ α)ds+ ṗ(t)
[
c2 +

∫ t

0

y(s)q(s+ α)ds
]
.

Note that vα(t) is bounded on R for any value of c2. However we can make it
unique by adding the condition v̇α(0) = 0. Since ẏ(0) = 0 we see that this is
equivalent to choosing c2 = 0. That is

vα(t) = y(t)
∫ ∞
t

ṗ(s)q(s+ α)ds+ ṗ(t)
∫ t

0

y(s)q(s+ α)ds. (4.15)

It is worth of mentioning that equation (4.15) gives a bounded solution of equa-
tion (4.10) provided p(t) is a homoclinic solution of ẍ = f(x), and y(t) is defined
as in (4.13) and (4.14).

Now, we write q(t) = qeven(t) + qodd(t) where qeven(−t) = qeven(t) and
qodd(−t) = −qodd(t). Then the solution v(t) of the equation ẍ = f ′(p(t))x+q(t)
satisfies v(t) = veven(t)+vodd(t) where veven(t) is the (unique) bounded solution
of

ẍ = f ′(p(t))x+ qeven(t), ẋ(0) = 0

while vodd(t) is the (unique) bounded solution of

ẍ = f ′(p(t))x+ qodd(t), ẋ(0) = 0.

From p(t) = p(−t), and the uniqueness of the solutions we get veven(t) =
veven(−t) and vodd(t) = −vodd(−t) and then

M2(0) = 2 lim
n→+∞

∫ nπ

−nπ
v̇even(t)qodd(t) + v̇odd(t)qeven(t)dt.

Now, we consider the situation where qeven(t) = c
2 6= 0 is constant and different

from zero. We obtain immediately:∫ nπ

−nπ
v̇odd(t)qeven(t)dt = c vodd(nπ).



24 Some remarks on the Melnikov function EJDE–2002/13

Next, let uodd(t) be the unique bounded solution of ẍ = f ′(0)x+ qodd(t). From
the uniqueness we see that uodd(t) is 2π-periodic and odd, moreover vodd(t) −
uodd(t) is a bounded solution of ẍ = f ′(0)x+ [f ′(p(t))− f ′(0)]vodd(t) and hence
tends to zero exponentially as |t| → +∞. As a consequence

lim
n→+∞

vodd(nπ) = lim
n→+∞

uodd(nπ).

On the other hand −uodd(−nπ) = uodd(nπ) = uodd(−nπ) because of oddness
and periodicity. As a consequence uodd(nπ) = 0 and then

M2(0) = 2 lim
n→+∞

∫ nπ

−nπ
v̇even(t)qodd(t)dt = 2

∫ ∞
−∞

v̇even(t)qodd(t)dt

the last equality being justified by the fact that veven(t) + c
2f ′(0) tends to zero,

as |t| → +∞, together with its first derivative, being a bounded solution of

ẍ = f ′(p(t))x− c

2f ′(0)
[f ′(p(t))− f ′(0)].

At this point we note that when qodd(t + π
k ) = −qodd(t) we have vπ/k(t) =

veven(t)− vodd(t) and hence it is easy to see that

M2(π/k) = 2 lim
n→+∞

∫ nπ

nπ

v̇π/k(t)[
c

2
− qodd(t)]dt

= −2
∫ ∞
−∞

v̇even(t)qodd(t) = −M2(0)

and the theorem follows provided we prove that M2(0) 6= 0.
Now, from equation (4.15) we obtain:

veven(t) =
c

2

(
ṗ(t)

∫ t

0

y(s)ds− p(t)y(t)
)

=
c

2
v(t)

where v(t) is defined by the equality. We note that v(t) is the bounded solution of
ẍ = f ′(p(t))x+1, with ẋ(0) = 0 and that v(t)+ 1

f ′(0) tends to zero exponentially,
as |t| → +∞, together with its derivative. Moreover

M2(0) = c

∫ ∞
−∞

v̇(t)qodd(t)dt = c

∫ 2π

0

r(t)qodd(t)dt

where
r(t) =

∑
k∈Z

v̇(t+ 2kπ) (4.16)

is 2π−periodic and odd. From p(t) = P (eµt) and y(t) = Y (eµt) we see that
v(t) = V (eµt) where

V (x) = xP ′(x)
∫ x

1

Y (σ)
σ

dσ − P (x)Y (x).
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Note that V (x) is linear in Y (x). Applying the above considerations to equation
(4.11) (hence with µ = 2) we obtain after some integrations:

V (x) +
1
4

=
3a2x(a4 + 1)(1− x2) log x

4(a2x+ 1)2(x+ a2)2

+
x[(a12 + 23a8 + 23a4 + 1)(x2 + 1) + 16a2(a8 + 4a4 + 1)x]

16a2(a2x+ 1)2(x+ a2)2
.

We set

M̃2(α) :=
∫ +∞

−∞
v̇(t)qodd(t+ α)dt.

Then M̃2(α) is 2π−periodic and M2(0) = cM̃2(0). Expanding M̃2(α) into its
Fourier series we get:

M̃2(α) = −
∑
n∈Z

inγnqne
inα

qn being the n−th Fourier coefficient of qodd(t) and

γn =
∫ +∞

−∞
[V (e2t) +

1
4

]eintdt.

Note that inγ−n/(2π) are also the Fourier coefficients of the function r(t) defined
in (4.16). Since qodd(t) is an odd real function we easily get qn = icn where cn
are real numbers such that cn = −c−n. Thus

M̃2(α) =
∑
n∈Z

nγncne
inα. (4.17)

Being M̃(α) a real valued function, we also get: γ̄n = γ−n. Moreover, arguing
as in Section 2 of this paper we can evaluate the Fourier coefficients of M̃2(α)
by means of residues and get, for n 6= 0:

γn =
πienπ

sinh(nπ)

(∑
wj

Res(W (u)uin−1, wj) +
2πi

e2nπ − 1

∑
wj

Res(H(u)uin−1, wj)
)

where wj runs in the set {±ia,±i/a} and:

W (u) = W0(u) +H(u) log u

H(u) =
3a2(a4 + 1)u2(1− u4)
2(a2u2 + 1)2(u2 + a2)2

W0(u) =
u2((a12 + 23a8 + 23a4 + 1)(u4 + 1) + 16a2(a8 + 4a4 + 1)u2)

16a2(a2u2 + 1)2(u2 + a2)2

Note that W (u) is the extension of V (x2) + 1
4 to the complex field. More-

over W (u) is a meromorphic function on C \ {x ∈ R : x ≥ 0} that satisfies
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limu→∞W (u) = 0 uniformly with respect to Arg(u) ∈ (0, 2π). An annoying
computation shows that:

Res(H(u)uin−1, ia) =
3i(a4 + 1)
8(a4 − 1)

n(cos(n log a) + i sin(n log a))e−nπ/2

Res(H(u)uin−1, i/a) = −3i(a4 + 1)
8(a4 − 1)

n(cos(n log a)− i sin(n log a))e−nπ/2

Res(H(u)uin−1,−ia) =
3i(a4 + 1)
8(a4 − 1)

n(cos(n log a) + i sin(n log a))e−3nπ/2

Res(H(u)uin−1,−i/a) = −3i(a4 + 1)
8(a4 − 1)

n(cos(n log a)− i sin(n log a))e−3nπ/2.

Thus:∑
wj

Res(H(u)uin−1, wj) = −3(a4 + 1)
4(a4 − 1)

n(e−3nπ/2 + e−nπ/2) sin(n log a)

which is zero for a = emπ. A similar computation gives:

∑
wj

Res(W0(u)uin−1, wj) = − in(enπ + 1)
32e3nπ/2

a12 + 9a8 − 9a4 − 1
a4(a4 − 1)

cos(n log a)

−3i(enπ + 1)
4e3nπ/2

a4 + 1
a4 − 1

sin(n log a)∑
wj

Res(H(u)uin−1 log u,wj) =
3in(enπ + 1) log a

4e3nπ/2

a4 + 1
a4 − 1

cos(n log a)

+
3i(a4 + 1)[2(enπ + 1)− nπ(enπ + 3)]

8(a4 − 1)e3nπ/2
sin(n log a)

As a consequence, setting a = emπ:

γn =
(−1)nmπn
8 sinh(nπ2 )

[
cosh2(2mπ)− 6mπ coth(2mπ) + 2

]
that is

M2(0) = c · Cm
∑

n∈Z\{0}

(−1)nmn2cn
sinh(nπ2 )

= 2c · Cm
∑
n>0

(−1)nmn2cn
sinh(nπ2 )

Cm being a positive constant. So, for any non zero real number c, we have
γn 6= 0, for any n ∈ Z \ {0} and then r(t) 6= 0. Since M2(0) 6= 0 if and only

if
2π∫
0

r(t)qodd(t)dt 6= 0, the thesis of the present theorem follows. For example

the space of 2π−periodic functions for which M2(0) 6= 0 is different from zero
contains functions like c

2 + qodd(t), where c 6= 0, and qodd(t) is a 2π−periodic,
odd function whose Fourier coefficients icn satisfy (−1)nmcn ≥ 0 (resp. ≤ 0)
for n > 0. The proof is finished.
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We conclude this Section with a remark. Letting m→ +∞ in equation

ẍ = 4x(2x2 − 3x coth(2mπ) + 1) (4.18)

we obtain the equation
ẍ = 4x(2x2 − 3x+ 1) (4.19)

which has two heteroclinic connections to the equilibria x = 0 and x = 1. Since
the Melnikov function of equation (4.18) is identically zero for any 2π-periodic
perturbation of the equation, one might wonder whether this fact holds for the
Melnikov functions associated to the heteroclinic orbits of equation (4.19). The
answer to this question is negative as it can be easily seen by direct evaluation
of the Fourier coefficients of the Melnikov function. In fact let us consider, for
example the heteroclinic solution of (4.19) going from x = 0 to x = 1:

p∞(t) =
e2t

e2t + 1
= R(et)

where R(x) = x2

x2+1 . Applying the procedure described in this paper we see that
the Fourier coefficients of the Melnikov function are given by δnqn where δ0 = 1
and, for n 6= 0:

δn =
2nπ

1− e−2nπ
[Res(

uin+1

u2 + 1
, i) + Res(

uin+1

u2 + 1
,−i)] =

nπ

2 sinh(nπ2 )
.

Geometrically, this strange behaviour depends on the fact that the homoclinic
solution of (4.18) gets orbitally closer and closer (as m→∞) to the heteroclinic
cycle and not to any of the heteroclinic orbits. As a matter of fact, setting

pm(t) =
e2t(e4mπ − 1)

(e2t + e2mπ)(e2t+2mπ + 1)
,

the Melnikov function associated to a heteroclinic solution of (4.19) is the limit,
for m→∞ of either: ∫ +∞

0

ṗ2m(t)q(t+ α)dt

or ∫ 0

−∞
ṗ2m(t)q(t+ α)dt

and these are not zero in general. To see this, consider, for example the hetero-
clinic solution of (4.19) p∞(t). We have, for t ≤ 0:

0 ≤ ṗ∞(t+mπ)− ṗm(t) =
1

2 cosh2(mπ − t)
≤ 2e2t. (4.20)

From Lebesgue’s theorem we get then:

lim
m→+∞

∫ 0

−∞
[ṗ∞(t+mπ)− ṗm(t)]b(t)dt = 0
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for any L∞-function b(t), and hence:∫ ∞
−∞

ṗ∞(t)q(t+ α)dt = lim
m→+∞

∫ 2mπ

−∞
ṗ∞(t)q(t+ α)dt =

lim
m→+∞

∫ 0

−∞
ṗ∞(t+ 2mπ)q(t+ α)dt = lim

m→+∞

∫ 0

−∞
ṗ2m(t)q(t+ α)dt.

A similar argument shows that∫ ∞
−∞

ṗ∞(t+ π)q(t+ α)dt = lim
m→+∞

∫ 0

−∞
ṗ2m+1(t)q(t+ α)dt.
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[3] Fečkan, M. Higher dimensional Melnikov mappings, Math. Slovaca 49
(1999), 75-83.

[4] Gelfreich, V.G. A proof of the exponentially small transversality of the
separatrices for the standard map, Comm. Math. Phys. 201 (1999), 155-
216.

[5] Gruendler, J. The existence of homoclinic orbits and the method of Mel-
nikov for systems in Rn, SIAM J. Math. Analysis 16 (1985), 907–931.

[6] Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

[7] Holmes, P. Averaging and chaotic motions in forced oscillations, SIAM J.
Appl. Math. 38 (1980), 65-80.

[8] Palmer, K. J. Exponential dichotomies and transversal homoclinic points,
J. Diff. Equations 55 (1984), 225–256.

[9] Rudin, W. Real and Complex Analysis, McGraw-Hill, Inc. New York, 1974.

[10] Smale S. Differentiable dynamical systems, Bull. Amer. Math. Soc. 73
(1967), 747-817.

Flaviano Battelli

Dipartimento di Matematica “V. Volterra”,
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